Newton Programmer’s Guide:
Communications

o

First Edition

This first edition is an early release, published to enable Newton platform
development. Every effort has been made to ensure the accuracy and
completeness of this information, however it is subject to change.

[¢ Apple Computer, Inc.

© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to
be made for others, whether or not
sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.

Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, eWorld,
LaserWriter, the light bulb logo,
Macintosh, MessagePad, Newton,
and Newton Connection Kit are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

Balloon Help, Espy, Geneva,
NewtonScript, Newton Toolkit,
New York, QuickDraw, and
System 7 are trademarks of
Apple Computer, Inc.

Adobe Ilustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS1S,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

11/95

Preface

Contents

Figures and Tables xi

About This Book xv

Chapter 1

Audience XV
Related Books xvi
Sample Code xvii
Conventions Used in This Book xvii
Special Fonts xvii
Tap Versus Click xviii
Frame Code xviii
Developer Products and Support Xix
Undocumented System Software Objects XX

Overview 1-1

Chapter 2

NewtonScript Application Communications
Routing Through the In/Out Box 1-3
Endpoint Interface 1-4

Low-Level Communications 1-5
Transport Interface 1-5
Communication Tool Interface 1-5

Routing Interface 2-1

1-3

About Routing 2-1
The In/Out Box 2-2
The In Box 2-3
The Out Box 2-4

iii

iv

Action Picker 2-4

Routing Formats 2-7
Current Format 2-11

Routing Compatibility 2-11
Print Formats 2-12

Using Routing 2-12

Providing Transport-Based Routing Actions 2-12
Getting and Verifying the Target Object 2-13
Getting and Setting the Current Format 2-15
Supplying the Target Object ~ 2-16
Storing an Alias to the Target Object 2-17
Handling a Multi-Item Selection ~ 2-19
Displaying an Auxiliary View 2-19
Registering Routing Formats 2-20

Creating a Print Format 2-21
Page Layout 2-22
Printing and Faxing 2-23

Creating a Frame Format 2-26

Creating a New Type of Format 2-27

Providing Application-Specific Routing Actions 2-27

Performing the Routing Action 2-29
Handling Multiple Items 2-30
Handling No Target Item 2-31

Sending Items Programmatically ~ 2-32
Creating a Name Reference 2-34
Specifying a Printer 2-35

Supporting the Intelligent Assistant 2-36

Receiving Data 2-37
Automatically Putting Away Items 2-37
Manually Putting Away Items 2-39
Registering to Receive Foreign Data 2-40
Filing Items That Are Put Away 2-41

Viewing Items in the In/Out Box 2-41
Changing View Definition Behavior ~ 2-42
View Definition Slots 2-43

Advanced Alias Handling ~ 2-43

Chapter 3

Routing Reference 2-44
Data Structures 2-44
Item Frame 2-44
RouteScripts Array 2-48
Format Frame 2-50
Protos 2-51
protoActionButton 2-51
protoPrinterChooserButton 2-52
Routing Format Protos 2-53
Functions and Methods ~ 2-61
Send-Related Functions and Methods 2-62
Cursor-Related Functions 2-66
Utility Functions and Methods ~ 2-69
Application-Defined Methods ~ 2-75
Summary of the Routing Interface 2-77
Constants 2-77
Data Structures 2-78
Protos 2-80
Functions and Methods ~ 2-81
Application-Defined Methods ~ 2-82

Transport Interface 3-1

About Transports 3-2
Transport Parts 3-2
Item Frame 3-3
Using the Transport Interface ~ 3-5
Providing a Transport Object ~ 3-6
Installing the Transport 3-6
Setting the Address Class ~ 3-7
Grouping Transports 3-7
Sending Data 3-9
Sending All Items 3-10
Converting an E-Mail Address to an Internet Address

3-10

Receiving Data 3-10
Handling Requests When the Transport is Active ~ 3-12
Canceling an Operation 3-13
Obtaining an Item Frame 3-14
Completion and Logging ~ 3-17
Storing Transport Preferences and Configuration
Information 3-18
Extending the In/Out Box Interface 3-19
Application Messages 3-20
Error Handling 3-22
Power-Off Handling 3-23
Providing a Status Template 3-23
Controlling the Status View 3-27
Providing a Routing Information Template 3-30
Providing a Routing Slip Template 3-32
Using protoFullRouteSlip 3-32
Using protoAddressPicker 3-36
Using protoSenderPopup 3-38

Providing a Preferences Template ~ 3-39
Transport Interface Reference 3-43
Protos 3-43

protoTransport 3-43
protoTransportHeader 3-77
protoFullRouteSlip ~ 3-78
protoFormatPicker ~ 3-83
protoSendButton 3-83
protoAddressPicker 3-84
protoSenderPopup 3-85
protoTransportPrefs ~ 3-86

Functions and Methods ~ 3-90
Utility Functions 3-90

Application-Defined Method ~ 3-94

Summary of the Transport Interface 3-94

Constants ~ 3-94

Protos 3-95

Functions and Methods ~ 3-100

Chapter 4 Endpoint Interface 41

About the Endpoint Interface 4-2

Asynchronous Operation ~ 4-3

Synchronous Operation 4-3

Input 4-4

Data Forms 4-5
Template Data Form 4-8

Endpoint Options ~ 4-11

Compatibility 4-11

Using the Endpoint Interface ~ 4-12

Setting Endpoint Options ~ 4-13

Initialization and Termination 4-16

Establishing a Connection ~ 4-16

Sending Data 4-17

Receiving Data Using Input Specs 4-17
Specifying the Data Form and Target ~ 4-19
Specifying Data Termination Conditions 4-20
Specifying Flags for Receiving ~ 4-22
Specifying an Input Time-Out ~ 4-23
Specifying Data Filter Options 4-23
Specifying Receive Options 4-24
Handling Normal Termination of Input 4-24
Periodically Sampling Incoming Data 4-25
Handling Unexpected Completion 4-26
Special Considerations 4-26

Receiving Data Using Alternative Methods 4-26

Streaming Data In and Out 4-27

Working With Binary Data ~ 4-27

Canceling Operations 4-28
Asynchronous Cancellation ~ 4-29
Synchronous Cancellation 4-30

Other Operations ~ 4-31

Error Handling 4-31

Power-Off Handling 4-32

Linking the Endpoint With an Application ~ 4-32

vii

Chapter 5

Endpoint Interface Reference ~ 4-33
Data Structures 4-33

Endpoint Option Frame 4-33
Callback Spec Frame 4-35

Output Spec Frame 4-36

Input Spec Frame =~ 4-37

Input Spec Target Frame 4-40
Input Spec Termination Frame 4-41
Input Spec Filter Frame 4-42

Protos 4-43

protoBasicEndpoint ~ 4-43
protoStreamingEndpoint 4-53

Functions and Methods 4-56

Utility Functions 4-56

Summary of the Endpoint Interface 4-59
Constants and Symbols 4-59
Data Structures 4-63
Protos 4-66
Functions and Methods ~ 4-68

Built-in Communication Tools 51

viii

Serial Tool 5-2
Standard Asynchronous Serial Tool 5-2

Serial Chip Location Option ~ 5-4

Serial Chip Specification Option ~ 5-5
Serial Circuit Control Option ~ 5-9

Serial Buffer Size Option 5-12

Serial Configuration Option ~ 5-14

Serial Data Rate Option 5-16

Serial Flow Control Options 5-17
Serial Send Break Option 5-18

Serial Discard Data Option 5-19

Serial Event Configuration Option ~ 5-20

Serial Bytes Available Option ~ 5-22

Serial Statistics Option ~ 5-23

Serial External Clock Divide Option =~ 5-25
Serial Tool with MNP Compression 5-26

Serial MNP Data Rate Option ~ 5-27
Framed Asynchronous Serial Tool =~ 5-27

Serial Framing Configuration Option =~ 5-29

Serial Framing Statistics Option 5-31
Modem Tool 5-32
Modem Address Option 5-33
Modem Preferences Option =~ 5-34
Modem Profile Option ~ 5-38
Modem Error Control Type Option 5-43
Modem Dialing Option ~ 5-45
Modem Connection Type Option 5-49
Modem Connection Speed Option ~ 5-51
Modem Fax Capabilities Option ~ 5-51
Modem Voice Support Option 5-54
MNP Speed Negotiation Option 5-55
MNP Compression Option 5-57
MNP Data Statistics Option 5-58
Infrared Tool 5-61
Infrared Connection Option 5-62
Infrared Protocol Type Option ~ 5-63
Infrared Statistics Option ~ 5-65
AppleTalk Tool 5-67
AppleTalk Address Option ~ 5-69
AppleTalk Buffer Size Option =~ 5-70
AppleTalk Bytes Available Option ~ 5-71
AppleTalk Functions 5-71
Opening and Closing the AppleTalk Drivers
Obtaining Zone Information 5-73
NetChooser Function ~ 5-76
Resource Arbitration Options 5-79
Summary 5-81
Constants and Variables ~ 5-81

5-71

ix

Functions and Methods 5-88
AppleTalk Functions 5-88
Zone Information Methods 5-89
NetChooser Function 5-89
Registration Methods 5-89
Options 5-89

Chapter 6 Modem Setup Service 61

About the Modem Setup Service 6-2
The Modem Setup User Interface 6-3
The Modem Setup Process 6-4
Modem Communication Tool Requirements 6-5
Defining a Modem Setup ~ 6-6
Setting Up General Information 6-6
Setting the Modem Preferences Option 6-6
Setting the Modem Profile Option 6-7
Setting the Fax Profile Option ~ 6-8
Modem Setup Service Reference 6-10
Constants 6-10
Modem Setup General Information 6-10
Modem Setup Preferences 6-11
Modem Setup Profile Constants 6-12
Fax Profile Option 6-18
Summary of the Modem Setup Service 6-18
Constants 6-18

Chapter 7 Glossary GL1

Index IN-1

Figures and Tables

Table 2-1 Routing data types 2-10

Table 3-1 Status view subtypes 3-24

Table 5-1 Summary of serial options 5-3

Table 6-1 Summary of configuration string usage 6-8
Chapter 1 Overview 1-1

Figure 1-1 Communications architecture 1-2
Chapter 2 Routing Interface 2-1

Figure 2-1 In Box and Out Box overviews 2-3

Figure 2-2 Action picker 2-5

Figure 2-3 Transport selection mechanism for action

picker 2-8

Figure 2-4 Format picker in routing slip 2-9

Table 2-1 Routing data types 2-10
Chapter 3 Transport Interface 3-1

Table 3-1 Status view subtypes 3-24

Figure 3-1 Status view subtypes 3-25

Table 3-2 Preferences slots 3-48

Table 3-3 E-mail address translations 3-69

Table 3-4 Causes of a send request 3-73

Table 3-5 Slots in si | ent Pr ef s frame 3-87

Table 3-6 Slots in sendPr ef s frame 3-88

Table 3-7 Slots in out boxPr ef s frame 3-89

Chapter 4

Chapter 5

xii

Table 3-8

Slots in i nboxPr ef s frame 3-90

Endpoint Interface 4-1

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-11
Table 4-10
Table 4-12

Data forms 4-6

Data form applicability 4-8

Data types for t ypel i st array 4-9
Input spec slot applicability 4-19
Data translators 4-58

Data form symbols 4-59

Typel i st data types 4-60
Option opcode constants 4-60
Endpoint error codes 4-61
Endpoint state constants 4-62
Option error codes 4-63

Other endpoint constants 4-64

Built-in Communication Tools 5-1

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Figure 5-1
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17

Summary of serial options 5-3

Serial chip location labels 5-5

Serial chip specification option fields 5-7
Serial chip specification option constants 5-8
Serial circuit control option fields 5-11

Serial circuit control option constants 5-11
Serial flow control option fields 5-18

Serial event constants 5-21

Serial statistics option fields 5-24

Summary of serial tool with MNP options 5-26
Summary of framed serial options 5-28
Default Serial Framing 5-30

Serial framing configuration option fields 5-30
Summary of modem options 5-32

Modem preferences option fields 5-36
Modem profile option fields 5-40

Modem error control type 5-45

Modem dialing option fields 5-47

Table 5-18 Modem connection type option fields 5-50

Table 5-19 Modem Fax Capabilities Option Fields 5-53

Table 5-20 Modem Fax Modulation Return Values 5-54

Table 5-21 MNP compression type 5-57

Table 5-22 MNP data statistics option fields 5-59

Table 5-23 Summary of Infrared Options 5-62

Table 5-24 Infrared statistics option fields 5-66

Table 5-25 Summary of AppleTalk options 5-68

Figure 5-2 NetChooser view while searching 5-77

Figure 5-3 NetChooser view displaying printers 5-78

Table 5-26 Resource arbitration options 5-80

Table 5-27 Serial chip specification option constants 5-81

Table 5-28 Serial circuit control option constants 5-83

Table 5-29 Stop bits field constants 5-83

Table 5-30 Parity field constants 5-84

Table 5-31 Data bits constants 5-84

Table 5-32 Field interface speed constants 5-84

Table 5-33 Serial event constants 5-85

Table 5-34 Data slot constants: 5-86

Table 5-35 Modem error control type 5-86

Table 5-36 Modem service type constants 5-86

Table 5-37 Modem fax modulation return values 5-87

Table 5-38 MNP compression type 5-87

Table 5-39 The protocol field constants 5-88

Table 5-40 The options field constants: 5-88

Table 5-41 Summary of serial options 5-89

Table 5-42 Summary of serial with MNP options 5-90

Table 5-43 Summary of framed serial options 5-91

Table 5-44 Summary of modem options 5-91

Table 5-45 Summary of infrared options 5-92

Table 5-47 Resource arbitration options 5-92

Table 5-46 Summary of AppleTalk options 5-93
Chapter 6 Modem Setup Service 6-1

Figure 6-1 Modem preferences view 6-3

Table 6-1 Summary of configuration string usage 6-8

Table 6-2 Available fax speeds 6-9

xiii

Table 6-3 Constants for modem setup general
information 6-10

Table 6-4 Constants for modem setup preferences 6-11
Table 6-5 Constants for the modem setup profile 6-12
Table 6-6 Constants for the fax profile 6-18

Chapter 7 Glossary GL-1

Xiv

PRETFAUCE

About This Book

Audience

This book, Newton Programmer’s Guide: Communications, describes
the Newton communications system software for version 2.0.

Note

This early release is published to enable Newton platform
development. Every effort has been made to ensure the
accuracy and completeness of this information, however it is
subject to change. O

This guide is for anyone who wants to write NewtonScript
programs for the Newton family of products, and specifically
covers the communication interfaces in Newton system software.

Before using this guide, you should read Newton Toolkit User’s
Guide to learn how to install and use Newton Toolkit, which is the
development environment for writing NewtonScript programs
for Newton. You may also want to read The NewtonScript
Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is
used throughout the Newton Programmer’s Guide: Communications.
Additionally, this book is a companion volume to the other
volumes in the set, Newton Programmer’s Guide: System Software.
You should refer to those books for details on NewtonScript
programming on topics other than communications.

XV

Related Books

PRETFAUCE

To make best use of this guide, you should already have a good
understanding of object-oriented programming concepts and
have had experience using a high-level programming language
such as C or Pascal. It is helpful, but not necessary, to have some
experience programming for a graphic user interface (like the
Macintosh desktop or Windows). At the very least, you should
already have extensive experience using one or more applications
with a graphic user interface.

xvi

This book is one in a set of books available for Newton program-
mers. You'll also need to refer to these other books in the set:

Newton Programmer’s Guide: System Software. This set of books is
the definitive guide and reference for Newton programming
topics other than communications.

Newton Toolkit User’s Guide. This book introduces the Newton
development environment and shows how to develop Newton
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

The NewtonScript Programming Language. This book describes
the NewtonScript programming language.

Newton Book Maker User’s Guide. This book describes how to use
Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.
You have this book only if you purchased the Newton Toolkit
package that includes Book Maker.

Newton 2.0 User Interface Guidelines. This book contains guide-
lines to help you design Newton applications that optimize the
interaction between people and Newton devices.

Sample Code

PRETFAUCE

The Newton Toolkit product includes many sample code projects.
You can examine these samples, learn from them, experiment with
them, and use them as a starting point for your own applications.
These sample code projects illustrate most of the topics covered in
this book. They are an invaluable resource for understanding the
topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. You can
find the latest collection of sample code in the Newton developer
area on AppleLink. You can gain access to the sample code by
participating in the Newton developer support program. For
information about how to contact Apple regarding the Newton
developer support program, see the section “Developer Products
and Support,” on page xix.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

= Boldface. Key terms and concepts appear in boldface on first
use. These terms are also defined in the Glossary.

= Courier typeface. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,

xvii

xviii

PRETFAUCE

slot names, function names, method names, symbols, and
constants are shown in the Courier typeface to distinguish
them from regular body text. If you are programming, items
that appear in Courier should be typed exactly as shown.

» [talic typeface. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which
you must replace with your own names. The names of other
books are also shown in italic type, and rarely, this style is used
for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the
word “click” sometimes appears as part of the name of a method
or variable, asin Vi ewC i ckScri pt or ButtonC i ckScri pt.
This may lead you to believe that the text refers to mouse clicks. It
does not. Wherever you see the word “click” used this way, it
refers to a tap of the pen on the Newton screen (which is some-
what similar to the click of a mouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development environ-
ment in conjunction with this book, you may notice that this book
displays the code for a frame (such as a view) differently than
NTK does.

In NTK, you can see the code for only a single frame slot at a time.
In this book, the code for a frame is presented all at once, so you
can see all of the slots in the frame, like this:

{ viewd ass: clView,
vi ewBounds: Rel Bounds(20, 50, 94, 142),
vi ewFl ags: vNoFI ags,
vi ewrFormat : vf Fi |l | Wit e+vf FraneBl ack+vf Pen(1),
viewJustify: vjCenterH,

PRETFAUCE

Vi ewSet upDoneScript: func()
: Updat eDi spl ay(),

Updat eDi spl ay: func()
Set Val ue(di spl ay, 'text, value);
b

If while working in NTK, you want to create a frame that you see
in the book, follow these steps:

1. On the NTK template palette, find the view class or proto
shown in the book. Draw out a view using that template. If the
frame shown in the book contains a _pr ot o slot, use the
corresponding proto from the NTK template palette. If the
frame shown in the book contains a vi ewC ass slot instead of
a _pr ot o slot, use the corresponding view class from the NTK
template palette.

2. Edit the vi ewBounds slot to match the values shown in
the book.

3. Add each of the other slots you see listed in the frame, setting
their values to the values shown in the book. Slots that have
values are attribute slots, and those that contain functions are
method slots.

Developer Products and Support

APDA is Apple’s worldwide source for hundreds of development
tools, technical resources, training products, and information for
anyone interested in developing applications for Apple computer
platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple and the most popular third-party
development tools. APDA offers convenient payment and
shipping options, including site licensing.

xix

PRETFAUCE

To order product or to request a complimentary copy of the Apple
Developer Catalog:

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call
408-974-4897 for information on the developer support
programs available from Apple.

Additionally, check out the Newton developer world-wide web
pageat:http: //dev.info. appl e. conf newt on

Undocumented System Software Objects

XX

When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

CHAPTER 1

Overview

This chapter provides an overview of the communications facilities in
Newton system software 2.0.

The Newton communications architecture is application-oriented, rather
than protocol-oriented. This means that you can focus your programming
efforts on what your application needs to do, rather than on communication
protocol details. A simple high-level NewtonScript interface encapsulates all
protocol details, which are handled in the same way regardless of which
communication transport tool you are using.

The communication architecture is flexible, supporting complex communica-
tion needs. The architecture is also extensible, allowing new communication
transport tools to be added dynamically and accessed through the same
interface as existing transports. In this way, new communication hardware
devices can be supported.

The Newton communications architecture is illustrated in Figure 1-1.

1-1

CHAPTER 1

Overview

Figure 1-1 Communications architecture

Application

NewtonScript

Routing interface

1
P4

In/out box

r

Transport interface
I

z

Transport @ Endpoint interface

Zz

Endpoint object

Low-level communications system ‘

Communication tools

Serial Modem MNP IR FAX ATalk

iy

Hardware devices
Modem Radio Keybd GSM CDPD

Figure 1-1 shows four unique communications interfaces available for
you to use:

= routing interface
= endpoint interface
= transport interface

= communication tool interface

CHAPTER 1

Overview

The first two, routing and endpoint interfaces, are available for NewtonScript
applications to use directly.

The transport interface is a NewtonScript interface, but it isn’t used directly
by applications. A transport consists of a special kind of application of its
own that is installed on a Newton device and that provides new communica-
tion services to the system.

The communication tool interface is a low-level C++ interface.

These interfaces are described in more detail in the following sections.

NewtonScript Application Communications

There are two basic types of NewtonScript communications an application
can do. The most common type of communication that most applications do
is routing through the In/Out Box. As an alternative, applications can use
the endpoint interface to control endpoint objects.

Typically, an application uses only one of these types of communication, but
sometimes both are needed.

These two types of communication are described in the following sections.

Routing Through the In/Out Box

The routing interface is the highest-level NewtonScript interface. The routing
interface allows an application to communicate with the In/Out Box. The In/
Out Box is an application that is visible to the Newton user as icons in the
Newton Extras Drawer. The user can tap on either the In Box or the Out Box
icon to open the In/Out Box to view and operate on the contents.

The routing interface is best suited for user-controlled messaging and
transaction-based communications. For example, the Newton built-in
applications use this interface for e-mail, beaming, printing, and faxing.
Outgoing items can be stored in the Out Box until a physical connection

NewtonScript Application Communications 1-3

CHAPTER 1

Overview

is available, when the user can choose to transmit the items, or they can be
sent immediately. Incoming items are received in the In Box, where the user
can get new mail and beamed items, for example.

For information on the routing interface, refer to Chapter 2, “Routing
Interface.”

The In/Out Box makes use of the transport and endpoint interfaces
internally to perform its operations.

If you are writing an application that takes advantage of only the transports
currently installed in the Newton system, you need to use only the routing
interface. You need to use the transport or endpoint interfaces only when
writing custom communication tools.

Endpoint Interface

The endpoint interface is a somewhat lower-level NewtonScript interface; it
has no visible representation to the Newton user. The endpoint interface is
suited for real-time communication needs such as database access and
terminal emulation. It uses an asynchronous, state-driven communications
model.

The endpoint interface is based on a single proto—pr ot oBasi cEndpoi nt —
that provides a standard interface to all communication tools (serial, fax
modem, infrared, AppleTalk, and so on). The endpoint object created from
this proto encapsulates and maintains the details of the specific connection.
This proto provides methods for

» interacting with the underlying communication tool
= setting communication tool options

= opening and closing connections

= sending and receiving data

The basic endpoint interface is described in Chapter 4, “Endpoint Interface.”

NewtonScript Application Communications

CHAPTER 1

Overview

Low-Level Communications

There are two lower-level communication interfaces that are not used
directly by applications. The transport and communication tool interfaces are
typically used together (along with the endpoint interface) to provide a new
communication service to the system.

These two interfaces are described in the following sections.

Transport Interface

If you are providing a new communication service through the use of
endpoints and lower-level communication tools, you may need to use the
transport interface. The transport interface allows your communication
service to talk to the In/Out Box and to make itself available to users
through the Action button (envelope icon) in most applications.

When the user taps the Action button in an application, the Action picker
appears. Built-in transports available on the Action picker include printing,
faxing, eWorld e-mailing, and beaming.

For more information, refer to Chapter 3, “Transport Interface.”

Communication Tool Interface

Underlying the NewtonScript interface is the low-level communications
system. This system consists of a communications manager module and
several code components known as communication tools, representing
different kinds of transports. These communication tools interact directly
with the communication hardware devices installed in the system. The
communication tools are written in C++ and are not directly accessible from
NewtonScript—they are accessed indirectly through an endpoint object.

For information about configuring the built-in communication tools through
the endpoint interface, refer to Chapter 5, “Built-in Communication Tools.”

Low-Level Communications 1-5

1-6

CHAPTER 1

Overview

Note that the communications manager module, and each of the individual
communication tools, runs as a separate operating system task. All
NewtonScript code is in a different task, called the Application task.

The system is extensible—additional communication tools can be installed at
run time. Installed tools are made available to NewtonScript client
applications through the same endpoint interface as the built-in tools.

At some point, Apple Computer, Inc. may release the tools and interfaces
that allow C++ communication tool development.

Low-Level Communications

CHAPTER 2

Routing Interface

This chapter describes the Routing interface in Newton system software. The
Routing interface allows applications to send, receive, and perform other
operations on data such as deleting or duplicating it. It provides a common
user interface mechanism that all applications should use to provide routing
services.

You should read this chapter if your application needs to provide routing
services to the user. This chapter describes how to:

= route items through the Out Box using transport-supplied services
= route items using application-supplied services
= receive incoming items through the In Box

= support viewing items in the In/Out Box

About Routing

Routing is a term used to describe nearly any action taken on a piece of data.
Some typical routing actions include printing, faxing, mailing, beaming,

About Routing 2-1

2-2

CHAPTER 2

Routing Interface

deleting, and duplicating. In addition to system-provided routing services,
applications can implement their own routing actions that operate on data.

Routing also describes the process of receiving data through the In Box.

The Routing interface provides the link between an application and the In/
Out Box for sending and receiving data using transports. The Routing
interface also provides a standard mechanism for an application to make
available its own internal routing actions such as deleting and duplicating,
that do not use transports.

The In/Out Box

The In/Out Box is used as a central repository for all incoming and outgoing
data handled by the Routing and Transport interfaces. The In/Out Box is an
application that is accessed by the Newton user through the In Box and Out
Box icons in the Extras Drawer. The user can tap either icon to open the In/
Out Box to view and operate on its contents. Once it’s open, the user can
switch between the In Box and the Out Box by tapping a radio button in the
application.

When open, the In/Out Box displays either the In Box, containing incoming
items, or the Out Box, containing outgoing items. The user can choose to sort
the items in both the In Box and the Out Box in various ways, such as by
date, type of transport, or status. A transport is a type of communication
service such as fax, e-mail, or beam. Figure 2-1 shows the In Box and Out Box
overviews where the items are sorted by type of transport.

About Routing

CHAPTER 2

Routing Interface

Figure 2-1 In Box and Out Box overviews

451 Fri 818 & Unfiled ltems 11:48 Wed B7/16 # Unfiled Items

& In Box i Ot Box i:In Box & Out Box
© Fax 0 ltems © Print 2 Irems
Christine’s Secret Ready
© Beam Zlitems Sat /2241 pm
iy ﬂ Agreement between b... Newy iy E bread...Cheese...tom... Ready
Garp Smith Wied 8416 1:22 pmi Wed 8416 11:42 am
ﬂ stereo...V(R...TV...Ca... New: o
Judy Sundance Fri 871 8 4:50 prn Fax 2 ltems
o it E this is a sample this Ready
Update 0 ltems Bob Anderson Sun 143 3:56 am
E Map 2 Gerry's house..... Ready
O eWorld 1 Item Rarce Wialthrop Fri 1.8 1:40 am
- e@ Congratulations News
Peter Friedrnan Tue 878 12:28 pm © Beam 0 ltems
© ewWorld 1 Item
i e@ 4,..fax Bob00ODOD...-... Ready

Bob Anderson Wed 2416 11:41 am

a [*Receive JQIONEANX] a +send JlQNICOHENX]

The In/Out Box makes use of the Transport interface internally to perform its
operations.

The In Box

Incoming data items are received into the In Box and stored in the In Box
soup. For example, the user may receive beamed items, e-mail, or fax
messages. Many kinds of In Box items can be viewed in the In Box and they
can be put away into one of the other applications residing on the Newton
device. For example, the user may receive an e-mail message, read it in the In
Box, and then put it away into the Notepad application. The act of putting
away an item transfers it to the selected application and deletes it from the In
Box soup.

The In Box also supports an automatic “put away” feature. An application
can register to automatically receive items designated for it. In this case, as

About Routing 2-3

CHAPTER 2

Routing Interface

soon as the In Box receives such an item, it is automatically transferred from
the In Box soup to the application, without user intervention. For example,
incoming stock quotes from a wireless modem could be automatically
transferred to a stock tracking application.

The In Box itself also supports certain routing actions. Certain items in the In
Box can be routed directly from there. For example, you can read incoming
e-mail, and reply to it, print it, or fax it directly from within the In Box.

The Out Box

Outgoing data items are stored in the Out Box until a physical connection is
available or until the user chooses to transmit the items. For example, the
user may choose to fax and e-mail several items while aboard an airplane.
These items are stored in the Out Box soup. When the user reaches her
destination, she connects the Newton to a phone line and sends the items.

While stored in the Out Box, most items can be viewed, some can be edited,
and the user can change routing or addressing information, for example,
adding more recipients to an e-mail message or changing a fax number.

Individual transports can support automatic connection features. For
example, if the Newton contains wireless communication capabilities, the
Out Box can automatically transfer an item to a transport as soon as it is sent
from an application, without the user having to open the Out Box and tap
the Send button.

The Out Box itself also supports routing actions. Items in the Out Box can be
sent through other transports directly from there. For example, if the user has
queued a fax to send, the user can also print it from the Out Box.

Action Picker

Routing actions are accessed in an application from the Action button—the
small envelope icon. When the user taps this button, a picker (pop-up menu)
listing routing actions is displayed, as shown in Figure 2-2. These routing
actions apply to the current target object. The target object typically consists
of one or more selected items or the data in a view, such as the current note

About Routing

CHAPTER 2

Routing Interface

on the Notepad. Usually this corresponds to a soup entry or to multiple soup
entries.

Figure 2-2 Action picker

Action picker —|

E Print Note
E Fax

ﬂ Beam
= Mail

El puplicate

{@ Delete [S}—— Action button

In the user interface of your application, the Action button should be
positioned differently, depending on how your application displays
individual items. If your application can have more than one selectable data
view on the screen at a time (like the Notepad) then the Action button should
be attached to the top of the view it will act on. For example, each note in the
Notepad has its own Action button, which applies just to that note. If your
application displays only one data view at a time, then the Action button
should be on the button bar at the bottom of the screen.

You can add the Action button to the user interface of your application by
adding a view based on the pr ot oAct i onBut t on proto (page 2-51). This
proto contains the functionality to create and pop up the picker.

The picker displayed when a user taps on the Action button lists the routing
actions available for the particular type of data that is selected as the target.
There are two kinds of routing actions that can appear on the Action picker:

= routing actions corresponding to transports installed in the Newton device

= application-defined actions such as delete and duplicate, that do not use
the Out Box and a transport to perform the routing operation

Transport-based actions that support the type of data being routed are
shown at the top of the Action picker. Application-defined routing actions
appear at the bottom of the picker, below a separator line.

About Routing 2-5

CHAPTER 2

Routing Interface

Note that the first action listed in the Action picker has the name of the target
item appended to it (for example, “Print Note”). The system obtains the
name of the item from the appQbj ect slot. Most applications define this slot
in their base view. It holds an array of two strings, the singular and plural
forms of the name of the item (for example, ["Entry", "Entries"].

The system builds the list of routing actions dynamically, at the time the
Action button is tapped. This allows all applications to take advantage of
new transports that are added to the system at any time. Applications and
transports need know nothing about each other; the Routing interface acts as
the bridge, creating the picker at run time.

Applications don’t specify that particular transports be included on the
picker. Instead, applications enable transports based on the type of data to
route and the formats available for it: view data (for example, for printing
and faxing), frame data (for example, for beaming), text data (for example,
for e-mail), and so on.

Here’s a summary of the main steps that occur when the user taps the Action
button:

1. The system obtains the target by sending the Get Tar get | nf o message to
the Action button view, and then determines the class of the target.

2. Using the target class, the system builds a list of routing formats that can
handle that class of data by looking them up in the view definition
registry using the Get Vi ewDef s function.

3. Using the list of formats, the system builds a list of transports that can
handle at least one of the data types supported by any of the formats. The
matching transports are shown on the Action picker. Application-defined
actions such as delete or duplicate are also added to the picker.

4. If the user chooses a transport-based action from the picker, the system
sends the Set upl t emmessage to the current (last-used) format for that
transport and the data type being routed. Then the routing slip is opened,
where the user can supply addressing information and confirm the
routing action. If the user switches formats from among those available,
the Set upl t emmessage is sent to the new format.

About Routing

CHAPTER 2

Routing Interface

5. If the user chooses an application-defined action from the picker, the
system sends the Action button view the message defined by the
application for that action (in the Rout eScr i pt slot of the action frame).

The following section describes routing formats in more detail and explains
how they’re used to determine what transport-based routing actions appear
on the Action picker. The steps in this summary are explained in much
greater detail in the section “Providing Transport-Based Routing Actions”
beginning on page 2-12.

Routing Formats

To implement the sending of data using the Routing interface and a
transport, an application uses one or more routing formats that specify how
data is to be formatted when it is routed. A routing format is a frame
specifying items such as the title of the format, a unique identifying symbol,
the type of data the format handles, and other information controlling how
the data is handled. Some types of routing formats, such as print formats, are
view templates that contain child views that lay out the data being printed.
Other types of routing formats, such as frame formats, simply control how a
frame of data is sent and have no visual representation.

Here is an example of a routing format frame:
{ _proto: protoPrintFormat,// based on this proto

dat aTypes: ['view], // unneeded, supplied by proto
title: "Two-colum", // nanme of format

synbol : ' |twoCol umFormat:SIG, // format id
/1l construct child views that do the actual | ayout
Vi ewSet upChi l drenScript: func() begin ... end,
/1 handle multiple pages
Pri nt Next PageScri pt: func() begin ... end,
-}

The dat aTypes slot in the format frame indicates the types of data handled
by the format. This slot and the class of the data object being routed are used
to determine which transports show up in the Action picker. The system

About Routing 2-7

CHAPTER 2

Routing Interface

builds a list of all formats registered under the symbol matching the class of
the object being routed. This list contains all the formats that can be used
with that class of object. Remember that the class of a frame object is simply
the value of the cl ass slot in the frame. So, to route a frame object, it must
have a cl ass slot that contains a value corresponding to one of the classes
under which routing formats are registered. For more details about
registering routing formats, see the section “Registering Routing Formats”
beginning on page 2-20.

Each transport installed in the system contains a dat aTypes array that
indicates what data types it can handle. For the item being routed, the Action
picker lists every transport whose dat aTypes slot includes one of the types
specified by the dat aTypes slots of the routing formats associated with that
item. This selection mechanism is illustrated in Figure 2-3.

For more information about transports, see Chapter 3, “Transport Interface.”

Figure 2-3 Transport selection mechanism for action picker

Routed object Routing formats in view definition registry Installed transports

1@{ [T1: {dataTypesgp
rat 1: { dat aTypes: >4
...}, : dat-atype qm’
Fmat 2: {dat aTypes: [L)
P =
Fmat 3: {dat aTypes: [) R
... 1}, T4: {dataTypes:

baz: { *‘ "text], ...},
Frmat B1: { dat aTypes: [' view], . .
1) 1

{dat aTypes: [' binary],

Resulting Action picker lists the
transports T1, T2, and T4

2-8 About Routing

CHAPTER 2

Routing Interface

Once the user chooses a transport from the Action picker, the routing slip for
that transport is displayed. All the routing formats that support the class of
data being routed and that are handled by that transport are listed in the
format picker in the routing slip, as shown in Figure 2-4. The last used
format is set as the current format, or if no last format is found, the first
format found is set as the current format.

Figure 2-4 Format picker in routing slip
Judy Sundance —
.San Francisco Feut
#MName None

¥ LF lain Format picker
* Cover P eLer, ourd
Memo
H# Fine resontion 773 Manually connect

[Preview] [Notes] ["ﬂ‘ Assist] [*Fax] @

About Routing 2-9

CHAPTER 2

Routing Interface

The built-in applications and transports support routing of the basic data
types listed in Table 2-1. Other data types may be defined by applications,
but only those transports aware of them can use them. If you do create a
custom data type, be sure to append your developer signature to make it
unique.

Table 2-1 Routing data types

Data type
"vi ew

"frame
't ext

' bi nary

Description Built-in transport support!
Data is exported in page-by-page views for print, fax

operations such as printing and faxing

Data is exported as a NewtonScript frame eWorld, beam

Data is exported as a string eWorld

Data is exported as a binary object not applicable

! This column lists the built-in transports that support each of the routing data types. Note that this
information is firmware-dependent. All Newton devices may not have all of these transports built
in, and some devices may have additional transports not listed here.

2-10

Typically, an application defines multiple routing formats, to allow routing
using different types of transports. For example, an application might define
one' frane format, one' t ext format, and two "' vi ewformats.

An application may make use of built-in routing formats and other routing
formats that have been registered in the system, if the application sends data
of the class handled by those formats. But typically an application registers
unique formats of its own that are custom designed for its own data.

You must register with the system all routing formats that you define,
usually in your application part | nst al | Scri pt function. Registration is
discussed in the section “Registering Routing Formats” beginning on
page 2-20.

About Routing

CHAPTER 2

Routing Interface

Current Format

The routing system maintains a “current format,” which is the last routing
format used by your application for a specific transport, or the first routing
format available otherwise. The current format is used to set the format
picker in the routing slip the next time the user chooses to route an item
using the same transport.

The system maintains the current format by adding a frame called

| ast For mat s to your application base view. The | ast For nat s frame
contains a slot for each transport that has been used from your application.
Whenever a transport is selected, the system first checks your application for
the | ast For mat s frame and for a slot within that frame named with the
symbol of the transport being used. If the slot is found, it contains the
symbol of the last format used by that transport. Then the system searches
for a format whose synbol slot matches it.

If your application does not have a | ast For mat s slot, or if a matching
format is not found (the format went away), the first format found becomes
the current format.

Whenever the user changes the current format, it is saved in the
| ast For mat s frame in your application’s base view. It is your responsibility
to save the | ast For mat s frame to a soup if you want to maintain it.

Routing Compatibility

The Routing interface described in this chapter is entirely new in system
software 2.0. The previous Routing interface, documented in Newton
Programmer’s Guide, is obsolete, but still supported for compatibility with
older applications. Do not use the old Routing interface, as it will not be
supported in future system software versions.

Note that if a 1.x application that includes the routing capability is run under
system software version 2.0, the names of routing actions in the Action
picker may appear slightly differently than they do under version 1.x
because of the way that the picker is constructed in version 2.0.

About Routing 2-11

CHAPTER 2

Routing Interface

Print Formats

In the 1.x system, print formats have left and right default margins of 60
pixels. In Newton 2.0, the default margins are 0. If you are converting a print
format for use in Newton 2.0, you shouldn’t need to do anything special if
you let the print format set up its own view bounds and the child views are
positioned relative to the parent’s bounds.

Using Routing

2-12

This section describes how to use the Routing interface to perform these
specific tasks:

= provide transport-based routing actions

= provide application-specific routing actions
= send items programmatically

= receive items

s allow items to be viewed in the In/Out Box

Providing Transport-Based Routing Actions

Here’s a summary of the minimum actions you need to do to support
routing by the Action button in an application:

» Include the Action button in your application (or in individual views) by
adding a view based on the pr ot 0Act i onBut t on proto (described on
page 2-51).

» Supply a Get Tar get | nf o method in your application (or in individual
views) or ensure that the t ar get and t ar get Vi ewslots are set up
correctly with the target object and target view, so the system can
determine what is being routed.

Using Routing

CHAPTER 2

Routing Interface

= Ensure that the target data object has a meaningful class (for frame objects,
this is the cl ass slot). The data class is used to determine the appropriate
formats, and thus transports, available to an item.

= Create one or more routing formats. Give your formats unique synbol
and ti t! e slots, and supply the Set upl t emmethod, if necessary (but
call the inherited method also). View formats may need a
Pri nt Next PageScri pt method if multiple pages could be involved,
and may need a For mat | ni t Scri pt method if much preparation must
be done before printing or faxing. Text formats may need a Text Scri pt
method.

= Register your routing formats in the application | nst al | Scri pt
function and unregister them in the RenoveScr i pt function.

To support routing through transports, your application uses one or more
routing formats. These may be custom formats registered by your
application or other formats built into the system or installed separately. For
more information about routing formats, see the section “Routing Formats”
beginning on page 2-7. There are some prototype formats built into the
system that you can use to create your own formats:

= To create a format for routing a' vi ewdata type, you can use the
prot oPri nt For mat, described on page 2-21.

= To create a format for routing a' frane or ' t ext data type, you can use
the pr ot oFr aneFor mat , described on page 2-26.

= To create a new kind of format for data types other than"' vi ewor
' f rame, you can use the pr ot oRout i ngFor mat, described on page 2-27.

The following sections describe the more detailed aspects of supporting
transport-based routing.

Getting and Verifying the Target Object

When the user first taps on the Action button, but before a choice is made
from the picker, the Routing interface sends the Action button view the

Cet Tar get | nf 0 message (page 2-70), passing the symbol ' r outi ng as a
parameter. The purpose of this message is to get the target object to be routed
and the target view in which it resides. Usually, these items are stored in slots

Using Routing 2-13

2-14

CHAPTER 2

Routing Interface

named t ar get and t ar get Vi ewin your application. If you set up and use
such slots in your views, you don’t need to implement the Get Tar get | nf o
method because this is a root view method that will be found by inheritance.
The root view method simply looks for the slots t ar get and t ar get Vi ew
starting from the receiver of the message, which is the Action button view. It
returns these slots in a frame called the target information frame. If you don’t
use these slots in your views, you’ll need to implement the Get Tar get | nf o
method to return them.

You'll need to implement the Get Tar get | nf o method if the user has
selected multiple items to route. In this case, you’ll need to construct a single
object that encapsulates the multiple items selected for routing, because the
target must be a single object. In your Get Tar get | nf 0 method you can use
the function Cr eat eTar get Cur sor (page 2-67) to create a multiple item
target object from the selected items.

Note

In most cases the target object is a frame. In some cases you
might want to route a non-frame object such as a string or
binary. The Routing interface supports non-frame target
objects, however other system services such as Filing may
require target objects that are frames, so you may not be able
to use the same target with them. Note also that non-frame
target objects must have a meaningful class. O

Once the user actually chooses a transport-based routing action from the
Action picker, the system creates a new Out Box item frame containing some
default slots and values for the target item. This is done by means of the
transport method Newl t em One slot that is initialized by New t emis the
appSynbol slot of the item frame. The value for this slot is obtained from
the appSynbol slot of the application doing the routing (through
inheritance from the Action button view).

Then, just before the routing slip is opened, the Routing interface sends the
message Ver i f yRout i ngl nf o (page 2-77) to the view identified by the
appSynbol slotin the item frame. This is normally your application base
view. However, if you are doing routing from a view created by

Bui | dCont ext, for example, the appSynbol slot might be missing because

Using Routing

CHAPTER 2

Routing Interface

such views don’t automatically include this slot. You must include an
appSynbol slot in such a view, since it determines where the
Ver i f yRout i ngl nf o message is sent.

The Ver i f yRout i ngl nf o method is passed two parameters, the target
information frame obtained by Get Tar get | nf o, and the partially
initialized item frame obtained from Newl t em The Veri f yRout i ngl nf o
method allows you a chance to verify or change the target item before the
routing slip is opened. Normally you would return the same target frame
that was passed in, possibly modified. To cancel the routing operation, you
can return ni | . If you don’t care to implement this method, you don’t need
to.

If multiple items are being routed, the target object (constructed by

Cr eat eTar geCur sor) encapsulates them all. In your

Veri f yRout i ngl nf o method, you can use the function

Cet Tar get Cur sor (page 2-67) to return a cursor to navigate the items.
Then you can iterate through the cursor using the cursor methods Ent ry,
Next , and Pr ev, as described in Chapter 11, “Data Storage and Retrieval,” in
Newton Programmer’s Guide: System Software.

Note

When an item is routed from within the In/Out Box, the In/
Out Box implements its own Ver i f yRout i ngl nf o
method, which adds one slot to the target information frame
that it returns. This slot is named t ar get Ent ry, and it
contains the actual In/Out Box entry being routed. This is
provided in case you need access to the In/Out Box soup
entry, since t ar get contains only the body slot of the soup
entry. O

Getting and Setting the Current Format

Next, the Routing interface sends your application base view the

Cet Def aul t For mat message (page 2-64). The purpose of this message is to
get the default format so that when the routing slip is opened, the format can
be initially set to the default. Normally, the default format for a particular
transport is simply the last format used with that transport from that

Using Routing 2-15

2-16

CHAPTER 2

Routing Interface

application. This information is stored in the | ast For mat s slots of your
application base view. Unless you want to do something special, you don’t
need to implement the Get Def aul t For mat method because this is a root
view method that will be found by inheritance. The root view method
simply gets the default format from the | ast For mat s slot.

The format can be changed by the user, or by the system (if no last format is
found, the default is set to the first one that is found). When the format is
changed, the Routing interface sends your application base view the

Set Def aul t For mat message (page 2-65). The purpose of this message is to
store the default format for later use. Normally, this is stored in the

| ast For mat s slot in the application base view. Unless you want to do
something special, you don’t need to implement the Set Def aul t For mat
method because this is a root view method that will be found by inheritance.
The root view method simply sets the new format in the | ast For mat s slot
of your application base view.

Supplying the Target Object

Next, the Routing interface sends the Set upl t emmessage (page 2-56) to
your format, assuming it is the one set as the current format. This message
informs you that the format is selected and an item is being routed. The

Set upl t emmethod is passed two parameters: a partially initialized item
frame, and a target information frame, as returned by Get Tar get | nf 0. The
item frame is obtained from the transport method New t em which creates a
new Out Box item frame containing some default slots and values. This is the
frame that is to be stored in the Out Box soup. It must be filled in with the
data object being sent.

The target information frame contains two important slots, t ar get and

t ar get Vi ew which define the data object to be routed and the view that
contains it, respectively. The Set upl t emmethod must set the body slot of
the item frame to the value contained in the t ar get slot of the target
information frame. This fills in the item frame with the actual data to be sent.

You are not required to provide a Set upl t emmethod in your routing
format since this method is defined in the routing format protos. The
Set upl t emmethod defined in the proto simply assigns the t ar get slot in

Using Routing

CHAPTER 2

Routing Interface

the target information frame to the body slot of the item frame. You can
override this method if you want to perform additional operations and then
call the inherited Set upl t emmethod. Note that there’s a potential problem
with not copying the target object. If the object is viewable and editable and
the user edits the object in the Out Box, that also changes the original object
stored by the application, since there’s actually not two separate objects—just
two pointers to the same object.

If you want to modify the body slot of the item in some way, you should
supply your own Set upl t emmethod instead of calling the inherited
version. Then in your own Set upl t emmethod, clone the t ar get slot of the
target information frame into the body slot of the item frame.

When sending data to another Newton device (for example, by beaming) it’s
a good idea to ensure that the sent object contains a ver si on slot that holds
the current version of your application. This will help to avoid compatibility
problems in future versions of your application. If the data format changes,
your application can easily identify older and newer data formats.

Storing an Alias to the Target Object

When there is a single target object, if there is not enough storage space, or
the target object is larger than a specified size, you can specify that an alias to
the target object, rather than the target object itself, be stored in the

i t em body slot. You enable the storing of an alias by setting the

st or eAl i as slot in the routing format frame to t r ue. Additionally, you can
specify a maximum size limit for target objects by setting the si zeLi mi t

slot in the routing format frame. If any target object is larger than the size
specified in this slot, and st or eAl i as is also t r ue, an alias to the target
object is stored in the i t em body slot.

The default Set upl t emmethod provided in the routing format protos reads
the st or eAl i as slot and performs the appropriate operations if this slot is

t r ue; otherwise, it assigns the actual target object to the i t em body slot, as
usual. If an alias to the target object is stored in the i t em body slot, the
routing interface also sets the i t em needsResol ve slottot r ue, to signal
that the body slot contains an alias that will need to be resolved.

Using Routing 2-17

2-18

CHAPTER 2

Routing Interface

If an alias to an item is stored, the item can still be viewed and operated
upon in the In/Out Box, just like any other item.

Note that there’s some potential problems if an alias to the target object is
stored. If the target entry resides on a card store, and the card is removed
before the item is actually sent from the Out Box, the alias cannot be resolved
and the send operation will fail. No matter where the original object resides,
even if it is simply deleted, the send operation will fail. Therefore, whenever
an alias is stored, the user is warned by an alert slip explaining that the
original item must be available when the routed item is actually sent. You
can set the slot showMessage to ni | in the format to prevent the warning
message from being displayed.

Another problem with storing an alias is that the alias is just a pointer to the
original data. For example, say the user faxes a note and chooses to send it
later, and you store an alias to the note in the Out Box. Then the user opens
the fax item in the Out Box and changes the note. This actually changes the
original note in the Notepad application, since the alias is just a pointer to the
original data. Similarly, if the user changed the original note before the fax
was sent, then the fax text would be changed without the user being aware
of it.

Most target objects are soup entries, for which the routing format protos can
handle the operations of determining the object size, making an alias, and
resolving the alias when needed. However, in some cases, you may want to
route objects that are not soup entries. If you want to create aliases to such
objects, you must override the routing format methods that handle the alias
operations: Tar get Si ze (page 2-58), MakeBodyAl i as (page 2-58), and
Resol veBody (page 2-59).

