
© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 1

Newton 2.0 OS Q&A's
© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved

_

Introduction
This document addresses Newton 2.0 OS development issues that are not available in the
currently printed documentation . Please note that this information is subject to change as the
Newton technology and development environment evolve.

TABLE OF CONTENTS:

Application Design
Optimizing Root View Functions (9/15/93)
Code Optimization (9/15/93)
Global Name Scope (6/7/94)
Preventing an Application from Opening (6/9/94)
NEW: Creating a Polite Backdrop Application (1/19/96)
NEW: Responding to Changes From a Keyboard (2/6/96)
NEW: Testing Your Application (2/7/96)

Views
Saving clEditView Contents to a Soup (10/4/93)
Declaring Multiple Levels (6/9/94)
Adding Editable Text to clEditViews. (6/9/94)
TieViews and Untying Them (6/9/94)
Immediate Children of the Root View are Special (11/17/94)
NEW: Arguments to AsyncConfirm and ModalConfirm (12/12/95)
NEW: FilterDialog and ModalDialog Limitations (2/5/96)

NewtApp
NEW: Creating Preferences in a NewtApp-based application (01/31/96)
NEW: Creating an About slip in a NewtApp-based application (01/31/96)
NEW : Customizing Filters with Labelled Input Lines (2/5/96)
NEW : Creating a Simple NewtApp (2/7/96)
NEW: Setting the User Visible Name with NewtSoup (2/6/96)

Stationery

Pickers, Popups and Overviews
NEW : Single Selection in ProtoListPicker-based Views (12/5/95)
NEW: Using Icons With ProtoLabelPicker (1/3/96)

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 2

NEW: Preselecting Items in ProtoListPicker (1/16/96)
NEW: Picker List is Too Short (2/5/96)
NEW: Determining Which ProtoSoupOverview Item is Hit (2/5/96)
NEW: Displaying the ProtoSoupOverview Vertical Divider (2/5/96)
NEW: How to Use ProtoOverview (2/6/96)
CHANGED: ProtoDigit Requires a DigitBase View (2/6/95)

Controls and Other Protos

Text and Ink Input and Display
NEW: ProtoPhoneExpando Bug (2/6/96)
NEW: Pictures in clEditViews (2/6/96)
NEW: Horizontal Scrolling, Clipping, and Text Views. (2/7/96)

Stroke Bundles

Recognition
NEW : Opening the Corrector Window (12/8/95)
CHANGED: Custom Recognizers (2/8/96)

Data Storage (Soups)
FrameDirty is Deep, But Can Be Fooled (8/19/94)
CHANGED: Limits on Soup Entry Size (2/12/96)

Drawing and Graphics
Drawing Text on a Slanted Baseline (9/15/93)
LCD Contrast and Grey Texture Drawing (11/10/93)
Destination Rectangles and ScaleShape (3/11/94)
Difference Between LockScreen and RefreshViews (6/17/94)
The Newton Bitmap Format (11/27/95)

Sound

System Services, Find, and Filing
viewIdleScripts and clParagraphViews (8/1/95)
NEW : Functions to Create Application-specific Folders (12/5/95)
NEW: Preventing selections in the Find Overview (2/5/96)
NEW: Creating Custom Finders (2/5/96)

Intelligent Assistant

Built-In Apps and System Data
NEW: There is No ProtoFormulasPanel (2/5/96)
NEW: ProtoPrefsRollItem Undocumented Slots (2/6/96)
NEW: SetEntryAlarm Does Not Handle Events (2/6/96)

Localization

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 3

Utility Functions
NEW: What Happened to FormattedNumberStr (2/12/96)

Errors

Digital Books
BookMaker Page Limitations (11/19/93)

Routing
Not all Drawing Modes Work With a PostScript Printer (3/8/94)
PICT Printing Limitations (6/9/94)
Printing Fonts With a PostScript Printer (7/26/94)
Printing Resolution 72DPI/300DPI (2/8/94)
Printing Does Not Have Access to My App Slots (11/27/95)
NEW: How to Open the Call Slip or Other Route Slips (12/19/95)

Transports
NEW: Adding Child Views to a ProtoTransportHeader-based View (1/19/96)

Endpoints & Comm Tools
Maximum Speeds with the Serial Port (3/8/94)
What is Error Code -18003 (3/8/94)
Newton Remote Control IR (Infra-red) API (6/9/94)
Communications With No Terminating Conditions (6/9/94)
Unicode-ASCII Translation Issues (6/16/94)
Sharp IR Protocol (12/2/94)
NEW: How To Specify No Connect/Listen Options (2/1/96)
NEW: Why Synchronous Comms Are Evil (2/1/96)

Modem Setup

Desktop Connectivity (DILs)
NEW: Differences Between MNP, Modem, Modem-MNP, and Real Modems (2/5/96)
NEW : CDPipeInit Returning -28102 on MacOS Computers (2/13/96)
NEW: Getting Serial Port Names on MacOS Computers (2/13/96)

User Interface

Hardware & OS
IR Port Hardware Specs (6/15/94)
IR Hardware Info (9/6/94)
Serial Port Hardware Specs (6/15/94)
Serial Cable Specs (8/9/94)
How Much Power Can a PCMCIA Card Draw (3/31/95)

NewtonScript
NewtonScript Object Sizes (6/30/94)

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 4

Nested Frames and Inheritance (10/9/93)
Symbol Hacking (11/11/93)
Performance of Exceptions vs Return Codes (6/9/94)
Symbols vs Path Expressions and Equality (7/11/94)
Function Size and "Closed Over" Environment (7/18/94)

Debugging NewtonScript
Check for Application Base View Slots (3/6/94)
NEW: TrueSize Incorrect for Soup Entries (2/6/96)

Newton ToolKit
NTK, Picture Slots and ROM PICTs (12/19/93)
Recognition Problems With the Inspector Window Open (3/8/94)
Accessing Views Between Layout Windows (6/7/94)
Dangers of StrCompare, StrEqual at Compile Time (6/9/94)
Profiler and Frames of Functions (7/10/95)
NTK 1.6 Heap/Partition Memory Issues (11/24/95)
NTK Search and Memory Hoarding (11/24/95)
NTK Stack Overflow During Compilation (11/24/95)
Unit Import/Export and Interpackage References (11/25/95)

Miscellaneous
Unicode Character Information (9/15/93)
NEW: Current Versions of MessagePad Devices (2/7/96)

Application Design
_ _
Optimizing Root View Functions (9/15/93)

Q: I've got this really tight loop that executes a "global" function. The function isn't
really global, it's defined in my root view and the lookup time to find it is slowing me
down. Is there anything I can do to optimize it?

A: If the function does not use inheritance or "self", you can speed things up by doing
the lookup explicitly once before executing the loop, and using the call statement to
execute the function within the body of the loop.

Here's some code you can try inside the Inspector window:

f1 := {myFn: func() 42};
f2 := {_parent: f1};
f3 := {_parent: f2};
f4 := {_parent: f3};
f5 := {_parent: f4};
f5.test1 := func ()

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 5

for i:=1 to 2000 do call myFn with ();
f5.test2 := func() begin

local fn := myFn;
for i:=1 to 2000 do call fn with ();
end

/* executes with a noticeable delay */
f5:test1();

/* executes noticeably faster */
f5:test2();

Note: Use this technique only for functions that don't use inheritance or the self
keyword.

This trick is analogous to the MacOS programming technique of using
GetTrapAddress to get a trap's real address and calling it directly to avoid the
overhead of trap dispatch.

_ _
Code Optimization (9/15/93)

Q: Does the compiler in the Newton Toolkit reorder expressions or fold floating
point constants? Can the order of evaluation be forced (as with ANSI C)?

A: The current version of the compiler doesn't do any serious optimization, such as
eliminating subexpressions, or reordering functions; however, this may change in
future products. (Note: NTK 1.6 added constant folding, so for example 2+3 will be
replaced with 5 by the compiler.) In the meantime, you need to write your code as
clearly as possible without relying too heavily on the ordering of functions inside
expressions.

The current version of the NTK compiler dead-strips conditional statements from your
application code if the boolean expression is a simple constant. This feature allows
you to compile your code conditionally.

For example, if you define a kDebugMode constant in your project and have in your
application a statement conditioned by the value of kDebugMode, the NTK compiler
removes the entire if/then statement from your application code when the value of
kDebugMode is NIL.

constant kDebugMode := true; // define in Project Data
if kDebugMode then Print(...); // in application code

When you change the value of the kDebugMode constant to NIL, then the compiler
strips out the entire if/then statement.

_ _
Global Name Scope (6/7/94)

Note that in NewtonScript, global functions and variables are true globals. This
means that you might get name clashes with other possible globals, and as this
system is dynamic you can't do any pre-testing of existing global names.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 6

Here are two recommended solutions in order to avoid name space problems:

Use your signature in any slot you create that is outside of the domain of your own
application.

Unless you really want a true global function or variable, place this inside the base
view. You are actually able to call this function or access this variable from other
applications, because the base view is declared to the root level.

For instance, we might have the following function declared inside the base view:

|MyBaseView:MySIG| := {
viewClass: clView,
declareSelf: 'base,
TestThisView := func()
begin

// blah blah blah
end

};

If you now call the function from another template that is not a child of the base
view, you might do this:

|MyBaseView:MySIG|:TestThisView();

_ _
Preventing an Application From Opening (6/9/94)

Q: I do not want my application to open, for example because the screen size is too small,
or because the OS is the wrong version. What's the best way to prevent it?

A: Check for whatever constraints or requirements you need early, if not in the
installScript, then in the viewSetupFormScript for the application's base
view. In your case, you can do some math on the frame returned from GetAppParams
to see if the screen is large enough to support your application.

If you do not want the application to open, do the following:
• Call Notify to tell the user why your application cannot run.
• Set the base view's viewBounds so it does not appear, use

RelBounds(-10, -10, 0, 0) so the view will be off-screen.
• Possibly set (and check) a flag so expensive startup things do not happen.
• Possibly set the base view's viewChildren and stepChildren slots to NIL.
• call AddDeferredSend(self, 'Close, nil) to close the view.

_ _
NEW: Creating a Polite Backdrop Application (1/19/96)

Q: How do I get backdrop behavior in my application?

A: Backdrop behavior is given to you for free. If your applicationÕs close box is based on
protoCloseBox or protoLargeCloseBox then your close box will automatically

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 7

hide itself if your application is the backdrop application. If you also use
newtStatusBar as your status bar proto, the appropriate buttons will shift to fill
the gap left by the missing close box. Note that you do not have to use the NewtApp
framework to use the newtStatusBar proto.

The system will automatically override the Close and Hide methods so your
application cannot be closed.

If you need to know which application is the backdrop application, you can find the
appSymbol of the current backdrop app with GetUserConfig('blessedApp).

Here are some tips on being a polite backdrop application:

• Your application should be full-screen. (Set "Styles" as the backdrop to see why.)

• A polite backdrop application will also add the registered auxiliary buttons to its
status bar. See the "Using Auxiliary Buttons" in the Newton Programmers Guide
(Chapter 18.)

_ _
NEW: Responding to Changes From a Keyboard (2/6/96)

Q: I open a custom keyboard to edit my view. How can I tell that the keyboard has been
closed so that I can process the potentially modified contents of the view?

A: The viewChangedScript for the view will be called each time the user does
something to modify the view. For keyboards, this means the script is called each
time the user taps a key. This is the only notification that is provided to indicate the
view contents have changed.

There are no hooks you can use to tell you when standard keyboards have closed. If
you implement your own keyboard, you could provide a viewQuitScript or other
custom code to explicitly notify the target that the keyboard is going away, but we do
not recommend this. (There may be a hardware keyboard attached, a system
keyboard may be open, or the user may be writing into your view. It is a mistake to
assume that the only way to modify your view is through your own keyboard.)

If the processing you need to do is lengthy and would interfere with normal typing on
the keyboard, you can arrange it so the processing won't start for a few seconds. This
usually gives the user time to type another key, which can then further delay the
processing.

To make this "watchdog timer" happen, use the idle mechanism as your timer. Put
the code to process the changes in the viewIdleScript (or call it from the
viewIdleScript.) In the viewChangedScript, if the 'text slot has changed,
use :SetupIdle(<delay>) to arrange for the viewIdleScript to be called in a
little while.

If :SetupIdle(<delay>) happens again before the first delay goes by (perhaps
because the user typed another key,) the idle script will be called after the new
delay. The older one is ignored. SetupIdle resets the timer each time it's called.

Don't forget to have the viewIdleScript return NIL so it won't be called

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 8

repeatedly.

_ _
NEW: Testing Your Application (2/7/96)

Q: Before I ship my application, what should I test?

A: Although there is no complete answer, the following is a quick outline of things that
should be tested to ensure compatibility with the Newton OS. Items that are OS or
Locale specific are noted. Also note that this list only covers current Apple
MessagePad devices.

This is something to help you think of other areas to test. Covering the areas in this
list should improve the stability of your application, but is not guaranteed to make it
stable and fool-proof.

This list does not cover the functionality of the application itself. That is, it is not a
test plan for your application.

1. Versions (Latest supported system updates)
See Current versions of MessagePad devices in the Misc. Q&A

2. Basic Functional Testing
2.1. Launch and use app from internal RAM, memory card, locked memory card, in

rotated mode

3. Data Manipulation
3.1. Create and store data in internal RAM
3.2. Create and store data to memory card
3.3. Delete data from internal RAM
3.4. Delete data from memory card
3.5. Move data from internal RAM to memory card and vice versa
3.6. Duplicate data
3.7. Find data from with app frontmost
3.8. Find data in app using Find All from paperroll
3.9. Find data in all user enterable fields
3.10. Check the app name in the Find slip when "Selected" is checked, and check that

the app name is correct for the radio button in the Find slip
3.11. If the app implements custom find, make sure other types of find (selected and

everywhere) still work.
3.12. Select and Copy data to and from clipboard
3.13. Backup to memory card and restore to different Newton device. Verify that data

is intact.
3.14. Backup via NBU and restore to different Newton device. Verify that data is

intact.
3.15. File data into folders (if supported.)

4. Communications
4.1. Print data to serial printer and network printer
4.2. Fax data
4.3. Beam data to another 2.x Newton device
4.4. Beam data to a 1.x Newton
4.5. Backup and restore data and app to memory card

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 9

4.6. Backup and restore data and app with NBU

5. Exception Testing (all of the following should cause exceptions)
5.1. Create new data to locked memory card
5.2. Delete data from locked memory card
5.3. Move data from internal memory to locked card
5.4. Beam data to a Newton device that does not have the expected application
5.5. With application running from memory card, unlock card with application open.
5.6. With application installed on memory card, unlock card with application closed.
5.7. Install application on memory card, run application, create data, close

application, remove memory card.
5.8. Turn power off while application is running (PowerOff handler?)
5.9. Attempt to create new data with store memory full.
5.10. Run application with low frames heap (us HeapShow to reserve memory)
5.11. If appropriate, run application with low system heap.

6. Misc.
6.1. Does application work if soup is entirely deleted from Storage folder in Extras?
6.2. Delete application. Does any part stay behind? (icons? menus? etc.)
6.2. Check store memory and frames heap, install application, check store memory

and frames heap. Do this several times and check for consistency
6.3. Do 6.2. and also check store and frames memory after removing application. Is

all/most of the memory restored?
6.4. Check frames heap. Launch & use application. Check heap. Close application.

Check heap.
6.5. Does the application add anything to the Preferences App?
6.6. Does the application add Prefs and Help to the "i" icon?
6.7. Does the application add anything to Assist, How Do I?
6.8. Launch with pager card installed
6.9. Check layout issues on MP100 vs. MP110 screen sizes (if application runs in 1.x.)
6.10. If multiple applications are bundled together, open all at the same time, check to

see that the applications together aren't using too much frames heap.
6.11. Open, use, and close the application many times. Check frames heap afterward

to check for leaks.
6.12. If application has multiple components and components can be removed

separately, verify that application does the right thing when components are
missing.

7. Compatibility
7.1. After application is installed and run, do the built-in applications work:

Names, Dates, To Do List, Connection, InBox, OutBox, Calls, Calculator,
Formulas, Time Zones, Clock, Styles, Help, Prefs, Owner Info, Setup, Writing
Practice.

7.2. If the application can be the backdrop (this is the default case)
7.2.1 Do the built-in applications continue to work? The list is as in 7.1. and

Extras.
7.2.2 Do printing and faxing work?
7.2.3 Run through the other tests in this document with your application as

backdrop.
7.3. If the application can operate in the rotated mode

7.3.1. Perform all tests with the application in rotated mode as well.
7.3.2. Check that screen layouts look correct.
7.3.3. Make sure that bringing up dialogs or other BuildContext views works

correctly.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 10

Views
_ _
Saving clEditView Contents to a Soup (10/4/93)

Q: How can I save the contents of a clEditView (the children paragraph, polygon, and
picture views containing text, shapes, and ink) to a soup and restore it later?

A: Simply save the viewChildren array for the clEditView, probably in the
viewQuitScript. To restore, assign the array from the soup to the viewChildren
slot, either at viewSetupFormScript or viewSetupChildrenScript time; or
later followed by RedoChildren.

You shouldn't try to know "all" the slots in a template in the viewChildren array.
(For example, text has optional slots for fonts and tabs, shapes have optional slots for
pen width, and new optional slots may be added in future versions.) Saving the
whole array also allows you to gracefully handle templates in the viewChildren
array that don't have an ink, points, or text slot. In the future, there may be children
that represent other data types.