The Tar get Si ze method must determine the size of the target object passed
to it. The default method does this for soup entries, but you must override it
and do it yourself for other kinds of objects. The size of the object is used to
determine if the object is greater than the size specified by the sizeLimit slot
in the routing format, or greater than the available space on the store. If
either of these conditions is true, then an alias is created for the object.

Using Routing

CHAPTER 2

Routing Interface

Handling a Multi-ltem Selection

If the target data consists of multiple items selected from an overview, you
can specify that these items be stored individually in the Out Box or that a
single alias cursor be stored in the Out Box. The st or eCur sor s slot in the
routing format frame controls this feature, along with the transport. This
feature works only if the transport also supports it and is able to handle a
cursor (the transport al | owBodyCur sor s slot is also t r ue). The built-in
beam and eWorld transports do not support the storing of cursors for
multiple items, so the st or eCur sor s slot in the routing format will be
ignored for those transports.

The default value of the st or eCur sor s slotistrue.

Set this slot to t r ue to store a single alias cursor to the items in the Out Box.
When the items are sent, the cursor is resolved into its component entries.
Note that there’s a potential problem with storing an alias cursor to the
items. If the target entries reside on a card store, and the card is removed
before one of the items is actually sent from the Out Box, the alias cannot be
resolved and the send operation will fail.

Set the st or eCur sor s slot to ni | to store each of the selected items as a
separate item in the Out Box. Each of the items can later be sent or operated
on individually from the Out Box.

Displaying an Auxiliary View

When the user chooses a format in the format picker, you may need to get
additional information from the user in the routing slip view. You can do this
by means of an auxiliary view template that you specify in the auxFor mslot
of the routing format. If you specify a view template in this slot, when the
format is selected, this auxiliary view template is instantiated with the
function Bui | dCont ext and is sent an Qpen message to display itself.

If you need access to information about the item being routed, you can access
the f i el ds slot in the auxiliary view. The system sets this slot to the frame
that will become the In/Out Box entry for the item being routed. For details
on this frame, see the section “Item Frame” beginning on page 2-44. It is
recommended that you do not change any slots in the f i el ds frame.

Using Routing 2-19

2-20

CHAPTER 2

Routing Interface

Registering Routing Formats

All routing formats are specified as view definitions and are registered with
the system by means of the global function Regi st er Vi ewDef , described
on page 2-72. The formats that handle data types other than ' vi eware not
actually views, but they are registered as view definitions to take advantage
of the central registration mechanism. Registering formats in this way makes
them available to all applications in the system. Routing formats are specially
identified in the view definition registry because the t ype slot of all routing
formats is set to the symbol * pri nt For mat (even non-view formats).

You register formats with the class of the object you want them to act on.
Here is an example of registering a format for ' vi ewdata types:

Regi st er Vi ewDef (nmyPri nt Format, '|nyDataC ass: SI§);

This call registers the format myPr i nt For mat as working with data whose
classis' | nyDat adl ass: Sl { . If the class of any target data object is

" | nyDat aCl ass: Sl G, then the format nyPr i nt For mat will be available
when that item is routed. The fact that this print format has been registered
means that you will be able to print and fax that class of data items. This
mechanism enables you to have separate routing formats (and thus routing
actions) for individual views, rather than using the same formats (and
routing actions) for all views in an application.

Typically, your application registers routing formats when it is installed, in
its part’s I nstal | Scri pt function, and unregisters formats in its
RenoveScri pt function. You use the function UnRegi st er Vi ewDef ,
described on page 2-74, to unregister routing formats.

In the application part | nst al | Scri pt function, when you register your
routing formats, you must not use the Newton Toolkit function Get Layout
to obtain a reference to the routing format layout so that you can pass it to
Regi st er Vi ewDef . Nor should you use Def Const, or any other method
that directly references the routing format. This is because the entire

I nstal | Scri pt function is passed to Ensur el nt er nal (for application
parts). Your routing format layouts would all be copied into the
NewtonScript heap, wasting precious memory.

Using Routing

CHAPTER 2

Routing Interface

Instead, you should use an indirect method to reference your routing format
layouts. One way is to store a reference to your routing format layouts (by
using Get Layout) in a slot in your application base view. Then in the
Install Script function, you can reference that slot through the
expression par t Fr ame. t heFor m Because the reference to the layout is
found at run time through an argument to | nst al | Scri pt, it will not be
copied into NewtonScript memory by Ensur el nt er nal when your
application is installed.

For example, first you could store the routing format layout in an application
base view slot:

anAppSl ot: {nyLayout: GetLayout("Vi ewAndText")};

Then in the I nstal | Scri pt function, you could use code like this to
register the format:

Install Scri pt (partFrane)
begin
| ocal nmyApp := partFrane.theForm

Regi st er Vi ewDef (myApp. anAppSl| ot . myLayout ,
kMyMai nDat aDef Sy ;
end;

For more information about view definitions and the functions that act on
them, refer to Chapter 5, “Stationery,” in Newton Programmer’s Guide: System
Software.

Creating a Print Format

You create a print format by using pr ot oPr i nt For mat . This proto is
required for routing formats with a' vi ewdata type, such as views that you
would print or fax. This proto format is actually a view template, which
displays the target object visually. The data to be displayed is laid out as
child views of the pr ot oPri nt For mat view.

Using Routing 2-21

2-22

CHAPTER 2

Routing Interface

Here is an example of a format based on this proto:

/1 in NTK you create a new |l ayout for view formats
MyPrint Format := {
_proto: protoPrintFormat,
synmbol : ' | myPrintFormat: SI§,
title: "Printlt",
Vi ewSet upChi | drenScript: func() begin
/1 construct child views for first page here

end,
Pri nt Next PageScri pt: func() begin
nil;
/1 construct child views for next page here
end,

b

For more information about the slots and methods provided by this proto,
see the section “Routing Format Protos” beginning on page 2-53.

Topics unique to pr ot oPr i nt For mat are discussed in the following
subsections.

Page Layout

The view based on the pr ot oPr i nt For mat proto is automatically sized (in
the Vi ewSet upFor nScr i pt method) to fit the dimensions of a page on the
output device to which it is being routed. You can control the margins used
when the data is laid out on the page by setting the mar gi ns slot. Set this
slot to a bounds rectangle frame, like this:

{left: 25, top: 20, right: 25, bottom 30}

Each of the slots in this frame is interpreted as an inset from the edge of the
printable area of the paper in pixels. You should specify only positive values,
to make sure that you don’t try to print off the page. The default value of the
mar gi ns slotis{l eft: 0, top:0, right:0, bottom 0}.

Using Routing

CHAPTER 2

Routing Interface

Also, you can control the orientation in which the data is placed on the paper
by setting the or i ent at i on slot. Specify a symbol indicating if the paper
should be used vertically in portrait mode (* por t r ai t) or horizontally in
landscape mode (' | andscape). The default value of the or i ent at i on slot
is' portrait. Your format should always use relative view justification
and/or check the actual bounds of the print format by using the Local Box
view method. Then it should adjust the orientation accordingly, or you may
want to provide an auxiliary view in which the user can choose the
orientation. For information about using an auxiliary view, see the section
“Displaying an Auxiliary View” on page 2-19. Note that you cannot change
the orientation between a series of pages being printed by a single print
format.

If multiple items are being routed (as from a multiple selection in an
overview), you may want to print each item on a separate page or you may
want to print the items one after another, placing multiple items on the same
page before starting a new page. You can control this feature by setting the
usesCur sor s slot. The default setting of this slotis ni | .

If you want to lay out multiple items on a page, set the usesCur sor s slot of
the format to t r ue. In this case, the target object encapsulates all of the items
being routed. Your format should call the Get Tar get Cur sor method

(page 2-67) to return a cursor, on which you can iterate over the individual
items to be routed using the standard cursor methods Ent ry, Next , and

Pr ev. You can use the Get Cur sor For mat method (see page 2-60) of the

pr ot oPri nt For mat to find formats for the individual items.

If you want to lay out each item on a separate page, or if this format cannot
handle a multiple item target object, set the usesCur sor s slot toni | . In
this case, this format is invoked multiple times, once for each item being
routed, and each item is put on a separate page.

Printing and Faxing

When an item in the In Box is actually printed or faxed using your print
format, the view represented by the print format is instantiated and drawn to
the output device. As when any view is instantiated, the system sends the
print format view standard messages and also routing-specific messages. For

Using Routing 2-23

2-24

CHAPTER 2

Routing Interface

optimal printing performance, and to avoid timing out a fax connection, you
need to be aware of the sequence of events and know which operations are
time-critical.

Here is the sequence of events during a printing or faxing operation:

1. The system sends the print format the For mat | ni t Scri pt message
(page 2-60), to give you an opportunity to perform initialization
operations. You must perform any lengthy initialization operations in this
method, before the transport connection is made. You can store initialized
data in the format frame (sel).

2. For sending a fax only, the system sends the print format the Count Pages
message (page 2-61). If you can determine the number of pages in the fax
ahead of time, you should override this method in your print format and
have it return the number of pages (not including the cover page). If you
don’t override this message, the system opens the print format view in an
offscreen window and performs steps 3, 4, and 6, below, to go through
each page so it can count the number of pages. Then the print format view
is closed. Note that the Vi ewShowScr i pt and Vi ewDr awScr i pt
messages are not sent to the view. This is a lot of work for the system to do
just to determine the number of pages, so if you can, it’s a good idea to
override the Count Pages method with one of your own.

3. The system instantiates the print format view and sends it the
Vi ewSet upFor nScr i pt message. Depending on certain factors, the
transport connection might be made at the beginning of this step or in
step 4. You can rely only on the connection being made sometime after
step 2.

4. The system sends the Vi ewSet upChi | dr enScri pt message to the print
format view, then the child views are instantiated (and they are sent the
standard view messages), and then the system sends the
Vi ewSet upDoneScri pt and Vi ewShowScr i pt messages to the view.

5. The system draws the print format view and sends the Vi ewDr awScr i pt
message to the view. Note that each of the child views on the page is also
drawn and sent the Vi ewDr awScr i pt message, in hierarchical order. The
page might be printed or faxed in “bands,” so this step might be repeated
several times for the page.

Using Routing

CHAPTER 2

Routing Interface

If you need to draw something in your Vi ewDr awScr i pt method, you
can call the view method Get Dr awBox to determine the band that is
currently being drawn. Then you can draw just those shapes that are
necessary for the current band. The system will not draw any views or
shapes outside the current band. Any shapes extending outside the
current band are automatically clipped.

IMPORTANT

The Vi ewDr awScr i pt message is sent at a time-critical
point in a fax operation. It is imperative that you do as little
work as possible in the Vi ewDr awScr i pt method. a

6. The system sends the Pri nt Next PageScr i pt message to the print
format view (see page 2-59). If your print format handles more than a
single page of data, you must define the Pri nt Next PageScri pt
method in your print format. The system sends this message each time it
reaches the end of a page, to allow you to construct the next page of data.
While there is more data to route, this method should return a non-ni |
value; in that case, the printing process continues with the next page at
step 4. When there is no more data to route, the Pri nt Next PageScri pt
method should return ni | ; in that case the printing process ends and the
connection is closed.

You set up the child views containing the data for the first page in the

Vi ewSet upChi | drenScri pt method of your print format. Typically you
do this by setting the value of the st epChi | dr en array. Don’t forget to call
the inherited method (i nheri t ed: ?Vi ewSet upChi | dr enScri pt) so that
the proto behavior is preserved.

The Pri nt Next PageScri pt method should construct the view for the next
page of data so that the message sel f: Di rt y() will show the view.
Typically, you do this by keeping track of what data has been routed so far,
and when the format receives this message, you select a new set of child
views representing the next page of data to send. Then you call the view
method RedoChi | dr en, which closes and then reopens the child views.
This method also causes the system to send your print format view the

Vi ewSet upChi | dr enScri pt message again.

Using Routing 2-25

2-26

CHAPTER 2

Routing Interface

When faxing, it’s best not to perform lengthy operations in the

Pri nt Next PageScri pt method, since the connection stays open between
pages. However, this is less time-critical than the Vi ewDr awScr i pt method.
If possible, execute lengthy operations in the Vi ewSet upFor nScr i pt
method, which is called just once before the connection is opened.

If you need to create any custom shapes which are to be drawn on the page
by the Vi ewDr awScr i pt method, create the shapes in the

Format | ni t Scri pt method. Alternatively, you can create shapes at
compile time, if they are static. Because of fax connection time-out issues,
minimize shape creation in the Vi ewDr awScr i pt method, as shape creation
takes too much time and it’s possible that the connection might time out as a
result.

Creating a Frame Format

You create a frame format by using pr ot oFr ameFor mat . This is the
standard format for routing objects with ' f rane or' t ext data types, such
as for beaming and e-mail. To enable these types of transports for your data,
you must register at least one format based on this proto. Here is an example
of a format based on this proto:

MyFraneFormat : = {
_proto: protoFranmeFormat,
synbol : ' | nyFrameFormat: SI§,

title: "No comments”,
Setupltem func(item targetlnfoFranme) begin
/1 call inherited method
i nherited: Setuplten{item targetlnfoFrane);
/1 renpbve comments fromtarget
RenoveS| ot (i t em body, ' comment s) ;
end,
Text Script: func(itemtarget) begin . . . end,

Using Routing

CHAPTER 2

Routing Interface

Note that one application can have multiple frame formats. You would
simply supply a different Set upl t emmethod for the different formats (as
well as unique synbol andti t| e slots), to construct the item frame
differently.

If your frame format doesn’t support the ' t ext data type, you should
override the dat aTypes slot and setittoonly [' f rame] .

For more information about the slots and methods provided by this proto,
see the section “Routing Format Protos” beginning on page 2-53.

Creating a New Type of Format

You create a new type of routing format by using pr ot oRout i ngFor mat .
This is the base routing format, which serves as a proto for the other routing
format protos. You would normally use this proto only if you want to create
a new type of routing format.

Here is an example of a format based on this proto:
MyNewfor mat : = {

_proto: protoRoutingfornat,
dat aTypes: ['binary],

symbol : ' | myFormat: SI §,
title: "Custont,
Setupltem func(item targetlnfoFrane) begin ... end,

b

For more information about the slots and methods provided by this proto,
see the section “Routing Format Protos” beginning on page 2-53.

Providing Application-Specific Routing Actions

First, to provide the Action button in the user interface of your application,
you must include a view based on the pr ot 0Act i onBut t on proto,
described on page 2-51.

Using Routing 2-27

2-28

CHAPTER 2

Routing Interface

Your application can provide internal application-defined actions, such as
deleting and duplicating, that do not use the Out Box and a transport to
perform the routing operation. These routing actions appear at the bottom of
the Action picker.

You define these routing actions by providing a slot named r out eScri pt s
in your application. The Action button searches its own context for the first
rout eScri pt s slot that it finds. Usually you will define r out eScri pt s in
the base view of your application. That way, all child views can find it by
inheritance. But if you want to have different routing actions active for
different views, you can define a r out eScr i pt s slot in each child view
definition, where it will override the one in the base view.

Alternatively, instead of defining an array of application-specific routing
actions in the r out eScr i pt s slot, you may want to build the array
dynamically. To do this, you can override the root view method

Cet Rout eScri pt s, which is used by the Routing interface to obtain the
rout eScri pt s array from your application. The default version of this
method simply returns the contents of the r out eScri pt s slot to the
Routing interface. In the Get Rout eScr i pt s method, simply build and
return an array just like you would define in the r out eScri pt s slot. The
Cet Rout eScr i pt s method is described on page 2-70.

If you provide a r out eScri pt s slot, it must contain an array of frames, one
for each routing action item, that look like this:

{title: "MyAction", // name of action

icon: GetPictAsBits("MActionlcon",nil), // picker icon
Rout eScri pt: ' MyActionFunc, // called if action selected
/1 other slots and net hods you need

-}

To include a separator line in the Action picker’s list of application-specific
routing actions, include the symbol ' pi ckSepar at or in the

rout eScri pts array between the two items you want to separate.
Alternatively, you can include a ni | value to include a separator line.

Using Routing

CHAPTER 2

Routing Interface

For delete and duplicate actions, there are bitmaps available in ROM that
you can use as icons. For the i con slot of a delete action, you can specify the
magic pointer constant ROM_Rout eDel et el con. For the i con slot of a
duplicate action, you can specify the magic pointer constant

ROM Rout eDupl i cat el con.

If your application registers view definitions with the system, note that each
view definition can define its own r out eScr i pt s array. The routing action
items that apply to the individual view definition are added below those that
apply to the whole application in the Action picker. See the following section
for more information about specifying r out eScr i pt s in stationery.

There is also support for a system global r out eScr i pt s array. Any routing
action items defined in this global array will show up in all application
Action pickers, above any application-specific or view-specific items.

Performing the Routing Action

The key slot in each of the frames in the r out eScr i pt s array is the

Rout eScri pt slot. This slot contains a symbol identifying a method
(defined by your application) that is called if the user chooses this action
from the Action picker. This method is where you perform the routing action.
The method you define is passed two parameters, target and targetView,
which define the data object to be routed and the view that contains it,
respectively.

The two values, target and targetView, are obtained from your application by
the Routing interface. As soon as the Action button is first tapped, the
Routing interface sends the Action button view the Get Tar get | nf o
message to obtain these two values. The Get Tar get | nf o method,
described on page 2-70, returns a frame containing these and other slots.

If you set up and use t ar get and t ar get Vi ewslots in your views, you
don’t need to implement the Get Tar get | nf 0 method because this is a root
view method that will be found by inheritance. The root view method
simply looks for the slots t ar get and t ar get Vi ew starting from the
receiver of the message, which is the Action button view. It returns these
slots in a frame called the target information frame. If you don’t use these

Using Routing 2-29

2-30

CHAPTER 2

Routing Interface

slots in your views, you'll need to implement the Get Tar get | nf 0 method
to return them.

The Rout eScri pt slot can contain either a symbol identifying a function or
it can contain a function directly. If you are defining the r out eScri pt s
array in a view definition, the Rout eScr i pt slot must contain a function
directly. Alternatively, if your view definition is used only within your
application, you can specify an appSynbol slotin the rout eScri pt's
frame and specify a symbol for the Rout eScr i pt slot. The appSynbol slot
tells the system in what application (in the root view) to find the method
identified by the Rout eScri pt slot. Using the latter alternative ties the view
definition to a single application.

Here is an example of how you might define the method identified by the
Rout eScri pt slot shown in the example frame above:

MyAct i onFunction: func(target,targetView)
begi n
print("this is ny action");
end,

Handling Multiple Items

The target item, as returned by Get Tar get | nf 0, may actually be a multiple
item target object that encapsulates several individual items to be routed.
You can check if this is the case by using the function Tar get | sCur sor
(page 2-68). If the target item is a multiple item target object, and you need to
act separately on the individual items, you can obtain a cursor for the items
by using the function Get Tar get Cur sor (page 2-67). Then you can use the
standard cursor methods Ent ry, Next , and Pr ev to iterate over the cursor
and return individual items. For more information about using cursors, refer
to Chapter 11, “Data Storage and Retrieval,” in Newton Programmer’s Guide:
System Software.

Note that Get Tar get Cur sor works with any kind of target data, whether
or not it’s a cursor. So you don’t need to call Tar get | sCur sor to check
before calling Get Tar get Cur sor.

Using Routing

CHAPTER 2

Routing Interface

Here’s an example of a Rout eScr i pt method that uses Get Tar get Cur sor
to operate on multiple items:

MyActi onFunction := func(target,targetView

begi n
local curs := CetTargetCursor(target,nil);
local e := curs:Entry();

while e do begin
: DoMyAction(e); // do the operation
e := curs: Next();
end;
/1 update display here
end;

Handling No Target Item

If no target item is selected or there is nothing to do when the Action button
is pressed, the system displays a warning message to inform the user of that
fact. To take advantage of this warning message feature, all
application-specific routing actions must be disabled when there is no target.
(You may want to include some actions even when there is no target; in this
case, you can ignore this section.)

To disable application-specific routing actions when there is no target, you
can do one of two things:

» Define a Get Ti t | e method in the r out eScri pt s frame for each action,
instead of ati t| e slot. Then return ni | from the Get Ti t | € method to
prevent that action from showing up on the picker.

= Define a Get Rout eScr i pt s method in your application, instead of a
rout eScri pts slot. Then return ni | or an empty array from the
Get Rout eScri pt s method to prevent any actions from showing up on
the picker.

Using Routing 2-31

2-32

CHAPTER 2

Routing Interface

Sending Items Programmatically

Your application can send an item programmatically, using a specific
transport, without any user intervention. (The Action button is not used in
this case.) This is done using the global function Send, described on

page 2-62.

Here is an example of how to use the Send function:

nyltem: = {
toRef: nameRef Gbject, // a fax nane ref
title: "The Subject", // title of item
body: theFax, // fax data frane
appSynbol : kAppSynbol ,
current Format: kO her Pri nt For mat Sym
1

Send(' fax, nyltem;

You must construct an item frame containing the data and other slots that
you want to set in the item. You then pass this item frame as an argument to
the Send function.

Before calling the Send function, you may want to allow the user to choose a
format for the item being sent. To do this, you'll need a list of formats that
can handle the item. To get a list of appropriate formats, you can use the

Cet Rout eFor mat s function, described on page 2-63. Using this list, you
could display a picker from which the user can choose a format.

You may also want to allow the user to choose a transport for the item being
sent. To do this, you'll need a list of transports that can handle specific
formats. To get a list of appropriate transports, you can use the

Get For mat Tr anspor t s function, described on page 2-64.

In the Send function, the Routing interface obtains a default item frame from
the selected transport by sending the Newl t emmessage to the transport. The
slots you specify in your item frame are copied into the default item frame
obtained from the transport. Note that the default frame supplied by the
transport may contain other slots used by the transport.

Using Routing

CHAPTER 2

Routing Interface

The slots you include in the item frame vary, depending on the transport.
The In/Out Box and transports ignore slots that they don’t care about.
Applications can use this feature to communicate information to multiple
transports with the same item frame. For a comprehensive list of slots and
detailed descriptions, see the section “Item Frame” beginning on page 2-44.

Here’s a summary of the slots you might need to include in the item frame:

itenFrane : = {

appSymnbol : symbol, // appSynbol of sender

dest AppSynbol : symbol, // receiving app, if different
body: frame, // the data to send

title: string, // itemtitle, e-mail subject

text: string, // text of nsg, for eWrld

toRef: array, // array of name refs for recipients

cc: array, |/ array of name refs for copied recipients
bcc: array, // array of name refs for blind copies
current Format: symbol, // routing format to use
connect: Boolean, [/ try to connect inmediately?

hi dden: Boolean, // hide U and hide in Qut Box?
covert: Boolean, // not |ogged or saved in Qut Box?
conpl eti onScript: Boolean, /! notify app of state change?
needsResol ve: Boolean, // body sl ot contains an alias?
printer: frame, // a printer frame; the printer to use
cover Page: Boolean, |/ use a cover page for fax?
faxResol ution: symbol, // 'fine or 'normal fax resolution
phoneNunber: string, // phone nunber, for call transport
name: string, // nanme, for call transport

servi ceProvider: symbol, // 'nodem 'speaker, or nil
saveAsLog: Boolean, // 1og call in Calls app?

}

Note that you can set any of the Boolean slots in the Set upl t emmethod of
the routing format.

Using Routing 2-33

CHAPTER 2

Routing Interface

Applications implementing their own custom sending functionality apart
from the Action button may need to open the transport routing slip view for
the user. If you need to do this, you can use the global function

OpenRout i ngSl i p, described on page 2-65.

Creating a Name Reference

For the built-in eWorld, fax, and call transports, addressing information for
an item to send is stored in the t oRef slot of the item frame, and certain
other slots such as cc, bcc, and so on. These slots contain arrays of one or
more name reference objects. A name reference is simply a frame that serves
as a wrapper for a soup entry (often from the Names soup, thus the term
“name reference”). The name reference may contain an alias to a soup entry
and even some of the slots from the soup entry. Note that you must use name
references; you cannot specify soup entries directly.

To create a name reference object, you use name reference data definitions
registered with the system in the data definition registry. There are built-in
name reference data definitions for e-mail (' | naneRef . emai | |), fax

(' | naneRef . f ax|), and call (' | nanmeRef . phone|) information associated
with names from the Names file. These data definitions contain a method,
MakeNaneRef , that creates and returns a name reference.

You can pass a Names soup entry directly to MakeNanmeRef , or you can
construct your own simple frame of information that contains the
appropriate slots. Fax and call name references should include the slots
nane, phone, and count r y. E-mail name references should include the slots
nane, emai | , and count r y. For more information about these slots, see the
documentation of Names soup entries in Chapter 18, “Built-In Applications
and System Data,” in Newton Programmer’s Guide: System Software.

Here’s an example of how to create a name reference for a fax phone number
or an e-mail address:

/] use a Nanmes file entry directly
nyData : = aNanesFil eEntry; // entry from Names soup

/1 or create your own fake entry frame based on other info

Using Routing

CHAPTER 2

Routing Interface

| ocal nyData := {

nanme: {first:"Juneau", |ast:"Macbeth"},
phone: "408-555-1234", // fax phone string
emai | : "jnmacbet h@conmpany. cont, // e-mail address string

country: "US",

/1l then create the fax nane reference
toRef := GetDataDefs('|nameRef.fax|): MakeNaneRef (myDat a,
"| naneRef . fax]|);
/1l or create the e-mail nane reference
toRef := GetDataDefs(']|nameRef.enmail|): MakeNaneRef (myDat a,
"| naneRef . emai |l |);

For more information about name references and the MakeNaneRef method,
see the documentation of pr ot oLi st Pi cker in Chapter 6, “Pickers, Pop-up
Views, and Overviews,” in Newton Programmer’s Guide: System Software.

Specifying a Printer

For print operations, the pri nt er slot of the item frame specifies which
printer to use. This slot must contain a printer frame. The only valid way of
obtaining a printer frame is from the cur r ent Pri nt er slot of the user
configuration frame. That slot holds the printer selected by the user as the
current printer. You can use this function to obtain the current printer for the
item:

itemprinter := GetUserConfig('currentPrinter);

If you want to provide a way for the user to select a different printer, you can
use the printer chooser proto, pr ot oPr i nt er Chooser But t on, which is
described on page 2-52. This proto changes the setting of the current printer
in the system; it actually changes the cur r ent Pri nt er slot of the user
configuration frame.

Using Routing 2-35

2-36

CHAPTER 2

Routing Interface

If you don’t want to change the current printer in the user’s system, but just
want to let them select a printer for this one print job, then you'll need to do
the following things:

1. Get and temporarily save the current value of the current Pri nt er slot
in the user configuration frame, using Get User Conf i g.

2. Display the printer chooser button, allowing the user to select a printer for
this print job. When they select one, the printer chooser proto will
automatically change the current Pri nt er slot to the chosen one.

3. Retrieve the new value of the cur rent Pri nt er slot, using
CGet User Conf i g, and use that for the pri nt er slot in the item frame.

4. Reset the user’s original printer choice by resetting the cur r ent Pri nt er
slot in the user configuration frame to the value you saved in step 1. You
can use the function Set User Confi g.

The functions Get User Conf i g and Set User Conf i g are documented in
Chapter 18, “Built-In Applications and System Data,” in Newton
Programmer’s Guide: System Software.

Supporting the Intelligent Assistant

Besides using the standard interface for routing (the Action button), the user
can also invoke routing actions by using the Intelligent Assistant and writing
the name of the action. In order to determine what item to route, the
Intelligent Assistant sends the Get Act i veVi ewmessage (page 2-69) to your
application. This method returns the view to which the Get Tar get | nf o
message should be sent.

The Get Act i veVi ewmethod is implemented by default in the root view
and simply returns sel f, the current receiver. If this return value is not
appropriate for your application, then you must override this method in
your application base view.

Using Routing

CHAPTER 2

Routing Interface

Receiving Data

Incoming data arrives first as an entry in the In Box soup. If there is a public
view definition registered for the class of the entry, the item may then be
viewed directly in the In Box.

IMPORTANT

Generally, every received item must have a meaningful class.
(This is not strictly required if the item has an appSynbol
slot.) For frame items, the cl ass slot identifies its data class.
Frame items received from other Newton devices generally
have a cl ass slot. For items received from other systems,
the transport must assign a meaningful class to each item
(use Set d ass). a

An incoming item may be stored in the In Box soup until the user chooses to
manually put away the item into an application, or an incoming item may be
transferred automatically to an application as soon as the item arrives in the
In Box. This is controlled by the applications present on the Newton.

These are the minimum steps that you need to take to support receiving
items through the In/Out Box in your application:

= Supply a Put AnayScri pt method in your application base view. When a
user chooses to put away an item to your application from the In/Out
Box, the item is passed to this method.

= Register the data types that your application can accept by using the
RegAppd asses function in the application’s | nst al | Scri pt function.
Unregister using UnRegTheseAppC asses or UnRegAppd asses in the
application’s RenoveScri pt function.

Automatically Putting Away Items

The first thing the In Box does with an incoming item is to determine which
applications might want to accept the item immediately. The In Box does this
by checking the In Box application registry (see the section “Registering to
Receive Foreign Data” on page 2-40) to see if any applications have
registered to accept such items. If a matching application is found in the
registry, the appSynbol slot of the item is set to the value of the appSynbol

Using Routing 2-37

2-38

CHAPTER 2

Routing Interface

slot in the matching application. If no matching applications are found in the
registry, the item may have a pre-existing appSynbol slot, which determines
the application to which it belongs. If no matching application is located in
the registry and the item has no existing appSynbol slot, it cannot be put
away automatically.

Next, the In Box checks for an Aut oPut Away method in the base view of the
application whose appSynbol slot matches that in the item. If the

Aut oPut Away method exists, then the In Box sends the Aut oPut Away
message to the application, passing the incoming item as a parameter. In this
way, items can be automatically transferred to an application, with no user
intervention.

If the Aut oPut Away method returns ni | , this signals that the item could not
be put away and the In Box leaves the item in the In Box soup.

If the Aut oPut Away method returns a non-ni | value, it is assumed that the
application handled the item. In this case, the In Box takes an action on the
item depending on the particular transport used. The item may be deleted
from the In Box soup, the item may be deleted and a log entry for the item
may be created in the In Box soup, or the item may be saved in the In Box
soup. The value of the i nboxLoggi ng slot in the transport controls what
happens to the item in the In Box.

If your application implements the Aut oPut Away method, it must inform
the system of this fact when it is installed. In the application part

I nstall Scri pt function, you must call the global function

Appl nst al | ed to let the system know that the application is present. The
Appl nst al | ed function prompts the In Box to send an Aut oPut Away
message to the application for each In Box item that may have arrived for the
application before the application was installed. (For a description of the
Appl nst al | ed function, see page 2-69.)

This feature is useful in cases where the application resides on a card which
is not always installed in the system. Messages are held in the In Box soup
while the application is not installed, and then when it is installed, those
received messages are sent to the application with the Aut oPut Anay
message.

Using Routing

CHAPTER 2

Routing Interface

The item passed to your application’s Aut oPut Away method is the entry
from the In Box soup. It has several slots in it that are used by the In Box or
the transport. Usually, the data your application uses is contained in the
body slot. The body slot contains a copy of the t ar get frame sent by the
sending application.

If the item was sent by a custom transport that sends multiple item target
objects (such as those created by Cr eat eTar get Cur sor), then you might
need to check if the body slot contains such an object by using

Tar get | sCur sor. If so, you can get a cursor for the object by using

Get Tar get Cur sor, and then iterate over the cursor to handle individual
items.

Manually Putting Away Iltems

If an item is not put away automatically, it resides in the In Box until the user
chooses to put it away manually by tapping the Put Away button. When the
user taps the Put Away button, the In Box displays a slip showing to which
application the item will be put away. This application is the one that
matches the appSynbol slot in the item. The In Box sends the

Put AwayScr i pt message to the base view of that application. The item is
passed as a parameter.

The item passed to your application’s Put Away Scr i pt method is the entry
from the In Box soup. It has several slots in it that are used by the In Box or
the transport. Usually, the data your application uses is contained in the
body slot. The body slot contains a copy of the t ar get frame sent by the
sending application.

If the item was sent by a custom transport that sends multiple item target
objects (such as those created by Cr eat eTar get Cur sor), then you might
need to check if the body slot contains such an object by using

Tar get | sCur sor. If so, you can get a cursor for the object by using

Get Tar get Cur sor, and then iterate over the cursor to handle individual
items.

Using Routing 2-39

2-40

CHAPTER 2

Routing Interface

If the Put Away Scri pt method returns ni |, this signals that the item could
not be put away and the In Box leaves the item in the In Box soup and an
alert is displayed telling the user that the item could not be put away.

If the Put AwayScr i pt method returns a non-ni | value, it is assumed that
the application handled the item. In this case, the In Box takes an action on
the item depending on the particular transport used. The item may be
deleted from the In Box soup, the item may be deleted and a log entry for the
item may be created in the In Box soup, or the item may be saved in the In
Box soup. The value of the i nboxLoggi ng slot in the transport controls
what happens to the item in the In Box.

If multiple applications have registered to accept data of the item’s class, in
the Put Away slip, the system displays a picker listing those applications.
The application that matches the appSynbol slot of the item is listed as the
default choice. If there is no appSynbol slot, or the application is missing,
then a different application is the default choice. The user can choose the
application to which the data is to be sent, and the Put AwayScr i pt
message is sent to that application.

The registry used for this operation is called the application data class
registry; note that it is different from the In Box application registry
mentioned above. Applications can register to accept data of one or more
classes by using the RegAppCl asses function, described on page 2-71.

It is recommended that all applications wanting to receive items through the
In Box register their capability to receive data of particular classes by calling
the RegAppCl asses function. If your application is no longer interested in
data of these classes, or your application is being uninstalled, you can
unregister to receive these data classes by using the

UnRegTheseAppC asses function, described on page 2-75.

You can check which applications can accept data of a particular class by
using the Cl assAppByd ass function, described on page 2-69.

Registering to Receive Foreign Data

To receive data from a different application or from a non-Newton source,
your application must register its interest in such data with the In Box

Using Routing

CHAPTER 2

Routing Interface

application registry. To do this, you use the Regl nboxApp function,
described on page 2-72.

If your application is no longer interested in foreign data, or your application
is being uninstalled, you can unregister to receive foreign data by using the
UnRegl nboxApp function, described on page 2-74.

Note that your application can register to receive data from a different
application. If you register a test function with Regl nBoxApp, and that test
function returns t r ue for a particular item, the Routing interface will change
the value of the appSynbol slot in the item to be the value of the
appSynbol slot in your application. Be careful when using this feature not
to intercept incoming items that should be destined for other applications.
The In Box application registry takes priority over all other mechanisms that
attempt to find an owner application for an incoming item.

Filing Items That Are Put Away

When an item is put away by an application, by default it is filed in the same
folder on the receiving Newton as it was in on the sending Newton. This
often makes it difficult for users to find new items, since they may be put
away in folders that are undefined. To alleviate this problem, it is
recommended that all incoming items be put away unfiled, so that users can
more easily find items and file them where they want to. Incoming items
should be put away unfiled even if the recipient has a folder of the same
name as the sender.

For most applications, you put away an item unfiled by setting the
body. | abel s slot of the item to ni | . However, filing techniques vary, so
this may not work for all applications.

Viewing Items in the In/Out Box

When data is queued in the Out Box, or has been received in the In Box and
not automatically put away, the user can view the data directly in the In/Out
Box. When the user chooses to view an item in the In/Out Box by tapping on

Using Routing 2-41

2-42

CHAPTER 2

Routing Interface

the item, the system looks for a view definition of the type ' edi t or or
" vi ewer that is registered for the class of that item.

Your application should register such view definitions with the system if you
want users to be able to view items from your application in the In/Out Box.
If you do not provide a view definition, and there are no other view
definitions available for that data class, the In/Out Box displays a generic
blank view for the item. Items formatted with the ' vi ewdata type do not
need a separate view definition because the In/Out Box itself provides a
page preview view for these items.

Of the view definitions registered by your application, you can identify
which should be made available to the In/Out Box and which should be
hidden from the In/Out Box, by setting the pr ot ect i on slot in the view
definition. Set the pr ot ecti on slot to' publ i ¢ to make the view definition
available to the In/Out Box. Set the pr ot ecti on slot to' pri vat e to hide
the view definition from the In/Out Box.

Note also that application view definitions used in the In/Out Box must not
expect data defined within the context of the application. If the view
definition needs to access application data, it should access the application
through the root view (Get Root () . appSynbol).

For more information about writing and registering view definitions, refer to
Chapter 5, “Stationery,” in Newton Programmer’s Guide: System Software. Note
that the In/Out Box does not need data definitions, only view definitions.

Changing View Definition Behavior

Some applications may wish to provide different behavior for views
depending on whether they are being displayed in the application itself or in
the In/Out Box. For example, you may want to prevent editing of a view in
the In/Out Box when this same view is editable in the application. Or you
may want to show particular interface elements in your application but not
in the In/Out Box.

To implement this behavior, your view definition must determine within
which application it is running and change its behavior accordingly.

Using Routing

CHAPTER 2

Routing Interface

View Definition Slots

View definitions to be used by the In/Out Box have other slots of interest
besides the t ar get slot.

One other slot of interest is named f i el ds. When the view is open, the

fi el ds slot contains a reference to the In/Out Box entry. If the entry has a
body slot and the body slot contains a frame with a cl ass slot, then the In/
Out Box sets t ar get to the body slot of the entry. This allows view
definitions written for your application to be used by the In/Out Box
without modification. If you need to access addressing or other information
in the entry besides the actual data being routed, look at the frame in the

fi el ds slot. However, use of the f i el ds slot is for special cases only and is
generally discouraged. This is because it only works in the In/Out Box, and
so ties your stationery to it. If you need to use the f i el ds slot in your
stationery, you should always check for the existence of this slot before using
it, and you must be able to handle the case if it is missing.

Also, view definitions to be used by the In/Out Box can have ar ol | Vi ew
slot. This slot contains a Boolean value. If you set this slot to t r ue, the view
is treated as a paper roll-based view that specifies its height. In this case, the
In/Out Box handles scrolling within the view for you. If the r ol | Vi ewslot
is set to ni | , then scrolling functionality must be provided by the view
definition itself.

Advanced Alias Handling

For sending data, an application may register a routing format that stores a
sent object as an alias in the In Box soup. In fact, you can set a slot,

st or eAl i as, in the routing format that allows this to happen. When such
an object is to be sent by the transport, the Routing interface automatically
resolves the alias into the actual object which is sent.

However, in some circumstances, you might want to provide your own alias
handling. For example, you might want to store an object in the In Box as a
complex frame consisting of some directly stored data and some slots that
contain aliases. In this case, you would override the routing format method
MakeBodyAl i as (page 2-58) to construct your own object.

Using Routing 2-43

CHAPTER 2

Routing Interface

When the system needs to access the item, such as when it is viewed in the
In/Out Box, it sends the message Resol veBody (page 2-59) to the format.
You must override this method and use it to resolve the alias you constructed
in the MakeBodyAl i as method.

Note that if the send operation fails, the Out Box continues to store the
original unresolved entry.

Routing Reference

2-44

This section describes the routines and protos provided by the Routing
interface, and the data structures used when interacting with the Routing
interface.

Data Structures

This section describes the data structures that your application uses to
interact with the Routing interface.

[tem Frame

The item frame is the frame that encapsulates a routed (sent or received) item
and that is stored in the In/Out Box soup. Some slots have meaning only to
the application that created the item, other slots have meaning only to the In/
Out Box itself, and other slots are for the transport. Note that there are
additional slots used just by the Transport interface that are not documented
here. For more information, see Chapter 3, “Transport Interface.”

Slot descriptions
appSynbol Required. This slot contains a symbol representing the
sending application.

dest AppSynbol Optional. A symbol identifying the application to
receive the item, if it is different from the sending
application. The receiving transport will set the

Routing Reference

CHAPTER 2

Routing Interface

body

title

t ext

t oRef

Routing Reference

appSynbol slot in the received item to this value, and
the original value of the appSynbol slot will be stored
in the f r omAppSynbol slot in the received item frame.

Required, except for the eWorld transport. This slot
contains a NewtonScript object representing the data to
send. For eWorld, this data should be accessed only by
eWorld email recipients and will not be exported
outside of eWorld. For fax and print transports, this
object should be referenced by the print format which
will draw the page. Print formats should access this
data using the expression t ar get (notfi el ds. body).

All application-specific data and information should be
contained in the body slot. In general, do not add
application-specific slots to the item frame.

This slot is optional for the eWorld transport because
information can be passed intheti t| e ort ext slots.

Optional. A string to be shown in the Out Box's view as
the item's title. Note that you should not make this
string very long, so it doesn’t wrap to the next line in
the Out Box. (Current software wraps the string to the
next line at about 44 characters). If you don’t supply this
slot, but there is a data definition for the class of data
being sent, the system tries to obtain a title from the
data definition. So, if you use a data definition, you may
not want to supply this slot. Note that for e-mail, this
string is also shown as the message subject when the
mail is viewed.

Used for eWorld only. A string that is the text of the mail
message. Specify this slot if you don’t use the body slot
for eWorld items.

Required for some transports (of the built-in transports
eWorld, fax, and call use this slot). This slot contains an
array of one or more name references holding recipient
address information. The type of name reference
information differs, depending on the transport. For
mail transports, the name references contain names and
e-mail addresses; for the fax and call transports, they

2-45

CHAPTER 2

Routing Interface

cc

bcc

f r onRef

current For mat

connect

2-46 Routing Reference

contain names and telephone numbers. For more
information about creating name references, see the
section, “Creating a Name Reference” beginning on
page 2-34.

Used by some transports (of the built-in transports,
eWorld uses this slot). This slot contains an array of one
or more name references holding e-mail addresses of
people who should receive copies of the mail (like the
“cc:” field of a memo heading).

Used by some transports (of the built-in transports,
eWorld uses this slot). This slot contains an array of one
or more name references holding e-mail addresses of
people who should receive blind copies of the mail. This
means they receive copies but their names don’t appear
on the recipient list; they are hidden from the other
recipients.

Optional. A name reference or other information that
identifies the sender. This information is usually
extracted from the sender’s current owner card, or
persona. Note that you don’t normally set this slot; it is
normally set by the transport in its Newl t emmethod
(see the section “Obtaining an Item Frame” beginning
on page 3-14). If the format needs to get the sender
name, it can get it from this name reference. If you do
specify this slot, it will override the one provided by the
transport.

Optional. A symbol representing the routing format to
be used to represent this item. If this slot is not set, the
Routing interface uses the first format it can find that
handles the class of the data being sent.

Optional. This slot is a Boolean. If set to t r ue, it
suggests to the transport that an immediate connection
is appropriate. However, an immediate connection
cannot be guaranteed. For instance, the beaming
transport might observe this slot and immediately try to

CHAPTER 2

Routing Interface

hi dden

covert

send the beam to another Newton. Some transports may
disregard this slot and implement their own behavior.

Optional. This slot is a Boolean. If set to t r ue, the Out
Box will hide the entry so it can’t be seen, selected, or
even deleted by the user.

IMPORTANT

All applications that set hi dden to t r ue must also set
conpl etionScri pt totrue and must have an

I t emConpl eti onScri pt method. This allows you to
keep track of hidden items and delete them after they
are sent (since the user can’t). If you fail to supply an

I t enConpl eti onScri pt method, the hi dden slot
will be removed from the item frame by the system. a

Optional. This slot is a Boolean. If set to t r ue, the Out
Box will not log or save this item after it is sent.

conpl eti onScri pt

needsResol ve

printer

Routing Reference

Optional. This slot is a Boolean. If set to t r ue, the
application will be notified when the state of the item
changes or when errors occur. This allows an
application to track what happens to sent items. The
application, identified by the appSynbol slot in the
item frame, is sent the | t emConpl et i onScri pt
message (page 2-76). This method must be defined in
the application base view, if you want to be notified.

Optional. This slot is a Boolean. Set it to t r ue if the
body slot contains an alias, rather than the actual data.

Optional. A printer frame used for printing only. This
frame specifies the printer to use. If this slot is omitted,
the last printer selected by the user will be used. This is
obtained from the cur rent Pri nt er slot of the user
configuration frame. For more information on how to
specify a printer, see the section “Specifying a Printer”
beginning on page 2-35.

2-47

2-48

CHAPTER 2

Routing Interface

Slot descriptions that apply to the built-in fax transport only

cover Page

f axResol uti on

Optional. This slot is a Boolean. If set to t r ue, a cover
page will be printed. If ni | , no cover page is printed. If
this slot is omitted, the user preference setting will be
observed.

Optional. A symbol indicating the fax resolution to use.
Specify either ' fi ne or' nor mal . If this slot is omitted,
the default resolutionis ' fi ne.

Slot descriptions that apply to the built-in call transport only

phoneNunber

nane

servi ceProvi der

saveAsLog

Optional. A string that is the phone number to dial.
(This is required in addition to the t oRef slot, if this
transport is being used in conjunction with the Calls
application.)

Optional. A string that is the name of the person to call.
(This is required in addition to the t oRef slot, if this
transport is being used in conjunction with the Calls
application.)

Optional. A symbol identifying how the call should be
placed. Specify ' modemto dial it through the modem,
or' speaker to dial it through the speaker, or ni | to
signify that the Newton device is not dialing the call at
all (you're just logging a call that the user is dialing
manually). If this slot is not specified, the current user
preference setting is used.

Optional. This slot is a Boolean. If set to t r ue, the Calls
application is opened when the call is placed and an
entry is made to log the call. If set to ni | , no log entry is
made and the Calls application is not opened. If this slot
is not specified, the last user setting for the Log check
box in the call routing slip is used.

RouteScripts Array

The r out eScri pt s slot in an application contains an array of frames, where
each frame corresponds to one application-specific routing action to be

Routing Reference

CHAPTER 2

Routing Interface

displayed on the Action picker. Each of these r out eScri pt s frames is

defined as follows:

{
title: string,
i con: bitmap object,

/1 string name of picker item
/1 icon for picker item

Rout eScri pt: symbol, [/ func called if this action chosen

appSynbol : symbo

1, /1l symbol for context of RouteScript

GetTitle: function /1 supplied instead of title slot

Slot descriptions
title

i con

Rout eScri pt

appSymnbol

CetTitle

Routing Reference

/1 other slots used by your app

Optional. A string that appears in the Action picker. If
this slot is ni | or missing, the Get Ti t | € method is
used to get the title for the picker.

Optional. An icon that appears to the left of the item in
the picker.

Required. A symbol identifying a function that is called
if this routing action is selected from the picker.
(Alternately, you can include the function directly in
this slot.) The specified function is passed two
arguments, the t ar get and t ar get Vi ewslots as
returned by the message

sel f: Get Target I nf o(' routi ng) . Note that sel f
evaluates to the Action button view, where the lookup
for these two slots begins.

Optional. A symbol identifying an application in the
root view where the function identified by the

Rout eScr i pt symbol can be found. This slot is used
only if the Rout eScri pt slot contains a symbol and
this frame is defined in a view definition rather than in
an application.

Optional. If theti t| e slotis ni | or missing, this
method is used to obtain the title. This method takes
one parameter, the t ar get slot of the item being

2-49

2-50

CHAPTER 2

Routing Interface

routed. (This slot is obtained by the system sending the
message sel f: Get Target | nfo(' routing).)

The Get Ti t | e method must return a title string, or

ni | . If this method returns ni | , then the action will not
show up in the picker. The Get Ti t | e method allows
you to return different titles depending on the target

item.

For more information on the Get Tar get | nf o method, see the section
“GetTargetInfo” beginning on page 2-70. Note that your application can
override this method to return custom data.

Format Frame

To support routing through transports, your application uses routing formats
that specify what data types your application routes and how the data is to
be formatted when it is routed. These routing formats are frames defined as

follows:

{_proto: routing proto,
dat aTypes: array,
title: string,

symbol : symbol,

type: 'printFormat,

version: integer,
auxForm viewTemplate,
storeAlias: Boolean,
showMessage: Boolean,
sizeLimt: integer,

st oreCursors: Boolean,
usesCursors: Boolean,
orientation: symbol,
mar gi ns: boundsFrame,
Set upltem function,
Text Scri pt: function,

Routing Reference

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

proto for fornat

identifies supported data types
name of fornat

unique id - include signature
identifies this format as

used for routing

ver sion nunber of format

defines auxiliary view

store alias?

warn user when aliasing?
maxi mum si ze wi t hout ali asing
store nultiple itenms as a cursor?
format handl es cursor for |ayout?
"portrait or 'landscape

margin i nsets for |ayout

called if this format sel ected
gets text data fromitem

Action picker —

CHAPTER 2

Routing Interface

Target Si ze: function, |/ determines target size
MakeBodyAl i as: function, // makes an alias

Resol veBody: function, // resolves alias body sl ot

Pri nt Next PageScri pt: function, // constructs next page

Get Cur sor For mat : function, /'l gets format for an item
Format | ni t Scri pt: function, /1 initialization

Count Pages: function, /1 counts pages for a fax

}

Note that many of the slots shown above are optional, and some apply only
to formats based on specific routing format protos.

For descriptions of the slots, refer to the individual protos in the following
sections.

Protos

This section describes protos used in the Routing interface.

protoActionButton

This proto is used to include the Action button in a view. When the user taps
on the Action button, a picker is dynamically created and displayed. The
picker lists those actions that the current application has implemented and
that are supplied by transports that can handle the target data. When an item
from the picker is selected, a routing slip may be displayed, and if confirmed,
the target item selected in the application is routed. Here is an example of the
Action button and picker:

E Print Note

£ Fax

ﬂ Beam
E: mail
E] Duplicate

@ Delete [=]— Action button

Routing Reference 2-51

2-52

CHAPTER 2

Routing Interface

Slot descriptions

vi ewBounds By default, the Action button is placed in the
upper-right corner of its parent view. The default
top-left coordinate is (42, 2). Set this slot if you want to
change the icon's location. It is recommended that you
put the Action button with other buttons on a status bar,
if you have one.

viewlustify Optional. The default setting is vj Cent er H +
vj CenterV + vj Parent Ri ght H.
vi ewFor mat Optional. The default setting isvf Fi | | White +

vf FrameBl ack + vfPen(2) + vfRound(4).

The following additional methods are defined internally:

Vi ewd i ckScript,ButtonC ickScript, Pi ckActi onScri pt, and
Pi ckCancel | edScri pt . If you need to use one of these methods,

be sure to call the inherited method also (for example,

i nherited: ?Vi ewd i ckScri pt (uni t)), otherwise the proto may not
work as expected.

The pr ot oAct i onBut t on uses the pr ot oPi ct ur eBut t on as its proto;
and pr ot oPi ct ur eBut t on is based on a view of the ¢l Pi ct ur eVi ew
class.

protoPrinterChooserButton

This proto is used to include the printer chooser button in a view. When the
user taps on the button, a picker is displayed. The picker lists recent printers
that the user has chosen, along with items that allow the user to choose
another built-in printer or a network printer. If the user chooses to select a
network printer and is connected to a network, a scrollable list of printers
found on the network is displayed. Here is an example of the printer chooser
button and picker:

#Printer StyleWriter (I & II) Dragon
¥atyleWriter {1 & 11)

Choose Metwork Printer
Choose Other Printer

Routing Reference

CHAPTER 2

Routing Interface

Slot descriptions
vi ewBounds Set to the location where you want the printer chooser
button to appear.

The pr ot oPri nt er Chooser But t on uses the pr ot oLabel Pi cker asits
proto.

Routing Format Protos

The three routing format protos, pr ot oRout i ngFor nmat,

pr ot oPri nt For mat, and pr ot oFr anmeFor mat , are described together in
this section because they share many common slots and methods. In fact,
pr ot oRout i ngFor mat serves as a proto to the other two. The common
information is labeled as such, and is followed by the information that
applies to the individual protos.

Slot descriptions common to all proto routing formats

type Required. This slot is set to ' pri nt For mat . You
shouldn’t change it.
title Required. A string identifying this format. This string is

displayed in the picker listing formats in the routing slip.

synbol Required. A symbol that uniquely identifies this format
from all others. This is used to save the current format.
Be sure to append your developer signature (for
example, ' | aFor mat : nySI g).

dat aTypes Required. An array of symbols set to the data types that
this format supports. The currently defined types in the
system are listed in Table 2-1 on page 2-10. The default
value of this slot in pr ot oRout i ngFor mat and
prot oFr aneFor mat is[' frame, 't ext]. The default
value in prot oPri nt Format is[' vi ew] .

versi on Optional. An integer identifying the version of this
format.
auxForm Optional. A view template. This optional auxiliary view

is used to gather extra information from the user in the
routing slip view. If this slot is provided, the auxiliary
view is opened when the format is selected.

Routing Reference 2-53

2-54

CHAPTER 2

Routing Interface

storeAlias

showiessage

sizeLimt

storeCursors

Routing Reference

Optional. If you set this slot to t r ue, and the target is
larger than si zeLi mi t or there is not enough storage
space for it, an alias to the target object is assigned to the
body slot of the item frame in the default Set upl t em
method (see page 2-56). The default value of this slot is
ni | . For more information, see the Set upl t emmethod.

Optional. When an alias to the target object is stored, the
system warns the user that the original item must be
available when the routed item is sent. The display of
that message is controlled by this slot. When set to

t r ue, this slot enables the message and when set to

ni |, this slot suppresses the message. The default value
of this slotis t r ue.

Optional. An integer specifying a number of bytes. If
storeAlias istrue and the target object exceeds this
number of bytes (or there is not enough storage space
for it), then an alias to the target object is assigned to the
body slot of the item frame. The default value of this
slotis ni | (meaning there is no limit).

Optional. This slot controls how a selection of multiple
items from an overview are handled. If you set this slot
to t r ue, and the transport also handles cursors, a
selection of multiple items is stored in the Out Box as a
multiple item target object (flattened cursor) that is later
resolved into its component entries. If you set this slot
toni |, a selection of multiple items is resolved into
separate entries which are stored individually in the
Out Box. The default value of this slotist r ue.

Note that the transport slot al | owBodyCur sor s must
also be set to t r ue for a cursor to be used. If this is not
the case, then a cursor will not be used, even if

st or eCur sor s is set to t r ue; each item will be stored
separately in the Out Box. Of the built-in transports,
only the print and fax transports handle cursors.

CHAPTER 2

Routing Interface

Slot descriptions for the pr ot oPri nt For mat variant

usesCursors Optional. Set this slot to t r ue if this format can handle
laying out multiple items on the same page when
multiple items are being routed. In this case, the format
is passed a single cursor to the items being routed. If
you want each item to be printed on a separate page or
if this format cannot handle a cursor, set this slot toni | .
In this case, the format is called multiple times, once for
each item being routed. The default setting of this slot is
nil.

orientation Optional. A symbol indicating whether this format
should use the paper in portrait mode (' portrait), or
horizontally in landscape mode (' | andscape). The
defaultis' portrait.

mar gi ns Optional. A bounds rectangle giving the margins to be
used when laying out the items on the page. The value
of each slot (I ef t, t op, ri ght, bot t om) in this frame
is interpreted as an inset from the edge of the paper in
pixels. The defaultis{ 0, O, 0, 0} .

vi ewFl ags Optional. The default setting is vVi si bl e +
vReadOnl y.

viewJustify Optional. The default setting is vj Parent Ful | H +
vj Parent Ful | V.

vi ewFont Optional. The default font is user Font 12.

pageW dt h The vi ewSet upChi | dr enScri pt method of the proto
sets this slot to the width, in pixels, of the view.

pageHei ght The vi ewSet upChi | dr enScri pt method of the proto

sets this slot to the height, in pixels, of the view.

The methods that are of interest in these three routing format protos are
described in the following subsections. The common methods are described
first, followed by the methods that apply to the individual protos. The
following methods apply to all of the routing format protos:

Routing Reference 2-55

CHAPTER 2

Routing Interface

Setupltem
Text Scri pt
Target Si ze
MakeBodyAl i as
Resol veBody

The following methods apply only to pr ot oPr i nt For nat :

Vi ewSet upChi | drenScri pt
Pri nt Next PageScri pt

Get Cur sor For mat

Format I nit Scri pt

Count Pages

Note also that the following methods are defined internally in

pr ot oPri nt For mat : Vi ewSet upFor nScri pt and

Vi ewSet upChi | drenScri pt . If you need to use one of these methods, be
sure to call the inherited method also (for example,

i nherited: ?Vi ewSet upFor nScri pt ()), otherwise the proto may not
work as expected.

Setupltem

format: Set upl t en(item, targetInfoFrame)

This method is called if this format is selected from the picker listing formats
in the routing slip. This method must set the body slot of the item frame to
the data to be routed. Additionally, you can use this method to initialize
other slots in the item frame; however, do not put any application-specific
data into other slots, as they are not guaranteed to be preserved. For
instance, they won't be copied if the item is rerouted from the In/Out Box.

item An item frame, as obtained from the transport method
Newl t em(page 3-68). For more information about the
item frame, see the section “Item Frame” beginning on
page 3-3.

targetInfoFrame The target information frame returned by the method
Cet Tar get | nf o (page 2-70).

2-56 Routing Reference

CHAPTER 2

Routing Interface

The routing format protos provide a default Set upl t emmethod that simply
assigns the t ar get slot in targetInfoFrame to the body slot of item. You can
override this method if you want to perform additional operations and then
call the inherited Set upl t emmethod. For more information on using this
method, see the section “Supplying the Target Object” beginning on

page 2-16.

The default Set upl t emmethod returns item, after the body slot in it has
been set. If it returns ni | , the item won’t be routed and the user is notified
by the system that the item could not be sent.

IMPORTANT

The Set upl t emmethod should not assume that the
application associated with the item is open. The In/Out Box
might be rerouting the item, separate from the application.
In this case, the application gets a chance to modify the item
inits Veri f yRout i ngl nf o method (page 2-77), which the
In/Out Box calls in the application that owns the item. a

You can use the st or eAl i as slot in the routing format frame to specify that
an alias to the target soup entry is to be stored in the body slot. For more
information on the st or eAl i as slot, see its description on page 2-54. The
default Set upl t emmethod also handles creating and storing an alias if the
storeAl i as slotistrue, and handles the si zeLi ni t slot.

TextScript

format: Text Scri pt (item, target)

Transports might call this method is called to obtain a textual representation
of the data to be routed. This method is only called by transports that handle
text type data. Of the built-in transports, only the eWorld transport calls this
method.

item The item frame.
target The target object to be routed in the application.

The routing format protos provide a default Text Scri pt method that
attempts to get the textual representation of the data from the data definition

Routing Reference 2-57

2-58

CHAPTER 2

Routing Interface

registered with the system. First it calls the Text Scri pt method of the data
definition, then it looks in the descri pt i on slot of the data definition, and
lastly it tries the nane slot of the data definition. You can override this
behavior if you want by providing your own Text Scri pt method.

TargetSize

format: Tar get Si ze(targetInfoFrame)

You must override this method of the routing format protos if you need to
determine the size of a target object that is not a soup entry. This method
must return an integer that is the size of the target object in bytes.

targetInfoFrame The target information frame passed to the method
Set upl tem

If you can’t determine the size of the target object, return ni | from this
method.

The proto provides a default Tar get Si ze method that works for soup
entries. It simply uses the Ent r ySi ze function to determine the size of the
object.

MakeBodyAlias

format: MakeBodyAl i as(targetInfoFrame)

You must override this method of the routing format protos if you need to
make an alias for some special target object that is not a soup entry. In this
method, you must make an alias object (in whatever way you want) and
return it.

targetInfoFrame The target information frame passed to the method
Set upl t em(page 2-56).

The alias object that you return must have a cl ass slot whose value is the
class of the target object.

Note that if you provide this method, you must also provide a
Resol veBody method that is able to resolve the alias.

Routing Reference

CHAPTER 2

Routing Interface

ResolveBody

format: Resol veBody((itern)

You must override this method of the routing format protos if you have
provided a MakeBodyAl i as method. Resol veBody must resolve and
return the body slot of item. This method is called by the system whenever it
needs to access the original target item.

item The item frame.

The default Resol veBody method returns the body slot of item, resolving
an alias stored there, if necessary. Note that this method works whether or
not the body slot of item is an alias.

ViewSetupChildrenScript
format: Vi ewSet upChi | drenScri pt ()

Typically, you use this method to set up the child views containing the data
to be routed. When this method is called initially, you should set up the child
views for the first page to be routed, typically by setting the value of the

st epChi | dr en array. If you follow the guidelines for the

Pri nt Next PageScr i pt method by using the view method

RedoChi | dr en, as a result, the Vi ewSet upChi | dr enScri pt method will
be called for each subsequent page as well. Don’t forget to call the inherited
method (i nheri t ed: ?Vi ewSet upChi | drenScri pt) so that the proto
behavior is preserved.

PrintNextPageScript
format: Pri nt Next PageScri pt ()

You must define this method of the pr ot oPri nt For nat if your print
format handles more than a single page of data. The system calls this method
each time it reaches the end of a page to allow you to construct the next page
of data. This method should construct the view for the next page of data so
that the message sel f: Di rty() will show the view.

Typically, you do this by keeping track of what data has been routed so far.
Then when the format receives this message, you set up child views

Routing Reference 2-59

2-60

CHAPTER 2

Routing Interface

representing the next page of data to send, and send the RedoChi | dr en
message (which sends the Vi ewSet upChi | dr enScri pt message) to create
the new child views representing the next page of data to route. For
information on RedoChi | dr en and other view methods, refer to Chapter 3,
“Views,” in Newton Programmer’s Guide: System Software.

While there is more data to route, this method should return a non-ni |
value. When there is no more data to route, this method should return ni | .

Note that some transports (for example, fax) might call this method before
the data is actually printed to determine the page count.

For more information on using this method, see the section “Printing and
Faxing” beginning on page 2-23.

GetCursorFormat

format: Get Cur sor For mat (target)

You can call this method of pr ot oPri nt For mat to return a format for a
given target object.

This method is useful for getting formats for the individual items described
by the cursor as you iterate through them.

target The target object to be routed in the application.

This method looks for a format registered as a view definition for the data
class of the target object whose synmbol slot matches the synmbol slot of the
view format in which this method is called. If no matching format is found,
this function returns the first format registered for the data class of the target
object that is for the ' vi ewdata type and whose usesCur sor s slotis ni | .

If no format is found, ni | is returned.

FormatinitScript

format: For mat | ni t Scri pt (item, target)

If the print format is to be used for faxing, you can supply this method in
your print format to perform any lengthy initialization operations that you

Routing Reference

CHAPTER 2

Routing Interface

want to do before a fax connection is made. This method is guaranteed to be
called before a connection is made.

item The In Box entry.

target The data object to be faxed. This is usually the contents
of the item. body slot.

For more information on using this method and faxing, see the section
“Printing and Faxing” beginning on page 2-23.

CountPages

format: Count Pages(item, target)

You should override this method of pr ot oPr i nt For mat to return the
number of pages in the fax (not including the cover page, if present), if you
can determine it.

item The In Box entry.

target The data object to be faxed. This is usually the contents
of the item. body slot.

The default Count Pages method of the pr ot oPri nt For mat opens the
print format view in an offscreen view and causes each page to be
constructed in turn so it can count the number of pages (not including the
cover page). The Pri nt Next PageScri pt message is sent to the print
format after each page is done. Then the print format view is closed. This is a
lot of work for the system to do just to determine the number of pages, so if
you can, it’s a good idea to override the Count Pages method with one of
your own.

For more information on using this method and faxing, see the section
“Printing and Faxing” beginning on page 2-23.

Functions and Methods

This section describes send-related and utility functions and methods for the
Routing interface.

Routing Reference 2-61

2-62

CHAPTER 2

Routing Interface

Send-Related Functions and Methods

This section describes functions and methods used when an application
sends an item programmatically.

Send

Send(transportSym, item)
Stores an item in the Out Box and routes it to the indicated transport.

transportSym A symbol representing the transport (or transport
group) to which the item should be routed. You must
specify an installed transport that supports sending, or
a transport group symbol (built-in groups include ' f ax,
"beam ' mai |, and ' pri nt).If you specify a group
symbol, the last used transport from that group is used
to send the item. To obtain a list of valid transports for
the item you are sending, you can use the functions
Get Rout eFor mat s and then Get For mat Tr ansports.

item A frame containing slots that you want added to the
item frame which is posted to the Out Box. This must
include routing information and data to be sent. For a
discussion on how to construct this frame and detailed
descriptions of the slots, see the section “Sending Items
Programmatically” beginning on page 2-32. The slots
are described briefly here.

If successful, this function returns the item stored in the Out Box soup,
otherwise it returns ni | .

Here’s a summary of the slots you can include in the item frame:

itenFrame = {

appSynbol : symbol, // appSynbol of sender

dest AppSynbol : symbol, // receiving app, if different
body: frame, // the data to send

title: string, // itemtitle, e-mail subject

text: string, // text of nsg, for eWrld

Routing Reference

CHAPTER 2

Routing Interface

toRef: array, // array of nanme refs for recipients

cc: array, /] array of nanme refs for copied recipients
bcc: array, // array of name refs for blind copies
current Format: symbol, // routing format to use

connect: Boolean, [/ try to connect i mredi ately?

hi dden: Boolean, // hide U and hide in Qut Box?

covert: Boolean, // not |ogged or saved in Qut Box?

compl eti onScript: Boolean, // notify app of state change?
needsResol ve: Boolean, // body sl ot contains an alias?
printer: frame, // a printer franme; the printer to use
cover Page: Boolean, // use a cover page for fax?

faxResol ution: symbol, // 'fine or 'normal fax resolution
phoneNunber: string, // phone nunber, for call transport
name: string, // name, for call transport

servi ceProvider: symbol, // 'nodem 'speaker, or nil
saveAsLog: Boolean, // 1og call in Calls app?

}

GetRouteFormats

Get Rout eFor nmat s(item)

Returns an array of routing formats registered in the system that can handle
the class of the specified item. If no formats are found that can handle the
item, ni | is returned.

item The item to be routed. The item is used only to obtain a
class symbol.

Note that this function returns an array of actual format frames, not just
symbols identifying formats.

You can pass the return value from this function to the
Cet For mat Tr ansport s function to get a list of transports that can send an
item.

Routing Reference 2-63

2-64

CHAPTER 2

Routing Interface

GetFormatTransports

Get For mat Tr anspor t s(formatArray, target)

Returns an array of transports that can send data using the specified formats.
If no transports are found that can handle the specified formats, an empty
array is returned.

formatArray An array of routing format frames. You can obtain this
array from the Get Rout eFor mat s function.

target A frame, which is the t ar get slot from the target
information frame returned by the Get Tar get | nf o
function (page 2-70).

Note that this function returns an array of actual transport frames, not just
symbols identifying transports.

GetDefaultFormat

view: Get Def aul t For mat (transport, target)
Gets the default format for a given transport (and target item).
transport A symbol identifying a transport.

target A frame, which is the t ar get slot from the target
information frame returned by the Get Tar get | nf o
function (page 2-70) and verified by the
Veri f yRout i ngl nf o method (page 2-77).

This method is used to get the default format for a transport and target item.
It should return a format frame or ni | , if none are found or appropriate.

You do not need to implement this method because there is a default method
implemented in the root view. The default method looks in the

| ast For mat s slot of sel f (the application base view) to find a transport
matching transport. If the transport is found, it returns the format stored in
that slot, which is the last format used with that transport.

The Get Def aul t For mat method is called only if a routed item’s
appSynbol slot is appropriately set and the application is present.

Routing Reference

CHAPTER 2

Routing Interface

If you implement this method, you can use the target parameter to base the
format you return on the target item in addition to the transport. The target
parameter is ignored by the default method. Also, note that the variable
sel f will evaluate to the application base view of the application that sent
the item.

SetDefaultFormat

view: Set Def aul t For mat (transport, target, format)
Sets the default format for a given transport (and target item).
transport A symbol identifying a transport.

target A frame, which is the t ar get slot from the target
information frame returned by the Get Tar get | nf o
function (page 2-70) and verified by the
Ver i f yRout i ngl nf o method (page 2-77).

format A routing format frame.
This method is used to set the default format for a transport and target item.

The Set Def aul t For mat method is called only if a routed item’s
appSynbol slot is appropriately set and the application is present.

You do not need to implement this method because there is a default method
implemented in the root view. The default method stores format in this slot in
sel f (the application base view):

| ast For mat . transport

If you implement this method, you can use the target parameter in addition
to the transport to do something different. The target parameter is ignored by
the default method. Also, note that the variable sel f will evaluate to the
application base view of the application that sent the item.

OpenRoutingSlip

OpenRout i ngSl i p(item, targetInfo)

Opens the routing slip for a transport.

Routing Reference 2-65

2-66

CHAPTER 2

Routing Interface

item An item frame as returned by the transport Newl t em
method, described on page 3-68.

targetInfo This parameter must be a frame, containing t ar get
and t ar get Vi ewslots, as returned by the
Cet Tar get | nf o function (page 2-70).

If successful, this function returns the routing slip view, otherwise it returns
ni | . The routing slip view is returned to you so that you can close it if you
need to, for example, if your application is closed.

In certain error conditions, this function can also return the symbol

" ski pError Message. This return value means that the routing slip did not
open because of an error, but the user has already been alerted by a warning
message, so you don’t need to display another message.

Your application can call this function to open the transport routing slip
directly, bypassing the Action button, which would normally be used to
open it automatically.

This function does much of the work in the Routing interface, performing
initialization operations and calling the Set upl t emmethod defined in the
routing format.

Note that if the item. st at e slotis non-ni |, QpenRout i ngSl i p does no
initialization operations, nor does it call the Set upl t emmethod. In this case,
the assumption is that since the state of the item is non-ni | , it has already
been initialized.

Cursor-Related Functions

This section describes functions related to creating and testing for cursor
objects.

Routing Reference

CHAPTER 2

Routing Interface

CreateTargetCursor

Cr eat eTar get Cur sor (class, dataArray)

Creates and returns a frame that encapsulates an array holding multiple
target items.

class A symbol identifying the data class to be used for the
returned object. Only routing formats registered under
this class symbol will be able to route this object.

dataArray An array of items for which a multiple item target object
is to be created. These can be soup entries, soup aliases,
or any kind of NewtonScript object. The array items can
be of mixed types.

The object returned is a frame that encapsulates multiple target objects and
can be stored in a soup. If you want to navigate the individual target items
with a cursor, you can get a cursor by calling Get Tar get Cur sor and
passing it the object returned by Cr eat eTar get Cur sor. For example:

mul tiltemlrarget := CreateTargetCursor('|nmyd ass:SIF, anArray);

aCur sor

1= CetTargetCursor(nultiltenmTarget, nil);

If there is a data definition registered for the data class identified by the class
parameter, then the Cr eat eTar get Cur sor function sends the

Cr eat eCur sor message to the data definition to let it create the multiple
item target object. If there is no data definition, or if the Cr eat eCur sor
method is not implemented, then Cr eat eTar get Cur sor creates its own
multiple item target object and gives it the class class.

Note that the built-in routing format protos are designed to handle multiple
item target objects by finding a format for each item. You can override this
behavior if you design your own format to handle multiple item target
objects.

GetTargetCursor

Get Tar get Cur sor (target, param2)

Returns a cursor for the target object.

Routing Reference 2-67

2-68

CHAPTER 2

Routing Interface

target The target object to be routed.
param?2 Reserved for future use. Always set this parameter to
nil.

Note that this function always returns a cursor, regardless of whether the
target parameter is multiple item target object, a single target object, or ni | .
Of course, in the latter case, the cursor object will not point to any objects.

Note that the object returned by the cursor method Ent r y may not always
be a soup entry—it can be any NewtonScript object. If a cursor entry is a
soup alias, it will automatically be resolved when you access it by using one
of the cursor methods. If the alias cannot be resolved, the cursor method
might return the symbol ' del et ed (if the item is removed while you are
iterating over the cursor), but usually it will just skip over the unresolved
item. Subsequent calls to the cursor methods Next and Pr ev will skip over
the unresolved item.

The cursor object returned by this function is not exactly the same as a
standard soup cursor returned by the soup Quer y method. However the
cursor object returned by this function can be used like a standard cursor in
that it responds to the following cursor methods: Ent ry, Next , and Pr ev.
You can find these cursor methods described in Chapter 11, “Data Storage
and Retrieval,” in Newton Programmer’s Guide: System Software.

TargetlsCursor

Tar get | sCur sor (target)

Returns t r ue if the target object to be routed consists of a cursor (to multiple
objects), or returns ni | if it’s not a cursor.

target The target object to be routed.

If the target is a cursor, you can use the function Get Tar get Cur sor to
obtain the cursor.

The Tar get | sCur sor method returns true for the multiple item target
objects created by Cr eat eTar get Cur sor, since these objects represent
flattened cursors.

Routing Reference

CHAPTER 2

Routing Interface

Utility Functions and Methods

This section describes utility functions and methods used in the Routing
interface, in alphabetical order.

Applnstalled

Appl nst al | ed(appSymbol)

Informs the system that your application implements the Aut oPut Away
method (page 2-75). If your application uses an Aut oPut Away method, you
must call the Appl nst al | ed function from your application

Install Script function so that the system knows about it.

appSymbol A symbol identifying your application.

ClassAppByClass
Cl assAppByd ass(dataClass)

Returns an array of application symbols corresponding to applications that
are registered to accept items of the specified data class. If no applications are
found with the specified data class, ni | is returned.

dataClass A symbol identifying a data class.

GetActiveView
view: Get ActiveVi ew()

Returns the current receiver (sel f), which is the view to which this message
is sent.

The Intelligent Assistant sends this message when the user initiates a routing
action through it. The message is sent to the frontmost view on the screen
that has the vAppl i cat i on flag set in its vi ewF| ags slot (not including
floating views, as indicated by the vFI oat i ng flag). The purpose of this
method is to return the view to which the Get Tar get | nf 0 message should
be sent by the Intelligent Assistant, so that it can determine what object to
route.

Routing Reference 2-69

2-70

CHAPTER 2

Routing Interface

If the default return value of sel f is not appropriate for your application,
then you should override this view method in your application base view.
This method should return the view to which the Get Tar get | nf 0 message
should be sent by the Intelligent Assistant, so that it can determine what
object to route.

GetltemTransport

Get | t emTr ansport (item)
Returns the transport used for an item being sent or received.

item The item for which you want to get the transport.

GetRouteScripts

view: Get Rout eScri pt s()

Returns the value of the r out eScri pt s slot, using full proto and parent
inheritance and starting in the context of sel f . If the r out eScri pt s slot is
not found, or if it contains an empty array, an alert is displayed to the user
saying that nothing is selected.

You might want to override this method in your application if you decide to
build the r out eScri pt s array dynamically. For more information, see the
section “Providing Application-Specific Routing Actions” beginning on
page 2-27.

GetTargetinfo

view: Get Tar get | nf o(reason)

This view method retrieves target information from the view to which this
message is sent.

reason A symbol identifying what the information is to be used
for. This parameter is useful if you override this
method. It is provided as hook for you to implement
special behavior depending on its value. During a
routing operation, the system sends the

Routing Reference

CHAPTER 2

Routing Interface

Cet Tar get | nf 0 message with this parameter set to
the value ' r out i ng.

This method returns a frame that has the following slots:

t ar get The value of the t ar get slot. The search for this slot
begins in the view receiving the Get Tar get | nf o
message and uses full proto and parent inheritance.

t arget Vi ew The value of the t ar get Vi ewslot. The search for this
slot begins in the view receiving the Get Tar get | nf o
message and uses full proto and parent inheritance.

targetStore If t ar get is a soup entry, then the store on which the
entry resides is returned in this slot.

You can override this method, defining other reason values that cause
different or additional information to be returned in the resulting frame. The
frame returned by your version of this method must include the t ar get,
target Vi ew and t ar get St or e slots, however.

Since you can return only a single target item, if multiple items are selected
for routing, you will need to create a single object that encapsulates them.
You can use the function Cr eat eTar get Cur sor (page 2-67) to create a
multiple item target object that can be stored in a soup. (Normal cursors can’t
be stored in a soup.)

RegAppClasses

RegAppd asses(appSymbol, dataClasses)
Registers an application to accept data of the specified classes.

appSymbol A symbol identifying your application or transport
which is registering to handle this data. Specify the
value of the appSynbol slot of the application or
transport.

dataClasses An array of symbols identifying data classes that your
application can accept.

This registry is used when the user chooses to put away an In Box item. The
In Box displays a picker listing all of the applications that have registered to

Routing Reference 2-71

2-72

CHAPTER 2

Routing Interface

handle items with that data class. The user can choose to which application
the item should be put away. If the user chooses your application, it will be
sent the Put Away Scr i pt message, with the item to be put away. The

Put AwayScri pt method should be able to handle data of all the classes for
which you have registered with RegAppCl asses.

ReglnboxApp

Regl nboxApp(appSymbol, test)

Registers an application with the In Box to receive data from other
applications or non-Newton sources. Whenever a new item is added to the
In Box, the In Box checks the registered applications to find an owner for the
new item.

appSymbol A symbol identifying your application.

test A string or a function object used to match an incoming
item with an application. If you specify a string, then
the string will be compared with theti t | e slotin the
incoming item. If the string in the ti t | e slot begins
with the fest string, then the item's appSynbol slot is
set to the value in your application's appSynbol slot.

If you specify a function object for test, the function is
called with the incoming item as its parameter. If the
function returns t r ue, the item's appSynbol slot is set
to the value in your application's appSynbol slot.

RegisterViewDef

Regi st er Vi ewDef (formatFrame, classSymbol)
Registers a routing format frame as a view definition in the global registry.
formatFrame A routing format frame.

classSymbol A symbol under which the routing format is to be
registered. This symbol corresponds to the class of
objects with which this routing format can be used. Be
sure to append your developer signature, because this

Routing Reference

CHAPTER 2

Routing Interface

symbol should be unique in the view definition registry,
unless you're adding a format to an existing class of
formats.

For more information about view definitions and the use of this global
function, refer to Chapter 5, “Stationery,” in Newton Programmer’s Guide:
System Software.

TransportNotify

Transport Not i fy(transport, message, paramArray)
Sends a message to a transport or to all transports.

transport A symbol identifying the transport to which you want
to send a message. You can specify a transport group
symbol, and the message will be sent to the current (last
used) transport in that group. Specify the symbol " _al |
to send the message to all transports.

message A symbol that is the name of the message to send.
paramArray An array of parameters to be passed with the message.

The Tr anspor t Not i f y function returns the return value of the message it
sent. If it is broadcasting to all transports, it returns the return value of the
last message it sent.

If transport is not the symbol * _al | and the method does not exist in the
transport, the symbol * NoMet hod is returned.

If transport is not found, the symbol ' noTr anspor t is returned.

The Tr anspor t Not i f y function is a mechanism that can be used by
applications to communicate directly to any number of transports without
making specific calls to a single transport.

There are two messages that the system currently sends to transports by
using Tr anspor t Not i fy. They are AppOpened (page 3-50) and
AppCl osed (page 3-49).

Routing Reference 2-73

2-74

CHAPTER 2

Routing Interface

UnRegAppClasses

UnRegAppCl asses(appSymbol)

Unregisters an application (and all its data classes) that had previously been
registered by the function RegAppCl asses.

appSymbol A symbol identifying your application.

UnReglnboxApp

UnRegl nboxApp(appSymbol)

Unregisters an application that had previously been registered by the
function Regl nboxApp.

appSymbol A symbol identifying your application.

UnRegisterViewDef

UnRegi st er Vi ewDef (formatSymbol, classSymbol)

Unregisters a routing format frame from the global view definition registry.

formatSymbol A symbol identifying the routing format you want to
unregister. This is the value of the synbol slot in the
format.

classSymbol A symbol under which the routing format was
registered.

For more information about view definitions and the use of this global
function, refer to Chapter 5, “Stationery,” in Newton Programmer’s Guide:
System Software.

Routing Reference

CHAPTER 2

Routing Interface

UnRegTheseAppClasses

UnRegTheseAppd asses(appSymbol, dataClasses)

Unregisters specific classes that an application had previously registered
with the function RegAppCl asses. If all classes registered by an application
are unregistered, this function will also unregister the application.

appSymbol A symbol identifying your application.

dataClasses An array of symbols identifying data classes that you
want to unregister.

Application-Defined Methods

This section describes methods that are defined in an application to
implement particular features.

AutoPutAway

app: Aut oPut Away (itemr)

When an item is received by the In Box, and the In Box can identify an owner
application for the item, the In Box sends the base view of the owner
application the Aut oPut Away message. This gives an application the
opportunity to immediately receive and do something with an incoming
item.

item A frame that is the incoming In Box item.

If the Aut oPut Away method returns a non-ni | value, it is assumed that the
application handled the item and it may be deleted from the In Box soup.
The transport determines what is done with the item in the In Box. For more
details, see the section “Automatically Putting Away Items” beginning on
page 2-37.

If ni | is returned, the item is saved in the In Box soup.

Routing Reference 2-75

2-76

CHAPTER 2

Routing Interface

PutAwayScript

app: Put Away Scr i pt (item)

When the user is viewing an In Box item and taps the Put Away button, and
the In Box can identify an owner application for the item, the In Box sends
the base view of the owner application the Put Away Scr i pt message. This
gives an application the opportunity to do something with the item.

item A frame that is the In Box soup entry. Usually, you will
be interested only in the body slot of this frame; other
slots contain routing and transport information.

If the Put AwayScr i pt method returns a non-ni | value, it is assumed that
the application handled the item and it may be deleted from the In Box soup.
The transport determines what is done with the item in the In Box. For more
details, see the section “Manually Putting Away Items” beginning on

page 2-39.

If ni | is returned, the item is saved in the In Box soup and an alert is
displayed telling the user that the item could not be put away.

If your application defines this method, it should support putting away data
of all the classes for which it registered with the RegAppCl asses function.
If it registers to handle multiple data classes and data of different classes
needs to be handled differently, it should check the class of the data it
receives.

ltemCompletionScript

app: | t emConpl eti onScri pt (item)
The In Box sends this message to the base view of an application when the
state of a sent item changes or when errors occur while the item is being sent.

item The In Box entry being sent.

This message allows an application to track what happens to a sent item. You
can control whether or not this message is sent by setting the

conpl etionScri pt slotin the item frame passed to the Send function, as
described on page 2-47.

Routing Reference

CHAPTER 2

Routing Interface

VerifyRoutingInfo

app: Ver i f yRout i ngl nf o(targetInfo, item)

The system sends this message to the base view of your application when the
routing slip is opened. This method gives your application a chance to make
modifications to the target object before it is passed to the transport.

targetInfo A frame, containing t ar get and t ar get Vi ewslots, as
returned by the Get Tar get | nf o function (page 2-70).

item An item frame, as obtained from the transport method
Newl t em(page 3-68). From this frame you can derive
other information you might need, such as the transport
name. For more information about the item frame, see
the section “Item Frame” beginning on page 3-3.

This method should return targetInfo, modified if you want. If you return
ni | from this function, the routing action is canceled without notice to the
user. (The OpenRout i ngSl i p function returns ' ski pEr r or Message.)

Note that the Ver i f yRout i ngl nf o method is executed before the format’s
Set upl t emmethod is executed, so you can make changes to the targetInfo
frame before it gets passed to Set upl t em

Summary of the Routing Interface

Constants

ROM _Rout eDel et el con /1 bitmap for delete icon
ROM Rout eDupl i catelcon // bitmap for duplicate icon

Summary of the Routing Interface 2-77

2-78

CHAPTER 2

Routing Interface

Data Structures

Item Frame

itenFrane := {

appSynbol : symbol, /1 appSynbol of sender

dest AppSynbol : symbol, /] receiving app, if different
body: frame, /'l the data to send

title: string, Il itemtitle, e-mail subject
text: string, /1 text of msg, for eWrld

t oRef : array, /1 array of name refs for recipients
cc: array, /1 array of name refs for copied recipients
bcc: array, [/ array of name refs for blind copies
fronRef: frame, /1 name ref for sender

current Format: symbol, // routing format to use

connect : Boolean, /1 try to connect inmediately?

hi dden: Boolean, /! hide U and hide in Qut Box?
covert: Boolean, /1 not |ogged or saved in Qut Box?

conpl etionScri pt: Boolean, /1 notify app of state change?
needsResol ve: Boolean, // body slot contains an alias?

printer: frame, [l printer frame; the printer to use
cover Page: Boolean, /1l use a cover page for fax?
faxResol ution: symbol, // 'fine or 'normal fax resolution
phoneNunber : string, /1 phone nunber, for call transport
nane: string, /1 name, for call transport

servi ceProvider: symbol, // 'nodem 'speaker, or nil
saveAsLog: Boolean, /1 log call in Calls app?

}

RouteScripts Array Element

Rout eScri pt sArrayEl ement : = {
title: string, /1 string name of picker item
i con: bitmap object, /1 icon for picker item

Summary of the Routing Interface

CHAPTER 2

Routing Interface

Rout eScri pt: symbol, [/ func called if this action chosen
GetTitle: function, /1 supplied instead of title slot
/1 other slots used by your app

}

Routing Format Frame

Rout i ngFor mat Frame : = {

_proto: routing proto, /'l proto for format

dat aTypes: array, /1 identifies supported data types
title: string, /'l name of format

synbol : symbol, /1 unique id - include signature

type: '"printFormat, // identifies this format as

/1 used for routing
ver sion: integer, /'l version nunber of format
auxForm viewTemplate, [/ defines auxiliary view
storeAlias: Boolean, /] store alias?
showMessage: Boolean, [/ warn user when aliasing?
sizeLimt: integer, /1 maxi mum si ze w thout aliasing
storeCursors: Boolean, // store nultiple items as a cursor?
usesCursors: Boolean, // format handl es cursor for |ayout?
orientation: symbol, // 'portrait or 'landscape
mar gi ns: boundsFrame, [/ margin insets for |ayout
Setupltem function, /1l called if this format sel ected
Text Scri pt: function, |/ gets text data fromitem
Target Si ze: function, |/ determines target size
MakeBodyAl i as: function, // makes an alias
Resol veBody: function, // resolves alias body sl ot
Vi ewSet upChi | drenScri pt: function, // set up the children
Pri nt Next PageScri pt: function, [/ constructs next page
Get Cur sor For mat : function, /'l gets format for an item
Format | nit Scri pt: function, /1 initialization
Count Pages: function, [/ counts pages for a fax

}

Summary of the Routing Interface 2-79

2-80

CHAPTER 2

Routing Interface

Protos

protoActionButton

aProt oActionButton := {
_proto: protoActionButton,
vi ewBounds : boundsFrame,

vi ewdJusti fy: justificationFlags,
vi ewFor mat : formatFlags,

}

protoPrinterChooserButton

aPrinterChooserButton : = {
_proto: protoPrinterChooserButton,
vi ewBounds : boundsFrame,

}

protoRoutingFormat, protoPrintFormat, and protoFrameFormat

aFormat := {

_proto: protoRoutingFornmat, // or one of the other protos
type: 'printFormat, /1 don’t change this

title: string, /'l nanme of format

symbol : symbol, /1 unique id - include signature
dat aTypes: ['frame, 'text],// supports frame & text data
version: integer, /'l version nunber

auxFor m viewTemplate, /1 for auxiliary view
storeAlias: Boolean, /] store alias?

showvessage: Boolean, /1 warn user when aliasing?
sizeLimt: integer, /1 maxi mum si ze w thout aliasing
storeCursors: Boolean, // store cursor to nmultiple itens?
Set upl tem function, /1 puts target into itemfrane

Summary of the Routing Interface

CHAPTER 2

Routing Interface

Text Scri pt: function, /1 gets text data

Tar get Si ze: function, /1 determines target size
MakeBodyAl i as: function, [/ makes an alias

Resol veBody: function, /1 resolves alias body sl ot

/1 for protoPrintFormat variant only
dataTypes: ['view], [/ print formats support view data
usesCursors: Boolean, // handles multiple itens on a page?

orientation: symbol, [/ 'portrait or 'orientation
mar gi ns: boundsFrame, /1 inset from edges

pageW dt h: integer, /1 width of view

pageHei ght : integer, /1 height of view

Vi ewSet upChi | drenScri pt: function, // set up the children
Pri nt Next PageScri pt: function, /1 for multiple pages
Get Cur sor Format : function, //returns format for next item
Format | ni t Scri pt: function, /1 initialization
Count Pages: function, /1 counts pages for a fax

}

Functions and Methods

Send-Related Functions and Methods

Send(transportSym, item)

CGet Rout eFor mat s(item)

Get For mat Tr anspor t s(formatArray, target)

view: Get Def aul t For mat (transport, target)

view: Set Def aul t For mat (transport, target, format)
OpenRout i ngSl i p(item, targetInfo)

Summary of the Routing Interface 2-81

CHAPTER 2

Routing Interface

Cursor-Related Functions

Cr eat eTar get Cur sor (class, dataArray)
Get Tar get Cur sor (target, param2)
Tar get | sCur sor (target)

Utility Functions and Methods

Appl nst al | ed(appSymbol)

Cl assAppByd ass(dataClass)

view: Get Act i veVi ew()

Cet | temlransport (item)

view: Get Rout eScri pts()

view: Get Tar get | nf o(reason)

RegAppCl asses(appSymbol, dataClasses)

Regl nboxApp(appSymbol, test)

Regi st er Vi ewDef (formatFrame, classSymbol)
Transport Not i fy(transport, message, paramArray)
UnRegAppCl asses(appSymbol)

UnRegl nboxApp(appSymbol)

UnRegi st er Vi ewDef (formatSymbol, classSymbol)
UnRegTheseAppC asses(appSymbol, dataClasses)

Application-Defined Methods

app: Aut oPut Away (item)

app: Put Away Scr i pt (item)

app: | t emConpl et i onScri pt (item)

app: Ver i f yRout i ngl nf o(targetInfo, item)

2-82 Summary of the Routing Interface

CHAPTER 3

Transport Interface

This chapter describes the Transport interface in Newton system software.
The Transport interface allows you to provide a new communication service
to the system.

You should read this chapter if you are writing a low-level communication
tool or special endpoint that you want to make available as a transport for
applications to use. If you are writing only an application, you need only use
the Routing interface described in Chapter 2, “Routing Interface.”

This chapter describes how to

create a new transport and make it available to the system
create a routing information template, for use by the In/Out Box

control the built-in status templates, if you need to provide status
information to the user

create a routing slip template, if your transport sends data

create a transport preferences template, if your transport has
user-configurable options

CHAPTER 3

Transport Interface

About Transports

A transport is a NewtonScript object that provides a communication service
to the Newton In/Out Box. It interfaces between the In/Out Box and an
endpoint (see Figure 1-1 on page 1-2), moving data between the two. This
chapter describes the transport object and its interface to the In/Out Box.

Applications interact with transports through the Routing interface and the
In/Out Box. The In/Out Box is the bridge between applications and
transports, without either knowing about the other.

In the user interface, most transports are visible as items in the Action picker
menu. The transports available in the picker are not specified directly by an
application, but consist of all the transports found that can handle the kind of
data the application routes. Because this menu is constructed dynamically,
applications can take advantage of additional transports that might be
installed in the system at any time. An application need not know anything
about the transports available. Likewise, transports can be removed from the
system without any effects on applications.

Transport Parts

In writing a transport, you will need to provide the following parts:
= the transport object itself, created from pr ot oTr anspor t

= an optional routing information template for the In/Out Box, created from
prot oTransport Header

» an optional status template for displaying status information to the user,
created from pr ot oSt at usTenpl at e (if you don’t provide one, the
default, st at usTenpl at e, is used)

» arouting slip template for obtaining routing information from the user,
created from pr ot oFul | Rout eSl i p (this is needed only for transports
that send data)

About Transports

CHAPTER 3

Transport Interface

= a preferences template for user-configuration settings, created from
prot oTr ansport Pr ef s (this is needed only for transports that have
user-configurable options that you want to store as preferences)

Item Frame

Anything sent or received through the In/Out Box by a transport is passed
as a single frame. The frame can contain any number of slots. Some slots are
required, and others are optional. The item is treated like a tagged file format
where each slot has a symbol (tag) that can be examined. Some slots (body)
have meaning only to the application that created the item, other slots have
meaning only to the In/Out Box itself, and other slots are for the transport.
You should ignore any slot you don’t recognize, since it may be used
internally.

These are some of the slots in the item frame that you need to know about:

ti nestanp The time this item was submitted to the In/Out Box.
The transport shouldn’t change this value.

cat egory The appSynbol of the transport doing the transfer.

appSynbol A symbol identifying the owner application. If this

symbol is missing, or the application cannot be located,
the cl ass slot inside the body frame is used to find an
application that can put away the item, for an incoming
item.

dest AppSynbol A symbol identifying the application to receive the item,
if it is different from the sending application. This is set
automatically; the transport shouldn’t change this value.

body The frame being sent (or references to the data). This is
supplied by the application.

title The string that shows up in the In/Out Box as the item’s
title. The transport may provide this for received items
that do not contain a data definition.

renote A Boolean that is set to t r ue to identify an item whose
body is stored remotely. The transport must set this slot
if it downloads just the title of an item but leaves the
body stored remotely. When the user tries to view the

About Transports 3-3

CHAPTER 3

Transport Interface

item, the In Box alerts the transport to download the
body of the item from the remote host by sending it the
Recei veRequest message.

connect A Boolean used for items to be sent. This slot is set to
t r ue if the user chose to send the item immediately
with the Send button in the routing slip. If the user
chose to send the item later, this slotis settoni | .

error An integer error code; non-ni | indicates an error. This
is usually set by | t enConpl et ed.

current Format A symbol identifying the selected format for this item.

hi dden Boolean; if t r ue, the item is not displayed in the In/
Out Box.If set to true, the conpl et i onScri pt slot
must also be set to t r ue and the application must have
an |t emConpl eti onScri pt method.

covert Boolean; if t r ue, the item is not logged or saved.

state A symbol indicating status: ' r eady, ' sent,
"received,'read,' renote,' pendi ng, or
" | ogged. This is usually set by | t enConpl et ed. Do
not set this slot directly.

conpl eti onScri pt
Boolean; if t r ue, the transport sends the
It emConpl eti onScri pt message (page 3-94) to the
application when the item’s state changes or when
errors occur. For more details on this mechanism, see
the section “Completion and Logging” beginning on
page 3-17.

needsResol ve A Boolean that is set to t r ue if the body slot contains
an alias, rather than the actual data.

For transports that need addressing information, such information is usually
encapsulated in name references. A name reference is a frame that contains a
soup entry or an alias to a soup entry, usually from the Names soup, hence
the term name reference. The system includes built-in data definitions that
can access name references and it includes associated view definitions that
can display the information stored in or referenced by a name reference. For
more information about how name references are used for addressing
information, see the section “Creating a Name Reference” beginning on

About Transports

CHAPTER 3

Transport Interface

page 2-34. For more information about name references in general, see the
documentation of the pr ot oLi st Pi cker in Chapter 6, “Pickers, Pop-up
Views, and Overviews,” in Newton Programmer’s Guide: System Software.

The following two slots in the item frame define the recipient and sender
addresses:

t oRef An array containing one or more name references used
to identify the recipient(s) of the item.

fr onRef A name reference or other information that identifies
the sender. This information is usually extracted from
the sender’s current owner card, or persona. The
transport normally sets this slot in its Newl t emmethod.
For more information, see the section “Obtaining an
Item Frame” beginning on page 3-14.

In addition, there may be other address slots used by some transports. For

example, the eWorld transport uses the slots cc and bcc to hold additional

name references for copy and blind copy recipients.

For a detailed description of all the item frame slots that are important to the
Routing interface, see the section “Item Frame” on page 2-44.

Using the Transport Interface

This section describes how to use the Transport interface to perform these
specific tasks:

= create a new transport object
= create a routing information template, for use by the In/Out Box

= control the built-in status template, if you need to provide status
information to the user

= create a routing slip template, if your transport sends data

= create a transport preferences template, if your transport has
user-configurable options

Using the Transport Interface 3-5

3-6

CHAPTER 3

Transport Interface

Providing a Transport Object

To make a new transport object, you create a frame with a prototype of
prot oTransport.

Transports are not the same as applications, they are built as auto parts. This
means that when installed, they add their services to the system but do not
add an application to the Extras Drawer. (They are represented by an icon in
the Extras Drawer, but you can’t tap it to open it like you can an application
icon.)

For a complete description of the pr ot oTr ansport object, see the section
“protoTransport” beginning on page 3-43.

The following subsections describe operations that a transport can perform,
and the methods that you must supply or call in your transport object to
support these operations.

Installing the Transport

To install a new transport in the system, call the RegTr ansport function
(page 3-90) from the | nst al | Scri pt method of your package and pass it
the transport appSynbol and transport template. The RegTr anspor t
function additionally sends your transport object the | nst al | Scri pt
message (page 3-62); this message is unrelated to the | nst al | Scri pt
message used by packages. The I nstal | Scri pt message sent to your
transport simply provides the opportunity for the transport to perform
initialization operations when it is installed.

When your transport is removed, you can use the UnRegTr anspor t
function (page 3-91) to unregister the transport from the system. You pass the
UnRegTr ansport function the transport appSynbol .

When your transport is scrubbed by the user from the Extras Drawer, the
system also calls the Del et i onScri pt function in its package. In the

Del eti onScri pt function, you should call the Del et eTr anspor t
function (page 3-91). This function removes user configuration information
related to the transport.

Using the Transport Interface

CHAPTER 3

Transport Interface

Setting the Address Class

The transport object contains a slot, addr essi ngCl ass, that holds a
symbol. This symbol identifies the class of the address information used by
the transport, such as that stored in the t oRef and f r onRef slots of an item.
(See the section “Item Frame” beginning on page 3-3.) The In/Out Box uses
this symbol to look up and display the to and from address information
based on soup entries (usually from the Names soup).

The class of address information is defined by name reference data
definitions registered in the system. You can specify one of the following
built-in name reference data definitions in the addr essi ngd ass slot:

= ' | nameRef . enai | |, for use with a transport that handles e-mail
= ' | naneRef . f ax|, for use with a transport that handles fax phone calls

= ' | nameRef . phone], for use with a transport that handles other phone
calls

Or you can specify a custom name reference data definition that you have
created and registered with the system. Note that all name reference data
definitions must be registered under a symbol that is a subclass of ' naner ef .

The default setting of the addr essi ngCl ass slot is the symbol
"| naneRef . enmi | | .