_ _
Declaring Multiple Levels (6/9/94)

Q: Call the main application view viewA. ViewB is a child of viewA and is declared
to viewA. ViewC is a child of viewB and is declared to viewB. ViewB and ViewC
are both initially invisible. This causes the ViewC slot in viewB to be nil when the
application is first run. Is there any way to access viewC without first opening and
then then hiding it?

A: The built-in declare mechanism will not work without opening the view. The
declared view frames are not created until the view they are declared to is opened.
You may consider trying to declare viewC to viewA, but this will actually illustrate
a problem with the declare mechanism--it can get confused in this case because
viewC's parent (viewB) may not have been created when the view frame for viewC
needs to be allocated.

Depending on what sort of access you need to viewC, you could choose alternative such
as
• promoting the shared data from viewC to viewB, where it can be accessed.
• writing your own equivalent of the declare mechanism, with a slot called

myViewC in viewB. Have viewC's viewSetupFormScript copy data from
myViewC into the view frame being created.

_ _
Adding Editable Text to clEditViews. (6/9/94)

Q: How can I add editable text to a clEditView? If I drag out a clParagraphView
child in NTK, the text is not selectable even if I turn on vGesturesAllowed.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 11

A: clEditViews have special requirements. To create a text child of a clEditView
that can be selected and modified by the user (as if it had been created by the user)
you need to do the following:

textTemplate := {
viewStationery: 'para,
viewBounds: RelBounds(20, 20, 100, 20),
text: "Demo Text",

};
AddView(self, textTemplate);

The view must be added dynamically (with AddView), because the editView expects
to be able to modify the contents as the user edits this item. The template
(textTemplate above) should also be created at run time, because the editView
adds some slots to this template when creating the view. (Specifically it fills in the
_proto slot based on the viewStationery value. The _proto slot will be set to
protoParagraph) If you try to create too much at compile time, you will get -48214
(object is read only) errors when opening the edit view.

The minimum requirements for the template are a viewStationery of 'para, a
text slot, and a viewBounds slot. You can also set viewFont, styles, tabs, and
other slots to make the text look as you would like. (See the Notarize sample code
for additional relavant information.)

The way viewStationery is handled will change in future Newton versions, and we
cannot guarantee that the above code will continue to work.

_ _
TieViews and Untying Them (6/9/94)

Q: What triggers the pass of a message to a tied view? If I want to "untie" two views
that have been tied with TieViews, do I simply remove the appropriate slots from
the viewTie array?

A: The tied view's method will be executed as a result of the same actions that cause the
main view's viewChangedScript to be called. This can happen without calling
SetValue, for example, when the user writes into a view that has recognition
enabled, the viewChangedScript will get called.

As of Newton 2.0 OS there is no API for untying tied views. It may be wise to first
check for the existance of an UntieViews function, and call it if it exists, but if it
does not, removing the pair of elements from the tied view's viewTie array is fine.

_ _
Immediate Children of the Root View are Special (11/17/94)

Q: In trying to make a better "modal" dialog, I am attempting to create a child of the
root view that is full-screen and transparent. When I do this, the other views
always disappear, and reappear when the window is closed. Why?

A: Immediate children of the root view are handled differently by the view system.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 12

They cannot be transparent, and will be filled white unless otherwise specified.
Also, unlike other views in Newton OS 2.0, their borders are considered part of the
view and so taps in the borders will be sent to them.

This was done deliberately to discourage tap-stealing and other unusual view
interaction. Each top level view (usually one application) is intended to stand on its
own and operate independently of other applications.

So-called "application modal" dialogs can and should be implemented using the
technique you describe with the transparent window as a child of the application's
base view.

You can make system modal dialogs with the view methods FilterDialog and
ModalDialog. (See following Q&As for important information on those methods.)

_ _
NEW: Arguments to AsyncConfirm and ModalConfirm (12/12/95)

Q: The Newton Programmer's Guide says that I can pass a symbol as the 2nd argument to
ModalConfirm and AsyncConfirm, but doesn't say what symbols to use. What
symbols can I use?

A: ModalConfirm and AsyncConfirm are actually very flexible. You can pass three
different things as the 2nd argument (the list of buttons.) These things are:

a symbol - Supported symbols are 'okCancel or 'yesNo.
an array of strings - for example ["Three", "Two", "One"]
an array of frames - each frame has two slots, 'value and 'text.

text - holds the label for the button, a string
value - holds the result that tapping the button generates.

In ModalConfirm, the function returns the result of the user's choice. In
AsyncConfirm, the call-back function provided as the 3rd argument is called with
the result. The result varies depending on what was passed as the 2nd argument.

If a symbol was used, the result is non-NIL for the "OK" and "Yes" buttons, and NIL
for the "Cancel" and "No" buttons. If an array of strings was passed, the result is the
index into the array of the item that was chosen. If an array of frames was passed,
the result is the contents of the value slot for the item that was chosen.

_ _
NEW: FilterDialog and ModalDialog Limitations (2/5/96)

Q: After closing a view that was opened with theView:FilterDialog(), the part of
the screen that was not covered by the theView no longer accepts any pen input.
theView is a protoFloatNGo. Is there some trick?

A: There is a problem with FilterDialog and ModalDialog when used to open
views that are not immediate children of the root view. At this point we're not sure
if we'll be able to fix the problem.

You must not use FilterDialog or ModalDialog to open more than one non-child-

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 13

of-root view at a time. Opening more than one at a time with either of these
messages causes the state information from the first to be overwritten with the state
information from the second. The result will be a failure to exit the modality when
the views are closed.

Here are some things you can do to avoid or fix the problem with FilterDialog.

• Redesign your application so that your modal slips are all children of the root
view, created with BuildContext. This is the best solution because it avoids
awkward situations when the child of an application is system-modal. (Application
subviews should normally be only application-modal.)

• Use the ModalDialog message instead of FilterDialog. ModalDialog does
not have the child-of-root bug. (FilterDialog is preferred, since it uses fewer
system resources and is faster.)

• Here is some code you can use to work around the problem much like a potential
patch would. (This code should be safe if a patch is madeÑthe body of the if
statement should not execute on a corrected system.)

view:FilterDialog();
if view.modalState then

begin
local childOfRoot := view;
while childOfRoot:Parent() <> GetRoot() do

childOfRoot := childOfRoot:Parent();
childOfRoot.modalState := view.modalState;

end;

This only needs to be done if the view that you send the FilterDialog message to
is not an immediate child of the root. You can probably improve the efficiency in your
applications, since the root child is ususally your application's base view, which is a
"well known" view. That is, you may be able to re-write the code as follows:

view:FilterDialog();
if view.modalState then

base.modalState := view.modalState;

NewtApp
__
NEW: Creating Preferences in a NewtApp-based Application
(01/31/96)

Q: How do I create and use my own preferences slip in a NewtApp-based application?

A: In your application's base view create a slot called prefsView and place a template
for your preferences slip there using the NTK GetLayout function. When the user
selects "Prefs" from the Info button in your application, the NewtApp framework
will create and open a view based on the template in the prefsView slot.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 14

When your preferences view opens, a reference to your application's base view is
stored in a slot called theApp in the preferences view. Use this reference to call the
application's GetAppPreferences method. This method will return a frame
containing your application's preferences. GetAppPreferences is a method
provided by NewtApp and should not be overidden.

When adding slots to the preferences frame, you must either append your developer
signature to the name of the preference (for example, '|Pref1:SIG|) or create a slot
in the preferences frame using your developer signature and save all preferences in
that frame. This will guarantee that you don't overwrite slots used by the NewtApp
framework.

Here is an example of how to get the preferences frame and add your data:

preferencesSlip.viewSetupFormScript := func()
begin

prefs := theApp:GetAppPreferences();
if NOT HasSlot(prefs, kAppSymbol) then

prefs.(kAppSymbol) := {myPref1: nil, myPref2: nil};
end;

To save the preferences, call the application's SaveAppState method.

preferencesSlip.viewQuitScript := func()
theApp:SaveAppState(); // save prefs

In the preferences frame you will find a slot called internalStore. Setting this
slot to true will force the NewtApp framework to save all new items on the
internal store.

_ _
NEW: Creating an About Slip in a NewtApp-based Application
(01/31/96)

Q: How do I create my own About slip in a NewtApp-based application?

A: Depending on how much control you want, there are two ways to do this. For the least
amount of control, create a slot in your application's base view called aboutInfo.
Place a frame in that slot with the following slots:

{tagLine: "", // A tagline for your application
 version: "", // The version number for the application
 copyright: "", // Copyright information
 trademarks: "", // Trademark information
}

The information found in this frame will be displayed by the NewtApp framework
when the user selects "About" from the Info button's popup.

Here is an example of what the user will see:

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 15

Alternatively, you can create your own About view. If you do this, create a slot in
your application's base view called aboutView. Then use the NTK GetLayout
function to place a template of your view in that slot. A view will be created from
that template and opened when the user selects "About" from the Info button's popup.

__
NEW: Customizing Filters with Labelled Input Lines (2/5/96)

Q: I need to open a slot view on a slot that isn't a standard data type (int, string, etc).
How do I translate the data from the soup format to and from a string?

A: Here is some interim documentation on the filter objects that
newtLabelInputLines (and their variants) use to accomplish their work.

A filter is an object, specified in the 'flavor slot of the newtLabelInputLine set
of protos, which acts as a translator between the target data frame (or more typically
a slot in that frame) and the text field which is visible to the user. For example, it's
the filter for newtDateInputLines which translates the time-in-minutes value to
a string for display, and translates the string into a time-in-minutes for the target
data.

You can create your own custom filters by protoing to newtFilter or one of the other
specialized filters described in Chapter 4 of the Newton Programmer's Guide.

When a newtLabelInputLine is opened, a new filter object is instantiated from
the template found in the 'flavor slot for that input line. The instantiated filter
can then be found in the 'filter slot of the view itself. The _parent slot of the
instantiated filter will be set to the input line itself, which allows methods in the
filter to get data from the current environment.

Here are the slots which are of interest. The first four are simply values that you
specify which give you control over the recognition settings of the inputLine part of
the field, and the rest are methods which you can override or call as appropriate.

Settings:

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 16

recFlags
Works like entryFlags in protoLableInputLine. This provides the
'viewFlags settings for the inputLine part of the proto -- the field the user
interacts with.

recTextFlags
Provides the 'textFlags settings for the inputLine part of the proto.

recConfig
Provides the 'recConfig settings for the inputLine part of the proto.

dictionaries
Like the 'dictionaries slot used in recognition, Provides custom dictionaries
if vCustomDictionaries is on in the recFlags slot.

Methods:
PathToText()

Called when the inputLine needs to be updated. The function should read data
out of the appropriate slot in the 'target data frame (usually specified in the
'path slot) and return a user-visible string form of that data. For example, for
numbers the function might look like func() NumberStr(target.(path))

TextToPath(str)
Called when the inputLine value changes. The result will be written into the
appropriate slot in the 'target data frame. The string argument is the one the
user has modified from the inputLine part of the proto. For example, for numbers
the function might look like func(str) if StrFilled(str) then
StringToNumber(str)

Picker()
An optional function. If present, this method is called when the user taps on the
label part of the item. It should create and display an appropriate picker for the
data type. For the pre-defined filters, you may also wish to call this method to
open the picker.

InitFilter()
Optional. This method is called when an inputLine that uses this filter is first
opened. This method can be used to get data from the current environment (for
example, the 'path slot of the inputLine) and adjust other settings as
appropriate.

__
NEW: Creating a Simple NewtApp (2/7/96)

Q: What are the basic steps to create a simple NewtApp-based application?

A: The following steps will create a basic NewtApp-based application:

Basic setup
1) Create a project.
2) In NTK's Project Settings dialog, set Platform to "Newton 2.0".

Create the NewtApp base view:

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 17

1) Create a layout file.
2) Draw a newtApplication.
3) Remove the following slots:

afterScript, allDataDefs, allViewDefs, superSymbol.
4) Set the following slots to the following values:

allLayouts: {
default: GetLayout("default.t"), // see step 9 in the next section.
overview: GetLayout("overview.t")} // see step 4 , overview section.

allSoups: {
mySoup: {

_proto: newtSoup,
soupName: "SoupName:Signature",
soupIndices: [],
soupQuery: {} } }

appAll: "All items"
appObject: ["item", "items"]
appSymbol: kAppSymbol
title: kAppName

5) Draw a newtClockFolderTab or newtFolderTab as a child of the
newtApplication.

6) Draw a newtStatusBar as a child of the newtApplication.
7) For the newtStatusBar set the following slots:

menuLeftButtons: [newtInfoButton]
menuRightButtons: [newtActionButton, newtFilingButton]

8) Save the layout file as "main" and add it to the project.

Create the default view:
1) Create another layout file.
2) Draw a newtLayout in the new layout file.
3) Add a viewJustify slot to the newtLayout and set it to

parentRelativeFull horizontal and vertical (necessary only until platform
file is updated).

4) Set the viewBounds of the newtLayout to:
{top: 20, // leave room for the folder tab
bottom: -25, // leave room for the status bar
left: 0,
right: 0}

5) Draw a newtEntryView as a child of the newtLayout.
6) Add a viewJustify slot and set it to parentRelativeFull horizontal and

vertical (necessary only until platform file is updated).
7) Set the viewBounds of the newtEntryView to:

{top: 0, bottom: 0, right: 0, left: 0};
8) Draw slot views as children of the entry view to display slots from the soup
entry. For example:

a) Draw a newtLabelInputLine as a child of the newtEntryView.
b) Set the following slots:

label: "My Label"
path: 'myTextSlot

c) Draw a newtLabelNumInputLine as a child of the newtEntryView.
d) Set the following slots:

label: "Number"
path: 'myNumberSlot

9) Save the layout file as "default.t" and add it to the project. Move it so that it
is compiled before the main layout (use the Process Earlier menu item).

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 18

Add Overview support
1) Create another layout file.
2) Draw a newtOverLayout in the new layout file.
3) Add the Abstract slot to the newtOverLayout, for example:

Abstract := func(item, bbox)
begin

local t := item.myTextSlot & ",";
if item.myNumberSlot then

t := t && NumberStr(item.myNumberSlot);
MakeText(t, bbox.left+18, bbox.top,

bbox.right, bbox.bottom - 18);
end;

4) Save the layout file as "overview.t" and add it to the project. Move it so that it
is compiled before the main layout (use the Process Earlier menu item).

Add InstallScript and RemoveScript
1) Create a text file and add the following to it:

InstallScript := func(partFrame) begin
 partFrame.removeFrame :=
 (partFrame.theForm):NewtInstallScript(partFrame.theForm);
end;

RemoveScript := func(partFrame) begin
 (partFrame.removeFrame):
 NewtRemoveScript(partFrame.removeFrame);
end;

2) Save the text file and add it to the project.

_ _
NEW: Setting the User Visible Name With NewtSoup (2/6/96)

Q: How can I make the user visible name for my NewtApp's soup be something besides
the internal soup name, as I can do with RegUnionSoup?

A: There is a method of newtSoup called MakeSoup which you can override. The
MakeSoup method is responsible for calling RegUnionSoup (or otherwise making a
soup) and then calling the FillNewSoup method if the soup is new/empty.

MakeSoup is called normally as part of initializing the newtSoup object. Here is a
sample MakeSoup method that will use a newly defined slot (from the newtSoup
based template) for the user name.

The current documentation doesn't tell you everything you need to do to properly
override the MakeSoup method. In particular, MakeSoup is used by the newtSoup
implementation to initialize the object, so it needs to set up other internal slots. It's
vital that the 'appSymbol slot in the message context be set to the passed argument,
and that the 'theSoup slot be set to the soup or unionSoup that MakeSoup creates or
gets. (Recall that RegUnionSoup returns the union soup, whether it previously
existed or not.)

The GetSoupList method of union soups used in this code snippet returns an array

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 19

with the member soups. It should be considered documented and supported. A newly
created union will have no members, so FillNewSoup should be called. This is an
improvement over the default MakeSoup method, which calls FillNewSoup if the
soup on the internal store is empty.

The 'userName slot is looked up in the current context. As with soupName,
soupDescr, etc, you should set a new userName slot in the frame in the allSoups
frame in the newtApplication template.

MakeSoup: func(appSymbol)
begin

self.appSymbol := appSymbol; // just do it...
self.theSoup := RegUnionSoup(appSymbol, {

name: soupName,
userName: userName,
ownerApp: appSymbol,
userDescr: soupDescr,
indexes: soupIndices});

if Length(theSoup:GetSoupList()) = 0 then
:FillNewSoup();

end;

Stationery
_ _

Pickers, Popups and Overviews
_ _
CHANGED: ProtoDigit Requires a DigitBase View (2/6/96)

Q: I get an exception concerning an undocumented digitbase slot in protoDigit. The
slot is not documented in the current release of the documentation. How can I make
protoDigit work?

A: protoDigit is not really designed to be used independently. You should use
protoNumberPicker for input like this.

If you really need to use protoDigit then it expects to be contained in a view that
has a declareSelf slot whose value is the symbol digitBase. To solve the
problem, draw out a clView, give it a declareSelf slot with a value of
'digitBase and draw your protoDigits inside that view. You are responsible for
propagating carries and other information to all protoDigits. You are also
responsible for animation and the flip digit look. Unfortunately, the dotted line
picture is not available.

As of 2/6/96, the Newton 2.0 Platform file also gives a protoDigit a default

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 20

digitBase slot of the number type. This slot must be removed.

_ _
NEW: Single Selection in ProtoListPicker-based Views (12/5/95)

Q: How do I allow only one item to be selected in a protoListPicker,
protoPeoplePicker, protoPeoplePopup, or protoAddressPicker?