For more information about how name references are used for addressing
information, see the section “Creating a Name Reference” beginning on
page 2-34. For more information about name references in general, see the
documentation of the pr ot oLi st Pi cker in Chapter 6, “Pickers, Pop-up
Views, and Overviews,” in Newton Programmer’s Guide: System Software.

Grouping Transports

Two or more transports can be grouped together in the Action picker under a
single action. For example, there might be several different e-mail transports
grouped together under the single action “Mail.” The user selects a particular
e-mail transport from a picker that is supplied by the system in the routing
slip, if there are multiple transports registered for that group. (The picker
doesn’t appear if there is only one transport in the group.)

Using the Transport Interface 3-7

CHAPTER 3

Transport Interface

Each group of transports is identified by a common symbol, called the group
symbol. You indicate that your transport should be a member of a group by
specifying its group symbol in the gr oup slot (page 3-44), its title in the
groupTi t e slot, and its icon in the gr oupl con slot. All transports in the
same group should specify the same group icon. This icon is shown in the
Action picker for that transport group. The individual transport icon
(specified in the i con slot) is shown in the routing slip when the transport is
selected from the transport group picker.

You can use the following built-in bitmaps in the gr oup! con slot of your
transport, if it belongs to one of the predefined groups. Here are the magic
pointer constants:

Group Icon bitmap constant
"'mai l ROM Rout eMni | | con
"print ROM Rout ePrintlcon
' fax ROM_Rout eFaxl con

' beam ROM Rout eBeaml con

After the user chooses a particular transport in a group from the picker in the
routing slip, the system remembers the last choice and sets the routing slip to
that choice when the user later chooses the same routing action from the
Action picker. If the user changes the particular transport in the routing slip
group picker, the system closes and reopens the routing slip for the current
target item, since the routing slip may be different for a different transport.

Before the routing slip is closed, it is sent the Tr anspor t Changed message
(page 3-82). This allows the routing slip to take any necessary action such as
alerting the user that information might be lost as a result of changing
transports. If Tr anspor t Changed returns a non-ni | value, the transport is
not changed and the routing slip is not closed. If Tr anspor t Changed
returns ni |, then the transport is changed and operations continue normally.

You can use the function Get Gr oupTr anspor t (page 3-93) to determine the
name of the current (last-used) transport in a group. Note that when you first
install a group transport, it becomes the current transport for that group.

Using the Transport Interface

CHAPTER 3

Transport Interface

Transports that are part of a group are individually selectable on the Send,
Receive, and Preferences pickers in the In/Out Box.

Sending Data

The Out Box sends the SendRequest message to your transport when data
needs to be sent. If your transport supports sending data, you must define
this method to actually send the data. For a complete description of the
SendRequest method, see the section “SendRequest” beginning on

page 3-72.

The Out Box will put its own query information in the request frame
argument to SendRequest . Your SendRequest method must pass it back
to the Out Box in an | t enRequest message to get the item (or next item) to
send. In your SendRequest method, keep calling | t enRequest until it
returns ni |, signalling no more items to send. For a complete description of
the | t erRequest method, see the section “ItemRequest” beginning on
page 3-65.

You can choose to comply with or ignore any request to send, depending on
the communication resources available and their status. If you choose to
comply, your SendRequest method must obtain one or more items from the
Out Box (using the | t enRequest method) and send them by whatever
means the transport uses to communicate. For example, many transports use
the endpoint interface to establish and operate a connection.

If request.cause is ' submi t, the item is queued in the Out Box for later
sending, but the Out Box still notifies the transport by sending it this
SendRequest message. Typically, a transport doesn’t need to take any
immediate action on items where request.cause is' submi t ; so you can use
code like this to simply return:

If request.cause = 'subnmit then return nil;

If you encounter an error in your SendRequest method, you must call
| t enConpl et ed to inform the In/Out Box that an item was not sent.
I t enConpl et ed uses Handl eEr r or to inform the user of an error. If you

Using the Transport Interface 3-9

3-10

CHAPTER 3

Transport Interface

want to perform your own error notification, you can override the
Handl eEr r or method.

Sending All Items

If your transport is able to establish a connection, and you want to take
advantage of it to send all queued items from the Out Box, you can send
your transport the message CheckQut box (page 3-53). This method is
defined in pr ot oTr anspor t and it causes the In/Out Box to send your
transport a SendRequest for all queued items waiting to be sent. The
SendRequest message sent back to your transport includes a request
argument in which the cause slot is set to " user.

Applications can also send the CheckQut box message directly to transports
by using the Tr anspor t Not i f y global function.

Converting an E-Mail Address to an Internet Address

If you are implementing a new e-mail transport that communicates with
another e-mail system, you may need to convert e-mail addresses from that
system to internet-compatible addresses. The transport method

Nor mal i zeAddr ess (page 3-68) allows you to do this. You pass it a name
reference containing an e-mail address, and it returns a string containing an
internet-compatible e-mail address.

To register a new e-mail system so that it shows up on e-mail pickers
throughout the system and to register a conversion for an internet address,
use the function RegEnai | Syst em(page 3-91).

Receiving Data

The Out Box sends the Recei veRequest message to your transport to
request the transport to receive items. If your transport supports receiving
data, you must define this method to receive it. For a complete description of
the Recei veRequest method, see the section “ReceiveRequest” beginning
on page 3-72.

Using the Transport Interface

CHAPTER 3

Transport Interface

The Recei veRequest method takes one parameter, a frame containing a
cause slot whose value is a symbol. The symbol ' r enpt e may be used by
e-mail transports or other transports that don’t download all the data
initially. For example, upon connection, the transport might download just
the titles of messages or other data objects. In this case, the transport should
insert a slot called r enot e whose value is t r ue in the item frame of each of
those items. This slot serves as a flag to tell the In/Out Box that the body of
the item is stored remotely and has not yet been downloaded.

When the user attempts to view one of these items in the In Box, the In Box
sees the r enpt e slot, and sends the transport the Recei veRequest

message with the ' r enpot e cause. This alerts the transport to download the
body of the item from the remote host. If multiple remote items were selected
by the user for downloading, you must use the | t erRequest method to
retrieve subsequent requested items and download them. Keep calling

| t erRequest until it return ni | , which signals that there are no more items
to retrieve.

Some transports may ignore the Recei veRequest message since they
update all the time. Others may use this message as a trigger to initiate a
connection.

You can choose to comply with or ignore any request to receive, depending
on the communication resources available and their status. If you choose to
comply, the Recei veRequest method should establish a connection and
begin receiving by whatever means the transport uses to communicate. For
example, many transports use the endpoint interface to establish and operate
a connection. After receiving the item, you should call the transport method
NewFr om t em(page 3-67) to copy it into a standard item frame used by the
In/Out Box.

If your transport creates virtual binary objects, you must use the method
Cet Def aul t Onner St or e (page 3-54) to determine on which store to create
them.

Using the Transport Interface 3-11

3-12

CHAPTER 3

Transport Interface

Note

Every received item must have a cl ass slot to identify its
data class. Items received from other Newtons always have a
cl ass slot. For items received from other systems, your
transport must assign a meaningful class to each item. O

Handling Requests When the Transport is Active

While the transport is actively sending or receiving data in the background,
the user might request another send or receive operation from the In/Out
Box (if your transport is non-modal). One way to handle such requests is to
queue them up and append them to the current communication transaction
or to start another connection when the transport is finished.

You can use the transport method QueueRequest (page 3-71) to queue up
requests for sending or receiving, if the transport already has an active
communication session in progress. You call QueueRequest from the
SendRequest or Recei veRequest method, whichever one you receive as
a result of a user request.

By the way you call it, you can make QueueRequest append the new
request to a request in progress, or you can make QueueRequest start
another connection when the current request is finished. To append the new
request to a request in progress, for the first parameter, specify the request
frame of a request already in progress. A request frame is the frame passed to
SendRequest or Recei veRequest to begin the request in progress. The
second parameter is the new request frame. For example:

/1l you receive an initial send request fromthe system
/1 which you process and begi n sendi ng
your Transport: SendRequest func (foo0)

/1 while in progress, you receive another send request
/1 in which you call QueueRequest
your Transport: SendRequest func (bar)
begi n
if status <> '"idle then // check if |I'mactive

Using the Transport Interface

CHAPTER 3

Transport Interface

: QueueRequest (foo, bar);//append to current request
el se

/1 do a normal send here
end,

When a new request is appended to an in-progress request, items from the
new request will be returned from the | t enRequest method after all items
from the in-progress request are exhausted. In this way, new items are sent as
part of the current communication session.

To queue a new request so that the transport finishes its current transaction
before beginning a new one, specify a symbol for the first parameter of
QueueRequest . The symbol should be the name of a method that you want
the system to call when the transport state returns to idle. Usually this will
be another SendRequest or Recei veRequest method. Here’s an example:

/1 you receive an initial send request fromthe system
/1 which you process and begi n sendi ng
your Transport : SendRequest func (foo0)

/1 while in progress, you receive another send request
/1 in which you call QueueRequest
your Transport: SendRequest func (bar)
begi n
if status <> 'idle then // check if |I'"mactive
: QueueRequest (' SendRequest, bar); // wait for idle
el se
/1 do a normal send here
end,

Canceling an Operation

The system sends the Cancel Request message to the transport when the
user cancels the current transaction or for other reasons, such as when the

system wants to turn off. This method should be defined by all transports.
This method is described in the section “CancelRequest” on page 3-51.

Using the Transport Interface 3-13

3-14

CHAPTER 3

Transport Interface

When it receives this message, the transport should terminate the
communication operation as soon as possible.

The Cancel Request method should returnt r ue if it is ok to turn off
power immediately after this method returns. This method should return

ni | if it is not ok to turn off power immediately. In the latter case, the system
waits until your transport returns to the idle state before turning off. This
allows you to send an asynchronous cancel request to your communication
endpoint, for example, and still return immediately from this

Cancel Request method. When you receive the callback message from your
endpoint cancel request confirming that the cancel is done, you then use the
Set St at usDi al og method to set the transport status to idle to alert the
system that it is ok to turn off.

Obtaining an Item Frame

The system sends the Newl t emmessage to the transport to obtain a new
item frame to make a new In/Out Box entry. For a complete description of
the New t emmethod, see the section “NewlItem” beginning on page 3-68.

This method is supplied by the pr ot oTr anspor t, but should be overridden
by your transport to fill in extra values used by your transport. If you do
override this method, you must first call the inherited Newl t emmethod, as
shown in the example below. The item frame returned by the Newl t em
method should contain default values for your transport.

The item frame returned by the default method supplied in

prot oTransport is not yet a soup entry. Thei t em cat egory slot is
initialized to the appSynbol slot in your transport. For more information on
the i t emframe, see the section “Item Frame” beginning on page 3-3.

The Newl t emmessage is sent to your transport during both send and receive
operations. When the user sends an item, the system sends the Newl t em
message to the transport to create a new In/Out Box entry before opening a
routing slip for the item. This allows the transport an opportunity to add its
own slots to the item frame.

Most transports will want to add a f r onRef slot to the item frame. This slot
must contain a name reference that identifies the sender. This information is

Using the Transport Interface

CHAPTER 3

Transport Interface

usually extracted from the sender’s current owner card, or persona. Note
that you shouldn’t just use the value of

Get User Confi g(' current Per sona) because it is simply an alias to a
names file entry. You must construct a name reference from this value. For
example:

persona : = CGet User Config(' currentPersona);
dat aDef := GCet Dat aDef s(addr essi ngC ass);
fronRef := dat aDef: MakeNanmeRef (per sona, addr essi ngd ass) ;

Most transports will want to extract and send just the needed information
from the f r onRef name reference. For example, an e-mail transport would
typically just extract the sender name and e-mail address from the name
reference and send them as strings. One method of name reference data
definitions that you can use to extract useful information from a name card
includes Get Rout i ngl nf 0. Here is an example of using this method:

/] extract just routing info using GetRoutinglnfo
fronRef := datadef: Get Routingl nfo(fronRef);

[l returns frame |like this:

[{nane: "Chris Smith", email: "cbsnith@pple.test.conl}]

The Get Rout i ngl nf 0 method returns a frame with at least a name slot
containing a string. Depending on the addr essi ngQ ass slot passed to the
Get Dat aDef s function, the returned frame will also contain other
information particular to the type of address used for the transport. In the
example above, the frame also contains an emai | slot with an e-mail address.

If you want to add other slots to the f r onRef frame, you can either define
your own name reference data definition and override the method

Cet | t emRout i ngFr ane, or you can add the slots you want to the f r onRef
frame by extracting them from the original name reference by using the Get
method, like this:

!/l use Get to extract info fromcertain slots
fromRef.nylnfo : = dataDef: Get(fronmRef, mylnfo,nil);

Using the Transport Interface 3-15

3-16

CHAPTER 3

Transport Interface

If, instead of extracting the address and sending it as a string, your transport
sends addressing information as a frame, like the beam transport, then you
must remove any soup entry aliases from the name reference before it is
transmitted. You can do this by using the name reference data definition
method Pr epar eFor Rout i ng, like this:

/1 strip the aliases froma nane ref
fronRef := datadef: PrepareForRouting(fronRef);

In general, however, you should not send all the information in a user’s
persona with a message.

For more information about name references and the methods of name
reference data definitions, see the section “Creating a Name Reference”
beginning on page 2-34, and the documentation of pr ot oLi st Pi cker in
Chapter 6, “Pickers, Pop-up Views, and Overviews,” in Newton Programmer’s
Guide: System Software.

Here is an example of how you would override the Newl t emmethod during
a send operation to add a f r onrRef slot:

/1 a sanple overridden Newltem net hod

nytransport. Newtem : = func(context) begin
/1l first call inherited method to get default frame
local item:= inherited: New ten(context);

/1l get sender info and insert fronRef sl ot

| ocal persona: = Get User Config(' currentPersona);

| ocal dataDef := GetDataDef s(addressi ngC ass);

i f dataDef then
begi n
item fronRef := dataDef: MakeNaneRef (per sona,

addr essi ngd ass) ;

/1 add other slots or extract routing info here
end

Using the Transport Interface

CHAPTER 3

Transport Interface

item
end;

During a receive operation, the transport itself must invoke the

NewFr om t emmethod (page 3-67) to get a new In/Out Box item frame. This
method copies most slots from the received item to the new In/Out Box item
frame. Additionally, it inserts the dest AppSynbol slot value (if included) in
the received frame into the appSynbol slot in the new frame.

Finally, the transport should call | t enConpl et ed to register the item in the
In Box.

Completion and Logging

After your transport has completed processing an item (either sending or
receiving, with or without errors), you must send the transport the message
| t enConpl et ed (page 3-63). This method must be used when an item is
altered in any way. This method performs several operations including
setting the state and error status of the item, sending the

I t enConpl eti onScri pt callback message to the application, handling
error conditions, and saving, logging, or deleting the item, depending on the
logging preferences.

Be sure to send the | t enConpl et ed message only after your transport has
completely processed an item. If you send this message before you know that
the item was delivered successfully, for example, there’s a possibility that the
item could be lost.

If | t enConpl et ed was called as the result of an error, it calls Handl eEr r or
to translate the error code and notify the user. If you want to perform your
own error notification, you can override the Handl eEr r or method.

Note that the | t enConpl et ed method in pr ot oTr anspor t only sends the
I t enConpl eti onScri pt callback message to the application if the item
contains a conpl eti onScri pt slot that is set to t r ue. You must set this
slot if you want the callback message to be sent.

To perform logging, | t emConpl et ed sends your transport the message
MakeLogEnt ry (page 3-66), passing a log entry to which you can add slots.

Using the Transport Interface 3-17

3-18

CHAPTER 3

Transport Interface

The pr ot oTr anspor t object includes a default MakeLogEnt r y method,
but you should override this method to add transport-specific slots to the log
entry.

The default method simply adds ati t| e slot to the log entry. The
Get | t enTli t | e method is called to get the title.

Storing Transport Preferences and Configuration Information

Transports can store user-configurable preferences and other configuration
information in the system user Conf i gur at i on entry. This entry in the
System soup stores all kinds of system information and user preferences.
Configuration information for a transport is stored in a slot in this entry that
is named with the transport appSynbol . Typically, you store a frame
containing slots that correspond to individual preferences or other kinds of
configuration information that you want to save for your transport. You
must use the transport methods Get Conf i g (page 3-54) and Set Confi g
(page 3-73) to retrieve and set slots in the frame for your transport.

The default preferences for a transport are set by the

def aul t Confi gur at i on slot (page 3-47) in the transport object. This slot
holds a frame containing values that correspond to items in a preferences slip
that you might want to use for your transport to allow the user to set
preferences. For more information about displaying a preferences slip to the
user so they can set user preferences, see the section “Providing a Preferences
Template” beginning on page 3-39.

You don’t have to use this preferences dialog or the setting of the

def aul t Confi gur ati on slotin pr ot oTr ansport . You can override this
initial setting by creating your own default preferences frame and including
itin the def aul t Conf i gur at i on slot of your transport object. Note that
you can’t use a _pr ot 0 pointer to the default frame since the contents of the
def aul t Confi gur at i on slot is stored in a soup and _pr ot 0 pointers
can’t be stored in soup entries.

Using the Transport Interface

CHAPTER 3

Transport Interface

Extending the In/Out Box Interface

Your transport can extend the In/Out Box interface if items that your
transport handles can be viewed in the In /Out Box. You can add additional
actions to the In/Out Box Action picker in the In/Out Box. The In/Out Box
Action picker is displayed when the user taps on the Tag button in the In/
Out Box, as shown here:

y @ Put Away
In/Out Box
action picker — EI Log
EX Reply
«Forward [m Tag button

The In/Out Box Action picker includes only the Put Away and Log items by
default. You can add other transport-dependent items by implementing the
Cet Transport Scri pt s method (page 3-59). For example, the picker
shown above includes Reply and Forward items that were added by an
e-mail transport to allow the user to perform those operations on e-mail
directly in the In/Out Box.

When the user taps on the Tag button, the system sends your transport the
Get Transport Scri pt s message, if you've implemented it. This method
should return an array of frames that describe new items to be added to the
In/Out Box Action picker. The array is exactly the same as the

rout eScri pts array that is used to add items to the Action picker in an
application. Here is an example of a return value that adds two items to the
picker:

[{title: "Reply", // name of action

i con: ROM Rout eReply, // picker icon

routeScript: 'M/ReplyFunc, // called if action selected
3

{title: "Forward", // nane of action

i con: ROM Rout eForward, // picker icon

routeScript: 'MyForwardFunc, // called if action selected

bl

Using the Transport Interface 3-19

3-20

CHAPTER 3

Transport Interface

The r out eScri pt slot contains a symbol identifying a method in the
transport base frame that is called if the user selects that item from the picker.

For more detailed information about the items in the array, see the section
“Providing Application-Specific Routing Actions” beginning on page 2-27.

For the i con slot of each frame in the array, you can specify an icon that
appears next to the name of the action in the picker. There are standard
bitmaps available in the ROM for the following actions:

= reply, ROM Rout eRepl y

» forward, ROM Rout eFor ward

» add sender to the Names file, ROM Rout eAddSender
= copy text to the Notepad, ROM Rout ePast eText

If you are adding one of these actions, you should use the indicated magic
pointer constant for the standard bitmap, to keep the interface consistent
among transports.

Also, when the user taps the Tag button, the system sends your transport the
CanPut Away message (page 3-52), if you've implemented it. This method
allows your transport to add a put away option for the item to the Put Away
picker.

Whenever an item belonging to your transport is displayed in the In/Out
Box, the In/Out Box also sends your transport the | OBoxExt ensi ons
message (page 3-62). This hook allows your transport to add functionality to
items in the In/Out Box by modifying the list of view definitions available
for an item. For example, the mail transport adds a text viewer view
definition to its entries in the In/Out Box.

Application Messages

Applications can send messages directly to a single transport or to all
transports by using the Tr anspor t Not i f y global function (page 2-73). This
mechanism is provided as a general way for applications to communicate
with transports. Here’s an example of using this function:

Using the Transport Interface

CHAPTER 3

Transport Interface

TransportNotify(' _all,"' AppOpened, [appSynbol])

The In/Out Box uses this mechanism to send three different messages to
transports: AppQpened, AppCl osed, and Appl nFr ont . The AppOpened
message (page 3-50) notifies the transport that an application has opened and
is interested in data from the application. The In/Out Box sends this message
to all transports when it opens. This method is not defined by default in

prot oTransport since there is no default action—it’s transport-specific. If
you want to respond to the AppOpened message, you must define this
method in your transport.

This message is designed to support applications that might poll for data,
such as a pager. When the application is open, it can notify the transport with
this message so that the transport can poll more frequently (and use more
power) than when the application is closed, for example. Another use might
be for an application to notify a transport that automatically makes a
connection whenever the application is open.

The AppC osed message (page 3-49) notifies the transport that an
application has closed. The In/Out Box sends this message to all transports
when it closes. Again, this method is not defined by default in

prot oTransport since there is no default action—it’s transport-specific. If
you want to respond to the AppCl osed message, you must define this
method in your transport.

Note that more than one application can be open at a time in the system. If
you want your transport to do something like disconnect when it receives
this message, you should keep track of how many times it’s received the
AppOpened message and not actually disconnect until it receives the same
number of AppCl osed messages.

The Appl nFr ont message (page 3-50) notifies the transport of a change in
the frontmost status of an application—either the application is no longer
frontmost, or it now is. The In/Out Box sends this message to all transports
when another application is opened in front of the In/Out Box view, or when
the In/Out Box view is brought to the front. Note that the Appl nFr ont
message is not sent when an application is opened or closed.

Using the Transport Interface 3-21

3-22

CHAPTER 3

Transport Interface

Again, this method is not defined by default in pr ot oTr ansport since
there is no default action—it’s transport-specific. If you want to respond to
the Appl nFr ont message, you must define this method in your transport.

Error Handling

The default exception handling method implemented by pr ot oTr anspor t
is Handl eThr ow (page 3-61). This method will catch and handle exceptions
resulting from any supplied transport methods such as SendRequest and
Recei veRequest . You must provide your own exception handler for any
methods that you define, or you can pass them to Handl eThr ow as follows:

try begin
/1 do sonet hi ng
Throw() ;
onException |evt.ex| do
: Handl eThrow() ;
end

When handling an exception, Handl eThr owfirst calls | gnor eEr r or
(page 3-61) to give your transport a chance to screen out benign errors. If
| gnor eErr or returnst r ue, then Handl eThr owreturns ni | and stops.

Assuming the error is not rejected by | gnor eEr r or, Handl eThr ownext
checks if an item is currently being processed. If it is, it sends your transport
the | t enConpl et ed message (page 3-63) and then returns t r ue. Note that
I t emConpl et ed calls Handl eEr r or (page 3-60) to display an error alert to
the user. If no item is currently being processed, Handl eThr owsends the
Handl eEr r or message itself to display an error alert.

The Handl eEr r or message calls Tr ansl at eEr r or (page 3-75) to give your
transport a chance to translate an error code into an error message that can
be displayed to the user. If your transport can’t translate the error (for
example, because it’s a system-defined error) you should simply call the
inherited Tr ansl at eEr r or method, which handles system-defined errors.

Using the Transport Interface

CHAPTER 3

Transport Interface

Power-Off Handling

The pr ot oTr anspor t object registers a power-off handler with the system
for you. This power-off handler is registered whenever the transport is not in
the idle state. If the system is about to power off, this power-off handler
sends the transport the Power Of f Check message.

The default Power Of f Check method in pr ot oTr ansport displays a slip
asking for the user to confirm that it is ok to break the connection. Then,
when the power is about to be turned off, the system sends the transport the
Cancel Request message (page 3-51) and waits for the transport to become
idle before allowing the power to be turned off.

You can override the default Power Of f Check method if you wish. For
details, see the Power Of f Check method on page 3-70.

There is also a power-on handler that sends a Cancel Request message to
the transport when the system turns on after shutting down unexpectedly
while the transport was active.

Providing a Status Template

A status template for a transport is based on the proto

prot oSt at usTenpl at e. The status template is used for displaying status
information to the user. A transport should generally display a status view
whenever it is sent the Recei veRequest or SendRequest messages.

Probably you will not need to create your own status template. The

prot oTransport is defined with a default status template named

st at usTenpl at e (based on pr ot oSt at usTenpl at e). The

st at usTenpl at e includes six different predefined subtypes, described in
Table 3-1 and shown in Figure 3-1. Each of the predefined subtypes consists
of a set of child views that are added to the base status view. The base status
view includes just a transport icon and a close box, to which different child
views are added, depending on the specified subtype name.

Each child view included in a subtype has one important value that controls
the appearance of that child element. For example, the vPr ogr ess subtype
consists of three child views that have these important values: st at usText

Using the Transport Interface 3-23

CHAPTER 3

Transport Interface

(the string displayed at the top of the view), ti t | eText (the string
displayed at the bottom of the view), and pr ogr ess (an integer indicating
the percentage of the page that should be shown filled with black). The
important values for each of the subtypes is also shown in Table 3-1. This
information is necessary for use in the Set St at usDi al og method.

Table 3-1 Status view subtypes

Subtype name Important values Description
vSt at us st at usText (top string) A view that simply incorporates a
status line. This is the default subview
created by Set St at usDi al og.
vStatusTitle st at usText (top string), A view that incorporates a status line
titleText (lower string) and a line for the item's title.
vConfirm st at usText (top string), A view that has space for three lines of
pri mary (lower button text, and two buttons. This view is
text and method: suitable for situations where the user
{text: string, must choose between two options.
script: function}),
secondary (upper
button text and method:
{text: string,
script: function})
3-24 Using the Transport Interface

CHAPTER 3

Transport Interface

Table 3-1

Status view subtypes

Subtype name
vProgress

vGauge

vBar ber

Figure 3-1

Important values

st at usText (top string),
titl eText (lower string),
progr ess (integer,
percentage completed)

st at usText (top string),
titleText (lower string),
gauge (integer,
percentage completed)

st at usText (top string),
titl eText (lower string),
bar ber (settotrue)

Status view subtypes

Using the Transport Interface

Description

A view that incorporates status and
title lines, as well as a dog-eared page
image that fills from top to bottom,
based on the progress of the transfer.

A view that incorporates status and
title lines, as well as a horizontal gauge
that fills from left to right, based on the
progress of the transfer.

A view that incorporates status and
title lines, as well as a horizontal barber
pole-like image that can be made to
appear to move from left to right.

3-25

CHAPTER 3

Transport Interface

Looking for host__.

=

S5ending data set...

vStatus

vProgress

Cratazet 4

Connecting to host_ ..

vStatusTitle
DCrataset 4

Sending data set.
I
vGauge

Crataset 4
The host has a new data

set for you. Do you want
vConfirm to receive it now?

o) ®)

Sending data set...

vBarber LSS L LSS LSS LIS IS
Data set 4

A transport can specify that one of these subtypes be used in the status view
either by setting the transport vi ewSt at us slot (for example, vi ewSt at us
: = ' vProgress), or by passing the subtype name in the name parameter to
the Set St at usDi al og transport method (page 3-74). Transports can
dynamically switch from one status subtype to another without closing the
status view, and can easily update the contents of the status view as well (for
example, updating the progress indicator).

By using this set of predefined status templates, all transports will have a
similar user interface and will match the use of other status views
throughout the system.

3-26 Using the Transport Interface

CHAPTER 3

Transport Interface

For more detailed information on pr ot oSt at usTenpl at e and the various
predefined subtypes, refer to Chapter 16, “Additional System Services,” in
Newton Programmer’s Guide: System Software.

Controlling the Status View

Your transport should display a status view to the user whenever it is
engaged in some lengthy activity such as sending or receiving data. In
general, this means you must display a status view as part of the processing
you do whenever you receive a SendRequest or Recei veRequest
message that results in the transmission of data.

To display a status view, you use the transport method Set St at usDi al og
(page 3-74). If the aut oSt at us slot of the transport preferences frame is

t r ue, the status view will automatically be opened when you first send the
Set St at usDi al 0og message with a status other than ' i dI e as the first
parameter. If the status view is already open, Set St at usDi al og updates
the status view with the new status information you pass to it. If

aut oSt at us is ni |, the status view will not be opened because the user has
set a preference that it not be shown.

Here is an example of how to use the Set St at usDi al og method:

: Set St at usDi al og(' Connecting, 'vStatus, "Looking for host...");

The Set St at usDi al og method (page 3-74) takes three parameters. The
first is a symbol indicating what the new transport status is. This is typically
one of the slots in the di al ogSt at usMsgs frame (page 3-45), such as

' Connecting, or' | dl e. The second parameter is the name of the status
subtype you want to use. You can specify one of the built-in subtypes
described in the previous section, or you can specify the name of a custom
subtype that you have constructed. (You specify the value of the nane slot in
the subtype template.) For information on constructing custom

pr ot oSt at usTenpl at e view subtypes, see Chapter 16, “Additional
System Services,” in Newton Programmer’s Guide: System Software.

The third parameter is typically a frame that contains one or more slots of
values. Each slot corresponds to a single child view within the subtype you

Using the Transport Interface 3-27

CHAPTER 3

Transport Interface

are using, and it sets the value of that child view. A slot name is the value of
the name slot in the child view you are setting, and the value is whatever
important value that type of view uses. The slot names and the expected
values for each of the predefined status subtypes are listed in the “Important
values” column in Table 3-1.

Here are some examples of how you’d use the Set St at usDi al og method
to set the different status subtypes to create the status views shown in
Figure 3-1:

/1 vStatus subtype
. Set St at usDi al og(' Connecting, 'vStatus, "Looking for host...");

/1 vStatusTitle subtype
. Set St at usDi al og(' Connecting, 'vStatusTitle, {statusText:
"Connecting to host...", titleText: "Data set 4"});

/1 vConfirm subtype

: Set St at usDi al og(' Confirming, 'vConfirm {statusText:"The host has
a new data set for you. Do you want to receive it now?",
secondary: {text: "Receive Data Set", script: func() yourfunction here},
primary: {text:"Di sconnect Now', script: func() yourfunction here}});

/1 vProgress subtype
: Set St at usDi al og(' Sendi ng, 'vProgress, {statusText: "Sending data

set...", titleText: "Data set 4", progress:40});

/1 vCGauge subtype
: Set St at usDi al og(' Sendi ng, 'vGauge, {statusText: "Sendi ng data
set...", titleText: "Data set 4", gauge: 40});

/1 vBarber subtype

. Set St at usDi al og(' Sendi ng, 'vBarber, {statusText: "Sending data
set...", titleText:"Data set 4", barber:true});

3-28 Using the Transport Interface

CHAPTER 3

Transport Interface

Once the status view is open, each time you call Set St at usDi al og, the
system closes and reopens all its child views. This is fairly fast, but if you just
want to update a progress indicator that is already visible in the subtypes
VProgr ess, vGauge, or vBar ber, you can use the alternate method

Updat el ndi cat or to do so. This method of pr ot oSt at usTenpl at e
simply updates the progress indicator child of the status view: the page
image for the vPr ogr ess subtype, the horizontal bar for the vGauge
subtype, and animation of the barber pole for the vBar ber subtype.

For example, here’s how you would use Updat el ndi cat or to update the
vGauge subtype:

st at usDi al og: Updat el ndi cat or ({ nane: ' vGauge, val ues: {gauge: 50,}})

Note that the frame of data you pass to Updat el ndi cat or consists of two

slots, name and val ues, that hold the name of the subtype and the value(s)
you want to set, respectively. The val ues slot is specified just like the values
parameter to Set St at usDi al og.

Also note that Updat el ndi cat or is a method of pr ot oSt at usTenpl at e,
and you need to send this message to the open status view. A reference to the
open status view is stored in the st at usDi al og slot of the transport frame,

so you can send the message to the value of that slot, as shown above.

The vBar ber subtype shows a barber pole-like image, but it doesn’t animate
automatically. To make it appear like it's moving, you would use the
Updat el ndi cat or method in a Vi ewl dl eScri pt method, like this:

/1 create the initial vBarber status view
: Set StatusDi al og(' Sendi ng, 'vBarber, {statusText: "Sending data
set...", titleText:"Data set 1", barber:true});

/1 set up the status view data franme
st at usDi al og. bar ber Val ueFrane : ={nane:' vBarber, val ues: { barber:true}}

/1 set up the idle script
statusDi al og. view dl eScript: = func()

Using the Transport Interface 3-29

CHAPTER 3

Transport Interface

begi n

: Updat el ndi cat or (bar ber Val ueFrane); // spin the barber
return 500; // idle for 0.5 seconds

end;

/1 start the idler
st at usDi al og: set upi dl e(500)

If the aut oSt at us slot of the transport preferences frame is t r ue, the status
view will automatically be closed when you send the Set St at usDi al og
message with ' i dl e as the first parameter. If aut oSt at us is ni | , the status
view will not have been opened in the first place.

You can force the status view to close manually by sending the transport the
message Cl oseSt at usDi al og. However, the next time you send the
message Set St at usDi al og with a state other than ' i dl e as the first
parameter, the dialog will reopen.

Providing a Routing Information Template

When viewing an item in the In/Out Box, the user can tap the transport icon
to the left of the item title to display a view that gives routing information
about the item. For example, for a fax item, the fax phone number is
displayed, and for a mail item, the e-mail header is shown. Here is an
example:

3-30 Using the Transport Interface

CHAPTER 3

Transport Interface

Tap Transport ef) A Subject Ready
Icon Next to Juneau Macheth Sat 11411 8:32 am
Title
Title & Subject
Routing
Information View E@ eWorld
is Displayed Size: 165 bytes (Internal)

To: blah@blah.com E

You should create a template for a routing information view for your
transport, using pr ot oTr anspor t Header (see page 3-77). If you don’t
specify a header view, your transport will use the default view, which
displays the item title, the transport icon and name, and the item’s size in the
In/Out Box soup (these are the first three elements in the picture above).

In your transport object, store a reference to your routing information
template in the t r anspor t | nf oFor mslot.

To add your own information to the routing information view, you can
provide a Bui | dText method (page 3-77). From your Bui | dText method,
you call the AddText method (page 3-77) for each additional line of text you
want to add below the existing elements. Alternatively, you can simply add
child views to the routing information view.

The header view may include editable fields. If the user changes something
in an editable field, you probably want to know about it so that you can save
the new information or perform other operations. The | nf oChanged
message is provided for this purpose (see page 3-78). This message is sent to
whatever object you designate when the header view is closed.

Using the Transport Interface 3-31

3-32

CHAPTER 3

Transport Interface

Providing a Routing Slip Template

A routing slip is used by a transport when sending an item. The purpose of a
routing slip is to get all the information necessary to transmit the item. Since
the user interface for the routing slip is provided by the transport, the
application does not need to know anything about what is required to send
the item.

In your transport object, store a reference to your routing slip template in the
routingSlip slot.

You use the pr ot oFul | Rout eSl i p template to create a routing slip. This
proto is described in the following section.

Two additional protos that you might want to use in routing slips are also
described in the following sections: pr ot oAddr essPi cker and
pr ot oSender Popup.

Using protoFullRouteSlip

This routing slip proto already includes most of the elements required in a
routing slip. For a complete description of this proto, see the section
“protoFullRouteSlip” beginning on page 3-78. Here is an example:

Erasmus fMulhony

i [€]
\\

#Format Plain protoFormatPicker
(Appears only if there is multiple formats)

L J

protoSenderPopup

| protoSendButton

[Fax) ()

protoCancelButton

The transport name and stamp icon in the upper right corner of the routing
slip are automatically supplied. They are based on the
transport. acti onTi t| e and transport. i con slots.

Using the Transport Interface

CHAPTER 3

Transport Interface

The f or mat Pi cker child in pr ot oFul | Rout eSl i p provides the picker list
for choosing among multiple formats. It is based on pr ot oFor mat Pi cker.
The current format is initially displayed. This proto provides for opening an
auxiliary view if one is associated with the current format. This proto uses
the cur r ent For mat slot in the item (the f i el ds. cur r ent For mat slot in
the routing slip) and the f or mat s array and act i veFor mat slot in the
routing slip to set up the picker with the correct choices. These slots are set
up by the system.

When the user picks another format, the act i veFor mat slot is updated,
which changes the format choice shown next to the label. Additionally, the

| ast For mat s frame in the application is updated, and cur r ent For mat in
the item is updated. This proto also sends the Set upl t emmessage to the
format itself. If the format contains an auxFor mslot, the view specified in
the auxFor mslot is opened when the format is selected.

The sendBut t on child in pr ot oFul | Rout eSl i p provides the button that
actually sends the item to the Out Box and can also activate the transport. It
is based on pr ot 0SendBut t on. When tapped, the button may display a
picker with the choices “Now” and “Later,” or it may immediately send the
item now or later. It's operation depends on the user preference setting of the
nowOr Lat er slot in the preferences configuration frame described in

Table 3-2 on page 3-48, and on the return value of the transport

Connect i onDet ect method (page 3-53), which can force the button to send
now or later without displaying a picker.

The Send button also handles submitting multiple items to the Out Box
when the user has selected many entries from an overview. If the user has
selected multiple items but the transport cannot handle cursors

(al I owBodyCur sor s transport slot is ni |), the system sends the transport
the Veri f yRout i ngl nf o method (page 3-76). This method allows the
transport to modify each of the individual items, if necessary.

The general function of the Send button is to submit the content of the

fi el ds slot in the routing slip to the Out Box. (The f i el ds slot holds the
item being routed and other information about it.) If “Now” is selected, the
button also sets the connect slot to t r ue in the item, which the transport
can choose to act on by connecting immediately.

Using the Transport Interface 3-33

3-34

CHAPTER 3

Transport Interface

The name of the current transport is shown in the upper-right corner of the
prot oFul | Rout eSl i p view. If that transport belongs to a group, the
transport name is actually a picker, from which the user can choose any of
the other transports in the group. The picker is displayed only if there is
more than one transport that belongs to the group. If the user changes the
transport, the system closes and reopens the routing slip for the current
target item, since the routing slip may be different for a different transport.
Before the routing slip is closed, it is sent the Tr anspor t Changed message
(page 3-82). This allows the routing slip to take any necessary action such as
alerting the user that information might be lost as a result of changing
transports. For more information on grouped transports, see the section
“Grouping Transports” beginning on page 3-7.

Besides the supplied elements, your transport needs to add additional
elements to the routing slip view that are transport specific. For example,
transports are responsible for adding the views that occupy the middle of the
envelope area, to obtain routing or addressing information for the item. And
transports typically add other elements to the area below the envelope. The
following illustration shows what a complete routing slip might look like,
after you add transport-specific items:

.Erasmus Mulhony Fax 1‘3@
home

®MName Nohe protoAddressPicker

#*Format Plain
Cover Page Standard

W Fine resolution i1 Manually connect

[Preuiew] ['B‘ A.ssist] [Notes] [’Fal{] E]

In the middle of the envelope portion of your routing slip template, you
typically include a view that gathers and displays routing or address
information for the item being sent. You’'ll probably want to use the

pr ot oAddr essPi cker to allow the user to choose recipients for the item.

Using the Transport Interface

CHAPTER 3

Transport Interface

For details on how to use this proto, see the section “Using
protoAddressPicker” beginning on page 3-36.

Positioning Elements in the Lower Portion of the Routing Slip

The height of the lower portion of the routing slip is controlled by the

bot t ol ndent slot. Placing your own user interface elements in this
portion of the routing slip is complicated by the fact that the format picker
may or may not be inserted by the system. It is only included if there is more
than one format for the item. Also, the system performs animation on the
routing slip, changing the location of the bottom bounds.

Any user interface elements you add to this portion of the routing slip must
be positioned relative to the bottom of the slip dynamically, at run time. You
can determine the position of the bottom of the slip by calling the routing
slip method Bot t onTX Sl i p (page 3-80). An alternative method of
positioning elements dynamically is to make them sibling bottom-relative to
the last child of the routing slip proto, which is the Send button.

Note that only the first child element you add needs to follow these rules.
Any other elements you add should be positioned sibling-relative to it.

Using Owner Information

The pr ot oFul | Rout eSl i p view sends the Oaner | nf oChanged callback
method (page 3-81) to itself if the user changes the selection of owner name
or worksite location in the pr ot 0Sender Popup view. The

Owner | nf oChanged method provides you a chance to update any
information in the routing slip that depends on data in the sender’s current
owner card or worksite. In addition, the f r onRef slot in the item will
probably need to be updated with new sender information. For more
information about setting the f r onRef slot, see the section “Obtaining an
Item Frame” beginning on page 3-14.

One issue to consider when saving items in the Out Box for later
transmission is when to read the sender’s owner card and worksite
information. In general, any data you use from the owner card should be
obtained from the current persona at the time the item is queued by the user.

Using the Transport Interface 3-35

3-36

CHAPTER 3

Transport Interface

Such information might include the sender’s name, return address, credit
card information, and so on.

However, if you use worksite information (for example, for addressing), you
may want to wait until the item is actually transmitted to obtain the most
current information based on the user’s current worksite setting, and
possibly modify addressing information at that time. For example, if a user
queued several fax items from home but didn’t send them until she got to
work, the area code information for telephone numbers might need to be
changed.

Using protoAddressPicker

This proto provides a picker list that you can use in the routing slip to allow
the user to choose the recipient(s) of the item being sent.

The first time ever that the user taps on the address picker, it opens a view
that displays a list of names from the Names file, from which the user can
choose one or more recipients.

+ All Names
gaaﬁmmammmu y?

f: Anderson, Bob {315)555-4476

f1 Conglomerated Cr # (800)555-1000
Erica, Sarah {415)555-1222
Morrison, Christin {415)555-0987
Mulhony, Erasmu & (415)555-2345 g

1 Newton Cafe *(617)555-1000
F~1 Walthrop, Royce {419)555-3543

77 Selected Only @I

This view uses the pr ot oPeopl ePi cker to provide the name picking
facility. The address picker is customizable so that you can substitute a
different name picking service other than pr ot oPeopl ePi cker by setting

Using the Transport Interface

CHAPTER 3

Transport Interface

the _pi cker slot. For example, an e-mail transport might want to use this
facility to provide an alternate directory service.

Once the user picks a name, this information is saved, and the next time the
address picker opens, it displays a small picker listing this saved name and
the choice “Other . .. ”. The user can choose “Other . ..” to reopen the

pr ot oPeopl ePi cker view and select from the comprehensive list of
names. Each time a new name is selected, it is saved and added to the initial
address picker list, giving the user a convenient way to select from recently
used addresses. The address picker remembers the last eight names selected.

Judy Sundance —
2 5an Francisco Rt

[#Narne | Royce Walthrop {(Home)
Bob Jones {Fax)

Bob Zimmer {Fax)
Newton Cafe (Fax)
Judy Sundance {Fax)
Format A Bob Anderson {Home)

& Cover Pag Dther Names

H# Fine reasolution 773 Manually connect

[Preview] [Notes] ["ﬂ‘ Assist] [*Fax] @

The Intelligent Assistant also interacts with the address picker. If the user
invokes a routing action such as “fax Bob” with the Intelligent Assistant, the
Intelligent Assistant sets up the address picker with a list of alternatives from
the Names file. It might look like this:

Judy Sundance —
» 5an Francisco Lt

ELEE vBob Jones (Fax)

Bob Zimmer (Fax)
Bob Anderson (Fax)
Joe Bob {Fax)

Bob Anderson {Home)

#Format £

Other Mames
§ [TyTr Ty

¥ Cover Page

¥ Fine resalution 71 Manually connect

[Preview] [Notes] ["ﬂ‘ Assist] [*Fax] @

Using the Transport Interface 3-37

3-38

CHAPTER 3

Transport Interface

For a complete description of pr ot oAddr essPi cker, see the section
“protoAddressPicker” beginning on page 3-84.

The pr ot oAddr essPi cker uses name references to refer to individual
names. A name reference is a frame that contains a soup entry or an alias to a
soup entry, usually from the Names soup, hence the term name reference.
The system includes built-in data definitions that can access name references
and it includes associated view definitions that can display the information
stored in or referenced by a name reference. The built-in data definitions and
view definitions are registered under subclasses of the symbol ' naneRef .
For more information about name references, refer to the

prot oLi st Pi cker documentation in Chapter 6, “Pickers, Pop-up Views,
and Overviews,” in Newton Programmer’s Guide: System Software.

Most transports can use the built-in name reference data and view
definitions to handle and display name references. For example, one place
you might need to use these is if you need to build a string representing the
address or addresses chosen in the pr ot oAddr essPi cker. The sel ect ed
slot of the pr ot oAddr essPi cker will contain an array of name references
for the names selected by the user in the picker. You can use the name
reference data definition method Get Rout i ngTi t | e to return a string
representing all the selected addresses, truncated to the length you specify.
Alternately, you can use the transport method Get NanmeText (page 3-57) to
do the same thing.

Using protoSenderPopup

This proto is a child of pr ot oFul | Rout eSl i p and provides the picker view
in the upper left corner of the routing slip for choosing the appropriate
owner and worksite to identify the sender of the item.

WL Chiis Bent
. = 5.
Work Chris Bent-5mith
Concord

Home
Work

Other City

Using the Transport Interface

CHAPTER 3

Transport Interface

This proto is documented here in case you want to use it in a custom routing
slip of some kind.

This picker allows the sender of the item to select a different owner persona
or worksite, which might affect how the owner’s name and address appear
and how the item is sent. For example, if you choose a home worksite which
has a different area code from your work, and you are sending a fax to work,
the system will automatically insert a 1 and the work area code before the
phone number, which it wouldn’t do if you told the system you were located
in the work area code.

The default owner name (or persona as it is sometimes called) shown by this
picker is the one corresponding to the last used owner name for a routing
operation. The default worksite for the owner is the one corresponding to the
last worksite used for a routing operation, or the setting of the home location
in the Time Zones application (whichever was done last). Note that
additional owner names and worksites can be created by users in the Owner
Info application.

There are no slots you need to set to use pr ot oSender Popup. Simply create
a view based on this proto and include it as a child of your routing slip.

Providing a Preferences Template

Transport preferences are accessed and changed from the information button

in the In/Out Box. (The information button is the small button with an “i” in
it.) Each transport that has a preferences view is listed in the information

Using the Transport Interface 3-39

3-40

CHAPTER 3

Transport Interface

menu, as shown in this example:

Help Fax Preferences
Prefs ————
Modem Prefs #Answer phone after 2 rings
Print Prefs #When faxing Specify when
Fax Prefs :
Beam Prefs # After sending a fax

ﬂ eWorld Prefs Delete

#File read faxes in

“Unfiled Items™

[Schedule] [Receiue NMode]

Information Button Menu Example Preferences View

To make a preferences view for a transport, you create a template with a
prototype of pr ot oTr anspor t Pr ef s (see page 3-86). In your transport
object, store a reference to your preferences view template in the

pr ef er encesFor mslot. When the information menu is displayed, a menu
item is automatically included for each transport that has a preferences
template registered in the transport’s pr ef er encesFor mslot.

Each transport may add its own preferences view for configuring any
options that apply to that transport. Some common options include

enable/disable logging

deferred /immediate send

enable/disable listening

default folders for new and read or sent items

show /hide status and progress dialogs

Using the Transport Interface

CHAPTER 3

Transport Interface

The pr ot oTr anspor t Pr ef s proto provides a dialog containing the
preferences items shown here:

Show status dialogs Controlled by * si | ent Pr ef s slot
#When beaming S¢hd now Controlled by * sendPr ef s slot

After beaming Controlled by * out boxPr ef s slot
Delete

#File read items in Controlled by ' i nboxPr ef s slot
“unfiled Items”

@ Fa3 Controlled by * i nf oPr ef s slot

You can selectively remove any of the elements shown above by setting the
corresponding slot to ni | in the pr ot oTr ansport Pr ef s view. If you want
to include additional items in your preferences view, you can add child
views to the pr ot oTr ansport Pr ef s view. The default child elements
positioned in the center of the view are added from the bottom up and are
justified relative to the bottom of the preferences view or to the top of their
preceding sibling view. To add other child elements, simple increase the
height of the view and add your elements above those that already exist,
except for the title.

Another feature of the pr ot oTr ansport Pr ef s template is that it
automatically checks your transport and displays or hides the In Box and
Out Box preference elements. If your transport does not contain a
SendRequest method, then the Out Box preference element is not
displayed. If your transport does not contain a Recei veRequest method,
then the In Box preference element is not displayed. If the latter element is
not included, the Out Box element is automatically drawn at the bottom of
the preferences view.

For example, the built-in Print transport uses the pr ot oTr ansport Pr ef s
proto for its preferences view. Since the Recei veRequest method does not
exist in the Print transport, the In Box preference element is not displayed, as

Using the Transport Interface 3-41

3-42

CHAPTER 3

Transport Interface

is illustrated here:

Print Preferences
T D AR

¥ Show status dialogs
#When printing Specify when
¥ After printing

Delete

The Info button is included in the pr ot oTr anspor t Pr ef s template so that
you can give the user access to About and Help views for the transport. The
Info button is built from the standard pr ot ol nf oBut t on proto. To include
particular items on the Info picker, you must provide handler methods in the
i nf oPr ef s slot of your transport preferences view. The

prot oTr anspor t Pr ef s template includes a handler for the “Help” item
that simply displays the system help book, open to the routing section. You'll
need to override this method if you want to provide your own help
information.