A: The key to getting single selection is that single selection is part of the picker
definition and not an option of protoListPicker. That means that the particular
class of nameRef you use must include single selection. In general, this requires
creating your own subclass of the particular name reference class.

The basic solution is to create a data definition that is a subclass of the particular
class your protoListPicker variant will view. That data definition will include
the singleSelect slot. As an example, suppose you want to use a
protoPeoplePopup that just picks individual people. You could use the following
code to bring up a protoPeoplePopup that only allowed selecting one individual at
one time:

// register the modified data definition
RegDataDef('|nameref.people.single:SIG|,
 {_proto: GetDataDefs('|nameRef.people|), singleSelect: true});

// then pop the thing
protoPeoplePopup:New('|nameref.people.single:SIG|,[],self,[]);

// sometime later
UnRegDataDef('|nameref.people.single:SIG|);

For other types of protoListPickers and classes, create the appropriate subclass.
For example, a transport that uses protoAddressPicker for emails might create a
subclass of '|nameRef.email| and put that subclass symbol in the class slot of
the protoAddressPicker.

Since many people are likely to do this, you may cut down on code in your
installScript and removeScript by registering your dataDef only for the
duration of the picker. That would mean registering the class just before you pop the
picker and unregistering after the picker has closed. You can use the
pickActionScript and pickCanceledScript methods to be notified when to
unregister the dataDef.

_ _
NEW: Using Icons withProtoLabelPicker (1/3/96)

Q: How do I successfully specify an initial icon for my protoLabelPicker and change
the value of the icon programatically?

A: There are two relevant methods of protoLabelPicker that did not appear in
early documentation:

IconSetup()

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 21

Returns an icon to use initially (like TextSetup). The default script will use the icon
associated with the first item in the labelCommands array.

UpdateIcon(newIcon)
Set the icon to the newIcon.

_ _
NEW: Preselecting Items in ProtoListPicker (1/16/96)

Q: If I put name references in the selected array of a protoListPicker, it throws a
-48402 error. How do I preselect items?

A: You are probably setting up the selected array in your viewSetupFormScript or
viewSetupChildrenScript. Use the viewSetupDoneScript to setup the
selected array, then send the Update message to protoListPicker to tell it to
update the display.

_ _
NEW: Picker List is Too Short (2/5/96)

Q: I have items in my picker list with different heights that I set using the
fixedHeight slot. When I bring up the picker, it is not tall enough to display all
the items. Worse, I cannot scroll to the extra items. What is going on?

A: The fixedHeight slot is used for two separate things. Any given pick item can use
the fixedHeight slot to specify a different height. This works fine.

However, the code in Newton 2.0 OS that determines how big the list should be also
uses the fixedHeight slot of the first pick item (in other words, pickItems[0]) if
it exists. It is as if the following code executes:

local itemHeight := kDefaultItemHeight;
if pickItems[0].fixedHeight then
 itemHeight := pickItems[0].fixedHeight;
local totalHeight := itemHeight * Length(pickItems);

This total height is used to figure out if scrolling is required. As you can see, this can
cause problems if your first item is not the tallest one. The solution is to make sure the
first item in your pickItems array has a fixedHeight slot that is sufficiently
large to make scrolling work correctly. Note that this may be fixed in future revisions
of the Newton OS.

_ _
NEW: Determining Which ProtoSoupOverview Item Is Hit (2/5/96)

Q: Ho w do I determine which item is hit in a protoSoupOverview?

A: There is a method called HitItem that gets called whenever an item is tapped. The
method is defined by the overview and you should call the inherited one. Also note
that HitItem gets called regardless of where in the line a tap occurs. If the tap
occurs in the checkbox, you should do nothing, otherwise you should do something.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 22

The method is passed the index of the hit item. The index is relative to the item
displayed at the top of the displayed list. This item is always the current entry of
the cursor used by protoSoupOverview. So, you can find the actual soup entry by
cloning the cursor and moving it.

Here is an example of a HitItem method. If the item is selected (the checkbox is not
tapped) then the code will set an inherited cursor (called myCursor) to the entry
that was tapped on:

func(itemIndex, x, y)
begin

// MUST call the inherited method for bookeeping
inherited:HitItem(itemIndex, x, y);

if x > selectIndent then
begin

 // get a temporary cursor based on the cursor used
 // by soup overview

local tCursor := cursor:Clone();

 // move it to the selected item
tCursor:Move(itemIndex) ;

 // move the inherited cursor to the selected entry
myCursor:Goto(tCursor:Entry());

 // usually you will close the overview and switch to
 // some other view

self:Close();
end;
// otherwise, just let them check/uncheck

 // which is the default behavior
end

_ _
NEW: Displaying the ProtoSoupOverview Vertical Divider (2/5/96)

Q: How can I display the vertical divider in a protoSoupOverview?

A: The mechanism for bringing up the vertical divider line was not correctly
implemented in protoSoupOverview. You can draw one in a viewDrawScript as
follows:

// setup a cached shape for efficiency
mySoupOverview.cachedLine := nil;

mySoupOverview.viewSetupDoneScript := func()
begin
 inherited:?viewSetupDoneScript();

 local bounds := :LocalBox();
 cachedLine := MakeRect(selectIndent - 2, 0,
 selectIndent - 1, bounds.bottom);
end;

mySoupOverview.viewDrawScript := func()

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 23

begin
 // MUST call inherited script
 inherited:?viewDrawScript();

 :DrawShape(cachedLine,
{penPattern: vfNone, fillPattern: vfGray});

end;

_ _
NEW: How To Use ProtoOverview (2/6/96)

Q: I can't figure out how to use protoOverview, even after reading the NPG 2.0 First
Edition (beta) docs. How does it work?

A: The most recent documentation does not contain the current information on
protoOverview. Below is some interim documentation on how to use it. This
information is also in a DTS sample called "protoOverview".

protoOverview was really set up as the basis for protoSoupOverview. Because of
that, you need to do some extra work to use just the protoOverview.

The easiest way to use the overview is to encapsulate your data in a "cursor"-like
object that supports the methods: Entry, Next, Clone. Since your data is probably in
an array, you can use a "cursor" object like this:

{ items: nil,

index: 0,

Entry: func()
begin

if index < Length(items) then
items[index];

end,

Next: func()
if index < Length(items)-1 then
begin

index := index + 1;
items[index];

end,

Move: func(delta)
begin

index := Min(Max(index + delta, 0), kNumItems-1) ;
items[index];

end,

Clone: func()
Clone(self),

GetIndexEntry: func(theIndex)
items[theIndex]}

You need to define the following methods in your protoOverview:

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 24

Abstract(item, bbox)
item - data item returned by your
bbox - bounding box of the shape you should draw

Return a shape that represents the item. Must fit in the bounding box specified by
bbox.

HitItem(hitIndex, xcoord, ycoord)
hitIndex - index of item relative to top of displayed items
xcoord - x coordinate of the tap relative to item that was tapped
ycoord - y coordinate of the tap relative to item that was tapped

Called when an item is tapped. If checkboxes are enabled, you should check if the x is
less that the selectIndent. If so, call the inherited HitItem, otherwise your item
has been tapped on.

Note: hitIndex is relative to the displayed items, not the total items. You will
need to track what the real "top" index is.

An example is:

func(hitIndex, xcoord, ycoord)
begin

if xcoord < selectIndent then
inherited:HitItem(hitIndex, xcoord, ycoord) ;

else begin
hitIndex := hitIndex + saveIndex;
print("hit item: " & hitIndex) ;
:Dirty(); // refresh the view

end ;
end

IsSelected(entry)
entry - the "entry" that is tapped on
Return true if the entry is selected (the checkbox is checked in the overview).
Note that selection is different from highlighted or hit.

Scroller(dir)
dir - direction to scroll
Implements the code necessary to scroll the contents that will be displayed.

Typically, this will update some sort of saved index and any highlight tracking
an then redo the children of the view.

SelectItem(hitIndex)
hitIndex - index of item relative to top of displayed items
Perform whatever record keeping is required to toggle the selected state of the
item at hitIndex. SelectItem is called each time the checkbox for an item is
tapped.

Note: hitIndex is relative to the displayed items not the total items. You will
need to track what the real "top" index is.

viewSetupChildrenScript()
You must provide this method. You must send the SetupAbstracts message
from this script. Note that SetupAbstracts is expecting a cursor object. If you
use the cursor object given above, this method will work correctly.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 25

You also need to define the following slot in your protoOverview:

cursor
The cursor object based on the above object. This should contain the encapsulated
array you are displaying.

In addition to the above methods and slot, you must provide a mechanism to find an
actual data item given an index of a displayed item. In general, you need some sort of
saved index that corresponds to the first displayed item.

You also should provide a mechanism to track the currently highlighted item. This is
distinct from a selected item.

Controls and Other Protos
_ _

Text and Ink Input and Display
_ _
NEW: ProtoPhoneExpando Bug (2/6/96)

Q: I am having a problem using protoPhoneExpando under Newton 2.0 OS. Something
is going wrong in the setup1 method. Is this a known bug?

A: This is a known bug. protoPhoneExpando (and the entire expando user interface)
have been deprecated in the Newton 2.0 OS, and are only supported for backward
compatibility. If possible, you should redesign your application to avoid the
expandos.

The problem seems to be that the expando shell is sending the setup1 and setup2
messages to the template in the lines array. These methods in
protoPhoneExpando rely on information that isn't created until the view is
actually opened.

We're investigating solutions to this problem. You can usually hack around the
problem by placing a labelCommands slot in the template which has an array of
one element, that element being the label you want to appear in the phone line. For
example: labelCommands: ["phone"].

This hack works only if your protoPhoneExpando doesn't use the phoneIndex
feature. If it does, you'll have problems that are harder to work around.

_ _
NEW: Pictures in clEditViews (2/6/96)

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 26

Q: Is there a API or procedure that allows an application to write objects such as shapes,
PICTs, or bitmaps to a note in the Notes application?

A: There is no API for Notes specifically. The Notes "Note" view is basically a plain
old clEditView, and clEditViews can contain pictures (in addition to ink,
polygons, and text) in the Newton 2.0 OS.

The Newton 2.0 System NPG in the "Built-In Applications and System Data"
chapter, in the section on "Notes" contains a description of the types of children you
can create in the Notes application.

This is really a description of the frames you need to put in the 'viewChildren slot
of a clEditView to create editable items. 'para templates are text and ink text,
'poly templates are drawings and sketch ink, and 'pict templates are images.

To add a picture to a clEditView, you need to create an appropriate template and
then add it to the viewChildren array (and open the view or call RedoChildren)
or use the AddView method to add it to an existing view (then Dirty the view.) See
the item "Adding Editable Text to a clEditView" elsewhere in the Q&As for details.

The template for pict items needs to contain these slots:
viewStationery: Must have the symbol 'pict
viewBounds: A bounds frame, like RelBounds(0,0,40,40)
icon: A bitmap frame, see clPictureView docs

For other slots, see the documentation for the clPictureView view class.

_ _
NEW: Horizontal Scrolling, Clipping, and Text Views. (2/7/96)

Q: I want to draw 80 columns in a clParagraphView that's inside a smaller view and be
able to scroll back and forth. When I try this, it always wraps at the bounds of the
parent. How can I create a horizontal scrolling text view?

A: Normal paragraph views are written so that their right edge will never go beyond
their parent. This is done to avoid the circumstance where a user could select and
delete some text from the left part of a paragraph in a clEditView, leaving the rest
of it off screen and unselectable.

What happens is the viewBounds of the clParagraphView are modified during
creation of the view so that the view's right edge is aligned with the parent's right
edge. After that, wrapping is automatic.

The so-called "lightweight" text views do not work this way. You can force a
paragraph to be lightweight by: 1) Making sure the viewFlag vReadOnly is set, 2)
making sure vCalculateBounds and vGesturesAllowed, are OFF, and 3) not using
tabs or styles. Lightweight text views are not editable, but you can use SetValue
to change their text slots dynamically.

If you must use an editable clParagraphView or if tabs or styles are required, there
is another workaround. The code to check for clipping only looks one or two levels up
the parent chain, so you could nest the paragraph in a couple of otherwise useless
views which were large enough to prevent clipping, and let the clipping happen

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 27

several layers up the parent chain.

Stroke Bundles
_ _

Recognition
_ _
Opening the Corrector Window (12/8/95)

Q: I want the corrector window available for the user at specific times, can I open it from
within my application?

A: Yes, below is the code you should use to open the corrector window. For compatibility,
you should always make sure the corrector exists. The corrector itself requires that a
valid keyView exists.

local correctView := GetRoot().correct;
if correctView and GetKeyView() then
 correctView:Open();

_ _
CHANGED: Custom Recognizers (2/8/96)

Q: I would like to build recognizers for gestures and objects other than those built into the
Newton system.

A: Currently thereÕs no support to add custom recognizers using the Newton Toolkit.
Stay tuned for more information concerning this.

Some recognition engines can work in a window separate from the edited text. For
instance, writing a "w" in a special view might causes "w" to appear in the currently
edited text view (the key view.) This type of recognition system can be implemented
as a keyboard. If you want to use this approach, you might want to use a function in
the Newton 2.0 Platform file that allows your keyboard to replace the built-in
alphanumeric "typewriter" keyboard. See the Platform File Notes for more
information on the RegGlobalKeyboard function.

Data Storage (Soups)
_ _
FrameDirty is Deep, But Can Be Fooled. (8/19/94)

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 28

Q: Does the global function FrameDirty see changes to nested frames?

A: Yes. However, FrameDirty is fooled by changes to bytes within binary objects. Since
strings are implemented as binary objects, this means that FrameDirty will not see
changes to individual characters in a string. Since clParagraphViews try (as much
as possible) to work by manipulating the characters in the string rather than by
creating a new string, this means that FrameDirty can be easily fooled by normal
editing of string data.

Here is an NTK Inspector-based example of the problem:

s := GetStores()[0]:CreateSoup("Test:PIEDTS", []);
e := s:Add({slot: 'value, string: "A test entry", nested: {slot:
'notherValue}})
#4410B69 {slot: value,
 String: "A test entry",
 nested: {slot: notherValue},
 _uniqueID: 0}
FrameDirty(e)
#2 NIL

e.string[0] := $a; // modify the string w/out changing its reference
FrameDirty(e)
#2 NIL

EntryChange(e);
e.string := "A new string"; // change the string reference
FrameDirty(e)
#1A TRUE

EntryChange(e);
e.nested.slot := 'newValue; // nested change, FrameDirty is deep.
FrameDirty(e)
#1A TRUE

s:RemoveFromStore() // cleanup.

_ _
CHANGED: Limits on Soup Entry Size (2/12/96)

Q: How big can I make my soup entries?

A: In practice, entries larger than about 16K will significantly impact performance, and
8K should be considered a working limit for average entry size. No more than 32K of
text (total of all strings, keeping in mind that one character is 2 bytes) can go in any
soup entry.

There is no size limit built into the NewtonScript language; however, another
practical limit is that there must be space in the NewtonScript heap to hold the
entire soup entry.

There is a hard upper limit of 64K on Store object sizes for any store type. With
SRAM-based stores there is a further block size limit of 32K. Trying to create an
entry larger than this will result in evt.ex.fr.store exceptions. These limits are

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 29

for the encoded form that the data takes when written to a soup, which varies from
the object's size in the NS heap.

Newton Backup Utility and Newton Connection Kit cannot handle entries larger than
32K.

Drawing and Graphics
_ _
Drawing Text on a Slanted Baseline (9/15/93)

Q: Is it possible in the Newton OS to draw text on a slanted baseline? I don't mean
italics, but actually drawing a word at a 45 or 60 degree angle and so on. For example,
can text be drawn along a line that goes from 10,10 to 90,90 (45 degrees)?

A: Like QuickDraw in the MacOS operating system, the drawing package in the Newton
OS supports no calls for rotating text. In MacOS, the workaround is to draw the text
into a bitmap and then rotate the bits; you can do the same on a Newton device. In
the Newton OS, we even provide calls to rotate a bitmap in 90 degree increments.

You might consider creating a font having characters that are pre-rotated to common
angles (such as 30 or 45 degrees) so that applications could just draw characters rather
than actually having to rotate a bitmap.

_ _
LCD Contrast and Grey Texture Drawing (11/10/93)

Q: An artist working with me did a wonderful job rendering a 3D look using several
different grey textures. The problem is that when her image is displayed on a
Newton display everything on the screen dims. Is it possible that the image causes
too much display current to maintain contrast?

A: What you're seeing is a well-known problem with LCD displays, and there's not a lot
you can do about it. It's especially aggravated by large areas of 50% gray
(checkerboard) patterns, but the light gray and dark gray patterns also cause some of
i t .

The user interface of the Newton OS deliberately avoids 3D and 50% grays as much
as possible for this reason. If you know your application is going to display large gray
areas, you can adjust the contrast yourself on some hardware devices. There's a global
function, SetLCDContrast, to do just that. However, changing the contrast with no
end user control is not considered a good user-interface practice.

_ _
Destination Rectangles and ScaleShape (3/11/94)

Q: What is a valid destination rectangle for the 2nd argument to ScaleShape?

A: Like the MacOS QuickDraw architecture, the destination rectangle must be at least 1 pixel
wide and 1 pixel high. Each element of the bounds frame must have values that fit in 16

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 30

bits, -32768...32767. 0-width/height and negative width/height bounding boxes may
appear to work in some cases, but are not supported.

_ _
Difference Between LockScreen and RefreshViews (6/17/94)

Q: In the NPG, it states that sending a view the view:LockScreen(nil) message
forces an "immediate update". How is this different from calling RefreshViews?

A: When you post drawing commands (for example, DrawShape) the system normally
renders the shape on the screen immediately. :LockScreen(true) provides a way
to "batch up" the screen updates for multiple drawing calls. Sending
:LockScreen(nil) "unplugs" the temporary block that has been placed on the
screen updater, causing all the batched drawing changes to be rendered on the LCD.

RefreshViews tells the system to execute the commands needed to draw every view
that has a dirty region. You can think of it as working at a level "above" the screen
lock routines. When you send the message Dirty, it does not immediately cause the
system to redraw the dirtied view, instead it adds the view to the dirty area for
later redrawing.

You could lock the screen, dirty a view with a SetValue, call RefreshViews (and
not see an update) draw a few shapes, and then, when you unlock the screen, the
refreshes to the dirty regions and your shapes will all appear all at once.

_ _
The Newton Bitmap Format (11/27/95)

Q: What is the format for bitmap binary objects in the Newton OS?

A: The Newton OS provides routines for creating and manipulating bitmaps at runtime.
Here is a description of the format of a bitmap object.

{
 bounds: <bounds frame>,
 bits: <raw bitmap data>,
 mask: <raw bitmap data for mask - optional>
}

<raw bitmap data> - class 'bits
 Binary object
 bytes data-type descr
 0-3 long ignored
 4-5 word #bytes per row of the bitmap data
 (must be a multiple of 4)
 6-7 word ignored
 8-15 bitmap rectangle - portion of bits to use--see IM I
 8-9 word top
 10-11 word left
 12-13 word bottom
 14-15 word right
 16-* bits pixel data, 1 for "on" pixel, 0 for off

The bitmap rectangle and bounds slot should should normally be in agreement as to

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 31

the size of the bitmap, or other functions (for instance, hit testing) won't work
properly. It can occasionally be useful to change the bounds slot (only) to get
CopyBits to do scaling.

Sound
_ _

System Services, Find, Filing
_ _
ViewIdleScripts and clParagraphViews (8/1/95)

Q: Sometimes a clParagraphView's viewIdleScript is fired off automatically. (For
example, an operation which results in the creation or changing of a keyboard's input
focus within the view will trigger the viewIdleScript.) Why does this happen and
what can I do about it?

A: The clParagraphView class internally uses the idle event mechanism to implement
some of its features. Unfortunately, any viewIdleScripts provided by developers
also execute when the system idle events are processed. Only the "heavyweight"
views do this, "lightweight" paragraph views (in other words, simple static text
views) do not.

There is no workaround available in the Newton 1.x OS or Newton 2.0 OS. You can
either accept the extra idle script calls, or use some other non-clParagraphView
based view to implement your idle functions.

_ _
NEW: Functions to Create Application-specific Folders (12/5/95)

Q: I would like to programatically create folders so that they are available as soon as
the application is open. What is the best approach to add some application-specific
folders?

A: You can use the global functions AddFolder and RemoveFolder to modify the folder
set for a given application.

AddFolder(newFolderStr, appSymbol)
newFolderStr - string, the name of the new folder
appSymbol - symbol, application for local folder, nil for system-wide
result - symbol, the folder symbol of the newly added folder.

AddFolder takes a folder name and creates a new folder for the application or
system, broadcasting as necessary. It should commonly only be used to add
application-specific folders. It is a violation of the UI guidelines to create system-

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 32

wide folders without user direction.

The function returns the symbol representing the tag value for the new folder. Please
note that the symbol may be different from the value returned by using Intern() on the
string. In particular, folder names with non-ASCII folders are supported. If a folder
with the name already exists, the symbol for the pre-existing folder is returned and a
new folder is NOT created.

There is a limit on the number of unique folders an application can support. If the
limit is exceeded, AddFolder returns NIL and a new folder is not added.

RemoveFolder(folderSym, appSymbol)
folderSym - symbol, the folder symbol of the folder to remove
appSymbol - symbol, the application for which to remove the folder
result - symbol/NIL, the removed folder or NIL if no folder was removed.

RemoveFolder can be used to remove a folder from the available list for an
application. It also should commonly be used only for application-specific folders.

_ _
NEW: Preventing Selections in the Find Overview (2/5/96)

Q: When I use ROM_compatibleFinder in Newton 2.0, the overview of found items
contains checkboxes for each item, allowing the user to attempt to route the found
items. Since my found items are not soup items, various exceptions are thrown. How
can I prevent the checkboxes?

A: What you do depends on how you want to handle your data. There are basically two
cases. The first case is when you want no Routing to take place (Routing refers to
Delete, Duplicate, and the ability to move the data using transports like Beam or
Print). The second case is when you want some or all of the Routing to occur.

The first case is easy. Just add a SelectItem slot to the result frame, set to nil. For
example:

AddArraySlot(results,
 {_proto: ROM_compatibleFinder,

owner: self,
title: mytitle,
SelectItem: nil, // prevents checkboxes
items: myresults});

The second case is more complex. The problem is that there are many variants. The
best strategy is to override the appropriate methods in your finder to gain control at
appropriate points. This may be as simple of overriding Delete to behave correctly,
or as complex as replacing GetTarget and adding appropriate layouts. See the DTS
Q&A "Creating Custom Finders" for more information.

_ _
NEW: Creating Custom Finders (2/5/96)

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 33

Q: My application uses more than one soup, so ROM_soupFinder is not appropriate, but
ROM_compatibleFinder seems to throw many exceptions. Which should I use?

A: The answer depends on how much modification you will make. What you need is
documentation on how they work and what you can override:

Each of the finder base protos (soupFinder and compatibleFinder) are magic pointers,
so can create your own customizations at compile time.

So to do a soupFinder based item you could do something like:

DefConst('kMySoupFinder, {
_proto: ROM_soupFinder,

Delete: func()
begin

print("About to delete " & Length(selected) && "items") ;
inherited:Delete() ;

end,
}) ;

Most of these routines are only callable by your code. They should not be overwritten.
Those routines that can be safely overriden are specified.

Some of methods and slots are common to both types of finders:

finder.selected
An array of selected items stored in an internal format. All you can do with this array
is figure out the number of selected items by taking the Length of this array.

finder:Count()
Returns an integer with the total number of found items.

finder:ReSync()
Resets the finder to the first item.

finder:ShowFoundItem(item)
Displays the item passed. item is an overview item that resides in the
overview's items array.

finder:ShowOrdinalItem(ordinal)
Display an item based on the symbol or integer passed in ordinal:

'first - the first found item
'prev - the previous item
'next - the next item
<an-integer> - display the nth item based on the integer.

Under no circumstances should you call or override:
finder:MakeFoundItem
finder:AddFoundItems

ROM_SoupFinder

SoupFinder has the following methods and slots:

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 34

All the documented items from the simple use of soupFinder as documented on page
12-15 of 2.0 NPG System guide (version a0.5)

soupFinder:Reset()
Resets the soupFinder cursor to the first found entry. In general, you
should use the ReSync method to reset a finder.

soupFinder:ZeroOneOrMore()
Returns 0 if no found entries, 1 if one found entry or another number
for more than one entry.

soupFinder:ShowEntry(entry)
causes the finding application to display entry. This may involve
opening the application and moving it to that item.
This does not close the findOverview.

soupFinder:SelectItem(item)
mark the item as selected.
If this method is set to nil in the soupFinder proto, items will not have a checkbox
in front of them (not selectable).

soupFinder:IsSelected(item)
Returns true if the item is selected.

soupFinder:ForEachSelected(callback)
Calls callback function with each selected item. The callback function has one
argument, the entry from the soup cursor.

soupFinder:FileAndMove(labelsChanged, newLabel,
storeChanged, newStore)

File and/or move the selected items.
newLabel is the new label if and only if labelsChanged is true.
newStore is the new store if and only if storeChanged is true.

Developers can override this, though they may want to call the inherited routine to
do that actual work. Note that FileAndMove can be called even if no items are
selected. If you override this method you MUST check if there are selected items by
doing:

if selected then
// do the work

soupFinder:FileAs(labels)
Deprecated. Do not use.

soupFinder:MoveTo(newStore)
Deprecated. Do not use.

soupFinder:Delete()
Deletes all selected items from read/write stores.

Developer can override. Note: if you override this, the crumple effect will
still happen. There is no way to prevent the ability to delete the items or
prevent the crumple effect at this time.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 35

soupFinder:GetTarget()
Returns a cursor used by routing.

The following methods should not be called or modified:
soupFinder.MakeFoundItem
soupFinder.AddFoundItems

ROM_CompatibleFinder

compatibleFinder:ShowFakeEntry(index)
Show the index'th item from the found items. Note that items will likely be an
array of the found items.

ShowFakeEntry should behave just like ShowFoundItem. In other words, it
should open the application then send a ShowFoundItem to the application.

compatibleFinder:ConvertToSoupEntry(item)
Return a soup entry that corresponds to the item. item is an item from the found items
array.

The following methods are defined to be the same as the soupFinder:
FileAs, MoveTo, Delete, IsSelected, SelectItem,
ForEachSelected, GetTarget, FileAndMove

Note that this causes problems in some cases: most notably, the ForEachSelected
call is expected to return an array of soup entries. The chances are you will need to
override most of those methods. See soupFinder for a description of what the methods
are supposed to do.

Intelligent Assistant
_ _

Built-In Apps and System Data
_ _
NEW: There Is No ProtoFormulasPanel (2/5/96)

Q: The current documentation says to use protoFormulasPanel for RegFormulas, but
there does not appear to be such a template.

A: You are correct, there is no such template. You just use a protoFloatNGo as your base
and add your formula elements to it. The only requirements are:

1. There must be an overview slot that contains the text to show in the formula's

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 36

overview.

2. viewbounds.bottom must be the height of your panel.

3. There must be a protoTitle whose title slot is the name of the formula panel.

_ _
NEW: ProtoPrefsRollItem Undocumented Slots (2/6/96)

Q: When I try to open my own system preference, I get a -48204 error. The preference
registers OK with the RegPrefs function.

A: The documentation on protoPrefsRollItem is incomplete. You must define an
overview slot which is the text to show in the overview mode. You can optionally
define an icon slot which is an icon for the title in the non-overview mode (a title
icon). Note that title icons are much smaller than normal icons.

_ _
NEW: SetEntryAlarm Does Not Handle Events (2/6/96)

Q: I tried to set the alarm of an event using the SetEntryAlarm calendar message, but
the alarm is not set.

A: It turns out that SetEntryAlarm will not find events. You need to use a new
Calendar API called SetEventAlarm. This function is provided in the Newton 2.0
Platform File. See the Platform File Notes for more information.

Localization
_ _

Utility Functions
_ _
NEW: What Happened to FormattedNumberStr (2/12/96)

Q: The Newton 1.x documentation and OS included a sprintf-like function for
formatting numbers called FormattedNumberStr. The Newton Programmer's Guide
2.0 First Edition (beta) says this function is no longer supported. How do I format my
numbers?

A: You may continue to use FormattedNumberStr. Here is the
FormattedNumberStrAPI that is supported. FormattedNumberStr should be
considered to have undefined results if passed arguments other than those specified
here.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 37

FormattedNumberStr(number, formatString)
Returns a formatted string representation of a real number.

number A real number.
formatString A string specifying how the number should be formatted.

This function works similar to the C function sprintf. The formatString specifies
how the real number should be formatted; that is, whether to use decimal or
exponential notation and how many places to include after the decimal point. It
accepts the following format specifiers:

%f Use decimal notation (such as "123,456.789000").
%e Use exponential notation (such as "1.234568e+05").
%E Use exponential notation (such as "1.234568E+05").

You can also specify a period followed by a number after the % symbol to indicate
how many places to show following the decimal point. ("%.3f" yields
"123,456.789" for example.)

Note: FormattedNumberStr uses the current values of
GetLocale().numberFormat to get the separator and decimal characters and
settings. The example strings above are for the US English locale.

Known Problems
Other specifiers
Do not use other formatStrings. Previous releases of the documentation listed %g
and %G as supported specifiers. The behavior of these specifiers has changed with
the Newton 2.0 OS. Given the similarities to the sprintf function, it may occur to
you to try other sprintf formatting characters. Specifiers other than above have an
undefined result and should be considered undocumented and unsupported.

Large numbers
FormattedNumberStr does not work properly for numbers larger than 1.0e24. If
the number is very large the function can cause the Newton device to hang.

Small numbers or long numbers
If more than 15 characters of output would be generated, for example because you are
using %f with large number or a large number of digits following the decimal,
FormattedNumberStr has undefined results, and can cause the Newton device to
hang.

Rounding
FormattedNumberStr does not guarantee which direction it will round. In the
Newton 2.0 OS, it rounds half cases down rather than up or to an even digit. If you
need a precisely rounded number you should use the math functions Ceiling, Floor,
NearbyInt, or Round with suitable math.

Trailing decimals
In early releases of the Newton 1.0 OS, there was a bug in FormattedNumberStr
that caused a trailing decimal character to be added when zero decimal positions
was specified. That is, FormattedNumberStr(3.0, "%.0f") resulted in "3." not
"3". To properly test for and remove this unwanted extra character you must be sure
to use the character specified in the Locale settings and not assume the decimal
character will be a period.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 38

Errors
_ _

Digital Books
_ _
BookMaker Page Limitations? (11/19/93)

Q: Does the Newton BookMaker have limitations concerning the size of books or page
count?

A: The current page limitation of BookMaker is 16 million pages, a very unlikely size to
be exceeded. However, since the entire book is held in memory during the build
process, you need to have enough application heap space allocated to the BookMaker
desktop application. If there is not enough RAM available on your desktop computer
to process a book, you can divide it into smaller parts and link them with the .chain
command.

Routing
_ _
Not All Drawing Modes Work with a PostScript Printer (3/8/94)

Q: It seems that not all drawing modes work with printing. Is that true?

A: Yes. PostScript behaves like layers of paint; you can not go back and change
something. Anything that uses an invert mode (like XOR, and possibly ModeNot* (to
be tested)), will not work.

Note: If you want to get the effect of white text on a black/filled background, use bit
clear mode for drawing the text.

_ _
 PICT Printing Limitations (6/9/94)

Q: My large pictures cannot print on my LaserWriter. Is there a maximum size Newton
picture?

A: The current PostScript printing system in the Newton ROMs is unable to print
extremely large individual bitmap frames, the kind of pictures created using the
NTK Picture editor or the GetPictAsBits routine. This is because in order to print
these, the Newton must copy the bitmaps into an internal buffer. Thus the

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 39

GetPictAsBits case fails (current limitation is a 168K buffer, but do not rely on a
specific number for other Newton devices).

Using the GetNamedResource(..., 'picture) routine, you can use PICT resources
to be drawn in clPictureViews. MacOS PICT resources often contain multiple opcodes
(instructions). For single-opcode PICTs, compression is done for the whole picture. You
can check Inside Macintosh documentation for specifications of the PICT format. If
you are using very large bitmaps which you will print, you should use PICT resources
composed of many smaller 'bitmap copy' opcodes because they will print much faster
and more reliably on PostScript printers. This is because very large PICT opcodes
printed to LaserWriters must be decompressed on the printer. The printer's
decompression buffer is sometimes too small if the opcodes represent large bitmaps.
Check your MacOS graphics application documentation for more information on
segmenting your large PICTs into smaller pieces. For some applications, you might
have two versions of the PICTs, one for displaying (using GetPictAsBits for faster
screen drawing), and a large tiled PICT for printing.

Note that the PICT2 (color) picture format is not currently supported by the Newton
drawing system.

_ _
Printing Fonts with a PostScript Printer (7/26/94)

 Q: When printing from my application on the Newton to a PostScript Laser printer, I
noticethat the fonts are being substituted. Printing always looks fine on a QuickDraw
printer like the StyleWriter.

 A: Yes, this is true.The additional System font (Espy Sans) or any custom Newton font
created with the Newton Font Tool is not printed directly to a LaserWriter because
the fonts are missing in the PostScript font versions. Just printing Espy Sans (Newton
system fonts) is currently not possible on the LaserWriter, but is possible on faxes and
bitmap printer drivers, since the rendering for those is done inside the Newton.

For the built-in Espy font, the troublesome characters are the Apple-specific ones,
starting with Hex FC. The filled diamond is one of these characters, the specific tick
box arrow is another.

For printing, you might need to include bitmaps for special characters or words in your
application in order to print them (that is, if the normal LaserWriter fonts are
unacceptable)

Note that if you want a monospaced font, check out the Monaco DTS sample. That
includes a font which will print as the monospaced Courier font.

_ _
Printing Resolution 72DPI/300DPI (2/8/94)

Q: I've tried to print PICT resources; the picture was designed in Illustrator and copied to
the clipboard as a PICT. The picture printed correctly but at a very low resolution. Is
there any way of printing PICTs with a higher resolution?

A: Currently the only supported screen resolution for PICT printing is 72dpi. This may

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 40

change in future platforms, so stay tuned for more information.

_ _
Printing Does Not Have Access to My Application Slots (11/27/95)

Q: Why can't I find my application slots from my print format?

A: Print format does not have direct access to your application context because it is not a
child of your application, so it cannot rely on the parent inheritance chain. All
viewDefs should be designed so that they do not rely on your application being open
or rely on state-specific information in your application. The application may be
closed, or the user may continue to work in your application while the print/fax
transport is imaging.

Print format does have access to the target variable (it will contain the "body" of
the data sent; don't use the fields variable.) Note that if mulitiple items are sent,
the value of target will change as the print format iterates over the list. Try to put
the real "data" for the routing in the target using the view method GetTargetInfo.

If, for some reason, you need to access slots from your application, you can access them
using GetRoot().(yourAppSymbol).theSlot.

_ _
NEW: How to Open the Call Slip or Other Route Slips (12/19/95)

Q: How do I open the call slip (or other Route Slips) programatically?