You can also add your own custom items to the Info picker. To do this, you
must supply Genl nf oAux| t ens and Dol nf oAux methods in the

i nf oPr ef s frame. For more information about these methods and how the
Info button works, see the documentation for pr ot ol nf oBut t on in
Chapter 7, “Controls and Other Protos,” in Newton Programmer’s Guide:
System Software 2.0.

The def aul t Conf i gur at i on slot (page 3-47) in the pr ot oTr anspor t
holds the initial preferences associated with the transport. This slot is set up
by default with a frame holding an initial selection of preferences items. The
child views of the pr ot oTr anspor t Pr ef s proto are designed to
manipulate the slots in this frame.

If you want to override the default preferences frame, you’ll have to
construct an identical one with different values. You can’t use a _pr ot o
pointer to the default frame since the contents of the

def aul t Confi gur at i on slot are stored in a soup and _pr ot o pointers
can’t be stored in soup entries.

Using the Transport Interface

CHAPTER 3

Transport Interface

Transport Interface Reference

This section describes the protos and routines provided by the Transport

interface.

Protos

This section describes transport-related protos.

protoTransport

This is the basic transport object.

Slot descriptions
appSynbol

title

dat aTypes

actionTitle

Required. A symbol used to identify this transport in
In/Out Box soup items and in the globalt ransports
array. This symbol must be unique, so it is
recommended that you append your registered
developer signature.

Required. A string that is the name used to identify this
transport to the user.

Required. An array of symbols representing routing
types supported by this transport. The currently defined
types in the system include ' vi ew ' frang, ' t ext,
and ' bi nary. Other types may be defined, but only
those applications aware of them can use them. You can
omit this slot if your transport will not appear in the
Action picker.

Optional. A string that is the name of the routing action
to take place. If you don’t provide this slot, the default is
“Send”. This string is displayed in the routing slip next
to the stamp in the upper-right corner, and is used for
the text on the send button.

Transport Interface Reference 3-43

3-44

CHAPTER 3

Transport Interface

i con

group

groupTitle

groupl con

routingSlip

Optional. The bitmap frame for an icon used for this
transport (in the Action picker and In/Out Box), as
returned by the NTK picture slot editor or the

Cet Pi ct AsBi t s function. If this slot is not specified,
the default icon is the one used for the Mail action. If
your transport is a member of a group, the gr oupl con
slot specifies the icon to use in the Action picker, and the
i con slots specifies the icon to use in the routing slip.

Optional. A symbol specifying which transport group
the transport belongs to, if it belongs to a group. The
following group symbols are defined internally: ' mai |,
"print,' fax,and' beam

Optional. A string that is the name to be displayed for
this transport when it is shown in a transport group
picker in the routing slip. The strings corresponding to
the built-in transport groups include: “Mail”, “Print”,
“Fax”, and “Beam”.

Optional. The bitmap frame for an icon used for this
transport group (in the Action picker and In/Out Box),
as returned by the NTK picture slot editor or the

Cet Pi ct AsBi t s function. All transports in the same
group should specify the same icon. If you specify this
slot, then you can include a unique icon for your
transport in the i con slot. The following magic pointer
constants reference built-in bitmaps that are for use with
the built-in transport groups: ROM_Rout eMi | | con,
ROM Rout ePri nt 1 con, ROM Rout eFaxl con,

ROM _Rout eBeanl con

Required for transports that send data. A template for
the routing slip. See the section “Providing a Routing
Slip Template” beginning on page 3-32. If you don’t
specify this slot, the default is pr ot oFul | Rout eS| i p.

transport | nf oForm

Optional. A template for the routing information view
displayed in the In/Out Box. This template is created
using pr ot oTr anspor t Header . If you don’t include
this slot, you will get the default template that shows

Transport Interface Reference

CHAPTER 3

Transport Interface

the item title, transport, and item size. See the section
“Providing a Routing Information Template” beginning
on page 3-30.

pr ef er encesFor mOptional. A template to use for creating a preferences

statusTenpl ate

st at usDi al og

vi ewsSt at us

nodal St at us

view for this transport. This template should be based
on prot oTr ansport Pr ef s. Transport preferences are
accessed from the Info button in the In/Out Box. If you
don’t specify this slot, the default is

prot oTr anspor t Pr ef s. See the section “Providing a
Preferences Template” beginning on page 3-39.

Optional. A template for the status dialog, based on
pr ot oSt at usTenpl at e. You use the method

Set St at usDi al og to manipulate the contents of the
status dialog.

A reference to the status dialog view (an instantiated
st at usTenpl at e). When this view is not open, this
slotis ni |, obviously.

The particular type of status subview to use when
opening or updating the status dialog. For instance, if
vi ewSt at us is' vPr ogr ess, the vPr ogr ess subview
is used the next time Set St at usDi al og is called. For
more information on status subviews, see the section
“Providing a Status Template” beginning on page 3-23.

Optional, a Boolean. Tr ue means that you want your
status dialogs to be modal, meaning that they won't
include a close box. The default is ni | , meaning that
status dialogs are non-modal and do include a close box.

di al ogSt at usMsgs

Optional. A frame containing the status to status-string
mappings. Your transport can override this if it wants
different status to status-string mappings. This is the
default frame:

{Idle: "",
Connecting: "Connecting..!,

Transport Interface Reference 3-45

3-46

CHAPTER 3

Transport Interface

i tentt at eMsgs

status

addr essi ngd ass

Sendi ng: " Sending..",

Recei vi ng: "Receiving..!,

Confirmng: "Confirmng..",

Di sconnecting: "Di sconnecting..!,

Cancel i ng: "Canceling..”,

Li steni ng: "Listening..",}

Optional. A frame containing the item status to
progress—string mappings. Your transport can override
this if you want a different set of strings. (You may also

add items to this frame, but do not remove any.) This is
the default frame:

{Recei ved: "New',

Read: "Read",
Ready: "Ready",
Sent: "Sent",

I nLog: "Logged",
Qut Log: "Logged",
Pendi ng: " Pendi ng",
Renote: "Renote",
Error: "Error"}

A symbol that identifies the current state of the
transport. Do not set this slot, only read it. The possible
values correspond to the slot names in the

di al ogSt at usMsgs frame.

A symbol specifying the class of the address
information in the t oRef and f r onRef slots of an item.
A name reference data definition for this class must be
registered in the system. The default is

" | nameRef . emai | | . The In/Out Box uses this to
display the to/from address information. For more
information, see the section “Setting the Address Class”
beginning on page 3-7.

Transport Interface Reference

CHAPTER 3

Transport Interface

addr essSynbol s An array of symbols identifying e-mail classes that do

not need to be translated for use by this transport. For
more information on how this slot is used, see the
Nor mal i zeAddr ess method (page 3-68).

al | owBodyCur sor s

A Boolean value that indicates if the transport can
handle a cursor object in the body slot of an item in a
send request. If the transport can parse and handle a
cursor, set this slot to t r ue. Otherwise, set this slot to

ni |, and the In/Out Box will never send the transport a
cursor object in the body slot; it will always parse the
cursor ahead of time and send the transport multiple
send requests—one for each item.

defaul t Confi guration

A frame holding values representing the initial user
preferences for the transport. The default value of this
slot is the frame described in Table 3-2. If you want to
override this frame, you’ll have to construct an identical
one with different values. You can’t use a_pr ot o
pointer to the default frame since this slot is stored in a
soup and _pr ot o pointers aren’t stored in soup entries.
Note that the transport preferences view based on

prot oTr ansport Pr ef s interacts with this frame
when the user changes preferences.

IMPORTANT
Never set the def aul t Confi gurationslottonil. a

Transport Interface Reference 3-47

CHAPTER 3

Transport Interface

Table 3-2 Preferences slots

Slot
aut oSt at us

i nboxLoggi ng

out boxLoggi ng

Description

Aboolean. Tr ue means that you want the pr ot oTr ansport to open
and close the status dialog based on the transport’s status. Ni | means
that the status slip stays hidden. This slot corresponds to the “Show
status dialogs” preferences check box. The default setting ist r ue.

One of the values ' save, ' | og, or ni | . This value determines what's
done with an entry after the received item has been put away. The
value ' save means the item is saved in the In Box; ' | 0g means the
item is deleted from the In Box and a log entry is made; and ni |
means the item is deleted from the In Box. The default is ni | . See
“ItemCompleted” beginning on page 3-63.

One of the values ' save,' | og, or ni | . This value determines what's
done with an entry after the send completes successfully. The value

' save means the item is saved in the Out Box; ' | 0og means the item
is deleted from the Out Box and a log entry is made; and ni | means
the item is deleted from the Out Box. The default is ni | . See
“ItemCompleted” beginning on page 3-63.

3-48 Transport Interface Reference

CHAPTER 3

Transport Interface

Table 3-2 Preferences slots
Slot Description
i nboxFi l'ing A symbol indicating in which In Box folder an item is to be filed

outboxFilin

nowor | at er

when it is received. Specify a symbol representing a folder name, or
ni | to file incoming items in the Untitled folder, or the symbol

' sane to leave the item where it is (note that this is essentially the
same effect as ni |). Note that filing doesn’t happen until after the In/
Out Box is closed. The default is the symbol ' sarne.

g A symbol indicating in which Out Box folder an item is to be filed
after it is sent. Specify a symbol representing a folder name, or ni | to
file sent items in the Untitled folder, or the symbol ' sane to leave the
item where it is. Note that filing doesn’t happen until after the In/
Out Box is closed. The default is the symbol ' sare.

A symbol indicating what action the Send button in the routing slip
should take when the user taps it. Specify the symbol ' nowto force
the button to always send items immediately (corresponds to the
“Send now” preferences choice). Specify the symbol ' | at er to force
the button to always send items later (corresponds to the “Send later”
preferences choice). Specify ni | to force the button to display a
picker allowing the user to choose now or later each time
(corresponds to the “Specify when” preferences choice). The default
isnil.

Note that the t r ansl at e slot of pr ot oTr ansport is used internally and is
reserved.

The methods that are of interest in pr ot 0Tr ansport are described in the
following subsections, in alphabetical order.

AppClosed

transport: AppCl osed(appSymbol)

This message notifies the transport that an application has closed. The In/
Out Box sends this message to all transports when it closes.

appSymbol A symbol identifying the application that closed.

Transport Interface Reference 3-49

3-50

CHAPTER 3

Transport Interface

This method is not defined by default in pr ot oTr ansport since there is no
default action—it’s transport-specific. If you want to respond to the
AppC osed message, you must define this method in your transport.

For more information about using the AppCl osed method, see the section
“Application Messages” on page 3-20.

ApplInFront

transport: Appl nFr ont (inFront, appSymbol)

This message notifies the transport that an application is no longer the
frontmost application or that it is now the frontmost application. The In/Out
Box sends this message to all transports when it becomes frontmost or is no
longer frontmost.

inFront A Boolean. This value is set to t r ue if the application is
now the frontmost application. This value is set to ni |
if the application is no longer the frontmost application.

appSymbol A symbol identifying the application whose frontmost
status has changed.

This method is not defined by default in pr ot oTr ansport since there is no
default action—it’s transport-specific. If you want to respond to the
Appl nFront message, you must define this method in your transport.

For more information about using the Appl nFr ont method, see the section
“Application Messages” beginning on page 3-20.

AppOpened

transport: AppQpened(appSymbol)

This message notifies the transport that an application has opened and is
interested in data from the transport. The In/Out Box sends this message to
all transports when it opens.

appSymbol A symbol identifying the application that opened.

Transport Interface Reference

CHAPTER 3

Transport Interface

This method is not defined by default in pr ot oTr ansport since there is no
default action—it’s transport-specific. If you want to respond to the
AppOpened message, you must define this method in your transport.

For more information about using the AppOpened method, see the section
“Application Messages” on page 3-20.

CancelRequest

transport: Cancel Request (why)

This method should be defined by all transports. This message is sent to the
transport to request that the current send or receive operation be canceled.

why A symbol identifying the reason why the transport
should cancel the current operation. The following
symbols are defined:
" power O f The Newton is powering-off.
" emer gencyPower On
The Newton just turned on after shutting
down unexpectedly. That is, the transport
was not idle and the power was lost and
so the shutdown was not handled cleanly.
" user Cancel
The user canceled the operation, usually
by means of the Stop button in the status
slip.
When receiving this message, the transport should terminate the
communication operation as soon as possible.

This method should return t r ue if it is ok to turn off power immediately
after this method returns. This method should return ni | if it is not ok to
turn off power immediately. In the latter case, the system waits until your
transport returns to the idle state before turning off.

For more information about using the Cancel Request method, see the
section “Canceling an Operation” on page 3-13.

Transport Interface Reference 3-51

3-52

CHAPTER 3

Transport Interface

CanPutAway

transport. CanPut Away (item)

This message is sent to your transport when the user has selected an In/Out
Box item and then taps the Tag button in the In/Out Box (the button that
looks like a tag). This method allows your transport to add a put away
option for the item. If you don’t implement this method, the message won’t
be sent.

item An item frame containing the item the user requested be
put away from the In/Out Box.

It there are no predefined put away options for the item (no applications
have registered to handle that data class), and you do not add an option
using CanPut Away, then the Put Away choice is not included in the In/Out
Box Action picker. If there is one option, then the Put Away choice does
appear and, if selected, the single option is shown in the Put Away slip. If
there are multiple options, then a Put Away picker is displayed in the Put
Away slip.

If you want to do nothing with the item, or do not know how to put it away,
you can return ni | from CanPut Away. In this case, no option is added by
this method.

If you want to allow the item to be put away by a particular application that
hasn’t previously registered to handle data of the item’s class, you can return
the appSynbol of that application from this method. Then that application
will be added as a put away option for the user to choose.

If you want to allow the item to be put away by a particular application (or
even by your transport), and you want a different name displayed to the user
in the Put Away picker, you can return a frame that looks like this:

{appNane: string, // app name shown to user
appSynbol : symbol} // appSynbol of app to put away itemto

The latter option allows your transport to put away the item to itself and do
some kind of special handling, while telling the user that the item is being
put away to a different application. For example, a transport might want to

Transport Interface Reference

CHAPTER 3

Transport Interface

convert the item to another data type and then internally call the
Put Away Scr i pt method of another application.

In any case, the CanPut Away method simply adds a put away alternative to
those already available to the user for the item. The user can choose any
alternative.

CheckOutbox
transport: CheckQut box()

Send this message to cause the In/Out Box to send your transport a
SendRequest for all queued items waiting to be sent. The SendRequest
message includes a request argument, in which the cause slot is set to ' user.

Do not override this method.

CloseStatusDialog

transport: Cl oseSt at usDi al og(fromUser)
Send this message to explicitly close the status dialog.

fromUser A Boolean that should be set to t r ue if the close is a
result of the user tapping the status slip close box. When
you call this method, you should always set this
parameter toni | .

Do not override this method.

If you close the status slip programmatically (fromUser is ni |), the next call
to Set St at usDi al og with a status other than ' i dI e will reopen the status
slip. If the user closes the status slip, it will remain closed for the remainder
of the current communication transaction.

ConnectionDetect

transport: Connect i onDet ect ()

This message is sent to a transport when the routing slip is displayed. It
provides an opportunity for the transport to control the operation of the
Send button in the routing slip.

Transport Interface Reference 3-53

3-54

CHAPTER 3

Transport Interface

In most transports, the Send button contains a picker with the choices
“Now” and “Later.” From this picker, the user can choose whether to send
the item immediately or queue it in the In/Out Box for sending later. The
default transport preferences interface also allows the user to set a preference
for the Send button. The user can make this button always send now, later, or
display a picker so the user can choose between now or later.

If you want to force the Send button to send now or later, you can implement
the Connect i onDet ect method. You should return the symbol ' nowor

" | at er, to specify when the item should be sent (no picker is displayed).
You can also return ni | , which causes the “Now /Later” picker to be
displayed.

The default version of this method implemented in pr ot oTr anspor t
returns the value stored in the nowOr Lat er slot (page 3-49) from the
transport configuration frame, so it simply respects the user preference
setting. You can override this method to force a different behavior.

GetConfig

transport. Get Conf i g(prefName)

Send this message to return a value from the transport preferences stored in
the system user Conf i gur at i on frame.

prefName A symbol identifying a transport preferences slot.

This method fetches the value of the slot identified by prefName in the frame
identified by the appSynbol of the transport in the system

user Confi gur ati on entry. You can override this method if you want to do
something different.

GetDefaultOwnerStore

transport: Get Def aul t Oaner St or e()

Send this message to return the default store for the transport owner
application (the In/Out Box). If your transport creates virtual binary objects,
you must use this method to determine the store on which to create a virtual
binary object.

Transport Interface Reference

CHAPTER 3

Transport Interface

GetFolderName

transport: Get Fol der Narre(item)

This message is sent to a transport by the In/Out Box when an item’s status
changes such that it can be filed. This would occur after an item is sent or
after it is put away. This function returns the name of the folder where the
item should be filed.

item A frame that is the item to file.

This function returns a string or a symbol indicating the folder in which to
file the item. The folder returned is based on the user preferences set for the
In/Out Box. The default is the current folder (the symbol ' same).

Note that the item is not actually filed until after the In/Out Box closes. The
item appears filed in its new location the next time the In/Out Box opens.

You probably won't need to override this method.

GetFromText

transport: Get Fr omlext (item)

Define this message if you want to override the default method of obtaining
a string that represents the sender of the item, for display in the item header
in the In Box.

item A frame that is the item from which the system needs to
obtain sender information.

When the system is constructing the header information for an item in the In
Box, it sends your transport this message to allow you an opportunity to
provide a string for the sender. You should return a string representing the
sender’s name, address, and/ or other information.

If you don’t define this method, or it returns ni |, then the system obtains the
sender information from the f r onRef slot of the item, using the
Get Rout i ngTi t | e method of the name reference data definition.

This method is called by Get | t enl nf 0.

You need to provide this method only if the default behavior doesn’t suit
your needs.

Transport Interface Reference 3-55

CHAPTER 3

Transport Interface

GetltemInfo

transport: Get | t eml nf o(item, length, fontlnfo)

Send this message to return a string that is used as the second line of
information when the item header is displayed.

item A frame that is the item for which you want to retrieve
an informational string.

length An integer specifying the maximum length, in pixels, of
the string that is returned.

fontInfo A font specification, which is used to determine how
many characters of the string will fit in the specified
length, so it can be truncated appropriately.

This methods builds a string containing the name of the sender or recipient
concatenated with the date and time the item was sent or received. This
method calls Get | t enili me and Get ToText (for Out Box items) or

Cet Fronilext (for In Box items) to provide your transport an opportunity to
customize the sender or recipient information.

Internally, Get | t eml nf o calls St yl edSt r Tr uncat e to truncate the string
returned by these methods.

GetltemStateString

transport: Get | t enSt at eSt ri ng(item)

Send this message to return the status string based on the state of the
specified item. This method fetches the string from the i t enSt at eMsgs
frame, based on the value of the item. st at e slot.

item A frame that is the item for which you want to retrieve a
status string.

3-56 Transport Interface Reference

CHAPTER 3

Transport Interface

GetltemTime

transport: Get | t emTi me(item)

Define this message if you want to override the default method of obtaining
a string that represents the time and date stamp of the item, for display in the
item header in the In/Out Box.

item A frame that is the item from which the system needs to
obtain time and date information.

If you decide to override this method, you should return a string containing
time and date information for the item.

The default method simply extracts the time and date from the t i neSt anp
slot in the item frame. You need to provide this method only if the default
behavior doesn’t suit your needs.

This method is called by Get | t enl nf o.

GetltemTitle

transport: Get | t enli t | e(item)

Send this message to return a string that is the title of the item. This method
gets the string from the item data definition, if one exists, or from theti tl e
slot in the item. The In/Out Box also calls this method to get a title for the
overview and the item view.

item A frame that is the item for which you want to retrieve a
title string.

GetNameText
transport: Get NameText (nameRef, length, fontlnfo)

Send this message to the transport to obtain a string representation of the
names contained in one or more name references.

nameRef A name reference or an array of name references.

Transport Interface Reference 3-57

3-58

CHAPTER 3

Transport Interface

length An integer specifying the maximum length, in pixels, of
the string that is returned.

fontInfo A font specification, which is used to determine how
many characters of the string will fit in the specified
length, so it can be truncated appropriately.

This method returns a string containing the name or names extracted from
the name reference, as you would normally see them displayed in the
routing slip. If you specify an array for nameRef, the returned string contains
the names concatenated, with commas between each name. The string is
truncated as specified by the length and fontInfo parameters.

GetStatusString

transport: Get St at usSt ri ng()

Send this message to return the status string based on the current status. This
method fetches the string from the di al ogSt at usMsgs frame.

GetTitleInfoShape

transport: Get Ti t| el nf oShape(item, bounds)

Send this message to return a shape that fills the area of the item header to
the right of the transport icon. This shape contains a title that identifies the
item, the item’s status, and information about the sender or recipient and a
time stamp.

item A frame that is the In/Out Box item.

bounds Abounds frame describing the area of the item header
that the shapes must fit into.

The exact area of the shape is shown shaded here:

Transport Interface Reference

CHAPTER 3

Transport Interface

The item header appears in both the In/Out Box overview and the
individual item view. The Get Ti t | el nf oShape method calls
CGetltenitleandGetltenl nfo to generate text shapes for the two lines
of the default item header. It also calls Get | t enf5t at eSt r i ng to obtain the
item status string, which is placed at the far right of the view. You can
override Get Ti t | el nf oShape to do something different, like add special
graphics to the header.

GetToText

transport: Get ToText (item)

Define this message if you want to override the default method of obtaining
a string that represents the recipient of the item, for display in the item
header in the Out Box.

item A frame that is the item from which the system needs to
obtain recipient information.

When the system is constructing the header information for an item in the
Out Box, it sends your transport this message to allow you an opportunity to
provide a string for the recipient. You should return a string representing the
recipient’s name, address, and / or other information.

If you don’t define this method, or it returns ni |, then the system obtains the
recipient information from the t oRef slot of the item, using the
Get Rout i ngTi t | e method of the name reference data definition.

This method is called by Get | t enl nf o.

You need to provide this method only if the default behavior doesn’t suit
your needs.

GetTransportScripts

Get Transport Scri pt s(target)

This message is sent to your transport when the user has selected an In/Out
Box item and then taps the Tag button in the In/Out Box (the button that
looks like a tag). This method allows your transport to add items to the In/

Transport Interface Reference 3-59

3-60

CHAPTER 3

Transport Interface

Out Box Action picker that is displayed as a result of the button tap. If you
don’t implement this method, the message won't be sent.

target The In/Out box entry that is selected. Note that this
could consist of a multiple item target object, if multiple
items were selected from the In/Out Box overview.

You can use the global functions Tar get | sCur sor (page 2-68) and
Cet Tar get Cur sor (page 2-67) to check if target is a multiple item target
object and iterate over it.

The Get Tr ansport Scri pt s method should return an array of frames that
describe new items to be added to the In/Out Box Action picker. The array is
exactly the same as the r out eScri pt s array that is used to add items to the
Action picker in an application. Each frame in the array should include these
slots:

title A string that is the name of the action you want to add.

icon Abitmap that is the icon that appears next to the name
in the picker.

routeScri pt A symbol identifying a function that is called if this

action is selected by the user. The function should be
implemented as a method in the transport base frame. It
is passed two parameters, the target item (the In/Out
Box entry) and the target view (the view displaying that
entry), respectively. Again, note that the target item
passed to this function might be a multiple item target
object, so the function should be able to handle that.

For more detailed information about the items in the array, see the section
“Providing Application-Specific Routing Actions” beginning on page 2-27.

HandleError

transport: Handl eEr r or (error)

Translates an error code into an error string and displays an alert to the user
with the transport title and the error string.

error An integer error code.

Transport Interface Reference

CHAPTER 3

Transport Interface

This method calls Tr ansl at eEr r or to translate the error code and then
Not i f y to display the alert. You can override Handl eEr r or to do your own
error handling, if you wish.

This method is called by Handl eThr owand | t enConpl et ed when errors
occur.

HandleThrow
transport: Handl eThr ow()

The default exception handling method for transports. This method catches
any exception on standard transport methods. It calls Cur r ent Except i on
to obtain the current exception.

This method calls | gnor eEr r or to screen out benign errors. If there is an
item being processed, | t emConpl et ed is called for the item. Then

Handl eErr or is called to translate the error code and display an alert to the
user.

Handl eThr owreturns t r ue if it handled the error (that is, it did not ignore
it). This gives the transport a chance to close things down cleanly on an error.
Handl eThr owreturns ni | if it ignored the error.

If you want, you can override the Handl eThr owmethod to implement a
different way of handling exceptions.

Also note that Handl eThr ow calls some other functions that you can
override to modify it's functionality. These include | gnor eErr or and
Handl eError.

IgnoreError

transport: | gnor eEr r or (error)

Allows your transport an opportunity to specify that a particular error is
benign, when an error condition occurs.

error An integer error code.

If this method returns t r ue, no error alert is displayed; if this method
returns ni |, an error alert is displayed by the pr ot oTr ansport .

Transport Interface Reference 3-61

3-62

CHAPTER 3

Transport Interface

This method handles several benign errors. If you want to override it, be sure
to call the inherited method first.

This method is called by Handl eThr owand | t enConpl et ed when errors
occur.

InstallScript

transport: | nst al | Scri pt (symbol)

This message is sent to the transport when it is registered in the system by
RegTransport.Thel nstal | Scri pt method simply provides the
transport with the opportunity to perform any initialization operations that
might be necessary.

symbol The transport appSynbol that was passed to
RegTransport.

IOBoxExtensions

transport: | OBoxExt ensi ons(item, target, viewDefs, reserved)

This message is sent to your transport when an item belonging to the
transport is displayed in the In/Out Box. This method allows your transport
to add functionality to items in the In/Out Box by modifying the list of view
definitions available for an item.

item A frame that is the In/Out Box entry.
target The stationery frame within item (usually the body slot).
viewDefs The array of view definitions found by the system for

the current data definition.
reserved You can ignore the data passed in this parameter.
Your transport can add to or delete from the viewDefs array.

If you want to change the view definition to be used by the item, you should
return that view definition from this function. If you don’t want to change
the item’s current view definition, return ni | .

Transport Interface Reference

CHAPTER 3

Transport Interface

IsInltem

transport: | sl nl t en(item)

Returns t r ue if the item is in the In Box (it’s been received, read, or logged),
or ni | otherwise.

item An item frame.

IsLogltem

transport: | sl nl t en(item)
Returns t r ue if the item has been logged, or ni | otherwise.

item An item frame.

ItemCompleted

transport: | t emConpl et ed(item, state, error)

Send this message after the transport has completed processing an item,
whether that be sending or receiving, with or without errors. This method
should be used when an item is altered in any way.

item A frame that is the item sent or received.

state The new state to set for the item. For the state, specify a
symbol identifying one of the slot names listed in the
i t enBt at eMsgs frame (page 3-46). Generally you
specify ' sent for sent items and ' r ecei ved for
received items. You can specify ni | to leave the item
state unchanged from its current value.

error An error to set for the item. Specify ni | for no error.
The return value of this method is undefined; do not rely on it.

The | t enConpl et ed method first sets the state and error of the item. Next,
if the item’s conpl eti onScri pt slotisset tot r ue, this method sends the
| t enConpl eti onScri pt message (page 3-94) to the base view of the
application identified by the item’s appSynbol slot. The item is passed as a
parameter.

Transport Interface Reference 3-63

3-64

CHAPTER 3

Transport Interface

If the conpl et i onScri pt slotis ni |, and if the error is not zero and

| gnor eErr or returns ni | , then I t enConpl et ed calls Handl eEr r or to
display an error alert showing the error. Then, for items whose state is

' sent, | t emConpl et ed writes the updated item entry back to the Out Box
soup, or turns the item into a log entry (calls MakeLogEnt r y), or deletes the
item from the Out Box, depending on the error conditions and on the setting
of the out boxLoggi ng slot.

An item whose state is ' pendi ng is added to the Out Box and is made the
active view; that is, the item view is displayed for the user in the Out Box.
This is used for replying to a received item. To do a reply to an item, you can
simply change the status to' pendi ng and call | t emConpl et ed and the
item will be created in the Out Box and displayed to the user for editing.

For items with other kinds of status values, the item is written to the In Box
soup.

Do not override this method.

ItemDeleted

transport: | t enDel et ed(item)

This message is sent to a transport by the In/Out Box just before an item
belonging to that transport is deleted from the In/Out Box.

item The In/Out Box entry to be deleted. This will always be
a single item, not a cursor.

If many items are being deleted, this method is called many times in
succession.

The return value of this method is ignored.

This method is not implemented in pr ot oTr anspor t . If you want to take
some action as a result of the item being deleted, you can implement this
method to do so, however, you cannot prevent the item from being deleted.

Transport Interface Reference

CHAPTER 3

Transport Interface

ItemDuplicated

transport: | t enDupl i cat ed(item)

This message is sent to a transport by the In/Out Box just after an item
belonging to that transport is duplicated from within the In/Out Box.

item The duplicate In/Out Box entry. This will always be a
single item, not a cursor. You can modify this object to
modify the duplicate entry.

If many items are being duplicated, this method is called many times in
succession.

The return value of this method is ignored.

This method is not implemented in pr ot oTr anspor t . If you want to take
some action as a result of the item being duplicated, you can implement this
method to do so, however, you cannot prevent the item from being
duplicated.

ltemPutAway

transport: | t enPut Away (iter)

This message is sent to a transport by the In/Out Box right after an item has
been put away by an application. By default, | t enPut Anay saves the
updated item information, or turns the item into a log entry (calls
MakeLogEnt ry), or deletes the item (based on the setting of the

i nboxLoggi ng slot). You can override this behavior, though it is usually not
necessary.

item A frame that is the item put away.

ItemRequest

transport: | t emRequest (request)

Send this message to get an item, or the next item in the queue, from the In/
Out Box. If there is an item frame to be sent or a remote item to be received, it
is returned; otherwise a ni | return signals the end of the current request.

Transport Interface Reference 3-65

3-66

CHAPTER 3

Transport Interface

request Pass the request frame received in the SendRequest or
Recei veRequest message that was sent to the
transport.

Do not override this method.

If you have set the al | owBody Cur sor s slot in your transport to t r ue, then
during a send operation this method might return an item whose body slot
contains a multiple item target object. It’s up to the transport to check if the
body slot contains such an object and resolve the individual items
appropriately before sending them. You can use the global functions

Tar get | sCur sor (page 2-68) and Get Tar get Cur sor (page 2-67) to check
for a multiple item target object and iterate over it. This is important because
the items in such an object can be aliases, which must be resolved before
trying to send them.

If your transport cannot handle body data that consists of multiple items,
you must set the al | owBodyCur sor s slot to ni | .

MakeLogEntry

transport: MakeLogEnt ry(logltem, item)

This message is sent to your transport by the In/Out Box when
I t emConpl et ed is called and a log entry needs to be made. You should
override this method to add transport-specific slots to the log entry.

logItem The log entry to which you can add slots. This is already
set up with the appSynbol ,title, error, and
| abel s slots from the item frame, as well as the correct
new log state in the st at e slot.

item A frame that is the item sent or received.
This method should return the modified logItem frame.

The default MakeLogEntry method sets the ti t | e slot of logltem to the
value returned by transport: Get | t enfli t | e(item) .

Transport Interface Reference

CHAPTER 3

Transport Interface

MissingTarget

transport: M ssi ngTar get (slip)

This message is sent to the transport when the user requests a routing action
and there is no target to be sent. The default operation is to display an alert
notifying the user, “Nothing to Send.”

If you want, you can override this method to display a different message or
to do something different.

slip The routing slip view object that was created for the
item. Note that this view is not open, and won’t be
opened.

NewFromlitem
transport: NewFr onl t eny item)

Send this message to obtain a new item based on a received item.
item An item received.

This method returns a new item frame, containing all but a few slots from
the item parameter.

This method is useful for transports that receive frame data. This method
first sends the message transport: Newl t en{ ni |') to obtain a new item
frame. Then it copies all slots from the frame passed in the item parameter
into the new item frame, except for the following slots: cat egory, connect,
conpl eti onScri pt,and renot e.

If a dest AppSynbol slot exists in the item frame, it is copied to the
appSynbol slot in the new item frame, and the appSynbol slot in the item
frame is copied to the f r omAppSynbol slot in the new item frame. In this
way, the target application can be set differently from the originating
application.

For more information about using the NewFr ol t emmethod, see the section
“Obtaining an Item Frame” beginning on page 3-14.

Transport Interface Reference 3-67

3-68

CHAPTER 3

Transport Interface

Newltem

transport: Newl t en(context)

Send this message to obtain a new item frame for the In/Out Box. The item
frame returned by this method should contain default values for the
transport.

context A frame defining the context from which to get the
application symbol. During a send operation, the In/
Out Box sets this argument to the application base view
of the sending application. If context is not ni | , then
New t emwill set the i t em appSynbol slot to the
appSynbol found in context.

For more information about using the New t emmethod, see the section
“Obtaining an Item Frame” beginning on page 3-14.

If you override this method, be sure to call the inherited method first, in your
version.

NormalizeAddress

transport: Nor mal i zeAddr ess(nameFrame)

Send this message to convert a Names soup entry or name reference that
contains an e-mail address into a string representation of the internet e-mail
address.

nameFrame A Names soup entry, a pseudo-entry, or a name
reference that contains an emai | slot. A pseudo-entry
refers to a simple frame that contains at least an emi |
slot, for example: { name: {first:"Juneau",
| ast: " Macbeth"}, enuil:
"j machet h@conpany. cont', }.

Normally, this method returns a string. However, if the value of the emi |
slot in nameFrame is not a string, then that value is returned, with no
conversion.

The class of the emai | slot in nameFrame determines how the address is
converted, if at all. Nor mal i zeAddr ess uses the Get method of the built-in

Transport Interface Reference

CHAPTER 3

Transport Interface

" | nameRef . enmi | | name reference data definition to extract the e-mail
address string from the enai | slot.

After extracting the address string, the Nor mal i zeAddr ess method uses
the transport slot addr essSynbol s to determine if the e-mail address
should be translated or not. If the class of the e-mail address contained in
nameFrame is listed in the addr essSynbol s slot, then no translation is
done—the system assumes that the transport knows how to handle the
address as is. The address string is returned exactly as extracted from the
nameFrame. Only addresses whose classes do not appear in the

addr essSynbol s slot are translated.

For an address that is to be translated, the translation is controlled by a frame
registered with the system for that class of e-mail address. New classes of
e-mail addresses can be registered by the RegEnai | Syst emfunction

(page 3-91). The translation can consist either of appending a string to the
given address or of passing it to a function object which returns a translated
string. Most of the built-in translations consist simply of appending a string
(such as “@eworld.com”) to the given address, if it is not already part of the
address. After translation, any spaces are removed from the resulting string,
before it is returned.

Table 3-3 lists the built-in e-mail classes and the kind of translation that is
done for each. If a string is listed as the translation, that string is simply
appended to the given e-mail address, if it is not already part of the given
address.

Table 3-3 E-mail address translations

E-mail class Translation done
string “@eworld.com”
| string. email| “@eworld.com”
| string. email.eworld| “@eworld.com”
| string.email.internet| nothing done

| string. email.aol| “@aol.com”

Transport Interface Reference 3-69

3-70

CHAPTER 3

Transport Interface

Table 3-3 E-mail address translations

E-mail class Translation done

| string. email . ntinail | “@mcimail.com”

| string.enail.attmail| “@attmail.com”

| string. enail.easylink| “@eln.attmail.com”
| string. email . prodigy| “@prodigy.com”

| string. email.genie| “@genie.geis.com”
| string. email . del phi | “@delphi.com”

| string. email.msn| “@msn.com”

| string. email.interchange] “@ichange.com”

| string. email.radionail | “@radiomail.net”

| string. email . conpuserve| Any comma (,) in the address is

changed to a period (.). And then the
string “@compuserve.com” is
appended to the address if it is not
already part of it.

PowerOffCheck

transport: Power O f Check(why)

The system sends this message to the transport when it wants to power-off
and the transport is not in the idle state.

why A symbol indicating why the system is powering off.
The values are as follows:
'user The user turned off the unit.

"idle The unit is going to sleep because it has
been idle.

' because Reason is unknown.

The default Power Of f Check method displays a modal slip asking the user
to confirm that the unit can be turned off. If the user taps OK, the unit is

Transport Interface Reference

CHAPTER 3

Transport Interface

turned off. If the user taps Cancel, the power-off sequence is canceled. You
can override this method if you want different behavior.

If the Power O f Check method returns t r ue, the system power-off
sequence proceeds normally. If this method returns ni | , the power-off
sequence is canceled.

For more information about power-off handling, see the section “Power-Off
Handling” on page 3-23.

QueueRequest

transport. QueueRequest (doWhat, newRequest)

Send this message if you want to queue a send or receive request that is
made by the user while the transport is already sending or receiving.

doWhat Either a symbol, or the request frame for a send or
receive request already in progress. If you specify a
symbol, it must name a transport method that the
system will call when the state of the transport returns
to idle. It will pass newRequest as a parameter to this
method. This defers the new request until after the
current one finishes and then invokes a new request.

If you specify a request frame, newRequest is appended
to it, so that the | t enRequest method will eventually
return items from newRequest during the same
communication session. The request frame is the frame
passed into a previous SendRequest or

Recei veRequest method.

newRequest The request frame describing the new request that you
want to queue. This is the parameter passed to the
SendRequest or Recei veRequest method from
which you called QueueRequest .

For more information about using the QueueRequest method, see the
section “Handling Requests When the Transport is Active” on page 3-12.

Transport Interface Reference 3-71

3-72

CHAPTER 3

Transport Interface

ReceiveRequest

transport: Recei veRequest (request)
Define this method if receiving is supported by the transport.
The In Box sends this message to request the transport to receive items.

request A frame identifying the cause of the receive request.
There is one important slot:

cause A symbol indicating the cause of the
receive request. The symbol ' user
indicates that the user tapped the Receive
button in the In/Out Box. The symbol
' r endt e indicates the user has requested
that the text of one or more remotely
stored messages be retrieved.

Note that if the cause slotis set to ' r endt e, the user might have requested
that multiple remote items be downloaded. In this case, use the

| t enRequest method to retrieve subsequent requested items and
download them.

For more information about using the Recei veRequest method, see the
section “Receiving Data” on page 3-10.

SendRequest

transport: SendRequest (request)
Define this method if sending is supported by the transport.

The Out Box requests the transport to send data by sending the transport a
SendRequest message.

request A frame identifying the data to be transmitted and the
cause of the send request. There is one important slot in
this frame that you might need:

Transport Interface Reference

CHAPTER 3

Transport Interface

cause A symbol indicating the cause of the send
request, as described in Table 3-4.

Table 3-4 Causes of a send request

Symbol Description of Cause

"user The user selected the item and tapped the Send button
in the In/Out Box.

"item The user chose to send the item immediately in the
routing slip (the connect slotissettotrue).

''submi t The user chose to send the item later in the routing slip.

'renote The user has requested that the text of a remotely stored

sent message be retrieved. This could be used in a
system in which sent items were stored remotely, to
retrieve the text of one of those items.

peri odi c The item was sent by a transport as a result of a
scheduled action.

Your SendRequest method must use the | t enRequest method

(page 3-65) to get the item (or next item) to send. In your SendRequest
method, keep calling | t enrRequest until it returns ni | , signalling no more
items to send.

If you encounter an error in your SendRequest method, you must call
I t enConpl et ed to inform the In/Out Box that an item was not sent.

For more information about using the SendRequest method, see the section
“Sending Data” on page 3-9.

SetConfig

transport: Set Conf i g(prefName, value)

Send this message to set a value for the transport preferences stored in the
system user Conf i gur ati on frame.

prefName A symbol identifying a transport preferences slot.

Transport Interface Reference 3-73

CHAPTER 3

Transport Interface

value A value to set in the prefName slot.

This method sets the value of the slot identified by prefName in the frame
identified by the appSynbol of the transport in the system

user Confi gur ati on entry. You can override this method if you want to do
something different.

SetStatusDialog

transport: Set St at usDi al og(newStatus, name, values)

Send this message to set the current state of the transport and to display a
status view to the user.

newStatus Can be any symbol such as' Di sconnect ed,
' Connecting,' Connected,' Sending,
" Recei ving,' Di sconnecting,and’ Li st eni ng. If
status is ni | , the status is not modified. This parameter
sets the current state of the transport.

name A symbol identifying the status view subtype template
to use for determining which child views to add to the
status view. This is the value of the nane slot in the
subtype template. For more details on the status
subtypes, see the section “Providing a Status Template”
beginning on page 3-23. If you specify ni | , the last
symbol used is assumed, or if you haven’t called this
function before, the default value ' vSt at us is used.

values A string giving the current status message (if that’s the
only element you're using or changing). Alternately,
you can specify a frame of values, one for each subtype
child item you want set.

Each child template contains a nane slot that identifies
the name of the important slot that controls the
appearance of that child view. You specify a slot in this
frame for each child item that you want to set. The
name of each slot you specify is the value of the
corresponding name slot in the child template. The

3-74 Transport Interface Reference

CHAPTER 3

Transport Interface

value of the slot is the value you want to give to that
child element.

For example, if a child view of the specified subtype has
a nane slot of f 00 and the f 00 slot in that child
template is expected to be a string, then in values, you
would specify a slot named f 00 whose value was a
string. For more details, see the section “Providing a
Status Template” beginning on page 3-23.

If you don’t pass the string in this parameter, there must
be an entry in the di al ogSt at usMsgs frame that
corresponds to the status symbol, for string display
purposes.

The return value of this method is always ni | .
Do not override this method.

If a status slip is already open when this method is called, it is updated with
the new status information (the child views are closed and reopened). If a
status slip is not already open, and the aut oSt at us slot of the transport
user preferences frame is t r ue, and the transport is not idle, this method
opens a status slip and sets it as specified.

TranslateError

transport: Tr ansl| at eEr r or (error)

Allows your transport an opportunity to translate an error code into a string
error message, when an error condition occurs.

error An integer error code.

The string equivalent of the error code should be returned. If your transport
does not know how to translate the error, call the inherited function to do the
translation (for example, i nheri t ed: Transl ateError(error)).

Transport Interface Reference 3-75

3-76

CHAPTER 3

Transport Interface

VerifyRoutingInfo

transport: Ver i f yRout i ngl nf o(item, multiltem, entry, format)

This message is sent to a transport when a multiple item target object is
submitted to the Out Box as a result of the user tapping the Send button in
the routing slip. This message is only sent if the transport cannot handle a
cursor in the body slot of an item (the transport slot al | owBodyCur sor s is
set to ni |). It is sent repeatedly—once for each item in the multiple target
object.

This message provides an opportunity for the transport to modify each item
within the multiple item target object.

item An item being submitted for sending, after it has been
passed to the Set upl t emmethod of the routing format.
This will always be a single item from the multiple item
target object. You can modify or add slots to this item
frame to change the item before it is stored in the Out

Box.

multiltem The original item frame that was submitted for sending
and that contains a multiple item target object in its
body slot.

entry A resolved entry from originalltem, before it was passed

to the routing format’s Set upl t emmethod.
format The routing format associated with the item.
The return value of this method is ignored.

This method is not implemented in pr ot oTr anspor t . If you want to take
some action as a result of a multiple item target object being submitted to the
Out Box and being broken into its individual items, you can implement this
method to do so.

Transport Interface Reference

CHAPTER 3

Transport Interface

protoTransportHeader

This proto provides a template for the routing information view. For more
information about creating a routing information view, see the section
“Providing a Routing Information Template” beginning on page 3-30.

Slot descriptions

transport The transport object to which this information view
belongs. This is set up automatically by the In/Out Box.

t ar get A reference to the In/Out Box item. This object is found
automatically in context.

cont ext Optional. The view to which the | nf oChanged
message should be sent. Defaults to ni | , meaning the
message won't be sent.

changed This slot is set to t r ue if the user changes an entry field
in the view, otherwise it is set to ni | .

The pr ot oTr anspor t Header is based on the newt | nf oBox proto.

The following methods are of interest.

BuildText
headerView: Bui | dText ()

Provide this method in your header view in order to add additional lines of
text to the header view, below the existing elements. This method is called by
the header view, before the view is opened. For each line you want to add,
call the AddText method, passing in the string for that line.

The return value of the Bui | dText method is not used.

AddText
headerView: AddText (string)

You can call this method of pr ot oTr anspor t Header from your
Bui | dText method to construct a line of text, which is added to the header
view, below the existing elements.

Transport Interface Reference 3-77

3-78

CHAPTER 3

Transport Interface

string A string of text to add to the header.

The string is given the proper font for the header view, and truncated, if
necessary, to fit within the header view.

InfoChanged

context: | nf oChanged(changed)

This message is sent to the view identified by the cont ext slot in the
routing information view (see the slot description above) when the routing
information view is closed.

changed The value of the changed slot in the routing
information view. This will be either t r ue, if the user
changed a value in the view, or ni | if nothing was
changed.

protoFullRouteSlip

This proto provides a template for a full-featured routing slip view. For more
information about creating a routing slip, see the section “Providing a
Routing Slip Template” beginning on page 3-32.

The following slots in the routing slip template are set by the system before
the routing slip view is opened.

Slot descriptions

fields The item frame returned by the transport Newl t em
method. This frame will eventually become the In/Out
Box soup entry for the item. Note that
fiel ds. current For mat is set to the last routing
format used for this transport by this application. The
Set upl t emmethod of the routing format sets the
fi el ds. body slot to the target object.

tar get The target frame returned by the application's
Get Tar get | nf o method. (Get Tar get | nf o is called
with the ' r out i ng symbol as its argument.) This target

Transport Interface Reference

CHAPTER 3

Transport Interface

frame is the data being routed from the application
(usually the current or selected object). The system
looks at the data class of the target object to determine
the list of available routing formats, but no other
assumptions are made about whatt ar get contains.

target Vi ew The active view in the application as returned by the
application's Get Tar get | nf 0 method. This is not used
by the routing slip, but is defined in case a routing
format or auxiliary slip needs to use it.

formats An array of routing format frames that can be used with
target.

act i veFor mat The currently selected routing format.

transport The transport object.

You may want to set these other slots in the routing slip template.

Slot descriptions

vi ewJustify Optional. The default setting is vj Parent Ful | H +
vj Par ent Cent er V.

envel opeHei ght Optional. An integer that specifies the height of the
envelope image, in pixels. The default is 115, which you
should generally leave as is. It is recommended that you
not change this value; if you do, your envelope will
have a non-standard look.

envel opeW dth Optional. An integer that specifies the width of the
envelope image, in pixels. The default is 230, which you
should generally leave as is. It is recommended that you
not change this value; if you do, your envelope will
have a non-standard look.

bot t om ndent Optional. An integer that is the space below the
envelope image, in pixels. The default is 40. This leaves
space for you to include interface elements specific to

Transport Interface Reference 3-79

3-80

CHAPTER 3

Transport Interface

your transport. Note that this space is taken out of the
overall height of the routing slip, which is used for both
the envelope portion and the other portion below it.

Note that the Vi ewSet upFor nScr i pt, Vi ewSet upChi | drenScri pt,

Vi ewDr awScri pt, Vi ewHi deScri pt, and Vi ewQui t Scri pt methods are
used internally in pr ot oFul | Rout eSl i p and should not be overridden. If
you need to use one of these methods, be sure to call the inherited method
also.

The following child views are declared to pr ot oFul | Rout eSl i p:

= format Pi cker, the format picker view, which appears only if there’s
more than one routing format to choose for the item (see the section
“protoFormatPicker” beginning on page 3-83)

= sendBut t on, the send button (see the section “protoSendButton”
beginning on page 3-83)

The following methods of pr ot oFul | Rout eSl i p are of interest.

BottomOfSlip

routingSlip: Bot t onOf Sl i p()

This method returns the Y coordinate of the bottom of the routing slip—that
is, the very bottom of the lower portion of the slip below the envelope image.
You must use this method to determine the bottom of the slip so that you can
correctly position interface elements in the lower portion of the routing slip.
All items in the lower portion of the routing slip must be positioned relative
to the bottom of the slip or sibling bottom-relative to the last child of the
routing slip proto, which is the Send button.

FormatChanged

routingSlip: For mat Changed(format)

This message is sent to the routing slip view whenever the user chooses a
new routing format in the format picker.

format The new routing format chosen by the user.

Transport Interface Reference

CHAPTER 3

Transport Interface

If you want to receive this message, define a method to handle it.

Usually, you should return ni | from this method. This allows the format
picker to proceed with executing its normal code, which means closing an
auxiliary view for the old routing format, if one is open, and then executing
the Label Acti onScri pt method in the pr ot oFor mat Pi cker. The
Label Acti onScri pt method sets the cur r ent For mat slot in the item,
calls the routing format’s Set upl t emmethod, opens an auxiliary view, if
one is defined in the routing format, and saves the chosen routing format in
the application base view.

If the For mat Changed method returnst r ue, the default code will not
continue executing. The assumption in the latter case is that you've done all
the necessary processing in your For mat Changed method.

OwnerinfoChanged

routingSlip: Oaner | nf oChanged()

This message is sent to the routing slip view whenever the sender pop-up

view is changed, so you can catch any changes. The sender pop-up view is
the sender’s name and worksite location, which is shown in the upper-left
corner of the envelope.

If your routing slip depends on data in the sender’s current owner card or
worksite, you should define this method so that you can update addressing
or other information when changes occur. For example, you’ll probably want
to update the f r onRef slot in the item frame if the owner persona changes.
To do that, you must implement this method.

PrepareToSend

routingSlip: Pr epar eToSend(when)

This message is sent to the routing slip view when the user taps the send
button and selects Now or Later from the picker.

when Asymbol, ' Nowor ' Lat er, indicating when the user
chose to send the item from the Send button picker.

Transport Interface Reference 3-81

3-82

CHAPTER 3

Transport Interface

If you want to do anything to the item before it is sent, you must define this
method. For example, you might want to validate the entries in the routing
slip or check something in the item itself before allowing it to be sent.

Your Pr epar eToSend method should send the message Cont i nueSend to
the routing slip view if you want to continue the submission process. If, as a
result of your Pr epar eToSend method, you do not want to submit the item
to the Out Box, do not send the Cont i nueSend message, and the process
will be canceled.

The Pr epar eToSend method is defined in the pr ot oFul | Rout eSl i p
template. The default version simply sends the Cont i nueSend message to
itself to continue the submission process.

ContinueSend

routingSlip: Cont i nueSend(when)

Send this message to the routing slip view from your Pr epar eToSend
method if you want to continue with the process of submitting the item to
the Out Box. If you don’t want to submit the item, don’t send this message.

when Asymbol, ' Nowor ' Lat er, indicating when the user
chose to send the item from the Send button picker.

TransportChanged

routingSlip: Tr anspor t Changed(newSymbol)

This message is sent to the routing slip view if the transport is a member of a
group and the user changes the transport to a different member of the group.

newSymbol The appSynbol of the new transport chosen by the
user.

This message provides an opportunity for you to take any necessary action
such as alerting the user that information might be lost as a result of
changing transports. If Tr anspor t Changed returns a non-ni | value, the
transport is not changed and the routing slip is not closed. If

Transpor t Changed returns ni | , then the transport is changed and the
routing slip is closed and reopened.

Transport Interface Reference

CHAPTER 3

Transport Interface

You don’t need to supply this method. If you don’t supply it, the message
won't be sent.

protoFormatPicker

This proto provides the picker list in the routing slip for choosing among
multiple formats. It is documented here because pr ot oFul | Rout eSl i p has
a declared child view based on this proto, but it is not for general use. In
general, you should use the method For mat Changed of

pr ot oFul | Rout eSl i p to determine when the format changes.

The following method is of interest.

LabelActionScript

formatPicker: Label Acti onScri pt (index)

The system sends this message to the format picker view whenever the user
chooses a new routing format. You can override this message if you want to
be notified when the user changes routing formats.

index The index, in the array of routing formats, of the new
format chosen by the user. The array of routing formats
is stored in the f or mat s slot in the format picker, so
you can obtain the chosen format using the expression
f or mat s[index] .

If you override this message, you must call the inherited version, like this:

i nherited: Label Acti onScri pt (index) ;

protoSendButton

This proto provides the button in the routing slip that actually sends the item
to the Out Box and can also activate the transport. It is documented here
because pr ot oFul | Rout eSl i p has a declared child view based on this
proto, but it is not for general use. In general, you should use the method

Pr epar eToSend of pr ot oFul | Rout eSl i p to determine when the Send
button is tapped.

Transport Interface Reference 3-83

3-84

CHAPTER 3

Transport Interface

Slot description

t ext A string that is the button text. It should name the
action to be performed (for example, “Mail,” “Print,”
“Beam,” and so on).

The following method is of interest.

PickActionScript

sendButton: Pi ckActi onScri pt (index)

The system sends this message to the send button view when the user taps
the send button and selects the “Now” or “Later” choice. You can override
this message if you want to be notified when the user taps this button.

index The index, in the array of picker choices, of the choice
selected by the user. If the user chooses “Now,” index is
0; if the user chooses “Later,” index is 1.

If you override this message, you must call the inherited version, like this:

i nherited: Pi ckActionScri pt (index) ;

protoAddressPicker

This proto provides a picker list that you can use in the routing slip for
choosing an address from the Names file on the Newton. The

pr ot oAddr essPi cker is based on the pr ot oLabel Pi cker and

pr ot oPeopl ePopup. For more information on these protos, see Chapter 6,
“Pickers, Pop-up Views, and Overviews,” in Newton Programmer’s Guide:
System Software.

Slot description

vi enBounds Set to the size and location you want for the picker.
t ext A string that is the picker label. The default is “Name”.
ot her Text A string that is the last item to be shown in the picker,

below the separator line. The default is “Other Names”.

sel ected An array of initially selected name references, or ni | , if
you don’t want any to be selected initially. You will

Transport Interface Reference

CHAPTER 3

Transport Interface

alternatives

cl ass

_pi cker

probably want to set this slot to the t oRef array in the
item frame. When the picker is closed, this array
contains the name references selected from the picker.

An array of alternative name references to show in the
picker. This is set up by the Intelligent Assistant.

A symbol identifying a data definition for a name
reference object. This symbol identifies the type of name
reference object to be used in creating the list, and
determines what information is displayed in each of the
columns of the list. The following name reference data
definitions are built into the system:

" | naneRef . emai | |
Lists names and e-mail addresses

" | naneRef . f ax|
Lists names and fax phone numbers

" | naneRef . phone|
Lists names and voice phone numbers

A view template defining the picker to display when the
user wants to choose from all the available recipients.
The default is pr ot oPeopl ePopup, which provides a
name picker based on pr ot oPeopl ePi cker. Setting
this slot allows you to substitute an alternative directory
service that has the same interface as the

pr ot oPeopl ePopup.

protoSenderPopup

This proto provides the picker list in the routing slip for choosing the name
and worksite location of the sender of the item.

No slots or methods are documented because none are required to use this
proto. Simply include a view based on this proto in your routing slip. It is
automatically positioned in the top left corner of its parent view.

Note that a view based on this proto is automatically included in

pr ot oFul | Rout eSl i p. You can use the method Oaner | nf oChanged of
pr ot oFul | Rout eSl i p to determine when the sender name or worksite in
the pr ot oSender Popup view changes.

Transport Interface Reference 3-85

3-86

CHAPTER 3

Transport Interface

protoTransportPrefs

This proto provides a template for a preferences view for your transport.
This proto is based on the pr ot oFl oat er. For more information about
creating a preferences view, see the section “Providing a Preferences
Template” beginning on page 3-39.

Slot descriptions
vi ewBounds

title

appSynbol

silentPrefs

sendPrefs

out boxPrefs

i nBoxPrefs

The size of the view and location where it should appear.

Optional. A string that is the title of this transport. This
string is displayed as part of the title at the top of the
preferences view, if you include it. If you don’t include a
titl e slot, you must supply an appSynbol slot.

Optional. The transport appSynbol . This symbol is
used to look up the transport title, if you don’t include a
titleslot.

A frame defining the text of the checkbox that controls
whether or not status dialogs are to be shown. This
frame has as its default value the slots described in
Table 3-5 on page 3-87. If you don’t want to include this
item in your preferences dialog, set this slot toni | .

A frame defining the choices applicable to when an item
is sent. This frame has as its default value the slots
described in Table 3-6 on page 3-88. If you don’t want to
include this item in your preferences dialog, set this slot
tonil.

A frame defining the preference item applicable to the
Out Box. This frame has as its default value the slots
described in Table 3-7 on page 3-89. If you don’t want to
include this item in your preferences dialog, set this slot
tonil.

A frame defining the preference item applicable to the
In Box. This frame has as its default value the slots
described in Table 3-8 on page 3-90. If you don’t want to
include this item in your preferences dialog, set this slot
tonil.

Transport Interface Reference

CHAPTER 3

Transport Interface

i nf oPrefs

A frame defining functions that handle Info button
choices. The default frame defines one method,

Dol nf oHel p, that opens the system help book. This
function is called if the user selects the Help item from
the Info menu. You may want to define the

Dol nf oAbout, Genl nf oAux| t ens, and Dol nf oAux
methods to include your own items on the Info button
menu. For details on all these methods that support the
Info button, see the description of pr ot ol nf oBut t on
in Chapter 7, “Controls and Other Protos,” in Newton
Programmer’s Guide: System Software.

The following four tables describe the default frames for the si | ent Pref s,
sendPr ef s, out boxPr ef s, and i nboxPr ef s slots. If you want to override
any of the default slots in a frame, you must specify a new frame with all the

slots shown.

Table 3-5 Slots in si | ent Pref s frame
Slot Description
t ext A string that is the text shown next to the checkbox.

configuration

The default value is a localized version of the string,
“Show status dialogs”.

A symbol identifying the slot in the transport’s
configuration frame in which this user preference item
is stored. The default value is ' aut oSt at us.

Transport Interface Reference 3-87

3-88

CHAPTER 3

Transport Interface

Table 3-6 Slots in sendPr ef s frame
Slot Description
rout eText A string that is the text labeling the preference item that

controls when sending occurs. The default value is a
localized version of the string, “When sending”.

r out eChoi ces An array of strings that are to be used for the picker that
lists choices. The default array is a localized version of
this: ["Send now', "Send later", "Specify
when"] .

rout eActi ons An array of symbols associated with the elements in the
r out eChoi ces array. When a choice from the send
picker is made, the corresponding symbol from this
array is stored in the r out eConf i g slot to identify the
user’s selection. The default array is[' now, 'l ater,
nill.

rout eConfig A symbol identifying the slot in the transport’s
configuration frame in which the user preference item
controlling when an item is sent is stored. The default is
"nowor | ater.

t est Met hod A symbol identifying a method for which to test in the
transport object. If this method is not found in the
transport object, then the “When sending” view element
is not automatically displayed in the preferences view.
The default value is ' SendRequest .

transport Specify the appSynbol of the transport.

Transport Interface Reference

CHAPTER 3

Transport Interface

Table 3-7 Slots in out boxPr ef s frame
Slot Description
| ogText A string that is the text labeling the Out Box preference

item, which controls logging. The default value is a
localized version of the string, “After sending”.

| ogChoi ces An array of strings that are to be used for the picker that
lists logging choices. The default array is a localized
version of this: ["Fi | e", "Log", "Delete"].

| ogActi ons An array of symbols associated with the elements in the

| ogChoi ces array. When a choice from the logging
picker is made, the corresponding symbol from this array
is stored in the | ogConf i g slot to identify the user’s
selection. The default array is[' save, 'log, nil].

| ogConfig A symbol identifying the slot in the transport’s
configuration frame in which the user preference item
controlling Out Box logging is stored. The default is
' out boxLoggi ng.

t est Met hod A symbol identifying a method for which to test in the
transport object. If this method is not found in the
transport object, then the view elements controlling Out
Box preferences are not automatically displayed in the
preferences view. The default value is' SendRequest .

transport Specify the appSynbol of the transport.

Transport Interface Reference 3-89

3-90

CHAPTER 3

Transport Interface

Table 3-8 Slots in i nboxPr ef s frame
Slot Description
| ogText A string that is the text shown next to the In Box

preference item, which controls where items are filed
after being read. The default value is a localized version
of the string, “File read items in”.

fileConfig A symbol identifying the slot in the transport’s
configuration frame in which the user preference item
controlling filing is stored. The default is
"inboxFiling.

t est Met hod A symbol identifying a method for which to test in the
transport object. If this method is not found in the
transport object, then the view elements controlling In
Box preferences are not automatically displayed in the
preferences view. The default value is
' Recei veRequest .

transport Specify the appSynbol of the transport.

Functions and Methods

Utility Functions

This section describes utility functions used in the Transport interface.

RegTransport

RegTr anspor t (symbol, transport)

Use this global function to register a new transport in the system. You call
RegTransport from the | nstal | Scri pt method of your Newton
package containing the transport.

symbol The transport appSynbol .

Transport Interface Reference

CHAPTER 3

Transport Interface

transport The transport template. This template must be based on
prot oTransport.

The return value of this function is undefined.

RegTransport sends the I nstal | Scri pt message to the transport, if this
message is defined in the transport. The | nst al | Scri pt message is simply
a hook allowing the transport to do other initialization when it is installed.

UnRegTransport

UnRegTr anspor t (symbol)

Use this global function to unregister a transport from the system. Usually
you would call this function from the RenmoveScr i pt function of your
transport package.

symbol The transport appSynbol passed to RegTr ansport.

The return value of this function is undefined.

DeleteTransport

Del et eTr anspor t (symbol)

Use this global function to remove transport-related information stored in
the system, for example, the user preferences for the transport. Usually you
would call this function from the Del et i onScri pt function of your
transport package.

symbol The transport appSynbol passed to RegTr ansport.
The return value of this function is undefined.

Note that the RenoveScri pt function in the transport package will also be
called, following the Del et i onScri pt function.

RegEmailSystem

RegEnai | Syst en(classSymbol, name, internet)

Registers a new type of e-mail system.

Transport Interface Reference 3-91

3-92

CHAPTER 3

Transport Interface

classSymbol

name

internet

A symbol identifying the class of the email system. This
symbol must be a subclass of ' | string. enai | | . An
exampleis' | string. email . BobsMail Systen.

A string that is the name of the e-mail system. This
name will show up in pickers listing e-mail systems
throughout the system (in routing slips, the In/Out Box,
and the Names application), so it should be short.

Either a string or a function object that converts an
e-mail address from this system into an internet
address. If you specify a string, it is simply appended to
the e-mail address to make an internet address. For
example, you might specify “@bobsmail.com”.

If you specify a function object, it will be used to
convert an e-mail address on this system to an internet
address. The function will be passed one parameter, a
string holding an e-mail address. It should return
another string, the internet address for that e-mail
address. For example, for Compuserve, commas in the
address are changed to periods and
“@compuserve.com” is appended.

The transport method Nor mal i zeAddr ess uses the information registered
by the internet parameter to create internet e-mail addresses from
system-specific addresses.

Note that none of the arguments to this function are copied into memory by
Ensur el nt er nal , so care should be taken to ensure that the application
which registers the e-mail service can be removed without causing errors.

To unregister an e-mail system that was registered by RegEmai | Syst em
use the function UnRegEmai | Syst em

Note

This function may not be defined in ROM—
it may be supplied by NTK. O

Transport Interface Reference

CHAPTER 3

Transport Interface

UnRegEmailSystem
UnRegEnai | Syst en{ classSymbol)

Unregisters an e-mail system registered by RegEnai | Syst em

classSymbol A symbol identifying the class of the e-mail system to
unregister. This is the same symbol you passed to
RegEmai | Syst emto register the system.

Note that this function can’t be used to unregister e-mail systems that are

built-in.

Note

This function may not be defined in ROM—
it may be supplied by NTK. O

GetCurrentFormat

Get Cur r ent For mat (item)

Returns the routing format frame (not the format symbol) for an item from
the In Box soup or the Out Box soup, or returns ni | if a routing format
cannot be found for the item.

item The In/Out Box item whose routing format you want to
get.

GetGroupTransport

Get G oupTr anspor t (groupSymbol)

Returns a symbol identifying the current (last-used) transport within a
transport group. If the current transport is no longer available, this function
returns a different one from the same group, if there is one. If there is no
current transport and none in the group can be found, ni | is returned.

groupSymbol A symbol identifying a transport group. The following
group symbols are defined: ' pri nt,' fax,' beam and
"mail .

Transport Interface Reference 3-93

CHAPTER 3

Transport Interface

Application-Defined Method

This section describes a method that can be defined in an application to
implement a particular feature.

ltemCompletionScript

app: | t emConpl et i onScri pt (item)
This message is sent to the base view of an application when an item’s state
changes.

item The In/Out Box item whose state changed.

This message is sent only if the conpl et i onScri pt slot in the item frame is
set to t r ue. So if you want to take advantage of this callback mechanism,
you must set the conpl eti onScri pt slot.

Summary of the Transport Interface

3-94

Constants

ROM RouteMail lcon // bitmap for mail group icon

ROM RoutePrintlcon // bitmap for print group icon

ROM Rout eFaxlcon // bitmap for fax group icon

ROM _Rout eBeam con // bitmap for beam group icon

ROM RouteReply // bitmap for reply action icon

ROM Rout eForward // bitmap for forward action icon

ROM Rout eAddSender // bitmap for add sender to Nanes icon
ROM Rout ePasteText // bitmap for copy text to Notes icon

Summary of the Transport Interface

CHAPTER 3

Transport Interface

Protos

protoTransport

myTransport := {

_proto: protoTransport, // proto transport object

appSynbol : symbol, // application synbol

title: string, // transport name

dat aTypes: array, // synbols for routing types supported

actionTitle: string, // name of transport action

i con: bitmapFrame, [/ transport icon

group: symbol, // transport group synbol

groupTitle: string, // group nane

groupl con: bitmapFrame, // group icon

routingSlip: viewTemplate, // routing slip tenplate

transport | nfoForm viewTemplate, // routing info tenplate

pref erencesForm viewTemplate, [/ preferences tenplate

statusTenpl at e: viewTemplate, // status tenplate

statusDi al og: wview, // status view

vi ewSt at us: symbol, // next type of status view to open

nodal St at us: Boolean, // nodal status dial ogs?

di al ogSt at usMsgs: frame, // status strings

status: symbol, [/ current status

addr essi ngCl ass: symbol, // name reference synbol

addressSynbol s: array, // don't translate e-mail classes

al | owBodyCur sors: Boolean, // allow cursors in body slot?

defaul t Configuration: frame, // user preferences defaults

Appd osed: function, // notifies transport of app closing

Appl nFront: function, // notifies transport of change in
app frontnost status

AppQpened: function, // notifies transport of app opening

Cancel Request : function, // cancel s in-progress operation

CanPut Away: function, [/ put away hook for transport

Summary of the Transport Interface 3-95

3-96

CHAPTER 3

Transport Interface

CheckQut box: function, // invokes SendRequest operation

Cl oseSt at usDi al og: function, // closes status dial og
ConnectionDet ect: function, // force send now or |ater

Get Confi g: function, // returns a prefs val ue

Get Def aul t Onmner St ore: function, // returns default store
Get Fol der Nane: function, // gets folder name for item

Get FronText: function, // hook to supply item sender
Getltem nfo: function, // returns itemto or frominfo
GetltenttateString: function, // returns itemstatus string
CGet | tenti me: function, // returns itemtime stamp info
GetltenTitle: function, // returns itemtitle

Get NanmeText : function, // returns name string from nanerefs
Get StatusString: function, // returns transport status

Get Ti tl el nf oShape: function, // returns info shape

Get ToText: function, // hook to supply itemrecipient(s)
Get Transport Scri pts: function, // extends |1/0O Box actions
Handl eError: function, // displays error alert

Handl eThr ow. function, // handl es exceptions

| gnoreError: function, // screens errors

Install Script: function, // notification of installation

| OBoxExt ensi ons: function, // extends |/O Box view defs
Isinltem function, // is itemin the In/CQut Box?

| sLogltem function, // has item been | ogged?

|t emConpl et ed: function, // processes an item

| temDel et ed: function, // called when itemis deleted

[tenDuplicated: function, // called when itemis duplicated
|t emPut Away: function, // called after itemis put away

|t emRequest : function, // gets next queued item
MakeLogEnt ry: function, // makes |og entry

M ssi ngTarget: function, // notification of mssing target
NewFrom tem function, // gets new frane data itemfrane
Newl t em function, /! gets new item frane

Nor mal i zeAddr ess: function, // translates e-mmil address

Summary of the Transport Interface

CHAPTER 3

Transport Interface

Power O f Check: function, // notification of power-off

QueueRequest : function, // queues itemfor |ater handling

Recei veRequest : function, // receives data

SendRequest : function, // sends data

Set Confi g: function, // sets a prefs val ue

Set St at usDi al og: function, // opens/updates status dial og

Transl ateError: function, // returns a string translation

VerifyRoutinglnfo: function, // called on send of nultiple
/]l itemtarget that is being split

}

protoTransportHeader
aHeader := {

_proto: protoTransportHeader, // proto header object
transport: frame, // transport object

target: frame, // target object

context: wview, // viewto notify with |InfoChanged nsg
changed: Boolean, // user changed a fiel d?

Bui | dText: function, // builds additional header |ines
AddText : function, // adds lines to header

I nf oChanged: function, // notifies view of changed field

}

protoFullRouteSlip

aFul | RoutingSlip := {

_proto: protoFull RouteSlip, // proto full routing slip
vi ewdustify: integer, // viewdustify flags

envel opeHei ght: integer, // height of envel ope portion
envel opeW dt h: integer, // w dth of envel ope portion
bott om ndent: integer, // height of |ower portion

Summary of the Transport Interface 3-97

3-98

CHAPTER 3

Transport Interface

fields: frame, // itemframne

target: frame, [/ target object

targetView wview, // view containing target

formats: array, // array of routing formats for target
activeFormat: frame, // currently selected format
transport: frame, // transport object

format Pi cker: frame, // the format picker child view
sendButton: frame, // the send button child view

Bot t onOf Sl'i p: function, // returns bottom of slip

For mat Changed: function, // notifies slip of new format
Omner | nf oChanged: function, // notifies slip of new sender
Prepar eToSend: function, // notifies slip when itemis sent
Conti nueSend: function, // continues send process

Transport Changed: function, // notifies of transport change

}

protoFormatPicker

aFormat Pi cker := {
_proto: protoFormatPicker, // format picker
| abel ActionScript: function, // notifies view of new choice

}

protoSendButton

aSendButton : = {

_proto: protoSendButton, // proto send button

text: string, // button text

Pi ckActionScript: function, // notifies view of user choice

Summary of the Transport Interface

CHAPTER 3

Transport Interface

protoAddressPicker

anAddr essPi cker : = {

_proto: protoAddressPicker, // address picker

vi ewBounds: boundsFrame, [/ |ocation and size

text: string, // picker |abe

ot her Text: string, // last item (pops up peopl e picker)
sel ected: array, // nanme refs to be initially sel ected
alternatives: array, // nane refs to be shown in picker
class: symbol, // name ref data def class

_pi cker: wviewTemplate, // picker for all addresses

}

protoSenderPopup

aSender Popup : = {
_proto: protoSenderPopup, // sender popup/picker
/1 no other slots needed

}

protoTransportPrefs

myTransportPrefs : = {

_proto: protoTransportPrefs, // transport prefs proto

vi ewBounds: boundsFrame, [/ |ocation and size

title: string, // transport name

appSymbol : symbol, // transport appSynbol

silentPrefs: frame, // controls checkbox elenment in prefs
sendPrefs: frame, // controls send element in prefs

out boxPrefs: frame, // controls out box prefs el enent

i nboxPrefs: frame, // controls in box prefs el enent
infoPrefs: frame, [/ defines nore info button choices

Summary of the Transport Interface 3-99

CHAPTER 3

Transport Interface

Functions and Methods

Utility Functions

RegTr anspor t (symbol, transport)

UnRegTr anspor t (symbol)

Del et eTr anspor t (symbol)

RegEnmi | Syst en(classSymbol, name, internet)
UnRegEnai | Syst en(classSymbol)

Cet Cur r ent For mat (item)

Get GroupTr anspor t (groupSymbol)

Application-Defined Method
app: | t emConpl et i onScri pt (item)

3-100 Summary of the Transport Interface

CHAPTER 4

Endpoint Interface

This chapter describes the basic Endpoint interface in Newton system
software. The Endpoint interface allows you to perform real-time communi-
cation using any of the communication tools available in the system. The
Endpoint interface is well suited for communication needs such as database
access and terminal emulation.

You should read this chapter if your application needs to perform real-time
communications—that is, communication operations that do not use the
Routing and Transport interfaces described in the previous chapters. This
chapter describes how to

set options to configure the underlying communication tool
establish a connection

send and receive data

set up an input specification frame to control how data is received

cancel communication operations

4-1

CHAPTER 4

Endpoint Interface

About the Endpoint Interface

4-2

The Endpoint interface is based on a single proto—pr ot oBasi cEndpoi nt —
which provides a standard interface to all communication tools (serial,
modem, infrared, AppleTalk, and so on). This proto provides methods for

» interacting with the underlying communication tool
= setting and getting endpoint options

= opening and closing connections

= sending and receiving data

The endpoint object created from this proto encapsulates and maintains the
details of the specific connection. It allows you to control the underlying
communication tool to perform your communication tasks.

The Endpoint interface uses an asynchronous, state-driven communications
model. In asynchronous operation, communication requests are queued, and
control is returned to your application after each request is made but before
it is completed. Many endpoint methods can also be called synchronously. In
synchronous operation, execution of your application is blocked until the
request completes; that is, the endpoint method does not return until the
communication operation is finished.

The Endpoint interface supports multiple simultaneous connections. That is,
you can have more than one active endpoint at a time. Each endpoint object
controls an underlying communication tool, and these tools run as separate
operating system tasks. However, remember that the endpoint objects you
create and control all execute within the single Application task.

The number of simultaneously active endpoints you can use is limited in
practice by available system memory and processor speed. Each communi-
cation tool task requires significant memory and processor resources. Note
that memory for the communication tools underlying endpoints is allocated
from the operating system domain, whereas memory for the endpoints is
allocated from the NewtonScript heap.

About the Endpoint Interface

CHAPTER 4

Endpoint Interface

Asynchronous Operation

Almost all endpoint methods can be called asynchronously. This means that
calling the method queues a request for a particular operation with the
underlying communication tool task, and then the method returns. When the
operation completes, the communication tool sends a callback message to
notify the endpoint that the request has been completed. The callback
message is the Conpl et i onScri pt message, and it is defined by your
application in a frame called the callback specification, or callback spec. (For
more details, see “Callback Spec Frame” on page 4-35.)

You define the callback spec frame in your application and pass it as an
argument to each endpoint method you call asynchronously. The callback
spec frame contains slots that control how the endpoint method executes,
and it contains a Conpl et i onScri pt method that is called when the
endpoint operation completes. The Conpl et i onScri pt method is passed a
result code parameter that indicates if the operation completed successfully
or with an error.

A special type of callback spec, called an output spec, is used with the

Cut put method. An output spec contains a few additional slots that allow
you to pass special protocol flags and to define how the data being sent is
translated. Output specs are described in the section “Output Spec Frame”
on page 4-36.

This kind of asynchronous operation lends itself nicely to creating
state-machine based code, where each part of the communication process is a
state that is invoked by calling an endpoint method. The Conpl et i onScri pt
method of each state invokes the next state, and the state machine automati-
cally progresses from one state to the next in a predefined linear fashion.

Synchronous Operation

Many endpoint methods can be called synchronously as well as
asynchronously. Synchronous operation means that invoking a method
queues a request for a particular operation with the underlying communica-
tion tool task, and the method does not return until the operation is

About the Endpoint Interface 4-3

CHAPTER 4

Endpoint Interface

completed. This means that your application is blocked from execution until
the synchronous method returns.

Only a few endpoint methods must be called synchronously. Most can be
called either asynchronously or synchronously. For methods that can be
called in either mode, it is recommended that you use the asynchronous
mode whenever possible. If you call such a method synchronously, the
communication system spawns a separate task associated with the method
call. This results in higher system overhead and can reduce overall system
performance if you use many synchronous method calls.

Input

In the Endpoint interface, you receive data by defining a frame called an
input specification, or input spec, and then waiting for input. The input spec
defines how incoming data should be formatted, termination conditions that
control when the input should be stopped, data filtering options, and
callback methods. The main callback method is the | nput Scri pt method,
which is passed the received data when the input operation terminates
normally. Receiving data with the Endpoint interface is always asynchronous.

Here is an overview of the way you can use input spec methods to obtain the
received data:

s Let the termination conditions specified in the input spec be triggered by
the received data, thus calling your | nput Scri pt method. For example,
when a particular string is received, the | nput Scri pt method is called.

» Periodically sample incoming data by using the input specPar ti al Scri pt
method, which is called periodically at intervals you specify in the
input spec.

» Force termination of the pending input spec, and cause the system to send
the | nput Scri pt callback method by using the | nput method. This
immediately returns the contents of the input buffer and clears it.

About the Endpoint Interface

CHAPTER 4

Endpoint Interface

= Immediately return the input buffer contents without terminating
the active input spec and without clearing the buffer by using the
Parti al method.

If the input operation terminates normally—that is, the | nput Scri pt
method is called—the system automatically reposts the input spec for you to
receive additional input. Of course, you can alter this process if you want to.

Data Forms

All NewtonScript data needs to be transformed whenever it is sent to or
received from a foreign environment. That foreign environment may be a
server or host computer at the other end of the connection, or it may even be
the communication tool that’s processing the configuration options you've
passed to it. Typically, communication tools expect C-type option data.

Whether you're sending, receiving, or using data to set endpoint options,
you can tag the data with a data form. A data form is a symbol that describes
the transformations that need to take place when data is exchanged with
other environments. When you send data or set endpoint options, the data
form defines how to convert the data from its NewtonScript format. When
you receive data or get endpoint options, the data form defines the type of
data expected.

Data forms are used in output specs, input specs, and endpoint option
frames. The data form is defined by a slot named f or min these frames. If
you don't define the data form in a particular case, a default data form is
used, depending on the type of operation and the type of data being handled.

Note that when sending data, you can take advantage of the default data
forms by not explicitly specifying a data form. Because NewtonScript objects
have type information embedded in their values, the system can select
appropriate default data forms for different kinds of data being sent. For
example, if you send string data and don’t specify the data form, the

' st ring data form is used by default.

About the Endpoint Interface 4-5

4-6

CHAPTER 4

Endpoint Interface

The symbols you use to indicate data forms are ' char,' nunber, ' string,
"bytes,' binary,'tenpl ate,and' frane. Each is best suited to certain
data and operations.:

For simple scalar values, use' char for characters and ' nunber for
numbers.

For semi-aggregate forms of these kinds of data, use' st ri ng for a
concatenation of characters plus a terminating byte, and use ' byt es for
an array of bytes.

For binary data, use ' bi nary. This is the fastest option for sending and
receiving, since the data processing is minimal.

For more complex data, there are two aggregate data forms. You may
want to use the ' t enpl at e form if you're communicating with a remote
procedure call service that expects C-type data. The' f r ane form is
convenient if you're exchanging frames with another Newton.

The different types of data forms and the defaults are described in more
detail in Table 4-1.

Table 4-1 Data forms
Data form Description
' char For receiving data or getting endpoint options, the data

is converted to Unicode using the endpoint encodi ng
slot and returned as a character. For sending data, the
character is converted from Unicode using the

encodi ng slot. This is the default data form for sending
characters with the Qut put method.

' nunber For receiving data or getting endpoint options, the data

is interpreted as a 30-bit integer using 4 bytes. For
sending data or setting endpoint options, the high-order
30 bits are placed into 4 bytes. This is the default data
form for sending numbers with the Qut put method.

continued

About the Endpoint Interface

CHAPTER 4

Endpoint Interface

Table 4-1 Data forms (continued)
Data form Description
"string For receiving data or getting endpoint options, the data

' byt es

' bi nary

"tenpl ate

"franme

is converted to Unicode using the endpoint encodi ng
slot and returned as a NewtonScript character string.
The conversion process adds the necessary termination
byte to the end of the NewtonScript string; the input
stream need not have terminators. For sending data, the
NewtonScript character string is converted from
Unicode using the encodi ng slot. The termination byte
is not sent. This is the default data form for sending
strings with the Qut put method, and for receiving data.

For receiving data or getting endpoint options, the data
is returned as an array of unsigned single-byte values.
For sending data, the value is squeezed into a single
unsigned byte and truncated if necessary.

Use this form anytime you want to receive or send raw
binary data. This is the default form for sending binary
data. (For details, see the section “Working With Binary
Data” beginning on page 4-27.)

Use this data form to exchange data with a service that
expects C-type data. This is the default value for setting
endpoint options. (For more information on how to
define this type of data, see the section “Template Data
Form” beginning on page 4-8.)

The data is expected to be a frame. For output, the frame
is flattened into a stream of bytes prior to being sent,
and for input, the byte stream is unflattened and
returned as a frame. If you want to flatten and unflatten
frames independently of sending and receiving data,
you can use the global function Tr ansl at e, described
on page 4-57.

About the Endpoint Interface 4-7

4-8

CHAPTER 4

Endpoint Interface

Only a subset of data form values is applicable for any particular operation.
Table 4-2 enumerates the data forms and their applicability to output specs,

input specs, and endpoint option frames.

Table 4-2 Data form applicability
Data form Output spec Input spec Option frame
' char default for OK OK
characters
' nunber default for numbers OK OK
"string default for strings default OK
' bytes OK OK OK
"binary default for binary OK; input spec OK
objects; output spec must include
can include optional t ar get slot
tar get slot
"tenpl ate OK OK; input spec default
must include
t ar get slot
"frane OK OK not applicable

Template Data Form

The ' t enpl at e data form enables you to pass data as if you were passing C
structures, and is thus extremely useful in communicating with the lower
level communication tools in getting and setting endpoint options.

When you set options or send data using the ' t enpl at e data form, the data
is expected to be a frame containing two slots, ar gl i st and t ypel i st. The
ar gl i st slotis an array containing the data, the list of arguments. The
typel i st slotis a corresponding array containing the types that describe

the data.

About the Endpoint Interface

CHAPTER 4

Endpoint Interface

To get endpoint options, the data in the dat a slot must be a frame containing
thear gl i st andtypel i st arrays. The ar gl i st array should contain
placeholder or default values. The system supplies the actual ar gl i st
values when the option list is returned.

In the same manner, to receive data, you must add at ar get slot to your
input spec containing the ar gl i st and t ypel i st arrays. The ar gl i st
array contains placeholder or default values, which the system fills in when
the data is received. For more information, see the section “Specifying the
Data Form and Target” beginning on page 4-19.

The data types that can be used in the t ypel i st array are described in
Table 4-3.

Table 4-3 Data types for t ypel i st array

Data type Description

"l ong signed long integer

"ul ong unsigned long integer

"short 16-bit unsigned short integer

"byte 8-bit unsigned byte

' char 8-bit character (translated to/from Unicode)

"uni codechar 16-bit Unicode character

" bool ean 8-bit plain Boolean value

' struct an aggregate structure, padded to a long word (4 bytes)
"array an aggregate array

Note that the ' struct and ' arr ay data types are not used alone, but in
conjunction with other elements in at ypel i st array. They modify how the
other elements are treated. The ' struct data type defines the array as an
aggregate structure of various data types that is padded to a long-word
boundary (4 bytes in the Newton system). Note that the whole structure is

About the Endpoint Interface 4-9

4-10

CHAPTER 4

Endpoint Interface

padded, not each array element. You must specify the' st ruct data type in
order to include more than one type of data in the array.

The ' arr ay data type defines the array as an aggregate array of one or more
elements of a single data type. The ' ar r ay data type is specified as a
NewtonScript array of three items, like this:

['array, dataTypeSymbol, integer]

Replace the dataTypeSymbol with one of the other data types given in

Table 4-3. And integer is an integer specifying the number of bytes to convert.
To convert an entire string, including the terminator, specify zero for integer.
A nonzero value specifies the exact number of bytes to be converted,
independent of a termination character in the source string.

Here are some examples of how to use the ' ar r ay data type to represent C
strings and Unicode strings in NewtonScript. The first example shows how
to convert between a NewtonScript string of undefined length and a C string
(translated to/from Unicode):

["array, 'char, 0]

This example shows how to convert a four-character NewtonScript string to
a C string:

["array, 'char, 4]

This example shows how to convert between a NewtonScript string and a
Unicode string:

["array, 'unicodechar, 0]

The ' t enpl at e data form is intended primarily as a means of
communicating with the lower level communication tools in the Newton
system. You can use this data form to communicate with a remote system,
however, you must be careful and know exactly what you are doing to use it
for this purpose. Remember that the lengths of various data types may be
different in other systems and the byte order may be different as well.

About the Endpoint Interface

CHAPTER 4

Endpoint Interface

Endpoint Options

You configure the communication tool underlying an endpoint object by
setting endpoint options. An endpoint option is specified in an endpoint
option frame that is passed in an array as an argument to one of the
endpoint methods. Options select the communication tool to use, control its
configuration and operation, and return result code information from each
endpoint method call. An alternative way to set options is to directly call the
endpoint Opt i on method.

There are three kinds of options you can set, each identified by a
unique symbol:

= ' servi ce options, which specify the kind of communication service, or
tool, to be controlled by the endpoint

= ' opti on options, which control characteristics of the communication tool

= ' addr ess options, which specify address information used by the
communication tool

Compatibility

The pr ot oBasi cEndpoi nt and pr ot oSt r eani ngEndpoi nt objects and
all the utility functions described in this chapter are new in Newton system
software version 2.0. The pr ot oEndpoi nt interface used in system software
version 1.x is obsolete, but still supported for compatibility with older
applications. Do not use the pr ot oEndpoi nt interface, as it will not be
supported in future system software versions.

Specific enhancements introduced by the new endpoint protos in system
software 2.0 include the following:

= Data forms. You can handle and identify many more types of data by
tagging it using data forms specified in the f or mslot of an option frame.

= Asynchronous behavior and callback specs. Most endpoint methods can
now be called asynchronously.

= Flexible input specs. Enhancements include support for time-outs and the
ability to specify multiple termination sequences.

About the Endpoint Interface 4-11

CHAPTER 4

Endpoint Interface

Better error handling. Consistent with other system services, errors
resulting from synchronous methods are signaled by throwing an
exception.

Binary data handling. The way binary (raw) data is handled has changed
significantly. For input, you can now target a direct data input object,
which results in significantly faster performance. For output, you can
specify offsets and lengths, which allows you to send the data in chunks.

Multiple communication sessions. The system now supports multiple
simultaneous communication sessions. In other words, you can have more
than one active endpoint at a time.

Using the Endpoint Interface

This section describes

setting endpoint options

initializing and terminating an endpoint
establishing a connection

sending data

receiving data

sending and receiving streamed data
working with binary data

canceling operations

handling errors

linking the endpoint with an application

4-12 Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

Setting Endpoint Options

Endpoint options are specified in an endpoint option frame that is passed as
an argument to one of the endpoint methods. Typically you specify an array
of option frames, setting several options at once. Note that you cannot nest
an option array inside another one.

You must specify a single ' ser vi ce option, to select a communication tool.
Then you usually specify one or more * opt i on options to configure the
communication tool—for example, to set the baud rate, flow control, and
parity of the serial tool. Note that if you are using the modem communica-
tion tool, you can use the utility function MakeMbdenOpt i on (page 4-56) to
return a modem dialing option for use with the built-in modem tool.

You may also need to specify an' addr ess option, depending on the
communication tool you are using. The only built-in tools that use an

' addr ess option are the modem and AppleTalk tools. Note that you
can use the global functions MakePhoneOpt i on (page 4-57) and
MakeAppl eTal kOpt i on (page 4-56) to construct ' addr ess options for
the modem and AppleTalk tools.

The slots in an endpoint option frame are described in detail in the section
“Endpoint Option Frame” beginning on page 4-33.

All option data you set gets packed together into one block of data. Each
option within this block must be long-word aligned for the communication
tools. So, when using the ' t enpl at e data form, you need to use the

" struct type (at the beginning of the t ypel i st array) to guarantee that
the option is long-word aligned and padded. To set the serial input/output
parameters, for instance, the option frame might look like this:

seriallOParns : = {
type: 'option,
| abel : kCMOSeri al | OPar s,
opCode: opSet Negoti at e,
data: {
arglist: [
kNoParity, [/ parity

Using the Endpoint Interface 4-13

CHAPTER 4

Endpoint Interface

kiStopBits, // stopBits
k8DataBits, // dataBits
k9600bps, /1 bps

] y

typelist: [
"struct,
"uLong,
"l ong,
"1 ong,
"l ong
]
}
}s
To get the connection information, the option frame you construct might look
like this:
connect I nfoParns : = {

type: 'option,
| abel : kCMOSeri al | OPar s,
opCode: opGet Current,
data: {

arglist: [

0, // parity placehol der

, /'l stopBits pl acehol der
, Il dataBits placehol der
, Il bps placehol der

o O O

1,

typelist: [
'struct,
"ul ong,
"l ong,

4-14 Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

"l ong,
"l ong

b

When you set endpoint options, the cloned option frame is returned to you
so that you can check the result codes for individual options. If you set
options with an asynchronous method call, the cloned option frame is
returned as a parameter to the Conpl et i onScri pt callback method. If you
set options with a synchronous method call, the cloned option frame is
returned as the value of the synchronous method itself.

The r esul t slot in each option frame is always set for returned options. It
can be set to any of the error codes listed in Table 4-10 on page 4-63. If an
option succeeds without errors, the r esul t slot is set to ni | .

Exceptions are not thrown when individual options fail. This allows a
request to succeed if, for example, every specified option except one
succeeds. If you need to determine whether a particular option succeeds
or fails, you must check the r esul t slot of the option in question.

Note that in one array of option frames, you can specify options that are of
the same type, and that seem to conflict. Since options are processed one at a
time, in order, the last option of a particular type is the one that is actually
implemented by the communication tool.

Note

When instantiating an endpoint for use with the modem
tool, you can have options specified by the options parameter
to the I nst ant i at e method, as well as options specified by
a modem setup package (see Chapter 6, “Modem Setup
Service.”). Any options from a modem setup package are
appended to those set by the | nst ant i at e method. O

For details on the specific options you can set for the built-in communication
tools, see Chapter 5, “Built-in Communication Tools.”

Using the Endpoint Interface 4-15

4-16

CHAPTER 4

Endpoint Interface

Initialization and Termination

Before using an endpoint, you must instantiate it using the | nst anti at e
method (page 4-44). This method allocates memory in the system and creates
the endpoint object. Then, you must bind the endpoint object to a communi-
cation tool by calling the Bi nd method (page 4-44). This allocates the
communication tool resources for use by the endpoint.

When you are finished with an endpoint, you must unbind it using the
UnBi nd method (page 4-45), then dispose of it using the Di spose method
(page 4-45).

Establishing a Connection

After instantiating and binding an endpoint, you establish a connection.

There are two ways you can create a connection. One way is to call the
Connect method (page 4-45). If the physical connection is serial, for
instance, you don't even need to specify an address as an option. The
Connect method immediately establishes communication with whatever is
at the other end of the line.

Certain communication tools—for example, the modem and AppleTalk
tools—require you to specify an option of type ' addr ess in order to make a
connection. The modem tool requires a phone number as an' addr ess
option. You can use the global function MakePhoneOpt i on (page 4-57) to
return a proper phone number ' addr ess option. The AppleTalk tool
requires an AppleTalk Name Binding Protocol (NBP) ' addr ess option. You
can use the global function MakeAppl eTal kOpt i on (page 4-56) to return a
proper NBP ' addr ess option.

To establish a connection where you expect someone else to initiate the
connection, you may need to call the Li st en method (page 4-46). Once the
connection is made by using Li st en, you need to call the Accept method
(page 4-47) to accept the connection, or the Di sconnect method (page 4-47)
to reject the connection and disconnect.

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

Sending Data

To send data, use the Qut put method (page 4-48). This method is intelligent
enough to figure out the type of data you're sending and to convert it
appropriately for transmission. This is because NewtonScript objects have
type information embedded in their values, allowing the system to select
appropriate default data forms for different kinds of data being sent.

You can specify output options and a callback method by defining an output
spec (page 4-36), which you pass as a parameter to the Qut put method.

Certain communication tools may require or support the use of special flags
indicating that particular protocols are in use. For example, the built-in
infrared and AppleTalk tools expect framed (or packetized) data, and there
are special flags to indicate that this kind of protocol is in use. If you are
using such a communication tool to send data, you need to specify the
sendFl ags slot in the output spec frame. In this slot, you specify one or
more flag constants (see Table 4-12 on page 4-64) added together.

To send packetized data, you set sendFl ags to kPacket +kMor e for each
packet of data that is not the last packet. For the last packet, set sendFl ags
to kPacket +kEOP, or you can just send an empty packet last, with the flags
kPacket +kEOP set.

Receiving Data Using Input Specs

The most common way to receive data is to use input specs. An input spec is
a frame that defines what kind of data you are looking for, termination
conditions that control when the input should be stopped, and callback
methods to notify you when input is stopped or other conditions occur.

An input spec consists of many pieces. It contains slots that define
= the type of data expected (f or mslot)

= the input target for template and binary data (t ar get slot)

» the data termination conditions (t er mi nat i on slot)

= protocol flags for receiving data (r cvFl ags slot)

Using the Endpoint Interface 4-17

4-18

CHAPTER 4

Endpoint Interface

» an inactivity time-out (r eqTi meout slot)
» the data filter options (fi | t er slot)
= the options associated with the receive request (r cvOpt i ons slot)

» a method to be called when the termination conditions are met
(I nput Scri pt method)

» a method to be called periodically to check input as it accumulates
(Parti al Scri pt method, parti al Frequency slot)

» amethod to be called if the input spec terminates unexpectedly
(Conpl eti onScri pt method)

Table 4-4 summarizes the various input data forms and the input spec slots
that are applicable to them. Input spec slots not included in the table apply to
all data forms. For more details on the input spec frame, see the section
“Input Spec Frame” beginning on page 4-37.

After you've connected or accepted a connection, you set up your first input
spec by calling Set | nput Spec (page 4-49). When one input spec terminates,
the system automatically posts another input spec for you when the

| nput Scri pt method (page 4-38) defined in the previous input spec
returns. This new input spec duplicates the one that just terminated. If you
don’t want this to happen, you can call the Set | nput Spec method from
within the | nput Scri pt method of your input spec to change the input
spec or terminate the input.

You also use the Set | nput Spec method if you need to set up an input spec
at some other point. Note that if you want to terminate a current input spec
to set up a new one, you must call the Cancel method (page 4-50) before
calling Set | nput Spec with your new spec.

The following sections describe how to set the various slots in the input spec
to accomplish specific tasks.

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

Table 4-4 Input spec slot applicability
3 a
g 52
k=) @ g2
z o Ss
c () O .-
5 2 = 5 s
@ 5 3 @ i &
= c = 5 T ©
o S o - ==
Data form s o = = < 3
' char na (not determined na OK na
applicable) automatically
' nunber na determined na OK na
automatically
"string na OK OK OK OK
"bytes na OK OK OK OK
" bi nary dat a and all slots except na na na
of f set slots endSequence
only
"tenpl ate typelist and determined na na na
argli st slots automatically
only
"frane na determined na na na
automatically

Specifying the Data Form and Target

You can choose how you want the received data formatted by setting the
f or mslot (page 4-37) in the input spec. In this slot, you specify one of the
standard data forms described in Table 4-1 on page 4-6.

In preparation for receiving data, the system creates an input buffer. The
buffer’s size is based on the input spec slot t er mi nat i on. byt eCount, on
the slot di scar dAf t er, or on the intrinsic size of the data. The system
receives all the data in to this buffer, then translates the data into a newly
created object whose type is specified by the input spec’s f or mslot. It is this
object that is passed back to the | nput Scri pt method.

Using the Endpoint Interface 4-19

4-20

CHAPTER 4

Endpoint Interface

If you specify the form ' t enpl at e or ' bi nary, you also must specify a
t ar get slot (page 4-40) in the input spec. The t ar get slot is a frame used to
define additional information pertaining to the data form.

If your input form is ' t enpl at e, then you must set the ar gl i st and
typel i st slotsin thet ar get frame. The ar gl i st array contains place-
holder data, which is filled in with actual data when it is received, and the
typel i st array contains the template’s array of types.

If your input form is ' bi nary, data is written directly into the binary object
that you specify in the dat a slot of the t ar get frame. You can specify a
binary object, virtual binary object, or string. Note that the binary object must
be the same size as the received data; the system will not expand or shrink
the object. For information on virtual binary objects, see Chapter 11, “Data
Storage and Retrieval,” in Newton Programmer’s Guide: System Software.

The of f set slotin thet ar get frame allows you to specify an offset in the
binary object at which to write incoming data. For instance, if you want to
append the received data to a binary object that already exists, you must set
the dat a slot to the binary object, and set the of f set slot to the byte offset
at which you want the new data to be written.

Specifying Data Termination Conditions

For' stringand' byt es data forms, you must indicate when the input
terminates by specifying a t er mi nat i on slot (page 4-41). You can terminate
the input on these conditions:

» when a certain number of bytes has been received (set the
byt eCount slot)

» when a specific set of characters in the input stream has been found
(set the endSequence slot)

» when the communication tool returns an end-of-packet indicator
(set the useECP slot)

Normally with the ' bi nary data form, the input is terminated when the
target object fills up. However, you can also use the t er mi nat i on slot with
binary data to specify a byte count that causes the input to terminate after a

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

certain number of bytes has been received. This feature is useful when you
want to provide user feedback as a large binary object is being received. Set
the byt eCount slot in the t er mi nat i on frame, and, when the input
terminates, repost the input spec with the t ar get . of f set slot set to the
value of the t er mi nat i on. byt eCount slot.

If you want to receive data that ends with a particular sequence of data,
define that sequence in the endSequence slot in the t er mi nat i on frame.
The endSequence slot allows you to terminate input based on a particular
sequence of incoming data called the termination sequence. You can specify a
single termination sequence, or an array of items, any one of which will
cause the input to terminate. A termination sequence can be a single
character, a string, a number, or an array of bytes. If you don't want to look
for a termination sequence, don't define this slot.