A: Use the global function OpenRoutingSlip. Create a new item with the transport's
NewItem method and add routing information such as the recipient information in
the toRef slot. For the call slip, the transport symbol will be
'|phoneHome:Newton|, but this approach will work for other transports. (For
transports other than the call transports, you will also provide the data to route in
the item.body slot.)

Determining the value of the toRef slot

The toRef slot in the item frame should contain an array of recipients in the form of
nameRefs, which are the objects returned from protoPeoplePicker and other
protoListPicker-based choosers. Each nameRef can be created from one of two
forms: a cardfile soup entry, or just a frame of data with minimal slots. (The required
slots vary depending on the transport. For instance, the current call transport requires
only phone, name, and country.)

 1. Cardfile entry:
 entry := myCursor:Entry();

 2. Create your own pseudo-entry:
 entry := {
 phone:"408 555 1234",
 name: {first: "Glagly", last: "Wigout"},
 country: "UK",
 };

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 41

Make the entry into a "nameRef" using the nameRef's registered datadef -- an object
which describes how to manipulate nameRefs of a specific class. Note that every
transport stores its preferred nameRef class symbol in its
transport.addressingClass slot. (Examples are '|nameRef.phone| and
'|nameRef.email|).

local class := '|nameRef.phone|;
local nameRef := GetDataDefs(class):MakeNameRef(myData, class);

Setting up the targetInfo Frame

Your GetTargetInfo view method should return a targetInfo frame, consisting
of target and targetView slots. Alternatively, you can create a frame consisting
of these slots and pass it to OpenRoutingSlip. As a workaround to a ROM bug, you
must also supply an appSymbol slot in the targetInfo frame containing your
appSymbol. Note that targetInfo.target could be a multiple item target (see
the CreateTargetCursor documentation for more info.)

Opening The Slip

You can use OpenRoutingSlip to open the slip after setting up slots such as toRef
and cc within the item. You can use code such as the following:

/* example using Call Transport */
local item, entry, class, nameRef;

entry := query(getunionsoup("Names"), {type:'index}):entry();

item := TransportNotify('|phoneHome:Newton|, 'NewItem, [nil]);
if item = 'noTransport or not item then

return 'noTransport;

class := '|nameRef.phone|;
nameRef := GetDataDefs(class):MakeNameRef(entry, class);
item.toRef := [nameRef];
targetInfo := {

targetView: getroot(),
target: {}/* for non-CALL transports, add your data here! */,
appsymbol: kAppSymbol
};

// returns view (succeeded), or fails: nil or 'skipErrorMessage
OpenRoutingSlip(item, targetInfo);

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 42

Transports
_ _
NEW: Adding Child Views to a ProtoTransportHeader-based View
(1/19/96)

Q: How can I add child views to a protoTransportHeader-based view?

A: First, you need to specify an addedHeight slot. The height of the transport header
will be increased by this amount.

Next, add the following code to the viewSetupFormScript method of your
protoTransportHeader view. This works around a bug with
protoTransportHeader:

 self.stepChildren := SetUnion(self._proto.stepChildren,
 self._proto._proto.stepChildren, true);

 Finally, use NTK as you normally would to create the child views.

Endpoints & Comm Tools
_ _
Maximum Speeds with the Serial Port (3/8/94)

Here are some rough estimates of the speeds attainable with the Newton serial port in
combination with various kinds of flow control. These numbers are rough estimates, and
depending on the protocol and amount of data (burst mode or not) you might get higher or lower
transmission speeds. Experiment until you have found the optimal transmission speed.

¥ 0 to 38.4 Kbps
No handshaking necessary for short bursts, but long transmissions require flow control
(either hardware or XON/XOFF).

¥ 38.4 Kbps to 115 Kbps
Require flow control, preferably hardware, but XON/XOFF should also work
reasonably reliably.

¥ 115 Kbps +
You will encounter problems with latency and buffer sizes. Speeds in this range
require an error correcting protocol.

 Both hardware and XON/XOFF flow control can be set with the
kCMOInputFlowControlParms and kCMOOutputFlowControlParms options. In the case of
hardware handshaking (RTS/CTS) you should use the following options:

{ label: kCMOInputFlowControlParms,
type: 'option,

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 43

opCode: opSetRequired,
data: { arglist: [

kDefaultXonChar,
kDefaultXoffChar,
NIL,
TRUE,
0,
0,

],
typelist: [

'struct,
'char,
'char,
'boolean,
'boolean,
'boolean,
'boolean,

],
},

},

{ label: kCMOOutputFlowControlParms,
type: 'option,
opCode: opSetRequired,
data: { arglist: [

kDefaultXonChar,
kDefaultXoffChar,
NIL,
TRUE,
0,
0,

],
typelist: [

'struct,
'char,
'char,
'boolean,
'boolean,
'boolean,
'boolean,

],
},

}

What is Error Code -18003? (3/8/94)

Q: What is error code -18003?

A: This signal is also called SCC buffer overrun; it indicates that the internal serial
chip buffer filled, and the NewtonScript part didn't have time to read the incoming
information. You need to either introduce software (XON/XOFF) or hardware flow
control, or make sure that you empty the buffer periodically.

You will also get -18003 errors if the underlying comms tool encounters parity or frame

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 44

errors. Note that there's no difference between parity errors, frame errors, or buffer
overruns; all these errors are mapped to -18003.

Here's an explanation of what is going on concerning the serial chip, the buffers and
the scripting world:

SCC
Chip

Scripting
World

myInputScript
begin
 // work work work
 ep:SetInputSpec(ep.myInputSpec);
end;

Comm Tool
World

HW
World

Network
World

Flow Control

Incoming
Buffer (256)
OutgoingBuffer (256)

The SCC chip gets incoming data, and stores it in a 3-byte buffer. An underlying
interrupt handler purges the SCC buffer and moves it into a special tools buffer. The
comms system uses this buffer to scan input for valid end conditions (the conditions
which cause your inputSpec to trigger). Note that you don't lose data while you
switch inputSpecs; it's always stored in the buffer during the switch.

Now, if there's no flow control (XON/XOFF, HW handshaking, MNP5), the network
side will slowly fill the tool buffer, and depending on the speed the buffer is handled
from the scripting world sooner or later the comms side will signal a buffer overrun.
Even if flow control is enabled, you may still receive errors if the sending side does not
react fast enough to the NewtonÕs plea to stop sending data. In the case of
XON/XOFF, if you suspect that one side or the other is not reacting or sending flow
control characters correctly, you may want to connect a line analyzer between the
Newton and the remote entity to see what is really happening.

If you have inputScripts that take a long time to execute, you might end up with
overrun problems. If possible, store the received data away somewhere, quickly
terminate the inputSpec, then come back and process the data later. For instance, you
could have an idleScript which updates a text view based on data stored in a soup or
in a slot by your inputSpec.

_ _
What Really Happens During Instantiate & Connect (6/14/94)

Q: Does Instantiate, Bind or Connect touch the hardware?

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 45

A: Exactly what happens depends on the type of endpoint being used. In general:

The endpoint requests one or more communications services using endpoint options like
this:

{
 type: 'service,
 label: kCMSAsyncSerial,
 opCode: opSetRequired
}

P
o
r
t

Newt Task

Endpoint Interface

Application
Domain

Communications
Domain

RPC Request

P
o
r
t

CommManager Task

The CommManager task creates the appropriate CommTool task(s) and replies to the
communications service request. Each CommTool task initializes itself . In response
to the Bind request the CommTool acquires access to any physical hardware it
controls, such as powering up the device. The endpoint is ready-to-go.

P
o
r
t

Newt Task

Endpoint Interface

Application
Domain

Communications
Domain

P
o
r
t

CommTool Task

P
o
r
t

CommManager Task

RPC Reply

Physical Hardware

An endpoint may use multiple CommTool tasks, but there will be a single
NewtonScript endpoint reference for them.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 46

When the endpoint requests a connection, the CommTool interacts wih the physical
hardware (or a lower level CommTool) as necessary to complete the connection,
depending on the type of communications service. For example, ADSP will use the
endpoint address frame to perform an NBP lookup and connection request. MNP will
negotiate protocol specifications such as compression and error correction.

P
o
r
t

Newt Task

Endpoint Interface

Application
Domain

Communications
Domain

RPC Request

P
o
r
t

CommTool Task

P
o
r
t

CommManager Task

Physical Hardware

The CommTool completes the connection and replies to the connection request. Note
that if this is done asynchronously, the Newt task continues execution, giving the user
an option to abort the connection request.

P
o
r
t

Newt Task

Endpoint Interface

Application
Domain

Communications
Domain

P
o
r
t

CommTool Task

P
o
r
t

CommManager Task

RPC Reply

Physical Hardware

Disconnect functions similarly to Connect, moving the endpoint into a
disconnected state. Unbind releases any hardware controlled by the CommTool.
Dispose deallocates the CommTool task.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 47

Newton Remote Control IR (Infra-red) API (6/9/94)

NTK 1.0.1 and future NTK development kits contain the needed resources to build
applications that control infrared receive systems, consumer electronics systems and
similar constructs.

This development kit is fairly robust, and will produce send-only applications.

Note: The NTK 1.1 platforms file is required to produce code that will execute
correctly on the MessagePadÊ100Êupgrade units.

cookie := OpenRemoteControl();
Call this function once to initialize the remote control functions. It returns a magic
cookie that must be passed to subsequent remote control calls, or nil if the
initialization failed.

CloseRemoteControl(cookie);
Call this function once when all remote control operations are completed, passing
cookie returned from OpenRemoteControl. Always returns nil. cookie is invalid
after this call returns.

SendRemoteControlCode(cookie, command, count);
Given the cookie returned from OpenRemoteControl, this function sends the remote
control command (see below for format of data). The command is sent count times.
count must be at least 1. Returns after the command has been sent (or after the last
loop for count > 1).

idle leadIn transitions

t[0] t[1] t[2] t[3] t[4] t[5]

repeat or
leadOut

Each command code has the following structure:

struct IRCodeWord {
unsigned long name;
unsigned long timeBase;
unsigned long leadIn;
unsigned long repeat;
unsigned long leadOut;
unsigned long count;
unsigned long transitions[];

};

name identifies the command code; set to anything you like
timeBase in microseconds; sets the bit time base

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 48

leadIn duration in timeBase units of the lead bit cell
repeat duration in timeBase units of the last bit cell for loop commands
leadOut duration timeBase units of the last bit cell for non-loop commands
count one-based count of transitions following
transitions[] array of transition durations in timeBase units

Note that the repeat time is used only when the code is sent multiple times.

See Remote.π, Sony.r, RC5.r, and RemoteTypes.r files for examples. The .rsrc files
have templates for ResEdit editing of the Philips and Sony resources. See Remote IR
Sample code for more details.

Things To Know Before You Burn The Midnight Oil:

 If the Newton goes to sleep, the IR circuits are powered down, and any subsequent
sends will fail. If you want to override this, you need to have a powerOffhandler
close the remote connection, and when Newton wakes up the application could re-
open the connection.

If two applications are concurrently trying to use the IR port (beaming and remote
control use for instance), this will cause a conflict.

Sample Code

The Remote IR Sample is part of the DTS Sample code distribution, you should find it
on AppleLink and on the Internet ftp server (ftp.apple.com).

By way of a quick summary: the sample has an array of picker elements with the
resource definitions bound to the index (ircode inside the application base view).

You specify the constant that is an index to the array, get the resource using
GetNamedResource (see global data) and when you send data, use the constant as the
resource used.

OpenRemoteControl is called in viewSetupFormscript, and closeRemoteControl is
called in viewQuitScript. Note that these are methods, not global functions; same is
true of SendRemoteControlCode.

More Information

Consult the IR samples available on AppleLink, ftp.apple.com (Internet) and on the
Newton Developer CDs.

The following sites have more information about other infrared protocols:

nada.kth.se:home/d89-bga/hp/remote/remotes (Internet, ftp)
flash.ecel.uwa.edu.au (Internet, ftp)

Communications With No Terminating Conditions (6/9/94)

Q: How do I handle input that has no terminating characters and/or variable sized

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 49

packets?

A: Remember that input specs are specifically tied to the receive completion
mechanism. To deal with the situations of no terminating characters or no set packet
sizes, you need only realize that one receive completion is itself a complete packet.
Set the byteCount slot of your input spec to the minimum packet size. In your input
script, call Partial to read in the entire packet, and then call FlushInput to empty
everything out for your next receive completion.

If this is time-delay-based input, you may be able to take advantage of
partialScripts with partialFrequencies. Call the Ticks function if necessary to
determine the exact execution time of apartialScript.

_ _
Unicode-ASCII Translation Issues (6/16/94)

Q: How are out-of-range translations handled by the endpoints? For example, what
happens if I try to output "\u033800AE\u Apple Computer, Inc."?

A: The first Unicode character (0338) is mapped to ASCII character 255 because is it out
of the range of valid translations, and the second Unicode character (00AE) is
mapped to ASCII character A8 because the Mac character set has a corresponding
character equivalent in the upper-bit range.

All out-of-range translations, such as the 0338 diacritical mark above, are converted
to ASCII character 255. However, the reverse is not true! ASCII character 255 is
converted to Unicode character 02C7. This means you will need to escape or strip all
02C7 characters in your strings before sending them if you want to use ASCII character
255 to detect out-of-range translations. Character 255 was picked over character 0
because 0 is often used as the C-string terminator character.

The built-in Newton Unicode-ASCII translation table is set up to handle the full 8-
bit character set used by the MacOS operating system. Although
kMacRomanEncoding is the default encoding system for strings on most Newtons,
you can specify it explicitly by adding one of the following encoding slots to your
endpoint:

encoding: kMacRomanEncoding; // Unicode<->Mac translation
encoding: kWizardEncoding ; // Unicode<->Sharp Wizard

// translation
encoding: kShiftJISEncoding ; // Unicode<->Japanese ShiftJIS

// translation

For kMacRomanEncoding, the upper 128 characters of the MacOS character encoding
are sparse-mapped to/from their corresponding unicode equivalents. The map table
can be found in Appendix B of the NewtonScript Programming Language reference.
The upper-bit translation matrix is as follows:

short gASCIIToUnicode[128] = {
 0x00C4, 0x00C5, 0x00C7, 0x00C9, 0x00D1, 0x00D6, 0x00DC, 0x00E1,
 0x00E0, 0x00E2, 0x00E4, 0x00E3, 0x00E5, 0x00E7, 0x00E9, 0x00E8,
 0x00EA, 0x00EB, 0x00ED, 0x00EC, 0x00EE, 0x00EF, 0x00F1, 0x00F3,
 0x00F2, 0x00F4, 0x00F6, 0x00F5, 0x00FA, 0x00F9, 0x00FB, 0x00FC,
 0x2020, 0x00B0, 0x00A2, 0x00A3, 0x00A7, 0x2022, 0x00B6, 0x00DF,

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 50

 0x00AE, 0x00A9, 0x2122, 0x00B4, 0x00A8, 0x2260, 0x00C6, 0x00D8,
 0x221E, 0x00B1, 0x2264, 0x2265, 0x00A5, 0x00B5, 0x2202, 0x2211,
 0x220F, 0x03C0, 0x222B, 0x00AA, 0x00BA, 0x2126, 0x00E6, 0x00F8,
 0x00BF, 0x00A1, 0x00AC, 0x221A, 0x0192, 0x2248, 0x2206, 0x00AB,
 0x00BB, 0x2026, 0x00A0, 0x00C0, 0x00C3, 0x00D5, 0x0152, 0x0153,
 0x2013, 0x2014, 0x201C, 0x201D, 0x2018, 0x2019, 0x00F7, 0x25CA,
 0x00FF, 0x0178, 0x2044, 0x00A4, 0x2039, 0x203A, 0xFB01, 0xFB02,
 0x2021, 0x00B7, 0x201A, 0x201E, 0x2030, 0x00C2, 0x00CA, 0x00C1,
 0x00CB, 0x00C8, 0x00CD, 0x00CE, 0x00CF, 0x00CC, 0x00D3, 0x00D4,
 0xF7FF, 0x00D2, 0x00DA, 0x00DB, 0x00D9, 0x0131, 0x02C6, 0x02DC,
 0x00AF, 0x02D8, 0x02D9, 0x02DA, 0x00B8, 0x02DD, 0x02DB, 0x02C7

};

_ _
Sharp IR Protocol (12/2/94)

(Distilled from source dated 10/14/1992)

1 Serial Chip Settings
Baudrate 9600
Data bits 8
Stop bits 1
Parity Odd

2 Hardware Restrictions
The IR hardware used in the Sharp Wizard series (as well as Newtons and other
devices) require a brief stablizing period when switching from transmitting mode to
receiving mode. Specifically, it is not possible to receive data for two milliseconds
after transmitting. Therefore, all device should wait three milliseconds after
completion of a receive before transmitting.

3 Packet Structure
There are two kinds of Packets: "Packet I" and "Packet II". Because the IR unit is
unstable at the start of a data transmission, DUMMY (5 bytes of null code (0x00)) and
START ID (0x96) begin both packet types. At least two null bytes must be processed by
the receiver as DUMMY before the START ID of a packet is considered. After this
(DUMMY, START ID) sequence the PACKET ID is transmitted. Code 0x82 is the packet
ID for a PACKET I transmission, and code 0x81 is the packet ID for a PACKET II
transmission.

3.1 Packet I
This packet type is used to transmit the following control messages:

3.1.1 Request to send ENQ (0x05)
3.1.2 Clear to send SYN (0x16)
3.1.3 Completion of receiving data ACK (0x06)
3.1.4 Failed to receive data NAK (0x15)
3.1.5 Interruption of receiving data CAN (0x18)

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 51

The format of this packet type is as follows:

Byte
length

Set value in transmission Detection method in reception

DUMMY 5 0x00 * 5 Only 2 bytes are detected when received.
START ID 1 0x96

PACKET ID 1 0x82

DATA 1 above mentioned data

Packet I example:

DUMMY START ID PACKET ID DATA
0x00, 0x00, 0x00, 0x00 0x96 0x82 0x05

3.2 Packet II
This packet type is used to transmit data. The maximum amount of data that
may be transmitted in one packet is 512 bytes. If more than 512 bytes is to be
transmitted, it is sent as several consecutive 512-byte packets. The last packet
need not be padded if it is less than 512 bytes and is distinguished by a BLOCK NO
value of 0xFFFF.

The format of this packet type is as follows:

Byte
length

Set value in
transmission

Detection method in reception

DUMMY 5 0x00 * 5 Only 2 bytes are detected.
START ID 1 0x96

PACKET ID 1 0x81

VERSION 1 0x10 Judge only bit 7-4
BLOCK NO 2 (L/H) 0x0001 ~ 0xFFFF

CTRL CODE 1 0x01 Don't judge
DEV. CODE 1 0x40 Don't judge

ID CODE 1 0xFE Don't judge
DLENGTH 2 (L/H) 0x0001 ~ 0x0200

DATA 1 ~ 512

CHKSUM 2 (L/H)

BLOCK NO in last block must be set to "0xFFFF".

CHKSUM is the two-byte sum of all of the data bytes of DATA where any overflow or carry
is discarded immediately.

Send all two-byte integers lower byte first and upper byte second.

Packet II example:

DUMMY START
ID

PACKET ID VERSIO
N

BLOC
K

NO CTRL
CODE

0x00, 0x00, 0x00, 0x00 0x96 0x81 0x10 Low High 0x01

DEV CODE ID CODE DLENGTH data
CHECKSUM

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 52

0x40 0xFE Low High ???? Low High

4 Protocol
Data will be divided into several blocks of up to 512 bytes each. These blocks are
transmitted using type I and II packets as follows:

4.1 Transmission Protocol

4.1.1 The initiating device (A) begins a session by sending an ENQ (type I) packet. The
receiving device (B) will acknowledge the ENQ by transmitting a SYN packet.

4.1.2 When (A) receives a SYN packet, it goes to step 4.1.4 below.

4.1.3 When (A) receives a CAN packet, or when 6 minutes have elapsed without a SYN
packet reply to an ENQ packet, (A) terminates the session. If (A) receives any
other packet, no packet, or an incomplete packet, it begins sending ENQ packets
every 0.5 seconds.

4.1.4 When (A) receives a SYN packet, it transmits a single type II data packet, then
awaits an ACK packet from (B).

4.1.5 When (A) receives an ACK packet, the transmission is considered successful.

4.1.6 If no ACK packet is received within 1 second from completion of step 4.1.4, or if
any other packet is received, (A) goes to step 4.1.1 and transmits the data again.
Retransmission is attempted once. The session is terminated if the second
transmission is unsuccessful.

4.2 Reception Protocol

4.2.1 The receiving device (B) begins a session by waiting for an ENQ (type I) packet. If
no ENQ packet is received after 6 minutes (B) terminates the session.

4.2.2 When (B) receives an ENQ packet, (B) transmits either a SYN packet to continue
the session or a CAN packet to terminate the session.

4.2.3 When (B) receives a valid type II packet (eg. the checksum and all header fields
appear to be correct), (B) transmits an ACK packet.

4.2.4 If one or more header fields of the data packet are not correct, or if the time
between data bytes is more than 1 second, (B) goes to step 4.2.1 and does not
transmit the ACK packet (this will cause (A) to retransmit the packet after a one
second delay).

4.2.5 If the header fields of the data packet appear to be correct but the checksum is
incorrect, (B) transmits a NAK packet (this will cause (A) to retransmit the packet
immediately).

Because of the restriction in hardware mentioned in item 2 above, it is not possible to receive
data for two milliseconds after a data transmission. Please wait three milliseconds before
transmitting a response to the other device.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 53

SEND RECEIVE
ENQ (Packet I)

ENQ (Packet I)

ENQ (Packet I)

SYN (Packet I)

data (Packet II)

ACK (Packet I)

Max. 1 sec

Max. 1 sec

Min. 3 msec.

1st data block

nth data block

Typ. 0.5 sec.

_ _

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 54

NEW: How To Specify No Connect/Listen Options (2/1/96)

Q: How do I specify that there are no options for the Connect and Listen methods
of protoBasicEndpoint?

A: Different endpoint services use the options parameter differently. Some check for
nil before attempting to access the array, while others assume they will always be
passed an array of options. Some also assume that the array will always contain at
least one element.

The correct work-around for this unspecified behaviour is to pass an array containing
a single nil element. This works for all endpoint service types. For example:

ep:Connect([nil], nil);

_ _
NEW: Why Synchronous Comms Are Evil (2/1/96)

Q: Why does the following loop run slower and slower with each successive output? If
the data variable contains a sufficiently large number of items, the endpoint times
out or the Newton reboots before all the data is transmitted.

data := [....];
for item := 0 to Length(data) - 1 do

ep:Output(data[item], nil, nil);

A: When protoBasicEndpoint performs a function synchronously, it creates a special
kind of "sub-task" to perform the interprocess call to the comm tool task. The sub-
task causes the main NewtonScript task to suspend execution until the sub-task
receives the "operation completed" response from the comm tool task, at which time
the sub-task returns control to the main NewtonScript task, and execution continues.

The sub-task, however, is not disposed of until control returns to the main
NewtonScript event loop. In effect, each and every synchronous call is allocating
memory and task execution time until control is returned to the main NewtonScript
event loop! For a small number of sucessive synchronous operations, this is fine.

A fully asynchronous implementation, on the other hand, is faster, uses less machine
resources, allows the user to interact at any point in the loop, and is generally very
easy to implement. The above loop can be rewritten as follows:

ep.fData := [....];
ep.fIndex := 0;
ep.fOutSpec := {

async: true,
completionScript:

func(ep, options, error)
if ep.fIndex >= Length(ep.fData) - 1 then

// indicate we're done
else

ep:Output(ep.fData[ep.fIndex := ep.fIndex + 1],
 nil, ep.fOutSpec)

};

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 55

ep:Output(ep.fData[ep.fIndex], nil, ep.fOutSpec);

Of course, you should always catch and handle any errors that may occur within the
loop (completionScript) and exit gracefully. Such code is left as an excercise for
the reader.

Modem Setup
_ _

Desktop Connectivity (DILs)
_ _
NEW: Differences between MNP, Modem, Modem-MNP, and Real
Modems (2/5/96)

Q: I want to just connect to a Newton device over a cable from a MacOS or Windows
machine - what do I need to use to get reliable communications?

Q: I want to have the DILs answer an incoming call over a modem. How can I do that?
Q: What's the difference between the "Serial" and "Modem" Mac connection types?

A: In release 1.0 of the DILs, the best way to connect to a Newton device is by using a
MNP connection over a serial cable. This is what you're using when you set connection
type "Modem" on MacOS computers and "MNP" on Windows computers. This
actually has nearly nothing to do with modems as such; it means you're connecting
over a serial cable using MNP error correction and compression. (And on Windows, it's
the only supported option at this time.)

Currently you cannot use a true modem with the DILs to connect to a Newton device.

In general, you will never use the "Serial" connection type on a MacOS computer; that
connects over a serial cable (like "Modem" does) but offers no error detection.
Therefore, you would have to write your own code to check that data arrived safely.

_ _
NEW: CDPipeInit Returning -28102 on MacOS Computers (2/13/96)

Q: When I call the DILs function CDPipeInit, it returns a -28102 error (Communication
tool not found). I've checked that the tool is installed properly, and the DIL sample
application works fine. What's wrong?

A: A common cause of this error code is that the CSTR resources haven't been linked into
your final executable. Those resources are used to find the filenames of the
communications tools. Add the CSTR.rsrc file to your project and see if that fixes
things.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 56

_ _
NEW: Getting Serial Port Names on MacOS Computers (2/13/96)

Q: Different MacOS computers have different numbers of ports, different names for the
ports, and the port names are translated into other languages in non-English MacOS
System Software. How can I tell what serial ports are available?

A: You can use the Communications Toolbox to get the list of available serial ports. This
code has been added to version 2 of the SoupDrink sample code - see the
SetupPortMenu function in SoupDrink.c for an example.

User Interface
_ _

Hardware & OS
_ _
IR Port Hardware Specs (6/15/94)

Q: What are the hardware specifications for the Newton IR port?

A: In the Apple MessagePad 100, 110, and 120, the Sharp ExpertPad, and the Motorola
Marco, the IR transmitter/receiver is a Sharp Infrared Data Communication Unit
model RY5BD11 connected to channel B of a Zilog 85C30 SCC. Data is communicated
along a 500 KHz carrier frequency at 9600 or 19200 baud, 8 data bits, 1 stop bit, odd
parity. The IR hardware requires a minimum of 5 milliseconds settling time when
transitioning between sending and receiving. Sharp's CE-IR2 wireless interface unit
may be used to connect the Newton to MacOS or DOS machines, with the appropriate
software.

The Newton supports four IR software data modes:
Sharp encoding, NewtIR protocol (specifications are NOT releaseable)
Sharp encoding, SharpIR protocol
Plain Serial
38 KHz encoding ("TV Remote Control")

_ _
IR Hardware Info (9/6/94)

Q: How does the Newton send "Remote Control" codes?

A: This information is hardware dependent, and is only valid for the Original Message
Pad, Message Pad 100, and Message Pad 110 products.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 57

The IR transmitter/reciever is a Sharp IR Data Communication Unit connected to the
second channel of a built-in SCC. When in "Remote Control" mode, the SCC is not
used. Instead, a carrier frequency of 38KHz is transmitted, and the CPU toggles a
register to generate the data pattern.

_ _
Serial Port Hardware Specs (6/15/94)

Q: What are the hardware specifications for the serial port?

A: In the Apple MessagePad 100, 110, and 120, the Sharp ExpertPad, and the Motorola
Marco, the serial port is an EIA standard RS-422 port with the following pinout (as
viewed looking at the female Mini-DIN-8 socket on the side of the Newton device):

8 7 6

5 4 3

2 1

GPi

RxD+

RxD-

HSKi

TxD+

GND
TxD-

HSKo

Shield

Pin 1 HSKo /DTR
Pin 2 HSKi /CTS
Pin 3 TxD- /TD
Pin 4 GND Signal ground connected to both logic and chassis ground.
Pin 5 RxD- /RD
Pin 6 TxD+ (see below)
Pin 7 GPi General purpose input received at SCC's DCD pin.
Pin 8 RxD+ (see below)

All inputs are: Vih = 0.2V Vil = -0.2V Ri = 12k ohms
All outputs are: Voh = 3.6V Vol = -3.6V Rl = 450 ohms
Pins 3 & 6 tri-state when SCC's /RTS is not asserted.

The EIA RS-422 standard modulates its data signal against an inverted (negative) copy of the
same signal on another wire (twisted pairs 3/6 & 5/8 above). This differential signal is
compatable with older RS-232 standards by converting to EIA standard RS-423, which involves
grounding the positive side of the RS-422 receiver, and leaving the positive side of the RS-422
transmitter unconnected. Doing so, however, limits the usable cable distance to approximately
50 feet, and is somewhat less reliable.

_ _
Serial Cable Specs (8/9/94)

Q: I want to make my own serial cable. Which wires and which connector pins do I use?

A: To create a hardware flow control capable cable for Mac-to-Newton or Newton-to-
Newton communications (also called a "null-modem" cable) all you need are two
mini-din-8 connectors and seven wires connected as follows:

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 58

Ground (4) -> Ground (4) (also connect to connectors' shrouds)
Transmit+ (6) -> Receive+ (8)
Transmit- (3) -> Receive- (5)
Receive+ (8) -> Transmit+ (6)
Receive- (5) -> Transmit- (3)
Data Term Ready (1) -> Clear To Send (2)
Clear To Send (2) -> Data Term Ready (1)

You should use twisted pairs for 6/3, 8/5, and 1/2, to improve signal quality and
reduce attenuation, especially in long cables. You can use side-by-side pairs, as in
telephone hookup cable, for short cable runs.

Remember that because RS-422 uses a differential signal for transmit and receive, you
always need two transmit and two receive pairs, and a break of either wire will
cause communications in that direction to fail. The advantage, however, is
significantly longer and more reliable cable runs than RS-232.

If you don't use hardware flow control, you can eliminate the 1/2 pair, but that's not
recommended unless you know this cable will be used only in software flow control
situations.

Q: What's the pin mapping on the Newton-to-PC (DIN-to-DB9) cable?

A: Here it is:

Note that the pin numbers shown are as defined above.

P
C
(
D
B
9)

Newton
(DIN)

1 1
2 3
3 5
4 7,2
5 4,8
6 1
7 N/C
8 N/C
9 N/C

N/C=not connected.

_ _
How Much Power Can a PCMCIA Card Draw? (3/31/95)

Q: How much power can I draw through the PCMCIA slot?

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 59

A: The current rating depends on which Newton you are using and the type of batteries
in use. Alkaline batteries provide less current than NiCad due to higher internal
resistance. There is also a 'semi' artifical limit in the ROM. Currently any card
who's CIS indicates more than 200 mA current draw will be rejected by the
CardHandler. Other than that, here's the run down by hardware:

Apple MessagePad 100: 50 mA
Apple MessagePad 110: ~160 mA
Apple MessagePad 120: ~300 mA

NewtonScript
_ _
NewtonScript Object Sizes (6/30/94)

These desciptions document current OS formats only, we reserve the right to extend or
change the implementation in future releases.

Generic
NewtonScript objects are objects that reside either in the read-write memory, in
pseudo-ROM memory, inside the package or in ROM. In MessagePad platforms, these
objects are aligned to 8-byte boundaries. Alignment causes a very small amount of
memory to be wasted, usually less than 2%.

The Newton Object System has four built-in primitive classes that describe
an object's basic type: immediates, binary objects, arrays, and frames. The
NewtonScript function PrimClassOf will return an object's primitive type.

Immediates
 Immediates (integers, characters, TRUE and NIL) are stored in a 4-byte structure
containing up to 30 bits of data and 2 bits of primitive class identification.

Referenced Objects
Binaries, arrays and frames are stored as larger separate objects and managed
through references. A reference is a four- byte object. The binary objects, frames, or
arrays themselves are stored separately as objects containing a so-called Object
Header.

Object Header
Every referenced object has a 12-byte header that contains information concerning
size, flags, class, lock count and so on. This information is implementation-specific.

Symbols
A symbol is a binary object that contains a four-byte hash value and a name, which is
a null-terminated ASCII string. Each symbol uses 12 (header) + 4 (hash value) +
length of name + 1 (null terminator) bytes.

Binary Objects

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 60

A binary object contains a 12- byte header plus space for the actual data (allocated in
8 -byte chunks.)

Strings
Strings are binary objects of class (or a subclass of) String. A string object contains a
12-byte header plus the Unicode strings plus a null termination character. Note that
Unicode characters are two-byte values. Here's an example:

"Hello World!"

This string contains 12 characters, in other words it has 24 bytes. In addition we have
a null termination character (24 + 2 bytes) and an object header (24 + 2 + 12 bytes), all
in all the object is 38 bytes big. Note that we have not taken into account any possible
savings if the string was compressed (using the NTK compression flags).

Rich Strings
Rich strings extend the string object class by embedding ink information within the
object. Within the unicode, a special character kInkChar is used to mark the
position of an ink word. The ink data is stored after the null termination character.
Ink size varies depending on stroke complexity.

Array Objects
Array objects have an object header (12 bytes) and additional four bytes per element
which hold either the immediate value or a reference to a referenced object. To
calculate the total space used by an array, you need to take into account the memory
used by any referenced objects in the array.

Here's an example:

[12, $a, "Hello World!", "foo"]

We have a header (12 bytes) plus four bytes per element (12 + (4 * 4) bytes). The
integer and character are immediates, so no additional space is used, but we have 2
string objects that we refer to, so the total is (12 + (4*4) + 38 + 20 bytes) 86 bytes. We
have not taken into account savings concerning compression. Note that the string
objects could be referred by other arrays and frames as well, so the 38 and 20 byte
structures are stored only once per package.

Frame Objects
We have two kinds of frames: frames that don't have a shared map object; and
frames that do have a shared map object. We take the simple case first (no shared
map object).

The frame is maintained as two array-like objects. One, called the frame map,
contains the slot names, and the other contains the actual slot values. A frame map
has one entry per symbol, plus one additional 4 -byte value.

The frame map uses a minimum of 16 bytes. If we add the frame's object header to
this, the minimal size of a frame is 28 bytes. Each slot adds 8 bytes to the storage
used by the frame (two array entries.) Here's an example:

{Slot1: 42, Slot2: "hello"}

We have a header of 28 bytes, and in addition we have two slots, for a total of (28 +

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 61

(2 * 8)) 48 bytes. This does not take into account the space used for each of the slot
name symbols or for the string object. (The integer is an immediate, and so is stored in
the array.)

Multiple similar frames (having the same slots) could share a frame map. This will
save space, reducing the space used per frame (for many frames all sharing the same
map) to the same as used for an array with the same number of slots. (If just a few
frames share the frame map, we need to take into account the amortized map size
that the frames share. So the total space for N frames sharing a map is N*28 bytes of
header per frame, plus the size of the frame map, plus the size of the values for the
N frames.