Note

Note that the system executes byte-by-byte comparisons
between the termination sequence and the input stream. To
facilitate this process, the termination sequence (or elements
within the endSequence array) is converted to a byte or
binary format to speed the comparison. Internally, single
characters are converted to single bytes using the translation
table specified by the endpoint encodi ng slot (page 4-43).
Numbers are converted to single byte; strings are converted
to binary objects. An array of bytes is also treated as a binary
object. For large numbers, you must encode your number as
an array of bytes if there are significant digits beyond the
high order byte of the number. O

If you want to terminate input based on a transport-level end-of-packet
(EOP) indicator, then you can set the useEOP slot in the t er mi nat i on
frame. This slot holds a Boolean value specifying whether or not to look for
EOP indicators. Specify this slot only if the input spec r cvFl ags slot
includes the kPacket flag. Moreover, if the r cvFl ags slot includes the
kPacket flag and you do not specify the t er mi nat i on. useEOP slot, the
system effectively sets useEOP to the default value t r ue. For more
information, see the following section, “Specifying Flags for Receiving.”

Using the Endpoint Interface 4-21

4-22

CHAPTER 4

Endpoint Interface

It is not appropriate to specify the t er m nat i on slot for data forms other
than' string,' bytes,and' bi nary. The' char and' nunber data forms
automatically terminate after 1 and 4 bytes, respectively. The ' f r ame data
form is terminated automatically when a complete frame has been received,
and the ' t enpl at e data form terminates when the number of bytes
received matches the t ypel i st specification in the t ar get frame.

To limit the amount of accumulated data in the input buffer, you can define
adi scar dAf t er slot (page 4-37) in the input spec. You can do this only
when you have not specified a t er mi nati on. byt eCount slot for' string
and ' byt es data forms. The di scar dAf t er slot sets the input buffer size.
If the buffer overflows, older bytes are discarded in favor of more recently
received bytes.

Specifying Flags for Receiving

For certain communication tools, it may be necessary to use special protocol
flags when receiving data. You do this by specifying one or more flag
constants in the r cvFl ags slot (page 4-37) in the input spec. You can use
such flags only if the communication tool supports them.

For example, some of the built-in communication tools, such as the infrared
and AppleTalk tools, support only framed receiving (packetized data). In
order to use framed receiving, you must set the r cvFl ags slot to the
constant kPacket . With the infrared tool, if you do not specify ar cvFl ags
value of kPacket , the tool will behave unexpectedly.

Do not define the r cvFl ags slot if the underlying communication tool does
not support EOP indicators. If you do so, your input will terminate after each
physical buffer of data is received. If you wish to terminate an input spec
based on an EOP indicator, set the useEOP slot in the t er m nat i on frame
totrue.

Of the built-in communication tools, only the infrared, AppleTalk,
and framed asynchronous serial tools support framed packets and
the kPacket flag.

If you set the kPacket flag and set the useEOP slot to t r ue, you cannot also
use the byt eCount slot in the termination frame—if you do, byt eCount

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

will be ignored. In this case, only an EOP indicator will terminate input. If
you do want to use the byt eCount slot with the kPacket flag, set the
useECP slot to ni | . In the latter case, the remote system should send an EOP
indicator with every packet, though input won’t terminate until the

byt eCount condition is met.

Specifying an Input Time-Out

You can specify a time-out for input in the r eqTi meout slot (page 4-37) of
the input spec. In this slot, you specify the time, in milliseconds, of inactivity
to allow during input. If there is no input for the specified interval, the
time-out expires, the input is terminated, and the Conpl et i onScri pt
message (page 4-40) is sent to the input spec frame.

Note that if a time-out expires for an asynchronous request such as receiving,
that request and all outstanding requests are canceled.

Specifying Data Filter Options

As incoming data is received in the input buffer, the data can be processed,
or filtered. This filtering can occur on all types of received data, except binary
data (defined by the ' bi nary data form). This filtering of data is defined by
the fil ter slot(page 4-42) in the input spec. The fi | t er slotis a frame
containing two slots, byt ePr oxy and sevenBi t, which allow you to
perform two different kinds of processing.

The byt ePr oxy slot allows you to identify one or more characters or bytes
in the input stream to be replaced by zero or one characters. You may, for
instance, replace null characters (0x00) with spaces (0x20). Note that if your
input data form is set to ' st ri ng, you are encouraged to use this slot.
Otherwise, null characters embedded in your string may prematurely
terminate that string. (Remember, NewtonScript strings are null-terminated.)

The byt ePr oxy slot contains either a single frame or an array of frames.
Each frame must have a byt e slot, identifying the single-byte character or
byte to be replaced, and a pr oxy slot, identifying the single-byte character or
byte to be used instead. The pr oxy slot can also be ni | , meaning that the
original byte is to be removed completely from the input stream.

Using the Endpoint Interface 4-23

4-24

CHAPTER 4

Endpoint Interface

Note

Note that the system executes byte-by-byte comparisons and
swaps between the bytes in the input stream and the
replacements in the pr oxy slot. To facilitate this process, the
values in the byt e and pr oxy slots are converted to a byte
format to speed the comparison and swap. Internally, single
characters are converted to single bytes using the translation
table specified in the endpoint encodi ng slot (page 4-43).
Numbers are converted to single bytes. If a number has
significant digits beyond the high-order byte, they will be
dropped during the comparison and swap. O

You can also specify the sevenBi t slotinthefilter frame. Set this slot to
t r ue to specify that the high-order bit of every incoming byte be stripped
(“zeroed out”). This is a convenient feature if you plan to communicate over
links (particularly private European carriers) that spuriously set the
high-order bit.

Specifying Receive Options

You can also set communication tool options associated with the receive
request. To do this, specify an option frame or an array of option frames
in the r cvOpt i ons slot (page 4-38) in the input spec. The options are set
when the input spec is posted by the Set | nput Spec method. The
processed options are returned in the options parameter passed to the

I nput Scri pt method.

Note that the options are used only once. If your | nput Scri pt method is
called, for example, and it returns expecting the input spec to remain active,
the options are not reposted. To explicitly reset the options in this example,
you must call Set | nput Spec (page 4-49) within your | nput Scri pt
method.

Handling Normal Termination of Input

The | nput Scri pt message (page 4-38) is sent to the input spec frame when
one of the termination conditions is met. You define the | nput Scri pt
method in the input spec frame.

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

The received data is passed as a parameter to the | nput Scri pt method.
Another parameter describes the specific condition that caused the input to
terminate, in case you had specified more than one in the input spec.

When the | nput Scri pt method returns, the system automatically posts
another receive request for you using the same input spec as the last one.
You can prevent this by calling Set | nput Spec within the | nput Scri pt
method. In the Set | nput Spec method, you can set a different input spec, or
you can prevent a new input spec from being posted by setting the inputSpec
parameter to ni | .

Periodically Sampling Incoming Data

You can sample the incoming data without meeting any of the termination
conditions by specifying a Par ti al Scri pt method (page 4-40) in the input
spec. The system sends the Par t i al Scri pt message to the input spec
frame periodically, at the frequency you define in the par ti al Fr equency
slot (page 4-38) in the input spec. The system passes to the Parti al Scri pt
method all of the data currently in the input buffer, but the data is not
removed from the input buffer. If you want to remove this data from the
input buffer, you can call the Fl ushParti al method (page 4-50).

Note that the sending of Par ti al Scri pt messages is controlled by system
idle events and is in no way triggered by receive request completions.

The current input spec remains in effect after the Par ti al Scri pt

method returns.

You typically would use a Par ti al Scri pt method to detect abnormal or
out-of-band data not found by any of the usual input termination conditions.

You can specify Par ti al Scri pt methods only for those input data forms
that allow termination conditions —specifically, the' st ri ng and ' byt es
data forms.

To use the Par t i al Scri pt method, you must also include the

parti al Fr equency slot in the input spec. The par ti al Fr equency slot
specifies the frequency, in milliseconds, at which the input data buffer should
be checked. If new data exists in the buffer, the Par ti al Scri pt message is
sent to the input spec frame.

Using the Endpoint Interface 4-25

4-26

CHAPTER 4

Endpoint Interface

Handling Unexpected Completion

The Conpl et i onScri pt message (page 4-40) is sent to the input spec frame
when the input spec completes unexpectedly—for example, because of a
time-out expiring or a Cancel message.

If you do not specify a Conpl et i onScri pt method in your input spec
frame, an exception is forwarded to the endpoint Except i onHandl er
method (page 4-52).

Special Considerations

If you want to set up an input spec, but you never want to terminate the
input, you can set up the input form to be either ' stri ng or' byt es data,
and not define any of the data termination conditions. In this case, it is up to
you to read and flush the input. You can do this by using a Par ti al Scri pt
method that calls the Fl ushPar t i al method at the appropriate times. Note
that if the input exceeds the di scar dAf t er size, the oldest data in the
buffer is deleted to reduce the size of the input.

Alternatively, if you omit the | nput Scri pt method, yet define the input
data form and termination conditions, the input continues to be terminated
and flushed at the appropriate times. The only difference is that without an
| nput Scri pt method, you'll never see the complete input.

Receiving Data Using Alternative Methods

The methods described in this section allow you to receive data in ways
other than letting an input spec terminate normally. You may not need to use
these methods; they're provided for flexibility in handling special situations.

You can immediately terminate a pending input spec and force the system to
send it the | nput Scri pt message by calling the | nput method (page 4-49).
Note that this method is appropriate to use only when receiving data of the
forms' stringand' bytes.

You can look at incoming data outside the scope of your | nput Scri pt or
Parti al Scri pt method by calling the method Par ti al (page 4-50). This

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

method returns data from the input buffer but doesn’t remove it from the
buffer. You can use this method to sample incoming data without affecting
the normal operation of your input spec and its callback methods. Note that
this method is appropriate to use only when receiving data of the forms
"stringand’ bytes.

To flush data from the input buffer, you can use the methods Fl ushl nput
and Fl ushParti al . The Fl ushl nput method discards all data in the input
buffer, and Fl ushParti al discards all data read by the last call to the

Parti al method.

Streaming Data In and Out

Besides pr ot oBasi cEndpoi nt, there is another type of endpoint proto
called pr ot oSt r eam ngEndpoi nt (page 4-53). The purpose of this
streaming endpoint is to provide a way to send and receive large frames
without having to first flatten or unflatten them. The frame data is flattened
or unflattened in chunks as it is sent or received. This allows large objects to
be sent and received without causing the NewtonScript heap to overflow.

The pr ot oSt r eam ngEndpoi nt proto includes a method, St r eam n
(page 4-53), that allows you to receive streamed data. This method
automatically unflattens received data into a frame object in memory or
directly on a store. Another method, St r eanQut (page 4-55), allows you to
send frame data as a byte stream. Note that these two methods are
synchronous; that is, they don’t return until the operation is complete.
However, they do provide progress information during the operation by
means of a periodic callback.

Working With Binary Data

For receiving data, the data is returned as a raw byte stream. The data is not
converted and is block-moved directly into a binary object that you have
preallocated and specified as the target for the input.

To create this target object, specify at ar get frame in your input spec. This
frame contains a dat a slot and optionally an of f set slot. The dat a slot

Using the Endpoint Interface 4-27

4-28

CHAPTER 4

Endpoint Interface

contains the preallocated binary (or virtual binary) object, while the of f set
slot is the offset within the binary object at which to stream data. For more
information on receiving binary data and using the t ar get frame, see the
section “Specifying the Data Form and Target” beginning on page 4-19.

For sending data, the data is expected to be a binary object and is inter-
preted as a raw byte stream. That is, the data is not converted and is passed
directly to the communication tool. This is the default data form for sending
binary objects.

If you wish to send only a portion of your binary data at once, you can
specify at ar get frame in the output spec (page 4-36). Within the t ar get
frame, the of f set slot defines the offset from the beginning of the binary
object at which to begin sending data, and the | engt h slot defines the length
of the data to send.

These binary capabilities are very useful if you wish to send and receive
flattened frames “packetized” for a communication protocol. By using the
global function Tr ansl| at e (page 4-57), you can flatten a frame. Then you
can packetize the transmission by using the t ar get frame in the output spec.

On the receiving end, you can preallocate a virtual binary object, and then
assemble the packets using the t ar get frame in the input spec. Once all
binary data has been received, you can unflatten the frame using the

Tr ansl at e function again.

Canceling Operations

To stop endpoint operations, you can use the endpoint method Cancel
(page 4-50) or Di sconnect (page 4-47). Endpoint operations can also be
canceled indirectly as a result of a time-out expiring. Remember that you
can set a time-out for a request in the callback spec that you pass to most
endpoint methods, and you can set a time-out in an input spec.

Note that you cannot specify what is canceled. When you or the system
cancel operations, all outstanding synchronous and asynchronous requests
are canceled.

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

The cancellation process proceeds differently depending on whether you are
canceling asynchronous or synchronous requests that you have previously
queued. Following a cancellation, it is safe to proceed with other endpoint
operations at different times, according to the following rules:

= If you use only asynchronous calls in your application, you can safely
proceed after you receive the Conpl et i onScri pt message resulting
from the Cancel call (or from the method whose time-out expired).

= If you use only synchronous calls in your application, you can safely
proceed after the cancelled synchronous call throws an exception as a
result of the cancellation.

Mixing asynchronous and synchronous methods in your application is not
recommended. However, if you do so, you should treat the cancellation
process as if you had used all synchronous calls, and proceed only after an
exception is thrown.

The cancellation itself can be invoked asynchronously or synchronously, and
is handled differently in the system depending on how it’s done. The details
are explained in the following subsections.

Asynchronous Cancellation

Cancellation can be invoked asynchronously in the following ways:

= calling the Cancel method (page 4-50) asynchronously, or calling the
Di sconnect method (page 4-47) asynchronously with the cancelPending
parameter set tot r ue

= having a time-out expire for an asynchronous request

When cancellation is invoked asynchronously, the system first cancels all
pending asynchronous requests. This means that the Conpl et i onScri pt
message is sent to the callback spec for each of these requests, and the
Conpl eti onScri pt result parameter is set to —16005.

Using the Endpoint Interface 4-29

4-30

CHAPTER 4

Endpoint Interface

Note

When calling Cancel asynchronously, it is possible that
additional asynchronous requests might be queued (by a
Conpl etionScri pt method) after the Cancel request is
queued but before it is executed. These additional requests
will fail with error -36003 since they will be processed
after the cancel process begins. In fact, any endpoint
request that is made while a cancel is in progress will fail
with error -36003. O

Next, the cancel request itself completes by sending the Conpl et i onScri pt
message. This message is sent to the callback spec passed to the Cancel (or
Di sconnect) method. Or, if the cancellation was invoked as the result of a
time-out expiration, the Conpl et i onScri pt message is sent to the callback
spec of whatever method timed out (or to the input spec, if input was

in progress).

Finally, any pending synchronous request is canceled by throwing an
exception that contains error code —-16005.

Synchronous Cancellation

Cancellation can be invoked synchronously in the following ways:

» calling the Cancel method (page 4-50) synchronously, or calling the
Di sconnect method (page 4-47) synchronously with the cancelPending
parameter settot r ue

» having a time-out expire for a synchronous request

When cancellation is invoked synchronously, the system first cancels any
pending asynchronous requests. This means that the Conpl et i onScri pt
message is sent to the callback spec for each of these requests, and the
Conpl eti onScri pt result parameter is set to —16005.

Next, the Cancel (or Di sconnect) method returns, and any pending
synchronous request is canceled by throwing an exception that contains error
code —-16005. Or, if the cancellation was invoked as the result of a time-out
expiration, then whatever method timed out throws an exception containing
error code —16005.

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

Other Operations

The Opt i on method (page 4-51) allows you to get and set options apart
from the options parameter to the Bi nd, Connect, Li st en, Accept, and
Qut put methods.

You can check the state of a connection by calling the St at e method
(page 4-53).

Custom communication tools can return special events to the endpoint object
through the Event Handl er message (page 4-52). This message is sent to the
endpoint whenever an event occurs that is not handled by one of the usual
endpoint event handlers. You can use this mechanism in whatever way

you want to pass events from a custom communication tool up to the
endpoint layer.

Error Handling

You can handle exception conditions by specifying an Except i onHand| er
method (page 4-52) in your endpoint. You can cancel all outstanding requests
and throw exceptions by calling the Cancel method (page 4-50).

When you call an endpoint method synchronously, and an error occurs
in that method, the system throws an exception (usually of type

| evt. ex. comm]). You can catch these exceptions in your application by
using thetry ...onexcepti on construct. It's a good idea to bracket
every endpoint method call with this exception catching construct.

If an error occurs as a result of an asynchronous request, no exception is
thrown, but the error is returned in the result parameter to the

Conpl et i onScri pt method associated with that request. If you did not
define a Conpl et i onScri pt method, or if the error is unsolicited, the error
is forwarded to your Except i onHandl er method. If you did not define an
Except i onHandl er method, then the communication system throws an
exception. This exception is caught by the operating system, which displays
a warning message to the user.

Error codes generated by the Endpoint interface are defined in Table 4-9 on
page 4-61.

Using the Endpoint Interface 4-31

4-32

CHAPTER 4

Endpoint Interface

When you use the Opt i on method (or any method that takes options as a
parameter), not only can the method itself fail, but a failure can occur in
processing each of the individual option requests. If the latter happens, the
resul t slot in the returned option frame is set to one of the option error
codes listed in Table 4-10 on page 4-63. If an option succeeds without errors,
theresul t slotis set to ni | . For more general information on setting
options, see the section “Endpoint Options” beginning on page 4-11.

Power-Off Handling

During send and receive operations, you may want to protect against the
system powering off so that the connection is not broken. The system can
power-off unexpectedly as a result of the user inadvertently turning off the
power or as a result of a low battery. If you want to be notified before the
system powers off, you can register a callback function that the system will
call before the power is turned off. Depending on the value you return from
your callback function, you can prevent, delay, or allow the power-off
sequence to continue.

For details on registering power handling functions, see the chapter “New
System Services” in Newton Programmer’s Guide: System Software 2.0.

Linking the Endpoint With an Application

If your endpoint is going to be driven by an application, you'll have a
reference to the endpoint frame in your application. Also, you'll probably
want to have a reference to your application base view in the endpoint
frame, so you can handle endpoint messages in your application through
inheritance.

The easiest way to link the endpoint and application together is to create a
slot in your application base view like this:

Vi ewSet upFornScri pt: func ()
begi n
sel f.fEndPoint: { _proto: protoBasi cEndpoint,
_parent:self};
end

Using the Endpoint Interface

CHAPTER 4

Endpoint Interface

This creates an endpoint frame as a slot in the application base view at run
time, and makes the application base view (sel f here) the parent of the
endpoint frame, so it can receive endpoint messages through inheritance.

Endpoint Interface Reference

This section describes the data structures your application uses when
interacting with the Endpoint interface, and the routines and protos
provided by the interface. It also describes the global functions that are
useful in endpoint communications.

Data Structures

This section describes the data structures that your application uses to
interact with the Endpoint interface.

Endpoint Option Frame

An endpoint option frame selects the communication tool to use, controls its
configuration and operation, and returns result code information from each
endpoint method call. Note that multiple option frames can be specified
together in an array, but arrays cannot be nested.

Slot descriptions

type The type of option, which canbe ' servi ce,' opti on,
or' address.
| abel The option identifier, which is dependent on the

communication tool. Usually it is a four-character string
that identifies the option. Constants are defined for all
the different options for the built-in communication
tools. For details, see Chapter 5, “Built-in
Communication Tools.”

Endpoint Interface Reference 4-33

4-34

CHAPTER 4

Endpoint Interface

opCode

form

resul t

dat a

A constant indicating how the tool should handle the
option request. Possible values include the following;:

opSet Requi r ed
Indicates that the request must fail if the
service is unable to honor it (for example,
setting a bps rate of 1.2 million). Note that
other options in the options array are
processed even though one or more
may fail.

opSet Negoti at e
Indicates that the service can substitute a
“reasonable” value if the requested value
is unacceptable.

opGet Def aul t
Indicates that the system is to return the
default settings.

opCet Current
Indicates that the system is to return the
current settings.

A symbol identifying the data form to be used in
interpreting the dat a slot. Data form symbols are listed
in Table 4-1 on page 4-6. You should specify the value
't enpl at e for options.

A result code, set on return from the method. (This slot
is ignored if used as a parameter.) The possible result
codes are listed in Table 4-10 on page 4-63.

The option data. All the built-in communication tools
expect data of the ' t enpl at e form. This consists of a
frame containing ar gl i st and t ypel i st arrays. For
more information on the template data form, see the
section “Template Data Form” beginning on page 4-8.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

Callback Spec Frame

A callback spec frame controls whether an endpoint method executes
synchronously or asynchronously. It also defines a time-out and contains a
Conpl etionScri pt method that is called when the endpoint operation
completes.

Slot descriptions

async A Boolean value. If t r ue, then the request is posted
asynchronously. This slot is optional and defaults to
ni | . Itis evaluated only at the time the endpoint
method is called.

reqTi meout An integer specifying the time, in milliseconds, that the
system should allow for the request to complete. If a
time-out expires for an asynchronous request, that
request and all outstanding requests are canceled. This
slot is optional, defaults to kNoTi meout, and is
evaluated only at the time the method is called. This slot
is ignored if the callback spec is used with the Cancel
method, since time-outs don’t apply to Cancel .

The following method is also defined in a callback spec frame.

CompletionScript

Conpl eti onScri pt (endpoint, options, result)

The Conpl eti onScri pt message is sent to a callback spec frame when an
asynchronous request completes.

endpoint The endpoint associated with the request.

options A frame containing the returned options for those
requests that support the options parameter.

result The result code. If no error occurred, this parameter is
settonil.

The Conpl eti onScri pt method's return value is not used.

The Conpl eti onScri pt slotin a callback spec is evaluated every time the
Conpl eti onScri pt message is to be sent.

Endpoint Interface Reference 4-35

4-36

CHAPTER 4

Endpoint Interface

Output Spec Frame

An output spec frame is simply a type of callback spec frame with a few
additional slots tailored specifically for the Qut put method. These
additional slots allow you to pass flags and to define the output data form.
This section describes only slots that are not included in the standard
callback spec frame.

Slot descriptions

sendFl ags Special protocol flags provided for certain
communication tools. This slot is optional and defaults
to kMor e. Other possible values include kPacket and
KEGP. (For more details, see the section “Sending Data”
beginning on page 4-17.)

form A symbol defining how to translate the data being sent.
The value canbe ' string,' bytes,"' binary,
" nunber, ' frame, or' t enpl at e. By default, this slot
issetto' string,' bytes,or"' bi nary, depending on
the embedded NewtonScript type information. For
more information, see the section “Data Forms”
beginning on page 4-5.

t ar get A slot used only when f or mis set to ' bi nary. This slot
contains a frame with the following two slots:

of f set An integer that is the offset from the
beginning of the binary object at which to
begin sending data.

I engt h An integer specifying the length of the
data to send, in bytes.

For more information on sending binary data and using

this slot, see the section “Working With Binary Data”

beginning on page 4-27.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

Input Spec Frame

The input spec frame defines what kind of data you are looking for,
termination conditions that control when the input should be stopped,
and callback methods to notify you when input is stopped or other
conditions occur.

Slot descriptions

form A symbol identifying the input data form. This slot
defaults to ' stri ng, and is evaluated when the input
spec is set. You can override the default setting by
using these other values: ' char, ' nunber, ' byt es,
"binary,'tenpl ate, or' frame. For more
information on these data forms, see the section “Data
Forms” beginning on page 4-5.

target A frame defining additional information pertaining to
"t enpl at e and ' bi nary data forms. This frame is
described in the section “Input Spec Target Frame”
beginning on page 4-40.

term nation A frame defining input termination conditions. This
frame is described in the section “Input Spec
Termination Frame” beginning on page 4-41.

di scardAfter An integer that sets the input buffer size. If this buffer
overflows, then the oldest bytes are discarded. The
default value of this slot is 1024. Note that if you have
set the t er m nati on. byt eCount slot, or if the byte
count is determined automatically, the value of this slot
is ignored. This slot is evaluated only at the time the
input spec is set.

rcvFl ags Certain communication tools require framed receiving.
To use framed receiving, you must set this slot to
kPacket ; otherwise, set this slot to ni | or don’t
include it at all.

reqTi meout An integer specifying the time, in milliseconds, of
inactivity to allow during input. If there is no input for
the specified interval, the time-out expires, the input is
terminated, and the Conpl eti onScri pt message is

Endpoint Interface Reference 4-37

4-38

CHAPTER 4

Endpoint Interface

filter

rcvQptions

sent to the input spec frame. This slot is optional,
defaults to kNoTi meout , and is evaluated only at the
time the Set | nput Spec method is called.

A frame defining how incoming data is to be processed.
This frame is described in the section “Input Spec Filter
Frame” beginning on page 4-42.

An array of one or more communication tool options
associated with the receive request. If you have just one
option frame, you can specify it directly, without
enclosing it in an array.

parti al Frequency

An integer specifying the frequency, in milliseconds, at
which the input data buffer should be checked. If new
data exists in the buffer, the Par ti al Scri pt message
is sent. You must set this slot if you wish to use the

Par ti al Scri pt method, as the default value is 0. This
slot is evaluated only at the time the input spec is set.

In addition to the slots listed here, you can define the following methods in
the input spec frame:

» | nput Scri pt, which is called when one of the data input termination
conditions is met (required method)

» Partial Scri pt, which is called periodically at the frequency defined by
the par ti al Fr equency slot to allow you to sample the incoming data

= Conpl etionScri pt, which is called when the input is terminated

unexpectedly

These methods are described in the following subsections.

InputScript

| nput Scri pt (endpoint, data, terminator, options)

This message is sent to the input spec frame when one of the data
termination conditions has been met.

endpoint

The endpoint associated with the receive request.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

data

terminator

options

The data that meets the input conditions is returned in
this parameter, formatted as specified by the f or mslot
of the input spec. Note that if you had set the t ar get
slot, data would be the target object.

A frame specifying the condition that caused the input
to terminate. Note that this data is irrelevant for the data
forms' frame and ' t enpl at e, since input terminates
automatically for them. The following slots are included:

condi ti on A symbol specifying the name of the slot
in the input spect er mi nat i on frame
that caused the input to terminate (for
example, ' byt eCount). If input was
terminated by the | nput method, this slot
issettonil.

i ndex The value of the index into the
term nati on. endSequence array, if
this was the condition that caused
termination.

byt eCount The number of bytes received.

The processed options originally set in the r cvOpt i ons
slot of the input spec. This parameter is ni | if the
rcvOpt i ons slotis ni | . For more information on the

r cvOpt i ons slot, see the section “Specifying Receive
Options” beginning on page 4-24.

The return value of the | nput Scri pt method is ignored by the system.

In the input spec, the | nput Scri pt slot is evaluated every time the
| nput Scri pt message is sent.

Endpoint Interface Reference 4-39

4-40

CHAPTER 4

Endpoint Interface

PartialScript

Parti al Scri pt (endpoint, data)

This message is sent to the input spec frame periodically, at the interval
defined by the par ti al Fr equency slot.

endpoint The endpoint associated with the receive request.

data All of the data currently in the input buffer is returned
in this parameter, formatted as specified by the f or m
slot of the input spec.

In the input spec, the Par ti al Scri pt slot is evaluated every time the
Partial Scri pt message is sent.

CompletionScript

Conpl eti onScri pt (endpoint, options, result)

The Conpl eti onScri pt message is sent to an input spec frame when the
input spec completes in an unexpected manner (for example, as a result of a
time-out expiring or the Cancel method).

endpoint The endpoint associated with the request.
options This parameter is not used; you can ignore it.
result The result code.

The Conpl eti onScri pt method's return value is not used.

The Conpl eti onScri pt slot in an input spec is evaluated every time the
Conpl eti onScri pt message is to be sent.

Input Spec Target Frame

This section describes in detail the t ar get slot of an input spec frame. The
t ar get slot itself contains a frame defining additional information
pertaining to the data form of the input.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

Slot descriptions
argli st

typeli st

dat a

of f set

The ar gl i st array specification for the template. This
slot must be defined only for ' t enpl at e data forms.
You provide placeholder values in the array, which is
filled in with actual data when it is received.

The t ypel i st array specification for the template. This
slot must be defined only for ' t enpl at e data forms.
This slot is evaluated as needed.

The binary object, virtual binary object, or string into
which received data is placed. This slot must be defined
for' bi nary data forms only. It is evaluated as needed
and is modified based on the received data.

An integer specifying the offset within the binary object
at which the received binary data is to be written. The
offset is 0 by default. This slot is used only for binary
data and is evaluated when the input spec is set.

Input Spec Termination Frame

This section describes in detail the t er i nat i on slot of an input spec
frame. The t er m nat i on slot itself contains a frame defining input
termination conditions.

The slots are listed here in order of precedence. They are evaluated only at
the time the input spec is set.

Slot descriptions
byt eCount

endSequence

An integer indicating a number of bytes. If you know
how many bytes you're expecting, specify that number
here. Don't define this slot if you don't want to
terminate input after a specified number of bytes.

One or more objects, known as a termination sequence,
to look for in the incoming data stream. This slot can
hold a single character, a string, a number, or an array of
bytes. Or, you can specify an array of these elements,
where each element in the array defines a separate

Endpoint Interface Reference 4-41

CHAPTER 4

Endpoint Interface

termination sequence. If you want to specify just an
array of bytes and no other sequence, you must specify
it inside another array (for example, [[...]]).

useECP Set this slot to t r ue to terminate input based on a
transport-level end-of-packet (EOP) indicator;
otherwise, set it to ni | . If this slotis set tot r ue, and an
EOP indicator is detected, input is terminated. Specify
this slot only if the input spec r cvFl ags slot includes
the kPacket flag. Moreover, if the r cvFl ags slot
includes the kPacket flag and you do not specify the
useEQP slot, the system effectively sets useEOP to the
default value t r ue.

Note

If you set the kPacket flag and set the useEQOP slot to
t r ue, you cannot also use the byt eCount slot in the
termination frame—if you do, byt eCount will be
ignored. In this case, only an EOP indicator will
terminate input. If you do want to use the byt eCount
slot with the kPacket flag, set the useEOP slot to ni | .
In the latter case, the remote system should send an
EOP indicator with every packet, though input won’t
terminate until the byt eCount condition is met. O

Input Spec Filter Frame

This section describes in detail the fi | t er slot of an input spec frame. The
filter slotitself contains a frame defining how incoming data is to be
processed, or filtered.

Slot descriptions

byt ePr oxy One or more characters or bytes in the input stream to
be replaced by zero or one characters. This slot is
evaluated only at the time the input spec is set. Specify

4-42 Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

sevenBit

Protos

either a single frame, or an array of frames. Each frame
must have the following slots:

byte The single-byte character or byte to be
replaced.
pr oxy The single-byte character or byte to be

used instead. This slot can also be ni |,
meaning that the original byte is to be
removed completely from the input
stream.

Set to t r ue to specify that the high-order bit of every
incoming byte be stripped (“zeroed out”). This slot is
evaluated only at the time the input spec is set, and its
default valueis ni | .

This section describes endpoint protos.

protoBasicEndpoint

This is the basic endpoint object that encapsulates the details of a connection
and contains methods that perform communication operations.

Slot descriptions
encodi ng

A constant specifying a translation table to be used for
the translation of all data to and from Unicode (the data
representation on Newton). By default, this slot is set to
kMac RomanEncodi ng. This slot is evaluated only
when the endpoint is instantiated.

The methods in pr ot oBasi cEndpoi nt are described in the following

subsections.

Endpoint Interface Reference 4-43

4-44

CHAPTER 4

Endpoint Interface

Instantiate

endpoint: | nst ant i at e(endpoint, options)
This synchronous method instantiates and opens an endpoint.
endpoint A reference to the endpoint you’ve defined.

options An array containing a complete set of endpoint option
frames. For more information, see the section “Endpoint
Options” beginning on page 4-11.

The return value of this method is a clone of the array passed in the options
parameter. The r esul t slot in each option frame is set with a result code for
the option.

Bind

endpoint: Bi nd(options, bindCallback)

Binds the endpoint to its local address and claims the needed system
resources. When used synchronously, this method waits for the binding to be
made before returning. When used asynchronously, this method posts the
binding request and then returns. When the binding is made, the system
calls your callback method.

options An array of one or more option frames.

bindCallback A callback spec frame (page 4-35) containing a method
to be called when the request completes. Both the
callback spec and the async slot within it must be
defined if you want the Bi nd method to complete
asynchronously. If you want to use this method
synchronously, without a callback, specify ni | for this
parameter.

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The r esul t slot in each option frame
is set with a result code for the option.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

UnBind
endpoint: UnBi nd(unbindCallback)

Releases the system resources and local address. When used synchronously,
this method waits for the unbinding to complete before returning. When
used asynchronously, this method posts the unbinding request and then
returns. When the unbinding is complete, the system calls your callback
method.

unbindCallback A callback spec frame (page 4-35) containing a method
to be called when the request completes. Both the
callback spec and the async slot within it must be
defined if you want the UnBi nd method to complete
asynchronously. If you want to use this method
synchronously, without a callback, specify ni | for this
parameter.

Dispose

endpoint: Di spose()

This synchronous method closes the endpoint and deallocates the
underlying endpoint structures.

Connect

endpoint: Connect (options, connectCallback)

Initiates a connection to the remote system. When used synchronously, this
method waits for the connection to be made before returning. When used

asynchronously, this method posts the connection request and then returns.
Then, when the connection is made, the system calls your callback method.

options An array of one or more option frames.

connectCallback A callback spec frame (page 4-35) containing a method
to be called when the request completes. Both the
callback spec and the async slot within it must be
defined if you want the Connect method to complete

Endpoint Interface Reference 4-45

4-46

CHAPTER 4

Endpoint Interface

asynchronously. If you want to use this method
synchronously, without a callback, specify ni | for this
parameter.

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The r esul t slot in each option frame
is set with a result code for the option.

Note that if you are connecting to receive data, you must set up your first
input spec by calling Set | nput Spec (page 4-49) after a connection has been
established (either by Connect or Accept).

Listen

endpoint: Li st en(options, listenCallback)

Creates a connection to the remote system. After the connection is
created, you must call the Accept or Di sconnect method to accept
or reject the connection.

options An array of one or more option frames.

listenCallback A callback spec frame (page 4-35) containing a method
to be called when the request completes. Both the
callback spec and the async slot within it must be
defined if you want the Li st en method to complete
asynchronously. If you want to use this method
synchronously, without a callback, specify ni | for this
parameter.

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The r esul t slot in each option frame
is set with a result code for the option.

Accept

endpoint: Accept (options, acceptCallback)
Accepts a connection after a connection was created by the Li st en method.

options An array of one or more option frames.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

acceptCallback A callback spec frame (page 4-35) containing a method
to be called when the request completes. Both the
callback spec and the async slot within it must be
defined if you want the Accept method to complete
asynchronously. If you want to use this method
synchronously, without a callback, specify ni | for this
parameter.

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The r esul t slot in each option frame
is set with a result code for the option.

Note that if you are accepting a connection to receive data, you must set up
your first input spec by calling Set | nput Spec (page 4-49).

Disconnect

endpoint: Di sconnect (cancelPending, disconnectCallback)
Disconnects a connection.

cancelPending Set to t r ue to specify that all outstanding requests
should be canceled. Set to ni | to wait for all pending
output requests to complete before disconnecting. Note
that if you set this parameter to ni | , and an input spec
is pending after all other requests have completed, the
input spec is then canceled.

disconnectCallback A callback spec frame (page 4-35) containing a method
to be called when the request completes. Both the
callback spec and the async slot within it must be
defined if you want the Di sconnect method to
complete asynchronously. If you want to use this
method synchronously, without a callback, specify ni |
for this parameter.

For more discussion on canceling, see the section “Canceling Operations”
beginning on page 4-28.

Endpoint Interface Reference 4-47

4-48

CHAPTER 4

Endpoint Interface

Note

This method incorporates both the Di sconnect and

Rel ease methods from system software version 1. When
the cancelPending parameter is set to t r ue, this method is
similar to the old Di sconnect method. When the
cancelPending parameter is set to ni | , this method is similar
to the old Rel ease method. O

Output

endpoint: Qut put (data, options, outputSpec)

Sends the specified data.

data The data to be sent.

options An array of one or more option frames.

outputSpec An output spec (page 4-36) containing a method to be

called when the Qut put method completes, as well as
other options. Both the output spec and the async slot
within it must be defined if you want the Qut put
method to complete asynchronously. If you want to use
this method synchronously, without a callback, specify
ni | for this parameter.

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The r esul t slot in each option frame
is set with a result code for the option.

Note that when sending data with the Qut put method, you can take
advantage of the default data forms by not explicitly specifying a data form
in the output spec. NewtonScript objects have type information embedded
in their values, allowing the system to select appropriate default data forms
for different kinds of data being sent. For example, if you are sending string
data and you don’t specify the data form, the ' st ri ng data form is used
by default.

The Qut put method also lets you specify the data as an array. For instance, if
you specify a' nunber data form, you can specify the data parameter as an
array whose elements are numbers. Other forms you can send as arrays are

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

"string,'tenplate,' char,and"' bi nary. (You cannot send arrays of
arrays or arrays of the form ' f r ane.)

If you do not specify the f or mslot (to use the default form), you can specify
the data parameter as a heterogeneous array whose elements are characters,
strings, numbers, or binary objects. This is a convenient way for you to
concatenate similar calls to the Qut put method into a single call.

SetinputSpec

endpoint: Set | nput Spec(inputSpec)

Sets the specified input spec as the active input spec.

inputSpec The input spec frame to be set as active. Specifying ni |
indicates you don’t want to post a new input spec. (For

details on input spec frames, see the section “Input Spec
Frame” beginning on page 4-37.)

If you call the Set | nput Spec method and an input spec is already active, a
kCommBcri pt | nput SpecAl r eadyAct i ve error results. To prevent this
error, you must first call the Cancel method to cancel the current input spec.

Input

endpoint: 1 nput ()
Terminates the current input spec and calls its associated | nput Scri pt

method. All data in the input buffer is formatted and passed to the
I nput Scri pt method, and the input buffer is cleared.

You use this method only when receiving data of the forms ' st ri ng and
' byt es.

IMPORTANT

An input spec must be active at the time this method is
called, or the method throws an exception with the error
kComfcr i pt NoAct i vel nput Spec. a

Endpoint Interface Reference 4-49

4-50

CHAPTER 4

Endpoint Interface

Partial

endpoint: Parti al ()

Returns all data in the input buffer, formatted according to the input
data form specified in the input spec. The data is not removed from the
input buffer. Use Fl ushPar ti al if you want the data removed from
the input buffer.

You use this method only when receiving data of the forms ' st ri ng and
' byt es.

IMPORTANT

An input spec must be active at the time this method is
called, or the method throws an exception with
kConmmscr i pt NoAct i vel nput Spec. a

Flushinput

endpoint: Fl ushl nput ()
Discards all bytes in the input buffer.

FlushPartial

endpoint: Fl ushParti al ()

Discards all bytes in the input buffer through the last partial data read (see
the Par ti al method on page 4-50).

Cancel

endpoint: Cancel (cancelCallback)
Cancels all pending requests, synchronous or asynchronous.

cancelCallback A callback spec frame (page 4-35) containing a
Conpl eti onScri pt method to be called when the
request completes. Both the callback spec and the
async slot within it must be defined if you want the
Cancel method to complete asynchronously. This
callback spec is slightly different from a standard

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

callback spec in that you cannot set a request time-out—
the r eqTi meout slot is ignored. If you want to use this
method synchronously, without a callback, specify ni |
for this parameter.

If the Cancel method throws an exception with error -36003, that means
that a cancel operation is already in progress. In this case, you can probably
ignore the exception, but you might want to re-examine the program logic
that caused this double cancel.

For more discussion of canceling, see the section “Canceling Operations”
beginning on page 4-28.

Option

endpoint: Opt i on(options, optionCallback)

Sets and / or returns the specified options, depending on the setting of the
opCode slot in each of the option frames in the options array.

options An array of one or more option frames.

optionCallback A callback spec frame (page 4-35) containing a method
to be called when the request completes. Both the
callback spec and the async slot within it must be
defined if you want the Opt i on method to complete
asynchronously. If you want to use this method
synchronously, without a callback, specify ni | for this
parameter.

When this method is called synchronously, its return value is a clone of the
array passed in the options parameter. The r esul t slot in each option frame
is set with a result code for the option.

You can specify options in the same array that are of the same type and seem
to conflict. Since options are processed one at a time, in order, the last option
of a particular type is the one that is actually implemented.

Endpoint Interface Reference 4-51

CHAPTER 4

Endpoint Interface

ExceptionHandler

endpoint: Except i onHandl er (error)

The system sends your endpoint this message (if you provide it) whenever
an exception is thrown and a corresponding Conpl et i onScri pt method
does not exist.

error A frame (set by the system) describing the exception.
The following slots are included:
nanme A string specifying the exception name
(usually | evt . ex. comm).
dat a An integer error code.
debug A symbol. This slot is used in the special

case where a callback can’t be called. It is
described in more detail below. This kind
of an error usually results in error —48803.

The debug slot of the error parameter is used in the special case where a
callback can’t be called. This slot can have one of the following symbol
values: ' i nput scri pt,' conpl eti onscri pt,' event handl er, or
"partial script. The value corresponds to the type of callback that
caused the error. For example, if you defined an | nput Scri pt method with
only one argument (an error), your Except i onHandl er method will be
called with the debug slot of the error parameter set to' i nput scri pt.
Since this kind of error does not cause a break, you should check the debug
slot for callback errors. This does not apply to the Pr ogr essScri pt method
used with the pr ot 0St r eam ngEndpoi nt .

You can think of exceptions as unsolicited events. If no Except i onHandl er
method is specified, the exception is passed up the handler chain. Exceptions
that are not caught are displayed as warning messages to the user.

EventHandler

endpoint: Event Handl er (event)

The system sends your endpoint this message (if you provide it) whenever
an event occurs that is not handled by the default endpoint event handlers.

4-52 Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

Generally, you can catch events specific to a particular communication tool
by using this method.

event A frame (set by the system) describing the event. The
following slots are included:

event Code An integer event code.
data An integer representing event data.

servicel d A string representing the communica-
tion tool that originated the event.
For example, " mods" identifies the
modem tool.

time An integer representing the time when the
event occurred. This is the number of
ticks since the system was last restarted,
not including time when it was turned off.

State

endpoint: St at e()

This synchronous method returns the state of an endpoint. The possible
return values are listed in Table 4-11 on page 4-62.

protoStreamingEndpoint

The pr ot oSt r eami ngEndpoi nt proto uses the pr ot oBasi cEndpoi nt
as its proto. Besides all of the slots and methods included in

pr ot oBasi cEndpoi nt, pr ot oSt r eani ngEndpoi nt includes two
additional methods: St r eam n and St r eanQut . These methods are
described in this section.

StreamiIn

St r eam n(streamSpec)

This synchronous method posts a receive request to the communication tool.
As data arrives, it is unflattened into a frame and collected in memory or on
a store. If you know that the frame will be large, you are advised to specify

the t ar get . st or e slot in the streamSpec parameter to receive the data in to

Endpoint Interface Reference 4-53

4-54

CHAPTER 4

Endpoint Interface

a store rather than in to the NewtonScript heap. Otherwise, you may get a
heap overflow error during the receive operation.

Note that this method does not return until after the receive operation

terminates.

streamSpec

You may specify a frame that controls the receive
operation, or if you don’t need to, specify ni | .

The streamSpec frame can have the following slots:

form

reqTi neout

rcvFl ags

t ar get

Optional. This slot must be set to the symbol ' f r ane,
which is the default setting.

Optional. An integer specifying the time, in
milliseconds, that the system should allow for each
chunk to be received. If a time-out expires, the receive
operation and all outstanding requests are canceled.
This slot defaults to kNoTi meout and is evaluated only
at the time the method is called.

Optional. This slot can contain flags provided for certain
transport-level protocols. For more information, see the
section “Specifying Flags for Receiving” beginning on
page 4-22.

Optional. If you are receiving a large frame that might
overflow the NewtonScript heap, you can specify this
slot to force it to be created directly on a store as a
virtual object. This slot must contain a frame with a
single slot, st or e. The st or e slot must contain a
reference to the store on which the virtual object is to
be created.

The Pr ogr essScri pt method (page 4-55) can also be defined in the

streamSpec frame.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

StreamOut
St r eanQut (data, streamSpec)

This synchronous method takes a frame, flattens it, and sends it in chunks.

Note that this method does not return until after the send operation
completes.

data The data to send. This object must be a frame.

streamSpec You may specify a frame that controls the send
operation, or if you don’t need to, specify ni | .

The streamSpec frame has the following slots:

form Optional. This slot must be set to the symbol ' f r ane,
which is the default setting.

reqTi meout Optional. An integer specifying the time, in
milliseconds, that the system should allow for each
chunk to be sent. If a time-out expires, the send
operation and all outstanding requests are canceled.
This slot defaults to kNoTi meout and is evaluated only
at the time the method is called.

sendFl ags Optional. This slot can contain protocol flags provided
for certain communication tools. For more details, see
the section “Sending Data” beginning on page 4-17.

The Pr ogr essScri pt method, described next, can also be defined in the
streamSpec frame.

ProgressScript

: ProgressScri pt (bytes, totalBytes)

The system sends this message periodically to your streamSpec frame during
the sending (St r eanut) or receiving (St r eanl n) process to inform your
application of progress.

bytes The number of bytes that have been sent (or received)
so far.

Endpoint Interface Reference 4-55

CHAPTER 4

Endpoint Interface

total Bytes The total number of bytes that are to be sent
(or received).

A value of ni | in either of these parameters signifies that the number
is unknown.

This method must return a Boolean value. A return value of non-ni | tells
the system to continue sending (or receiving), and ni | tells it to cancel the
send (or receive) operation. Stopping the operation in this way is a “clean”
cancel; that is, no errors are returned and no exceptions occur.

Functions and Methods

Utility Functions

This section includes a description of some global functions applicable to
endpoint communications.

MakeAppleTalkOption

MakeAppl eTal kOpt i on(NBPaddressString)

Places the specified NBP (Name Binding Protocol) address string in an
option frame that is usable by the Connect method. The option frame is
returned.

NBPaddressString A string containing an AppleTalk NBP address.

MakeModemOption

MakeModenmOpt i on()

Returns an option frame created using the ' t enpl at e data form. This frame
contains the modem kCMOMbdenDi al i ng option, and the values are
extracted from the user preferences stored in the system soup. The option
frame is usable by the endpoint Qpt i on method or as an argument to any
other endpoint method that takes an option frame as an argument.

4-56 Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

MakePhoneOption
MakePhoneQpt i on(phoneString)

Places the specified phone number string in an option frame of the
' addr ess type that is usable by the Connect method. The option frame
is returned.

phoneString A string containing a phone number.

Translate

Transl at e(data, translator, store, progressScript)

This function translates data, returning an object that contains the translated
data.

data The data to be translated. The type of this object
depends on the translator used.

translator A symbol indicating the type of translator to use.
Table 4-5 lists the translators available, and the
corresponding type of the data object to be used
with each.

store Specifies the store on which you want the translated
object to be created. If you specify a valid store, the
translated object is created as a virtual binary object on
that store. This is recommended for large objects. If you
specify ni | , a normal object is created on the
NewtonScript heap.

progressScript A method that may be called periodically during the
translation process to inform your application of
progress. This method is passed two parameters: the
first is the number of bytes that have been translated so
far, and the second is the total number of bytes that are
to be translated. If either of these parametersisni |,
that signifies that the number is unknown.

This callback method must return a Boolean value. A
return value of non-ni | tells the system to continue

Endpoint Interface Reference 4-57

4-58

CHAPTER 4

Endpoint Interface

translation, and ni | tells the system to cancel the
translation.

Note that this callback method is not implemented by
either of the two existing translators, so this parameter
is currently ignored.

Table 4-5 Data translators

Translator Data type Description

"flattener Frame Translates a frame into a binary
object containing a flattened frame.

"unfl attener Binary object Translates a binary object

containing a flattened frame
into a frame.

Endpoint Interface Reference

CHAPTER 4

Endpoint Interface

Summary of the Endpoint Interface

Constants and Symbols

Table 4-6 Data form symbols

Data form Description

" char Data is converted to or from Unicode, using the encodi ng slot.

" nunber For receiving data or getting endpoint options, the data is interpreted
as a 30-bit integer using 4 bytes. For sending data or setting endpoint
options, the high-order 30 bits are placed into 4 bytes.

"string For receiving data or getting endpoint options, the data is converted to
Unicode using the endpoint encodi ng slot and returned as a
NewtonScript character string with a termination byte. For sending
data, the NewtonScript character string is converted from Unicode
using the encodi ng slot. The termination byte is not sent.

"bytes For receiving data or getting endpoint options, the data is returned as
an array of unsigned single-byte values. For sending data, the value is
squeezed into a single unsigned byte and truncated if necessary.

' bi nary No conversion done.

"tenpl ate Used to exchange data with a service that expects C-type data.

"frane For output, the frame is flattened into a stream of bytes prior to being

sent, and for input, the byte stream is unflattened and returned as a
frame.