Here's an example of a frame that could share a map with the previous example:

{Slot1: 56, Slot2: "world"}

We have a header of 12 bytes. In addition, we have two slots (2 * 4), and additional
16 bytes for the size of a map with no slots Ñ all in all, 36 bytes. We should also take
into account the shared map, which is 16 bytes, plus the space for the two symbols.

When do frames share maps?

1. When a frame is cloned, both the copy and the original frame will share the map
of the original frame. A trick to make use of this is to create a common template
frame, and clone this template when duplicate frames are needed.

2. Two frames created from the same frame constructor (that is, the same line of
NewtonScript code) will share a frame map. This is a reason to use RelBounds to
create the viewBounds frame, and it means there will be a single viewBounds
frame map in the part produced.

Note: These figures are for objects in their run-time state, ready for fast access. Objects in
transit or in storage (packages) are compressed into smaller stream formats. Different
formats are used (and different sizes apply) to objects stored in soups and to objects
being streamed over a communications protocol.

_ _
Nested Frames and Inheritance (10/9/93)

Unlike C++ and other object oriented languages, NewtonScript does not have the
notion of nested frames obtaining the same inheritance scope as the enclosing frame.

This is an important design issue, because sometimes you want to enclose a frame
inside a frame for name scoping or other reasons. If you do so you have to explicitly
state the messages sent as well as explicitly state the path to the variable:

Here's an example that shows the problems:

myEncloser := {
importantSlot: 42,
GetImportantSlot := func()

return importantSlot,

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 62

nestedSlot := {
myInternalValue: 99,

getTheValue := func()
begin

local foo;
foo := :GetImportantSlot(); // WON'T WORK
/* actually creates an undefined slot */
foo := myEncloser:GetImportantSlot(); // MAY WORK

importantSlot := 12; // WON'T WORK
myEncloser.importantSlot := 12; // MAY WORK

end
}

};

myEncloser.nestedSlot:GetTheValue();

The workaround is to give the nested frame a _parent or _proto slot that references
the enclosing frame. Nesting the frame is not strictly necessary in this case, only the
_proto or _parent references are used.

_ _
Symbol Hacking (11/11/93)

Q: I would like to be able to build frames dynamically and have my application create
the name of the slot in the frame dynamically as well. For instance, something like
this:

MyFrame:= {}; tSlotName := "Slot_1";

At this point is there a way to then create this ?:
MyFrame.Slot_1

A: There is a function called Intern, that takes a string and makes a symbol. There is also
a mechanism called path expressions (see the NewtonScript manual), that allows
you to specify an expression or variable to evaluate, in order to get the slot name. You
can use these things to access the slots you want:

MyFrame := {x: 4};
theXSlotString := "x" ;

MyFrame.(Intern(theXSlotString)) := 6

tSlotName := "Slot_1";
MyFrame.(Intern(tSlotName)) := 7;

// myFrame is now {x: 6, Slot_1: 7}

_ _

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 63

Performance of Exceptions vs Return Codes (6/9/94)

Q: What are the performance tradeoffs in writing code that uses try/onexception vs
returning and checking error results?

A: We did a few trials to weight the relative performance. Consider the following two
functions:

thrower: func(x) begin
if x then

throw('|evt.ex.msg;my.exception|, "Some error occurred");
end;

returner: func(x) begin
if x then

return -1; // some random error code,
0; // nil, true, whatever.
end;

Code to throw and and handle an exception:
local s;
for i := 1 to kIterations do

try
call thrower with (nil);

onexception |evt.ex.msg;my.exception| do
s := CurrentException().data.message;

Code to check the return value and handle an error:
local result;
local s;
for i := 1 to kIterations do

if (result := call returner with (nil)) < 0 then
s := ErrorMessageTable[-result];

Running the above loops 1000 times took about 45 ticks for the exception loop, and
about 15 ticks for the check the return value loop. From this you might conclude that
exception handling is a waste of time. However, you can often write better code if you
use exceptions. A large part of the time spent in the loop is setting up the exception
handler. Since we commonly want to stop processing when exceptions occur, we can
rewrite the function to set up the exception handler once, like this:

local s;
try

for i := 1 to kIterations do
call thrower with (nil);

onexception |evt.ex.msg;my.exception| do
s := CurrentException().data.message;

This code takes only 11 ticks for 1000 iterations, an improvement over the return value
case, where we'd have to check the result after each call to the function and stop the
loop if an error occurred.

Running the same loops, but passing TRUE instead of NIL so the "error" occurs every
time was interesting. The return value loop takes about 60 ticks, mostly due to the
time needed to look up the error message. The exception loop takes a whopping 850

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 64

ticks, mostly because of the overhead in the CurrentException() call.

With exceptions, you can handle the error at any level up the call chain, without
having to worry about each function checking for and returning error results for every
sub-function it uses. This will produce code that performs much better, and will be
easier to maintain as well.

With exceptions, you do not have to worry about the return value for successful
function completion. It is occasionally very difficult to write functions that both
have a return value and generate an error code. The C/C++ solution is to pass a
pointer to a variable that is modified with what should otherwise be the return
value of the function, which is a technique best avoided.

As in the above example, you can attach data to exceptions, so there's no need to
maintain an error code to string (or whatever) mapping table, which is another boon
to maintainability. (You can still use string constants and so on to aid localization
efforts. Just put the constant in the throw call.)

Finally, every time an exception occurs you have an opportunity to intercept it with
the NTK inspector. This is also a boon to debugging, because you know something
about what's going wrong, and you can set the breakOnThrows global to stop your
code and look at why there's a problem. With result codes you have a tougher time
setting break points. With a good debugger it could be argued that you can set
conditional break points on the "check the return value" code, but even when you do
this you'll have lost the stack frame of the function that actually had the problem.
With exceptions and breakOnThrows, all the local context at the time the exception
occurred is still available for you to look at, which is an immense aid.

Conclusion: Use exceptions. The only good reason not to would be if your error handler
is very local and if you expect it to be used a lot, and if that's true you should consider
rewriting the function.

_ _
Symbols vs Path Expressions and Equality (7/11/94)

Q: While trying to write code that tests for the existance of an index, I tried the
following, which did not work. How can I compare path expressions?

if value.path = '|name.first| then ... // WRONG

A: There are several concerns. '|name.first| is not a path expression, it is a symbol
with an escaped period. A proper path expression is either 'name.first or
[pathExpr: 'name, 'first]. The vertical bars escape everything between them
to be a single NewtonScript symbol.

The test value.path = 'name.first will always fail, because path expressions
are deep objects (essentially arrays) the equal comparison will compare references
rather than contents. You will have to write your own code to deeply compare path
expressions.

This code is further complicated by the fact that symbols are allowed in place of
path expressions that contain only one element, but the two syntaxes produce
different NewtonScript objects with different meanings. That is, 'name =
[pathExpr: 'name] will always fail, as the objects are different.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 65

A general test is probably unnecessary in most circumstances, since you will be able to
make assumptions about what you are looking for. For example, here is some code
that will check if a given path value from a soup index is equivalent to
'name.first.

if ClassOf(value.path) = 'pathExpr and Length(value.path) = 2
 and value.path[0] = 'name and value.path[1] = 'first then ...

_ _
Function Size and "Closed Over" Environment (7/18/94)

Q: I want to create several frames (for soup entries) that all share a single function, but
when I try to store one of these frames to a soup, I run out of memory. Can several
frames share a function and still be written to a soup? My code looks like this:
...
local myFunc := func(...) ...;
local futureSoupEntries := Array(10, nil);
for i := 0 to 9 do

futureSoupEntries[i] := {
someSlots: ...,
aFunction: myFunc,

};
...

A: When a function is defined within another function, the lexically enclosing scope
(locals and paramaters) and message context (self) are "closed over" into the function
body. When NewtonScript searches for a variable to match a symbol in a function, it
first searches the local scope, then any lexically enclosing scopes, then the message
context (self), then the _proto and _parent chains from the message context, then
finally the global variables.

Functions constructed within another function, as in your example, will have this
enclosing lexical scope, which is the locals and parameters of the function currently
being executed, plus the message context (self) when the function is created.
Depending on the size of this function and how it's constructed, this could be very
large. (Self might be the application's base view, for example.)

A TotalClone is made during the process of adding an entry to a soup, and this
includes the function body, lexical scopes, and message context bound up within any
functions in the frame. All this can take up a lot of space.

If you create the function at compile time (perhaps with DefConst('kMyFunc,
func(...) ...)) it will not have the lexically enclosing scope, and the message
context at compile time is defined to be an empty frame, and so cloning such a function
will take less space. You can use the constant kMyFunc within the initializer for the
frame, and each frame will still reference the same function body. (Additionally,
the symbol kMyFunc will not be included in the package, since it is only needed at
compile time.)

If the soup entries are only useful when your package is installed, you might consider
instead replacing the function body with a symbol when you write the entry to the
soup. When the entry is read from the soup, replace the symbol with the function
itself, or use a _proto based scheme instead. Each soup entry will necessarily

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 66

contain a complete copy of the function, but if you can guarantee that the function
body will always be available within your application's package, it might be
unnecessarily redundant to store a copy with each soup entry.

Debugging NewtonScript
_ _
Check for Application Base View Slots (3/6/94)

Here's a simple function that will print out all the slots and the slot values in an
application base view. This function is handy if you want to check for unnecessary
slots stored in the application base view; these eat up the NewtonScript heap and
eventually cause problems with external PCMCIA RAM cards.

call func()
begin

local s,v;
local root := GetRoot();
local base := root.|YourApp:YourSIG|; // name of app
local prot := base._proto;

foreach s,v in base do
begin

if v and v <> root AND v <> base AND v <> prot then
 begin
 Write ("Slot:" && s & ", Value: ");
 Print(v);
 end;

end;
end with ()

The debugging function TrueSize can also be a valuable ally in determining the
heap used by your applications.

_ _
NEW: TrueSize Incorrect for Soup Entries (2/6/96)

Q: When I use TrueSize to get the size of a soup entry I get results like 24K or even 40K
for the size. That can't be right. What's going on?

A: TrueSize "knows" about the underlying implementation of soup entries. A soup
entry is really a special object (a fault block) that contains information about how to
get an entry and can contain a cached entry frame. In the information about how to get
an entry, there is a reference to the soup, and various caches in a soup contain
references to the cursors, the store, and other (large) NewtonScript objects. TrueSize
is reporting the space taken up by all of these objects. (Note: calling TrueSize on a
soup entry will force the entry to be faulted in, even if it was not previously taking up
space in the NewtonScript heap.)

The result is that TrueSize is not very useful when trying to find out how much
space the cached frame for an entry is using. A good way to find the space used for a

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 67

cached entry frame is to call gc(); stats(); record the result, then call
EntryUndoChanges(entry); gc(); stats(). The difference between the two
free space reports will be the space used by the cached frame for a given entry.

EntryUndoChanges(entry) will cause any cached frame to be removed and the
entry to return to the unfaulted state. Gc() then collects the space previouly used by
the cached entry frame.

If you want the TrueSize breakdown of the types of objects used, you can Clone
the entry and call TrueSize on the copy. This works because the copy is not a fault
block, and so it does not reference the soups/cursors/stores.

Newton ToolKit
_ _
NTK, Picture Slots and ROM PICTs (12/19/93)

Q: How can I use a PICT in ROM from the Picture slot handler in NTK?

A: You have to use an NTK AfterScript to set the appropriate slot in the view to
point to the ROM based PICT (assuming that the constant for the PICT is defined in
the NTK definitions file). Something like this in the AfterScript:

thisView.icon := ROM_outboxbitmap;

_ _
Recognition Problems with the Inspector Window Open (3/8/94)

Q: When I have the Inspector window open and I debug the application, recognition does
not work properly and the Newton complains about lack of memory. However, when I
disconnect the Inspector, recognition works fine. What is going on?

A: The NTK inspector window uses system memory on the Newton side; the Toolkit App
itself makes use of MNP in the Newton, which uses a buffer taken from a space
shared with the recognition working memory.

Different releases of the Newton OS have different amounts of memory allocated for
this shared area, so the problem may not be apparent on some units. However, if this
happens you have several options:

¥ Disconnect the Inspector when testing the recognition side.
¥ Use the keyboard for text input while testing the code.
¥ Write shorter text items.

_ _
Accessing Views Between Layout Windows (6/7/94)

Q: I have problems setting a protoStaticText text slot that is in one linked layout
window from a button that is in another linked layout window. I tried to allow access
to the base view from both linked layouts, but this didn't help. I even tried to allow

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 68

access from the base view to both layouts, but this didn't help, either. What should I
do?

A: There is no way to declare views across the artifical boundary imposed by the linked
layouts. Until this feature of NTK is implemented, you must either create the link
yourself at run time, or declare the button to the top level of the linked layout, and
then declare the link.

For example, consider a view called textThatChanges which a child of a view called
changingContainer and is declared to changingContainer with the name
textThatChanges. ChangingContainer is the base view for a layout which is linked
into the main layout, and the link (in the main layout) is declared as
changingContainerLink. Code in the main layout can change the text of the
textThatChange view like so:

SetValue(containerLink.whatToDo, 'text, "Turn and face the...")

To do the equivalent of the declare yourself:

1) In the viewSetupFormScript script of the 'buttonThatChanges button, set
the value of the base view's slot 'theTextView to self, as in the following code
fragment:

func()
begin
 base.theTextView := self;
end

2) In the buttonClickScript script of the 'buttonThatSetsText button, use
the global function SetValue to store new text in the text slot of the
'buttonThatChanges button, as in the following code fragment:

func()
begin
 SetValue(base.theTextView, 'text, "Now something happened!");
end

Note that this example assumes the self-declared view called base. In your
application, you may access your base view in a different way.

_ _
Dangers of StrCompare, StrEqual at Compile Time (6/9/94)

Q: I've noticed that StrCompare can return different results at compile time than it
does at run time. What gives?

A: While many functions, like StrCompare, are present in NTK at compile time, they
should not be considered documented or supported unless explicitly defined in the
Newton ToolKit User's Guide or other material from Apple Computer.

In this case, the sort order for strings within the NTK NewtonScript environment is
different from the ordering used on the Newton (and different from other commonly
used desktop machine sort orders.) The differences are only apparent if you use

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 69

characters outside the ASCII range, for instance, accented characters.

If it is necessary to pre-sort accented strings at compile time, you can write your own
function that will return the same results as StrCompare on an given Newton unit.
Here is one such function for English releases of the Newton OS (which assumes
strings using only page 0 of the unicode table):

constant kNSortTable :=
'[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,
24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,4
5,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66
,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,
88,89,90,91,92,93,94,95,96,65,66,67,68,69,70,71,72,73,74,75,76,7
7,78,79,80,81,82,83,84,85,86,87,88,89,90,97,98,99,100,101,102,10
3,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,11
9,120,121,122,123,124,125,126,127,128,129,130,131,132,133,161,15
7,135,136,165,149,138,137,143,141,152,159,158,144,140,170,134,14
6,147,148,142,150,138,168,171,151,153,160,153,154,155,156,174,17
4,174,174,65,65,145,67,175,69,175,175,176,176,176,176,162,78,177
,177,177,79,79,164,79,178,178,178,85,166,167,139,65,65,65,65,65,
65,145,67,69,69,69,69,73,73,73,73,169,78,79,79,79,79,79,163,79,8
5,85,85,85,172,173,89];

// function to compare strings (only page 0 characters)
// with the same order as Newton does.
DefConst('kNewtonStrCompare, func(s1, s2)
begin

local l1 := StrLen(s1);
local l2 := StrLen(s2);
local l := Min(l1, l2);
local i := 0;
while i < l and

(r := kNSortTable[ord(s1[i])] - kNSortTable[ord(s2[i])]) =
0 do

i := i + 1;
if i = l then

l1-l2
else

r;
end);

_ _
Profiler and Frames of Functions (7/10/95)

Q: Using the profiler with a large frame of functions gives confusing results. The profiler
labels each function by the name of the frame and a number, but the numbers don't
seem to correspond to the order in which I defined the functions. Moving the functions
around doesn't change the profiler labels. How can I figure out which function is
which?

A: If frames have less than than a certain number of slots (20 in the current release), the
slots are kept in the order they were defined or added. If there are more than 20 slots
in the frame, the slots are reordered. (This improves slot lookup operations.) The
profiler in NTK 1.5 labels the functions by their position in the final, possibly
reordered, frame.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 70

To determine which function is in which position, you need to look at the frame after
the reordering has occurred. You can do this by printing the frame after it's been
defined. At compile time you can use a print statement in the slot editor or
afterScript. After the package has been downloaded you can use the inspector. Then
count (starting from one) through the slots to find your function.

Here's a little inspector snippet that will print the slots in a frame in order with
their numbers:

call func(theFrame) begin
local i := 0;
foreach slot, value in theFrame do begin

print(i && ': && slot);
i := i + 1;

end
end with (<the reordered frame>)

_ _
NTK 1.6 Heap/Partition Memory Issues (11/24/95)

Q: How do I set the build heap, main heap, and miltifinder partition sizes in NTK 1.6 so
I can build my package without running out of memory?

A: Here is an explanation of how NTK makes uses of the various heaps. Understanding
this will allow you to set your sizes for optimal performance.

Main Heap

The Main heap holds your frame data while you're working in NTK. Its size is set
through the Toolkit Preference dialog. You must quit and restart NTK for changes to
take effect.

The Main heap is allocated when NTK starts up. It is not disposed off until you quit
NTK. If NTK can't allocate the Main heap it reports the problem and quits. As a
result, if you can start NTK, Main heap allocation has completed.

We have no rule of thumb for setting the Main heap size. You need to experiment
keeping the following in mind:

1) If the Main heap is insufficient, NTK will tell you so.
2) Reducing the Main heap size reduces overall RAM requirements.
3) The Main heap is garbage collected (GC). Increasing its size may improve
performance by reducing GC activity. This will affect build time, and to a lesser
degree the time it takes to open a project. Please note that the gains in build time are
nonlinear and quickly reach a plateau, as shown in the following example:

Main Build time
heap size (+/- 0.5 sec)

1250K Main heap ran out of memory...
1275K 32.7 sec
1300K 26.4 sec
1400K 22.3 sec
1500K 19.2 sec

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 71

1600K 17.5 sec
2000K 16.0 sec
3000K 15.2 sec

Experiment with Main heap size by measuring build time until you find a reasonable
compromise between build time and memory requirements for your particular project.

If you are curious about GC activity, do the following:

1) Add the following line to your GlobalData file (in the NTK folder) and restart
NTK:

protoEditor:DefineKey({key: 65}, 'EvaluateSelection);

This allows you to use the period key on the numeric keypad to evaluate selected text
in the Inspector window or any text file in the NTK build-time environment.
(Normally the text is compiled by NTK and then evaluated by the Newton device
when you hit the Enter key.) See the NTK User's Guide for details on the
GlobalData file.

2) Type VerboseGC(TRUE) in the Inspector window, select, and hit the keypad-
period key. Each time the GC kicks in, a line will be displayed in the Inspector
window. By watching the frequency of GCs, you can get some idea of how your main
heap is being used.

3) Use VerboseGC(FALSE) to turn this feature off. Please note that VerboseGC is
available only in the NTK build-time environment. The function does not exist on the
Newton device itself. It should be used only for debugging and optimization.

Build Heap

The Build heap holds your package frame data during the last part of the build. Its
size is set through the Toolkit Preference dialog. Changes take effect immediately.

The Build heap is allocated only when the Build Package command is issued. It is
released as soon as the resulting file is written to disk. As a result Build heap
allocation is a recurring issue.

The rule of thumb is to set the Build heap to the size of your package (on the MacOS
computer hard disk, not on the Newton device). If the Build heap is insufficient,
NTK will tell you so.

There is nothing to be gained by setting the Build heap larger than necessary.

NTK first attempts to allocate the Build heap from MultiFinder memory. If that
fails, NTK tries to allocate the Build heap from NTK's partition.

To verify that you have enough memory for the Build heap you need to look at the
About Macintosh dialog just prior to issuing the build command.

1) If the "Largest Unused Block" exceeds the Build heap requested size, the Build
heap will be allocated from MultiFinder memory.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 72

2) If 1 failed and NTK's partition bar shows enough free memory to accommodate the
request, the Build heap will be allocated in NTK's partition.

3) If both 1 and 2 failed, the build will fail. Try to increase MultiFinder free memory
by quitting any other open application, or increase the free memory in NTK's
partition by closing some or all of NTK's open windows. Then try building again.

To prevent fragmentation of MultiFinder memory launch NTK first, and DocViewer,
ResEdit, etc. afterwards. Whenever possible, quit those other applications in the
reverse order .

Note: You can use Balloon help to see how much memory an application is actually
using. Simply select the Show Balloons menu item and position the cursor on the
application partition bar in the About Macintosh dialog. This feature is missing from
PowerPC-based MacOS computers.

NTK Partition Size

For NTK 1.6 the rule of thumb for the "smallest useful" partition size for small
projects is:
 (3500K + Main heap size) for a 68K MacOS computer
 (5500K + Main heap size) for a PowerPC MacOS computer with Virtual Memory off.

These rules do not include space for the Build heap.

The "smallest useful" partition size is defined by the following example: Using NTK
default Main and Build heaps, open the Checkbook sample. Open one browser and one
layout window for each file in the project, connect the Inspector, build and download.
Perform a global search on "Check" (case insensitive) producing slightly more than
200 matches. Double click on several of these matches displayed in the search results
window. Build and download again.

For serious work, increase the partition size by at least 256K for small projects, more
for large ones. If you routinely perform global searches that produces many matches,
see the next section.

On a PowerPC-based MacOS computer with Virtual Memory on, NTK's 2.7 Meg of
code (the exact number is shown in the Finder Info dialog) stays on the hard disk,
reducing memory requirements at the expense of performance.

_ _
NEW: NTK Search and Memory Hoarding (11/24/95)

Q: I sometimes run out space after working with a project for a while. How can I avoid
this?

A: NTK 1.6 is built with the MacApp application framework, which brings with it
certain memory requirements. Understanding the way NTK uses memory can help
avoid running out of memory.

Most of user interface elements you see when using NTK are pointer-based MacApp
objects. Allocating a large number of pointers in the application heap causes
fragmentation. To prevent that, MacApp has its own private heap where it manages

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 73

all these pointers.

This heap expands when necessary, but in the current implementation it never
shrinks. This memory is not lost, but it may be wasted, effectively reducing free
memory in the application partition.

During a single NTK session, build requirements are relatively constant. Partition
size requirements will thus be mostly affected by the maximum number of NTK
windows open at the same time. If you keep this number reasonable, relative to the
partition size you can afford, there should be no problem.

The fact that MacApp's objects heap never shrinks can, however, become an issue
when performing searches. The problem is not the search itself, but the number of
matches. Each line you see in the Search Results window is a MacApp object
occupying 500 to 800 bytes. If your search results in a large number of matches, you
may run out of memory.

To reduce such occurrences:
1) Perform more focused searches to keep the number of matches per search

reasonable.
2) Close the Search Results window as soon as you are done with it, preferably

before doing another search.

_ _
NEW: NTK Stack Overflow During Compilation (11/24/95)

Q: When I build my project which has very deeply nested statements, NTK runs out of
memory and quits. What's going wrong?

A: The deep nesting in your project is causing the compiler to overflow the stack space
available in NTK. NTK 1.6 is more likely than than NTK 1.5 to suffer this problem
due to new compiler code which nests deeper while parsing if-then-else statements,
causing the stack to overflow into the application heap.

If you see an inadvertent crash in NTK during a save operation or a package build:

1) If you are familiar with MacsBug, examine the stack. This particular case will
show up in the stack as several calls to the same function before the actual crash.

2) Otherwise, temporarily reduce the number of "else" branches and rebuild the
package. If the problem disappears, stack overflow is the prime suspect.

There are at least three ways to avoid this problem and possibly improve
performance at the same time:
1) Re-arrange the 'else' statements to resemble a balanced tree
2) Instead of If-then-else statements use:

 An array of functions (with integers as selectors)
 A frame of functions (with symbols as selectors)

3) Finally, as a temporary work around, you can increase the stack size using the
ResEdit application.

Re-arrange the 'else' statements to resemble a balanced tree

This solution is the simplest to implement if you need to change existing code. It

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 74

accommodates non-contiguous integer selectors, and in most cases is faster.

For example, the following code:

 if x = 1 then
 dosomething
 else
 if x = 2 then
 doSomethingElse
 else
 if x = 3 then
 doYetAnotherThing
 else
 if x = 4 then
 doOneMoreThing
 else
 if x = 5 then
 doSomethingSimple
 else
 if x = 6 then
 doThatThing
 else
 if x = 7 then
 doThisThing
 else // x = 8
 doTheOtherThing

 can be rewritten like this...

 if x <= 4 then
 if x <= 2 then
 if x = 1 then
 doSomething
 else // x = 2
 doSomethingElse
 else
 if x = 3 then
 doYetAnotherThing
 else // x = 4
 doOneMoreThing
 else
 if x <= 6 then
 if x = 5 then
 doSomethingSimple
 else // x = 6
 doThatThing
 else
 if x = 7 then
 doThisThing
 else // x = 8
 doTheOtherThing;

Note that the if/then/else statement nesting is "unusual" to illustrate the nesting
that the compiler must makeÑeach statement is nested as the compiler would process
i t .

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 75

Use an array of functions with integer selectors

Replace a long if-then-else statement with an array of functions. The code is more
compact and readable. For a large set of alternatives, the faster direct lookup should
compensate for the extra function call. This approach is most useful for a contiguous
range of selector values (e.g., 11 to 65). It can accommodate a few "holes" (e.g., 11 to
32, 34 to 56, 58 to 65). It is not practical for non-contiguous selectors (e.g., 31, 77, 256,
1038...)

For example, the following code:

if x = 1 then
dosuchandsuch;

else
if x = 2 then

dosomethingelse;
else

if x = 3 then
andsoon;

 can be rewritten like this...

 cmdArray := [func() dosuchandsuch,
 func() dosomethingelse,
 func() andsoon];

 call cmdArray[x] with ();

Use a frame of functions with symbols for selectors

This alternative provides the flexibility of using symbols for selecting the outcome.

 For example, the following code:

if x = 'foo then
dosuchandsuch;

else
if x = 'bar then

dosomethingelse;
else

if x = 'baz then
andsoon;

 can be rewritten like this...

cmdFrame := {foo: func() dosuchandsuch,
 bar: func() dosomethingelse,
 baz: func() andsoon};

 call cmdFrame.(x) with ();

Increase NTK's stack size using the ResEdit application

Open the Newton Toolkit application with ResEdit.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 76

Double-click on the "mem!" resource icon

Double-click on resource ID 1000 named "Additional NTK Memory Requirements"

Change the fifth (and last) value. This is an hexadecimal number. In NTK 1.6, you
should see "0001 8000" which is 98304 bytes (or 96k) to add to the total stack size.
For example, to increase this value to 128k = 131072 bytes change the hexadecimal
value to "0002 0000".

_ _
NEW: Unit Import/Export and Interpackage References (11/25/95)

Q: How can I reference information in one part or package from another (different) part
or package?

A: Newton 2.0 OS provides the ability for packages to share informations by exporting
or importing units. Units are similar to shared libraries in other systems.

A unit provides a collection of NS objects (unit members.) Units are identified by a
name, major version number, and minor version number. Any frame part can export or
import zero or more units.

A unit must be declared, using DeclareUnit, before it's used (imported or exported.)
See the docs on DeclareUnit below for details.

To export a unit, call DefineUnit and specify the NS objects that are exported.

To import from a unit, simply reference its members using UnitReference (or UR for
short.)

Unit Usage Notes

• Units can also be used to share objects among parts within a single package. This
avoids the need to resort to global variables or similar undesirable techniques.

• A part can export multiple units. To achieve some degree of privacy, you can
partition your objects into private and public units. Privacy is achieved by not
providing the declaration for a unit.

• References to units are resolved dynamically whenever a package is activated or
deactivated. For example, a package can be loaded before the package providing
the units it imports is loaded. There will be no problem as long as the provider is
loaded prior to actually using the imported members.

Conversely, it's possible for the provider to be deactived while its units are in
use. The part frame methods, RemovalApproval and ImportDisabled, provide a
way to deal with this situation.

Robust code should ensure that the units it imports are available before
attempting to use their members. It should also gracefully handle the situation
of units being removed while in use. See the DTS sample "MooUnit" for a simple

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 77

example.

Unit Build-Time Functions

These functions are available in NTK at build-time only:

DeclareUnit(unitName, majorVersion, minorVersion, memberIndexes)
unitName - symbol - name of the unit
majorVersion - integer - major version number of the unit
minorVersion - integer - minor version number of the unit
memberIndexes - frame - unit member name/index pairs (slot/value)
return value - unspecified

A unit must be declared by DeclareUnit before it's used (imported or exported.) The
declaration maps the member names to their indexes. A typical declaration looks
like:

DeclareUnit('|FastFourierTransforms:MathMagiks|, 1, 0, {
ProtoGraph: 0,
ProtoDataSet: 1,

});

Typically, the declarations for a unit are provided in a file, such as
"FastFourierTransforms.unit", that is added to an NTK project (similar to .h files in
C.)

When resolving imports, the name and major version specified by the importer and
exporter must match exactly. The minor version does not have to match exactly. If
there are units differing only in minor version, the one with the largest minor version
is used.

Typically, the first version of a unit will have major version 1 and minor version 0. As
bug fixes releases are made, the minor version is incremented. If a major
(incompatible) change is made, then the major version number is incremented.

Note: When a unit is modified, the indexes of the existing members must remain the
same. In other words, adding new members is safe as long as the indexes of the
existing members don't change. If you change a member's index it will be incompatible
with any existing clients (until they're recompiled with the new declaration.)

DefineUnit(unitName, members)
unitName - symbol - name of the unit
members - frame - unit member name/value pairs (slot/value)
return value - unspecified

DefineUnit exports a unit and specifies the value of each member. Immediates and
symbols are not allowed as member values. A typical definition looks like:

DefineUnit('|FastFourierTransforms:MathMagiks|, {
ProtoGraph: GetLayout("foo.layout"),
ProtoDataSet: { ... },

});

A unit must be declared before it's defined. The declaration used when exporting a

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 78

unit with n members must contain n slots with indexes 0..n-1. The definition must
specify a value for every declared member (this is important.)

UnitReference(unitName, memberName)
 or
UR(unitName, memberName)

unitName - symbol - name of a unit
memberName - symbol - name of a member of unit
return value - a reference to the specified member

To use a unit member call UnitReference (UR for short) with the unit and member
name.

The unit name 'ROM can be used to refer to obects in the base ROM. For example:
UR('ROM, 'ProtoLabelInputLine).

Note: references to objects in the base ROM are sometimes called "magic pointers" and
have traditionally been provided in NTK by constants like ProtoLabelInputLine
or ROM_SystemSoupName.

In Newton 2.0 OS, there may also be packages in the ROM. These ROM packages may
provide units. Their members are referenced just like any other unit, using UR, the
unitName, and the memberName. This is the mechanism by which licensees can
provide product-specific functionality.

AliasUnit(alias, unitName)
alias - symbol - alternate name for unit
unitName - symbol - name of a unit
return value - unspecified

AliasUnit provides a way to specify an alternate name for a unit. Since unit names
must be unique, they tend to be long and cumbersome. For example:
 AliasUnit('FFT, '|FastFourierTransforms:MathMagiks|);

so that you could write:
 local data := UR('FFT, 'ProtoDataSet):New(points);

instead of:
 local data := UR('|FastFourierTransforms:MathMagiks|,

'ProtoDataSet):New(points);

AliasUnitSubset(alias, unitName, memberNames)
alias - symbol - alternate name for unit
unitName - symbol - name of a unit
memberNames - array of symbols - list of unit member names
return value - unspecified

AliasUnitSubset is similar to AliasUnit, except that it additionally specifies a
subset of the units members which can be used. This helps restrict code to using only
certain members of a unit.

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 79

Unit Part Frame Methods

These methods can optionally be defined in a part frame to handle units becoming
unavailable.

RemovalApproval(unitName, majorVersion, minorVersion)
unitName - symbol - name of the unit
majorVersion - integer - major version number of the unit
minorVersion - integer - minor version number of the unit
return value - nil or string

This message is sent to a part frame when an imported unit is about to be deactivated.
It may a return a string to be shown to the user as a warning about the consequences of
deactivating the package in use. For example:

"This operation will cause your connection to fooWorld to be
dropped."

Note: do not assume that the user is removing the package. Other operations such as
moving a package between stores also cause package deactivation.

This message is only a warning. The user may decide to proceed and suffer the
consequences. If the user proceeds, the ImportDisabled message (see below) will be
sent.

If the removing the unit is not a problem (for example, your application is closed),
then RemovalApproval can return nil and the user will not be bothered.

ImportDisabled(unitName, majorVersion, minorVersion)
unitName - symbol - name of the unit
majorVersion - integer - major version number of the unit
minorVersion - integer - minor version number of the unit
return value - unspecified

This message is sent to a part frame after an imported unit has been deactivated. The
part should deal with the situation as gracefully as possible. For example, use
alternative data or put up a Notify and/or close your application.

Unit-Related Glue Functions

These functions are available in the Newton 2.0 Platform file.

MissingImports(pkgRef)
return value - nil or an array of frames (see below)
glue name - kMissingImportsFunc

MissingImports lists the units used by the specified package that are not
currently available. MissingImports returns either nil, indicating there are no
missing units, or an an array of frames of the form:

{
name: symbol - name of unit desired
major: integer - major version number
minor: integer - minor version number

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 80

<other slots undocumented>
}

Miscellaneous
_ _
Unicode Character Information (9/15/93)

Q: Where can I find more about Unicode tables?

A: The following book provides a full listing of the world wide (non-Kanji) Unicode
characters:

The Unicode Standard
WorldWide Character Encoding
Version 1.0 Volume 1
ISBN-0-201-56788-1

_ _
NEW: Current Versions of MessagePad Devices (2/7/96)

Q: What are the versions of the Apple Newton MessagePad device?

A: This answer will change as product versions are released. To find the version number,
open the Extras Drawer. In the Newton 1.x OS, open the Prefs application and look at
the number in the bottom middle of the screen. In the Newton 2.0 OS, choose Memory
Info from the Info button.

As of February 2nd, 1996 the latest versions are:

English Newton 1.x OS
MessagePad 1.05
MessagePad 1.11
MessagePad 100 1.3 (415333)
MessagePad 110 1.3 (345333)
MessagePad 120 1.3 (465333)

English Newton 2.0 OS
MessagePad 120 2.0 (515299)

German Newton 1.x
MessagePad D 1.11
MessagePad 100 D 1.3 (435334)
MessagePad 120 D 1.3 (435334)

French Newton 1.x
MessagePad 100 F 1.3 (424112)
MessagePad 110 F 1.3 (424112)
MessagePad 120 F 1.3 (455334)

© Copyright 1993-96 Apple Computer, Inc, All Rights Reserved 81