Summary of the Endpoint Interface 4-59

CHAPTER 4

Endpoint Interface

Table 4-7 Typel i st data types

Data type Description

"long Signed long integer

"ul ong Unsigned long integer

"short 16-bit unsigned short integer

"byte 8-bit unsigned byte

' char 8-bit character (translated to/from Unicode)

uni codechar

16-bit Unicode character

" bool ean 8-bit plain Boolean value
"struct An aggregate structure, padded to a long word
"array An aggregate array
Table 4-8 Option opcode constants
Constant Value Description
opSet Negoti at e 256 Sets the option, but the system may substitute
different values
opSet Requi r ed 512 Sets the option, but fails if not possible
opCet Def aul t 768 Gets the default option value
opGet Current 1024 Gets the current option value

4-60

Summary of the Endpoint Interface

CHAPTER 4

Endpoint Interface

Table 4-9 Endpoint error codes

Constant Value Description

not defined -16002 Bad communication tool
command

not defined -16008 Invalid call when connected

not defined -16009 Invalid call when not connected

not defined -16014 Call not supported by tool

not defined -18003 Buffer overrun

not defined -36003 Cancel is in progress

not defined -36006 Operation not supported in the
current tool state

not defined -36008 System error

not defined -36030 There’s already a synchronous
call pending

kGommscr i pt NoAct i vel nput Spec —-54000 An active input spec is required

kGonmscr i pt BadFor m -54001 Error in the f or mslot of an
input spec

kGonmscr i pt Zer oLengt hDat a -54002 Trying to send zero-length data

kCommcr i pt Expect edSpec —54003 An input spec is required

kGommEcri pt I nval i dQpti on -54004 The option you tried to set
was missing

kCommser i pt | nval i dEndSequence -54005 Error in the endSequence slot
of an input spec

kGonmBcr i pt | nappr opri at eParti al -54006 Used the Parti al method with
a bad input spec, or unable to
do a partial input

kGommScr i pt | nappr opri at eTer m nati on —54007 Errorint er mi nati on slot of

Summary of the Endpoint Interface

input spec

continued

4-61

CHAPTER 4

Endpoint Interface

Table 4-9 Endpoint error codes (continued)

Constant Value Description

kCommécr i pt | nappr opri at eTar get —54008 Errorint ar get slot
of input spec

kCommtscri pt | nappropri ateFil ter —54009 Errorinfilter slot
of input spec

kCommecr i pt Expect edTar get -54010 Attempted to receive binary
data with no target object
specified

kCommScr i pt Expect edTenpl at e -54011 Attempted to send or receive
template data without a
template specified

kCommscri pt | nput SpecAl readyActi ve -54012 Tried to set an input spec when
one was already active

kCommEcri pt | nval i dPr oxy -54013 Invalid value in
filter. byteProxy. proxy
slot of input spec

kGommEcr i pt NoEndpoi nt Avai | abl e -54014 Endpoint object is missing

kGommEcr i pt | nappr opri at eCal | -54015 Method not supported, or
called inappropriately

kCommscr i pt Char Not Si ngl eByt e -54016 The character specified in the

Table 4-11 Endpoint state constants

filter. byteProxy. proxy
slot of the input spec is more
than a single byte

Constant Value
kUni ni t 0
kUnbnd 1
klidle 2

Description

Uninitialized

Unbound
Idle

4-62 Summary of the Endpoint Interface

CHAPTER 4

Endpoint Interface

Table 4-10 Option error codes

Constant Value Description

kComtOpt i onFai | ur e 54021 Operation failed

kGommpt i onPart Success -54022 Option set, but set value is different from

requested value

kGommpt i onReadnl y -54023 Set attempted on read-only option

kGommpt i onNot Suppor t ed -54024 Option not supported

kCGommpt i onBadCpCode -54025 Opcode value is invalid

kComeot i onNotB8lR¢-11 Endpainhsiate consfants | ., c..na

kCommpt i onTr gnGad @t Vahd@27 Des@ripiormore requested options missing
kQut Con 3 Outgoing connection pending
kI nCon 4 Incoming connection pending (Li st en method

has completed but you have not yet called
Accept or Di sconnect)

kDat aXf er 5 Data transfer

kQut Rel 6 Outgoing release pending

kl nRel 7 Incoming release pending (connection
released by the remote side)

kI nFl ux 8 State is changing

kQut Lstn 9 Li st en method pending

Data Structures

Option Frame

myOption : = {
type: symbol, [/ option type

Summary of the Endpoint Interface 4-63

4-64

CHAPTER 4

Endpoint Interface

Table 4-12 Other endpoint constants

Constant Value Description

kNoTi meout 0 Set no time-out for a request

kECP 0 Send or receive flag; marks the last packet
kMor e 1 Send or receive flag; more data is coming
kPacket 2 Send or receive flag; data is in packets

(framed)

| abel : string, // 4-char option identifier
opCode: integer, // an opCode constant
form 'tenplate, // standard formfor options
result: nil, // set by the systemon return
data: {
arglist: [], // array of data itens
typelist:[], // array of data types
}
}

Callback Spec Frame

nmyCal | backSpec := {

async: Boolean, |/ asynch request?

reqTi meout : integer, // time-out period, or O

Conpl etionScript: // called when request is done
func(endpoint, options, result).. .,

}

Output Spec Frame

nmyQut put Spec : = {
async: Boolean, |/ asynch request?
reqTi meout : integer, // time-out period, in mlliseconds

Summary of the Endpoint Interface

CHAPTER 4

Endpoint Interface

sendFl ags: integer, // flag constant(s)

form symbol, // data formidentifier

target: { // used for 'binary data forns
of fset: integer, // offset to begin sending from
| engt h: integer // nunber of bytes to send
H

Conpl etionScript: // called when request is done
func(endpoint, options, result).. .,

}

Input Spec Frame

myl nput Spec : = {
form symbol, // data formidentifier
target: { // used with '"tenplate and 'binary data forns
typelist: [], // array of data types
arglist: [], // array of data itens
dat a: object, // binary object to receive data
of fset: integer // offset at which to wite data
H
termnation: { // defines term nation conditions
byt eCount : integer, // number of bytes to receive
endSequence: object, // char, string, nunber, or byte array
useEOP: Boolean // terminate on EOP indicator?
b
di scardAfter: integer, // buffer size
rcvFl ags: integer, // receive flag constant(s)
reqTi meout : integer, // time-out period, in mlliseconds
filter: { // used to filter incom ng data
byteProxy: { // can be a single frame or an array
byte: char, /1 char or byte to replace
proxy: char // replacenent char or byte, or nil
H
sevenBit: Boolean // strip high-order bit

Summary of the Endpoint Interface 4-65

4-66

CHAPTER 4

Endpoint Interface

1

rcvOptions: [], // array of options, or a single frame

partial Frequency: integer,// freq, in mlliseconds, to call

/1 Partial Scri pt

InputScript: // called when input is term nated
func(endpoint, data, terminator, options). ..,

Partial Script: // called at partial Frequency i nterval
func(endpoint, data). ..,

Conpl etionScript: // called on unexpected conpletion
func(endpoint, options, result) ...,

Protos

protoBasicEndpoint

nyEndpoi nt : = {

_proto: protoBasi cEndpoint, // proto endpoint

encodi ng: integer, / / encodi ng tabl e, def aul t =kMacRormanEncodi ng

Instantiate: // instantiates endpoint object
f unc(endpoint, options) ...,

Bind: // binds endpoint to conmt ool
func(options, callbackSpec) . ..,

UnBi nd: // unbi nds endpoint from comm t ool
func(options, callbackSpec) ...,

Di spose: // disposes endpoi nt object
func(options, callbackSpec) . . .,

Connect: // establishes connection
func(options, callbackSpec) . ..,

Listen: // passively listens for connection
func(options, callbackSpec) ...,

Accept: // accepts connection
func(options, callbackSpec) . . .,

Summary of the Endpoint Interface

CHAPTER 4

Endpoint Interface

Di sconnect: // disconnects
f unc(cancelPending, callbackSpec) . . .,

Qutput: // sends data
func(data, options, outputSpec) ...,

Set | nput Spec: // sets input spec
f unc(inputSpec) . . .,

Input: // /] term nates input spec and returns data
func() ...,

Partial: // returns data frominput buffer
func() ...,

Flushlnput: // flushes whol e input buffer
func() ...,

FlushPartial: // flushes input buffer previously read
func() ...,

Cancel : // cancel s operations
func(callbackSpec) ...,

Option: // sets & gets options
func(options, callbackSpec) ...,

ExceptionHandl er: // called on exceptions
func(error) ...,

Event Handl er: // called on unhandl ed events
func(event) ...,

State: // returns endpoint state
func() ...,

}

protoStreamingEndpoint

ny St r eanEndpoi nt = {
_proto: protoStream ngEndpoint, // proto endpoint
Stream n: // receives stream data
func({ form 'frame, // required
reqTi meout : integer, // time-out in ns.

Summary of the Endpoint Interface 4-67

4-68

CHAPTER 4

Endpoint Interface

rcvFl ags: integer, // receive flag constant(s)
target: {
store: store}, // store for virtual binary
ProgressScript: // progress call back
func(bytes, totalBytes) . . .

P
Streanmut: // sends stream data
f unc(data,
{form 'frame, // required
reqTi meout : integer, // time-out in ns.
sendFl ags: integer, // send flag constant(s)
ProgressScript: // progress call back
func(bytes, totalBytes) . . .
|3

Functions and Methods

Utility Functions

MakeAppl eTal kOpt i on(NBPaddressString)
MakeModenOpt i on()

MakePhoneOpt i on(phoneString)

Transl| at e(data, translator, store, progressScript)

Summary of the Endpoint Interface

CHAPTER 5

Built-in Communication
Tools

This chapter describes the built-in communication tools provided in Newton
system software 2.0. The following tools are built into the system:

= Serial

= Modem
= Infrared
= AppleTalk

These communication tools are accessed and used through the Endpoint
interface. This chapter describes the options available for each of these tools
and other information that applies to their use. For basic information on
using communication endpoints, see Chapter 4, “Endpoint Interface.”

5-1

CHAPTER 5

Built-in Communication Tools

Serial Tool

5-2

Three varieties of the serial tool are built into Newton system software:
» astandard asynchronous serial tool

» astandard asynchronous serial tool with Microcom Networking Protocol
(MNP) compression

» aframed asynchronous serial tool

These serial tool varieties are described in the following three subsections.

Standard Asynchronous Serial Tool

Here’s an example of how to create a standard asynchronous serial endpoint:

myAsyncEP : = {_proto: protoBasi cEndpoint};

nyOptions := [
{ I abel: kCVBAsyncSeri al
type: ' service,

opCode: opSetRequired }];
returnedQpti ons: = nyAsyncEP: I nst anti at e(myAsyncEP
myQpti ons) ;

The remainder of this section describes options you can use to configure the
serial communication tool. Table 5-1 summarizes the standard serial options.

You can get or set most options in the endpoint method that established the
state, as appears in Table 5-1. The endpoint options are set by passing an
argument to the communication tool when calling one of the endpoint
methods such as | nst anti at e, Bi nd, Connect, and the like. Passing the
option to the Bi nd method, for example, causes the system to set the option
and then do the binding.

Serial Tool

CHAPTER 5

Built-in Communication Tools

Take the first option in Table 5-1, kKCMOSer i al HAChi pLoc. It should be used
after the endpoint has been instantiated and until the binding is

made, but not after the binding is made. That means you could use it in

the | nst ant i at e and Bi nd methods, but not in a Connect method.

All of these options have default values, so you may not need to use an
option if the default values provide the behavior you want. However, if you
do use an option, you must specify a value for each field within it—the
defaults do not apply partially.

Table 5-1 Summary of serial options
Label Value Use When Description
kOMBer i al HWDhi pLoc "schp” Before Sets what serial hardware to use
binding
kOMCSer i al Chi pSpec "sers" Any time Sets what serial hardware to use and
returns information about the serial
hardware
kOMXSeri al G rcui t Control "sctl" After Controls usage of the serial
connecting interface lines
kCMSeri al Buf fers "sbuf" Before Sets the size of the input and
connecting output buffers
kOMSeri al | CPar s "siop" Any time Sets the bps rate, stop bits, data bits,
and parity options
kCMSeri al Bi t Rat e "sbps " Any time Changes the bps rate
kOMOQut put Fl owControl Parms "oflc" Any time Sets output flow control parameters
kCMJ nput Fl owCont r ol Par ns "iflc" Any time Sets input flow control parameters
kCMDGer i al Break "sbrk" After Sends a break
connecting
kOM>Seri al Di scard "sdsc" After Discards data in input and / or
connecting output buffer
kOMSer i al Event Enabl es "sevt" After Configures the serial tool to
connecting complete an endpoint event on

particular state changes

continued

Serial Tool 5-3

CHAPTER 5

Built-in Communication Tools

Table 5-1 Summary of serial options (continued)

Label Value Use When Description

kOMBer i al Byt esAvai | abl e "sbav" After Read-only option returns the
connecting number of bytes available in the

input buffer

kOMSeri al | Cst at s "sios" After Read-only option reports statistics
connecting from the current serial connection

kHMOBer Ext A ockDi vi de "cdiv"” After Used only with an external clock to
binding set the clock divide factor

Serial Chip Location Option

This option specifies which serial hardware in the system to use for the
endpoint. This option must be set before the endpoint is connected.

Here is an example of this option:

| ocal option := {
type: 'option,
| abel : kCMOSer i al HWChi pLoc,
opCode: opSet Requi r ed,
form 'tenplate,
result: nil,// not needed; returned
data : {
arglist: [
kHW.ocExt er nal Seri al ,
0
1,
typelist: [
'struct,
['array, 'char, 4], // location |abel
‘ulong // service ID

b

5-4 Serial Tool

CHAPTER 5

Built-in Communication Tools

The possible values for the location label field within the dat a slot are listed
in Table 5-2. Note that these hardware locations are hardware platform
dependent.

Table 5-2 Serial chip location labels

Constant Value Description

kHW.ocExt er nal Seri al "extr" Use the external serial port
(typical default)

kHW.ocBui I tInl R "Infr" Use the built-in infrared port

KHW.ocBui | t I nMbdem "mdem" Use the built-in modem

kHW.ocPCMCI ASI ot 1 "slt1" Use the application card in
slot 1

kHW.ocPCMCI ASI ot 2 "slt2" I{se ;he application card in
slot

Note that the default setting is typically the external serial port, but this may
vary since the default is set by the communication tool.

The service ID field within the dat a slot specifies a four-character string
identifying a communication tool. If the location label slot is ni | , the default
serial chip location for the specified communication tool is used, regardless
of whether or not this is the current tool.

The service ID field and the location label field are mutually exclusive. You
should specify an identifier in only one of these fields. If you specify both
fields, the location label field takes precedence.

Serial Chip Specification Option

This option is used to specify or return information about the current serial
chip. It can be used to select the serial hardware with which to bind and is
especially useful for selecting serial hardware on a application card device.
This option is a superset of the serial chip location option.

Serial Tool 5-5

CHAPTER 5

Built-in Communication Tools

If you use this option to select the serial hardware with which to bind, it
must be set before the endpoint Bi nd method is called.

The serial chip specification option also returns information about the
serial hardware. When using this option to return information, you can call
it any time.

Here is an example of this option used to return serial hardware information:

| ocal option := {

type: 'option,

| abel : kCMOSeri al Chi pSpec,

opCode: opSet Requi red,

form 'tenplate,

result: nil,// not needed; returned

data : {

arglist: [
0, // chip location
0, // features supported by this chip

/1 output signals supported by chip
/1 input signals supported by chip
/1 parity supported
/] data and stop bits supported
, Il serial chip type
nil, // chip in use
0, // reserved
0, // reserved
O, // application card CI'S manufacturer ID
O // application card C'S manufacturer ID info

oo ooo

1,
typelist: [
"struct,
"ulong, // fHWoc
"ulong, // fSerFeatures
"byte, // fSerCQutSupported

Serial Tool

CHAPTER 5

Built-in Communication Tools

"byte, //
"byte, //
"byte, //
"byte, //
' bool ean,
"byte, //
"byte, //
"short, //
"short //

b

f Ser | nSupported
f ParitySupport
f Dat aSt opBi t Support

f UARTType

/1 fChipNotlnUse
reserved
reserved

fCl'S ManFI D

fCcl S _ManFl DI nfo

The fields in the serial chip specification option frame appear in Table 5-3.

Table 5-3 Serial chip specification option fields
Option Field Description
f HW.oc Specifies the serial chip location. Default is 0.

f Ser Feat ur es
f Ser Qut Support ed

f Ser | nSupported

f ParitySupport

f Dat aSt opBi t Support

f UARTType

Serial Tool

Features supported by this chip. Default is 0.

Output signals supported by this chip.
Default is 0.

Input signals supported by this chip.
Default is 0.

Parity supported by this chip. See Table 5-4
for the constants you can specify. Default is 0.

Number of data and stop bits supported by
this chip. See Table 5-4 for the constants you
can specify. Default is 0.

Type of serial chip. See Table 5-4 for the
constants you can specify. Default is 0.

continued

5-7

5-8

CHAPTER 5

Built-in Communication Tools

Table 5-3 Serial chip specification option fields (continued)

Option Field
f Chi pNot | nUse

fCl'S_ManFI D

fCl' S_ManFI DI nfo

Description

A Boolean specifying whether or not the chip
is in use (default is t r ue, which means the
chip is not in use).

Application card CIS manufacturer ID.

Default is 0.

Application card CIS manufacturer ID
information. Default is 0.

The constants you can use to specify various field values in the serial chip
specifications option are listed in Table 5-4.

Table 5-4 Serial chip specification option constants
Constant Value Description
Parity Support Constants

kSer Cap_Parity_Space 0x00000001 No parity
kSer Cap_Parity_ Mark 0x00000002 Mark parity
kSer Cap_Parity_Qdd 0x00000004 Odd parity
kSer Cap_Parity_Even 0x00000008 Even parity
Data and Stop Bits Support Constants

kSer Cap_Dat aBits_5 0x00000001 5 data bits
kSer Cap_Dat aBits_6 0x00000002 6 data bits
kSer Cap_DataBits_7 0x00000004 7 data bits
kSer Cap_DataBits_8 0x00000008 8 data bits
kSer Cap_StopBits_1 0x00000010 1 stop bit
kSer Cap_StopBits_1 5 0x00000020 1.5 stop bits

Serial Tool

continued

CHAPTER 5

Built-in Communication Tools

Table 5-4 Serial chip specification option constants (continued)

Constant Value Description

kSer Cap_StopBits_2 0x00000040 2 stop bits

kSer Cap_StopBits_All 0x00000070 Supports all stop bit choices
kSer Cap_DataBits_All 0x0000000F Supports all data bit choices

Serial chip types

kSeri al Chi p8250 0x00 8250 UART

kSeri al Chi p16450 0x01 16450 UART

kSeri al Chi p16550 0x02 16550 UART

kSeri al Chi p8530 0x20 8530 UART (SCC chip)

kSeri al Chi p6850 0x21 6850 UART (Brick ASIC
modem port UART)

kSeri al Chi p6402 0x22 6402 UART (Brick ASIC
infrared port UART)

kSeri al Chi pVoyager 0x23 Cirrus Voyager UART chip

kSeri al Chi punknown 0x00 Unknown type of UART

Serial Circuit Control Option

This option controls usage of the serial control lines. This option must be set
after the endpoint is connected.

Note that in the external serial port, DTR and RTS signals are combined on
the HSKo line, and the RTS line is used for hardware input flow control.

IMPORTANT

The RTS line should not be set or cleared if
hardware input flow control is enabled. a

Serial Tool 5-9

5-10

CHAPTER 5

Built-in Communication Tools

Here is an example of the serial circuit control option:

| ocal option := {
type: 'option,
| abel : kCMOSeri al CircuitControl,
opCode: opSet Requi r ed,
form 'tenplate,// not needed
result: nil,// not needed; returned

data : {

arglist: |
kSer Qut DTR, // set DIR
0, /1 use 1K byte receive buffer
0, /1 will be set on return
0 /1 will be set on return

1,

typelist: |
kStruct,

kUByte, // fSerQutToSet
kUByte, // fSerCQutTod ear
kUByte, // fSerQutState
kUByte // fSerlnState

Serial Tool

CHAPTER 5

Built-in Communication Tools

The fields in serial circuit control option frame appear in Table 5-5.

Table 5-5 Serial circuit control option fields

Option Field Description

f Ser Qut ToSet Output lines to assert. Add together the values from
Table 5-6 for each output line you want to assert.
Default is 0.

f Ser Qut ToCl ear Output lines to negate. Add together the values from
Table 5-6 for each output line you want to negate.
Default is 0.

fSerQut State Current output line state. This field is returned after
any lines you specify are set or cleared.

fSerinState Current input line state. This field is returned.

The constants you can use to specify the various serial control lines are listed
in Table 5-6.

Table 5-6 Serial circuit control option constants

Constant Value Description

Serial Output Lines

kSer Qut DTR 0x01 DTR line

kSer Qut RTS 0x02 RTS line (also known as HSKo on the
external serial port)

Serial Input Lines
kSer | nDSR 0x02 DSR line

kSer | nDCD 0x08 DCD line (also known as GPi on the
external serial port)

continued

Serial Tool 5-11

5-12

CHAPTER 5

Built-in Communication Tools

Table 5-6 Serial circuit control option constants (continued)

Constant Value Description

kSer | nRI 0x10 RI line (also known as GPi on the external
serial port)

kSer | nCTS 0x20 CTS line (also known as HSKi on the
external serial port)

kSer | nBr eak 0x80 A "break” condition

When the kSer | nBr eak bit is a one, it means that the serial chip has
detected a "break” condition on the receive data line. Normally the line is
logically high when characters are not being sent and in between characters
("marking", binary 1, less than -3 volts). It drops low ("spacing", binary 0,
greater than +3 volts) at the start of a character (start bit), and is high for a bit
time at the end of a character (stop bit). If the line is held low for more than a
byte time, the serial chip reports a "break” condition, and a consequent
interrupt on it.

You can ask for an "event" by means of the TCMOSer i al Event Enabl es
option on start and end of break. You can use this in terminal programs as

a kind of user-initiated interrupt.

You can also send a break for a specified amount of time by using the
TCMOSer i al Br eak option.

Serial Buffer Size Option

This option let’s you increase the size of the buffers used by the serial tool.
Buffers larger than 4 KB are not supported; an error results if you specify too
large a buffer. Also note that an out-of-memory error may return at connect
time if the serial tool cannot allocate the buffers.

This option is often useful—appropriate buffer size can increase performance
and decrease overrun errors. A good buffer size is a few bytes larger than the
typical packet size, for communications using packet-oriented protocols.

For streamed communications, output buffer size is not as important as
input buffer and can be left at the typical output size. The input buffer can be

Serial Tool

CHAPTER 5

Built-in Communication Tools

increased, especially for data rates above 9600 bps. If no flow control is
operating, input buffer size may be the only way to control overruns.

In addition to setting the size of the input and output buffers, this option sets
the number of receive error characters to remember. The specification of
receive markers can be left at a small number like 8, since multiple errors
typically mean something is wrong with the link, and buffering more than 8
error characters won't provide much more interesting information (data is
often flushed after errors anyway). The total size of the input buffer is
limited to 4 KB, which includes about 8 bytes per marker. Typical input
buffer size is 256 to 1024 bytes.

Note that the usable size of a buffer is usually one-to-four bytes less than the
buffer size because of DMA boundary constraints and other considerations.

The serial buffer size option must be set before or at connect time.

Here is an example of this option:

| ocal option := {
type: 'option,
| abel : KCMOSer i al Buf fers,
opCode: opSet Requi r ed,
form 'tenplate,// not needed
result: nil,// not needed; returned
data : {
arglist: [
256, /1 use 256 byte transmt buffer
1024, // use 1K byte receive buffer
8, /1 remenber up to 8 error characters
1,
typelist: [
'struct,
"ulong, // output buffer size in bytes
‘ulong, // input buffer size in bytes
"ulong, // num of error characters to remenber

Serial Tool 5-13

CHAPTER 5

Built-in Communication Tools

s

The default output buffer size is 512 bytes; the default input buffer size is
512 bytes.

Serial Configuration Option

This option specifies the bps rate, stop bits, data bits, and parity options for
the serial tool. This option is typically specified at endpoint open or connect
time, but you can also use it to change the data format after connection.
Changing after connection may require resetting some serial chips, which
can cause problems with the serial inputs.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : kKCMOSer i al | OPar ns,
opCode: opSet Requi r ed,
form 'tenplate,// not needed
result: nil,// not needed; returned
data : {
arglist: |
klStopBits, // 1 stop bit
kNoParity, // no parity bit
k8DataBits,// 8 data bits
k57600bps, // date rate 57600 bps
1,
typelist: [
'struct,
"long, // stop bits
"long, // parity
'"long, // data bits
"long, /! bps

5-14 Serial Tool

CHAPTER 5

Built-in Communication Tools

b

In the stop bits field, you can use the following constants:

Constant Value Description

k1St opBits 0 1 stop bit (default)
kilpt 5StopBits 1 1.5 stop bits

k2St opBits 2 2 stop bits

In the parity field, you can use the following constants:

Constant Value Description
kNoParity 0 no parity (default)
kQddParity 1 odd parity
kEvenParity 2 even parity

In the data bits field, you can use the following constants:

Constant Value (Number of Data Bits)
kbDat aBi ts 5

kéDat aBi t s 6

k7Dat aBi ts 7

k8Dat aBi t s 8 (default)

In the bps field, you can use the following constants to
specify the interface speed:

Constant Value
kExt er nal C ock 1
k300bps 300
k600bps 600
k1200bps 1200
Serial Tool

5-15

5-16

CHAPTER 5

Built-in Communication Tools

Constant Value
k2400bps 2400
k4800bps 4800
k7200bps 7200
k9600bps 9600 (default)
k12000bps 12000
k14400bps 14400
k19200bps 19200
k38400bps 38400
k57600bps 57600
k115200bps 115200
k230400bps 230400

Serial Data Rate Option

This option is used for changing the bps rate after a connection has already
been made. If data bit, stop bit, and parity options don’t have to be changed,
this is a relativelym trouble-free way of changing the data rate.

Here is an example of this option:

| ocal option := {
type: 'option,
| abel : kCMOSer i al Bi t Rat e,
opCode: opSet Requi r ed,
form 'nunber,
result: nil,// not needed; returned
data: k19200bps,// change to 19200

b

In the dat a slot, you can specify the same constants as for the bps field in the
serial configuration option, given on page 5-15. The default is 9600 bps.

Serial Tool

CHAPTER 5

Built-in Communication Tools

Serial Flow Control Options

The two serial flow control options configure software and hardware flow for
input and output. Software flow control uses XON and XOFF characters to
control data flow. Hardware flow control uses the RTS line for input flow
control and the CTS line for output flow control.

The two serial flow control options are kCMJ nput FI owCont r ol Par ns for
input and kCMOQut put Fl owCont r ol Par s for output.

Here is an example of setting the kCMOQut put FI owCont r ol Par ns option.
The kCMOI nput Fl owCont r ol Par s option is set in an identical way.

| ocal option := {
type: 'option,
| abel : KCMOCut put FI owCont r ol Par ns,
opCode: opSet Requi r ed,
form 'tenplate,// not needed
result: nil,// not needed; returned
data : {
arglist: [

uni codeDC1, // xonChar

uni codeDC3, // xof f Char

true, // useSoftFl owContr ol

nil, [/ useHardFl owControl
o, /1 returned
o, /'l returned
1,
typelist: |
"struct,

‘char, // XON character

‘char, // XOFF character

"bool ean, // software fl ow control
"bool ean, // hardware fl ow control
' bool ean, // hardware flow bl ocked
"bool ean, // software fl ow bl ocked

Serial Tool 5-17

5-18

CHAPTER 5

Built-in Communication Tools

b

The fields in the serial flow control option frame are described in Table 5-7.

Table 5-7 Serial flow control option fields
Option Field Description
XON character Specifies the XON character to use for software

XOFF character

software flow control

hardware flow control

hardware flow blocked

software flow blocked

flow control (default is DC1, 0x11).

Specifies the XOFF character to use for software
flow control (default is DC3, 0x13).

To enable software flow control, specify t r ue. To
disable it, specify ni | (default).

To enable hardware flow control, specify t r ue.
To disable it, specify ni | (default).

Read-only. Returns t r ue if hardware flow
control is blocked.

Read-only. Returns t r ue if software flow control
is blocked.

Serial Send Break Option

This option is used to send a break (string of start bits) for the amount of
time specified. No synchronization is done with output.

This option is used after the endpoint is connected. Note that you can only
set this option; you can’t read the current setting, since the option performs
an action rather than setting some kind of parameter.

Serial Tool

CHAPTER 5

Built-in Communication Tools

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : KCMOSer i al Br eak,
opCode: opSet Requi r ed,
form ' nunber,
result: nil,// not needed; returned
data: 100*kM I liseconds, // send a 100 millsecond break

b

In the dat a slot, specify the length of time for the break in milliseconds by
specifying an integer multiplied by the constant kM | | i seconds. The
default is 75 milliseconds.

Serial Discard Data Option

This option is used to discard data in the input or output buffers. Discarding
is useful after error conditions, or before synchronization is achieved in serial
communication.

This option is used after the endpoint is connected. Note that you can only
set this option; you can’t read the current setting, since this option performs
an action rather than setting some kind of parameter.

With modem endpoints, this option works only when MNP is not being used.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : kKCMOSeri al Di scard,
opCode: opSet Requi r ed,
form '"template,// not needed
result: nil,// not needed; returned
data : {

arglist: [

Serial Tool 5-19

CHAPTER 5

Built-in Communication Tools

true, // discard input chars
nil, // but not output

1

typelist: [
'struct,
"bool ean, // clear input buffer
"bool ean, // clear output buffer

}s

The first data field controls the input buffer and the second data field
controls the output buffer. Specify t r ue to discard data in a buffer, or ni | to
leave it untouched.

The default for the input buffer is t r ue, meaning discard characters. The
default for the output buffer is ni | , meaning leave it untouched.

Serial Event Configuration Option

This option configures the serial tool to send the endpoint the
Event Handl er message when particular state changes occur.

Here is an example that shows the use of this option:

local option := {

type: 'option,

| abel : kKCMOSer i al Event Enabl es,

opCode: opSet Requi r ed,

form 'tenplate,// not needed

result: nil,// not needed; returned

data : {

arglist: |
kSeri al Event HSKi Negat edMask +
kSeri al Event HSKi Assert edMask,
/1 send event on CTS/ HSKi changes

5-20 Serial Tool

CHAPTER 5

Built-in Communication Tools

o, /1 no DCD event specified
1
typelist: [
'struct,
"ulong, // event nasks
‘ulong, // DCD down tine, in microseconds

b

The first data field specifies one or more event mask constants, for state
changes that you want to trigger an event. Simply add the constants together
to specify more than one event. The allowable values are listed in Table 5-8.
The default is zero, for no events.

For the kSer i al Event DCDNegat edMask event, specify in the second data
field the amount of time, in microseconds, that DCD must be negated before
this event is reported. It's common for the carrier to drop for short periods of
time during a connection, and this is a way to mask drops that are not
significant. The default is zero.

Table 5-8 Serial event constants

Constant Value Description

kSeri al Event BreakSt ar t edivask 0x00000001 A serial line break
condition is detected

kSeri al Event Br eakEndedMVask 0x00000002 A serial line break
condition ends

kSeri al Event DCDNegat edMask 0x00000004 The DCD line is negated
(DCD is also known as GPi
in the external serial port)

kSeri al Event DCDAsser t edMask 0x00000008 The DCD line is asserted

continued

Serial Tool 5-21

CHAPTER 5

Built-in Communication Tools

Table 5-8 Serial event constants

Constant Value Description

kSeri al Event HSKi Negat edMask 0x00000010 The CTS line is negated
(CTS is also known as
HSKi in the external serial
port)

kSeri al Event HSKi Asser t edMVask 0x00000020 The CTS line is asserted

kSeri al Event Ext A kDet ect Enabl eMask 0x00000040 The serial tool detects more

5-22

than 100 transitions per
second on the CTS line,
and thus assumes this line
is a clock input

When the serial tool sends an Event Handl er message to the endpoint, it
passes two parameters. The first is the integer 1. The second parameter is an
integer indicating the event that occurred, using the same mask bits as
shown in Table 5-8. Some higher-order bits may be set as well, so don’t count
on them being zero.

In the endpoint, you must provide an Event Handl er method (page 4-52) to
receive the message from the serial tool.

Serial Bytes Available Option

This read-only option returns the number of bytes waiting to be read from
the receive bulffer.

This option is used after the endpoint is connected.
Here is an example that shows the user of this option:
[ocal option := {

type: 'option,

| abel : kCMOSer i al Byt esAvai | abl e,

opCode: opGet Current,
form ' nunber,

Serial Tool

CHAPTER 5

Built-in Communication Tools

result: nil,// not needed; returned
data: 0, // returned

b

Serial Statistics Option

This read-only option returns various software and hardware statistics
related to the serial tool.

This option is used after the endpoint is connected.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : kKCMOSeri al | OSt at s,
opCode: opGet Current,
form 'tenplate,// not needed
result: nil,// not needed; returned

data : {

arglist: [
o, /1 returned
o, /1 returned
o, /'l returned
o, /1 returned
o, /1 returned
o, /'l returned
nil, /1 returned

1,

typelist: [
"struct,

ulong, // parity error count
ulong, // fram ng error count
ul ong, // soft overrun count
ul ong, // hard overrun count

Serial Tool

5-23

5-24

CHAPTER 5

Built-in Communication Tools

"byte, // GPi state
"byte, // HSKi state
"boolean // external clock detect

b

The fields in this option frame are described in Table 5-9.

Table 5-9 Serial statistics option fields

Option Field

parity error count
framing error count
soft overrun count
hard overrun count
GPi state

HSK:i state

external clock detect

Description

Number of parity errors encountered. Reading
this value resets it to zero.!

Number of framing errors encountered. Reading
this value resets it to zero.!

Number of soft overrun errors encountered.
Reading this value resets it to zero.!

Number of hard overrun errors encountered.
Reading this value resets it to zero.!

State of DCD (GP1) line. Zero = negated,
one = asserted

State of CTS (HSKi) line. Zero = negated,
one = asserted

Tr ue if an external clock is detected,
otherwise ni |

! The count is cumulative from the last time the statistics were read by this option
call, or from the time of the endpoint Open call if they haven’t been read yet.

Parity, framing, and overrun errors can all happen when receiving data.
Hard overruns happen when the serial driver doesn’t unload the data from
the hardware before it is overwritten by subsequent data. Soft overruns

Serial Tool

CHAPTER 5

Built-in Communication Tools

happen when the endpoint doesn’t consume data fast enough and the serial
tool buffer fills up, resulting in discarded data.

Soft overruns can be avoided by using input flow control, by increasing the
serial tool’s receive buffer, and by handling the data from the serial tool in a
more efficient manner.

Serial External Clock Divide Option

This option controls how the clock rate is divided when using an
external clock.

This option can be used during the Connect call or after the endpoint
is connected.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : KHMOSer Ext O ockDi vi de,
opCode: opSet Requi r ed,
form 'byte,
result: nil,// not needed; returned
data: kSerd k_Di vi deBy_16,

b

In the dat a slot, you can use the following constants:

Constant Value Description
kSer d k_Def aul t 0x00 Use the default
kSerd k_Di vi deBy_1 0x80 Divide by 1
kSer A k_Di vi deBy_16 0x81 Divide by 16
kSer d k_Di vi deBy_32 0x82 Divide by 32
kSer d k_Di vi deBy_64 0x83 Divide by 64

Serial Tool 5-25

CHAPTER 5

Built-in Communication Tools

Serial Tool with MNP Compression

You can create an asynchronous serial endpoint with MNP compression.
This endpoint works just like a standard asynchronous serial endpoint,
except that it uses MNP data compression.

Here’s an example that shows how to create such an endpoint:

nyMipEP : = {_proto: protoBasi cEndpoint};
=

nyOptions
{ | abel: k CMSMNPI D,
type: 'servi ce,

opCode: opSetRequired }];
returnedOpti ons: = nyMhpEP: | nst anti at e(myMpEP
nmyOpt i ons) ;

The serial tool with MNP endpoint uses all of the standard serial options, as
well as two MNP options, which are summarized in Table 5-10.

Table 5-10 Summary of serial tool with MNP options

Label Value Use when Description

k CMOMNPConpr essi on "mnpc" After connecting, Sets the data compression type
before running (See page 5-57)

kCMOWVNPDat aRat e "eter" Any time Configures internal MNP timers

The first option in Table 5-10, k CMOVNPConpr essi on, is described
under “MNP Compression Option” on page 5-57. The last option,

k CMOVNPDat aRat e, is most often used for serial tools with MNP and
so is described here.

5-26 Serial Tool

CHAPTER 5

Built-in Communication Tools

Serial MNP Data Rate Option

The serial MNP data rate option is used by MNP to configure its internal
timers. This option is required because the serial port speed may be different
from the end-to-end speed.

When using a serial MNP endpoint, this option must be set to the correct
value for MNP to function correctly, and the option must be set at or before
the endpoint Connect call.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : KCMOWNPDat aRat e,
opCode: opSet Requi r ed,
form 'nunber,
data : 2400,

b

The dat a slot must be set to the rate, in bps, of the raw throughput of the
serial link used by MNP. The default value is 2400 bps.

Framed Asynchronous Serial Tool

The framed asynchronous serial tool is a superset of the standard
asynchronous serial tool, supporting two additional framing options, which
are summarized in Table 5-1 and described in detail in the following
subsections.

Serial Tool 5-27

CHAPTER 5

Built-in Communication Tools

Table 5-11 Summary of framed serial options

Label Value Use when Description
kCOMOFr am ngPar ns "fram" Any Time Configures data framing parameters
kCMOFr amedAsyncSt at s "frst" Any Time Read-only option returns the number

5-28

of bytes discarded while looking for a
valid header

When you use the framed asynchronous serial tool, if framing is not
specified for a send or receive operation, this tool works exactly like the
standard asynchronous serial tool.

When framing is specified on input, the framed asynchronous serial tool
discards characters until a start of frame sequence is detected; input
completes with an EOF indication when the end of frame sequence is
detected; and an error is reported if a CRC error is detected. When framing is
specified on output, the data is prefixed with the start-of-frame sequence,
and the end of frame sequence and calculated CRC are sent at the end of the
data. The escape character is used for data transparency during framed
operations.

Because the framed asynchronous serial tool supports packetized data, an
endpoint can include kPacket and KEOP and kMor e flags to control the
sending and receiving of framed (packetized) data. For more information on
these flags (See “Sending Data” beginning on page 4-17 of Chapter 4,
“Endpoint Interface.”)

Here’s an example that shows how to create a framed asynchronous
serial endpoint:

nmyFranedEP : = {_proto: prot oBasi cEndpoi nt};
myOptions = [
{ I abel: kCVBFr anedAsyncSeri al ,
type: 'servi ce,
opCode: opSetRequired }];
returnedOptions: = nyFranedEP: | nst anti at e(myFr amedEP,
nmyOpt i ons) ;

Serial Tool

CHAPTER 5

Built-in Communication Tools

Serial Framing Configuration Option

This option configures data framing parameters. This option applies only to
the framed asynchronous serial tool.

Here is an example that shows the use of this option:

| ocal option :={
| abel : kCMOFr am ngPar s,
type: " option,
opCode: opSet Required,
data : {
arglist: [

uni codeDLE, // escape character
uni codeETX, // EOM character
true, // syn/dlel/stx header
true, // send crc at end
true, // check crc on receive
1,
typelist: [
'struct,
' char,
' char,
' bool ean,
' bool ean,
' bool ean,

Serial Tool 5-29

CHAPTER 5

Built-in Communication Tools

The fields in the serial framing configuration option frame are described in
Table 5-12.

Table 5-12 Serial framing configuration option fields

Option Field Description

escape character Specifies the character to use for escape. The
default is DLE (0x10).

EOM character Specifies the character to use for end of message.
The default is ETX (0x03).

syn/dle/stx header To include the SYN/DLE/STX header, specify
t r ue. To disable this feature, specify ni | .

send crc at end To compute and send a 2-byte CRC at the end of a
frame, specify t r ue. To disable this feature,
specify ni | .

check crc on receive To compute and check the 2-byte CRC at the end

of each frame, specify t r ue. To disable this
feature, specify ni | .

The example above of setting the serial framing configuration option shows
the default settings, which implement BSC framing. This kind of framing is
shown in Figure 5-1.

Figure 5-1 Default Serial Framing
Cctet 1 2 3 N3 N2 N1, N
SYN DLE STX Message. . . DLE ETX Frane
Fl ag Fl ag Fl ag Fl ag Fl ag Check
0001011 | 0001000 | 0000001 0001000 | 0000001 | Sequence|
5-30 Serial Tool

CHAPTER 5

Built-in Communication Tools

Each packet is framed at the beginning by the 3-character SYN-DLE-STX
header. The packet data follows; if a DLE (escape character) occurs in the
data stream, both that character and an additional DLE character are sent;
conversely, two consecutive DLE characters on input are turned into a single
DLE data byte. The packet is framed at the end by the 2-character DLE-ETX
trailer. Finally, a 2-character frame check sequence is appended. This frame
check is initialized to zero at the beginning, and calculated on just the data
bytes and the final ETX character, ignoring the header bytes, any inserted
DLE characters, and the DLE character in the trailer.

The frame trailer is sent when an output is done that specifies end of frame.
Conversely, on input, when a trailer is detected, the input is terminated with
an end of frame indication; if a CRC error is detected, kSer Er r _ CRCEr r or
is returned instead.

Serial Framing Statistics Option

This read-only option returns the number of bytes that have been discarded
from the receive buffer while looking for a valid frame header. This option
applies only to the framed asynchronous serial tool.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : KCMOFr amedAsyncSt at s,
opCode: opGet Current,
form ' nunber,
result: nil,// not needed; returned
data: 0, // not needed; # bytes discarded is returned

Serial Tool 5-31

CHAPTER 5

Built-in Communication Tools

Modem Tool

The modem tool includes built in support for support of V.42 and V.42bis.
The alternate error-correcting protocol in V.42, also known as MNP, is
supported (LAPM is not implemented). V.42bis data compression and MNP
Class 5 data compression are supported.

Here’s an example of how to create a modem endpoint:

nmyModenEP : = {_proto: protoBasi cEndpoint};
nmyOptions : = [
{ | abel: kCvshMbden D,
type: 'servi ce,

opCode: opSetRequired } 1;
results : = nmyMdenEP: | nstanti at e(nyModenEP, nyOptions);

This remainder of this section describes various options you can use to

configure the modem communication tool. Table 5-13 summarizes the
modem options described here.

Table 5-13 Summary of modem options

Label Value Use When Description

kCMVbdenPr ef s "mpre" Any time Configures the modem controller

kCvOVbdenPr of i | e "mpro" Any time Override modem setup selected in
preferences. Use when instatiating.

kOMOVbdenECType "mecp” Any time Specifies the type of error control
protocol to be used in the modem
connection

kOvVOMbdenDi al i ng "mdo" Any time Controls the parameters associated

5-32

with dialing

continued

Modem Tool

CHAPTER 5

Built-in Communication Tools

Table 5-13 Summary of modem options (continued)

Label Value Use When Description

kOvOWbdenConnect Type "mcto" Any time Configures the modem endpoint
for the type of connection desired
(voice, fax, data, or cellular data)

kOvOvbdenConnect Speed "mspd" After Read-only option indicating
connecting modem to modem raw connec-
tion speed
kOMOVbdentaxCapabi | i ti es "mfax” After bind, Read-only option indicating the
before fax service class capabilities and
connecting modem modulation capabilities
kOMOVbdemVoi ceSuppor t "mvso” After bind, Read-only option indicating if the
before modem supports line current
connecting sense (LCS)
kCMOWMNPSpeedNegot i at i on "mnpn" Any Time Sets MNP data rate speed
k OMOMNPConpr essi on "mnpc" After Sets the data compression type
connecting,
before
running
kOMOMNPSt at i sti cs "mnps" After Read-only option reporting
connecting performance statistics from the

current MNP connection

Modem Address Option

You’ll need to supply a modem address option that gives an address for use
during the connection phase. Set the kPhoneNunber constant to establish
that you're specifying a phone number.

Here is an example:

I ocal option :={
| abel : kCMARout eLabel ,
type: ' addr ess,
opCode: opSet Required,
data: {

Modem Tool 5-33

5-34

CHAPTER 5

Built-in Communication Tools

arglist: |
kPhoneNumber , /'l type
si ze, /I phone string length
phoneStr, /1 the phone nunber
1,
typelist: [
kStruct,
kLong,
kULong,
[KArray, kChar, 0],

}s

Alternatively, you can call the global function MakeMbdenOpt i on to
construct an address option. For more information on MakeMbdenOpt i on
(See page 4-56 in Chapter 4, “Endpoint Interface.”)

Modem Preferences Option

Modem preferences allow the configuration of the modem controller
operation. Certain features of the controller can be enabled or disabled using
the preferences. This option must be set before the endpoint Bi nd call. For
example, setting this option in the endpoint configuration options is
appropriate.

Here is an example of this option:

| ocal option := {
type: 'option,
I abel : KCMOVDdenPr ef s,
opCode: opSet Requi r ed,
form 'tenplate,// not needed
data : {

Modem Tool

CHAPTER 5

Built-in Communication Tools

arglist: [
true, /1
true, /1
true, /1
true, /1
true, /1
true, /1
true, /1
true, /1
true, /1
true, /1
19200, /1
3,
15,

1,

typelist: |
"struct,

' bool ean, //
' bool ean, //
" bool ean, //
' bool ean, //
' bool ean, //
" bool ean, //
' bool ean, //
' bool ean, //
" bool ean, //
' bool ean, //

‘ulong, // f
‘ulong, // f
‘ulong, // f

Modem Tool

connect in direct node
i d nodem

require positive id

use hardware cd

use software cd

use config string

use dial options

hang up at di sconnect
enabl e pass thru

enabl e dial out stream
di rect node speed

/1 hwcd del ay | ow speed
/1 hwed del ay hi gh speed

f Connect | nDi r ect Mbde
f1 dModem

f Requi rePositiveld

f UseHar dwar eCD

f UseSof t war eCD

f UseConfigString

f UseDi al Opti ons

f HangUpAt Di sconnect
f Enabl ePassThru

f Enabl eDi al Qut Stream
Di rect ModeSpeed
HWCDDel ayLowSpeed
HWCDDel ayHi ghSpeed

5-35

CHAPTER 5

Built-in Communication Tools

The fields in this option frame are described in Table 5-14.

Table 5-14

Modem preferences option fields

Option Field
f Connect | nD r ect Mode

f 1 dMbdem

f Requi rePosi tiveld

f UseHar dwar eCD

f UseSof t war eCD
f UseConfigString

5-36 Modem Tool

Description

If t r ue, forces modem to connect in direct mode (no speed
buffering; DTE-DCE speed is set to match DCE-DCE speed).
If ni |, speed buffering is used if modem profile indicates the
modem can support speed buffering. Default is ni | .

If t r ue, modem tool executes ID sequence in an attempt to
identify the modem which is connected. If the modem is
identified, the modem tool configures the active modem
profile accordingly. The ID sequence is run when the Bi nd
call is made to the modem tool. Note that the modem is reset
during the ID sequence using the AT&F command.

If ni |, the modem tool skips the ID sequence and configures
the active profile to the default. In this case, the modem is not
reset. Defaultist r ue.

If t r ue, the modem tool Bi nd will fail if the modem is not
identified successfully. If ni | , and the modem tool can not
identify the modem, the default profile is used, and the Bi nd
succeeds. Defaultis ni | .

If t r ue, the modem tool will sense the CD line for
determining loss of carrier. External modems must use a cable
that connects the CD RS-232 signal to the Newton GP4i serial
pin (pin 7 on MessagePads). If ni | , CD is ignored. Default is
true.

Ignored.

If t r ue, before initiating a connection, send the current
configuration string to the modem (as determined by active
modem profile and the connection type). If ni | , no
configuration string is sent. Defaultis t r ue.

continued

CHAPTER 5

Built-in Communication Tools

Table 5-14

Modem preferences option fields (continued)

Option Field
f UseDi al Opti ons

f HangUpAt Di sconnect

f Enabl ePassThru

f Enabl eD al Qut Stream

f Di r ect ModeSpeed

f HWCDDel ayLowSpeed

f HWWCDDel ayH ghSpeed

Modem Tool

Description

If t r ue, before initiating a connection, after the configuration
string is sent to modem, set modem dialing configuration
according to current option settings. If ni | , dial configuration
string is not sent to modem. Default dial config string:
ATMLL2X4S7=060S8=001S6=003\ n. Defaultis t r ue.

If t r ue, when the modem tool disconnects, hang up the
modem using the hang up sequence. If ni |, when the modem
tool disconnects, no commands are sent to the modem.
Defaultistrue.

If t r ue, modem tool connects/disconnects in pass through
mode. In pass through mode, all modem controller
functionality is disabled, and the modem tool behaves the
same as a serial endpoint. If ni | , modem tool controller is
enabled. Normal modem tool operation. Default is ni | .

If t r ue, enables dialing of the output stream. After
connecting, all data output by modem tool client endpoint is
sent to modem as dial commands. This feature can be used
for interactive dialing. If ni | , modem handles client endpoint
output as normal data. Defaultis ni | .

Speed in bits per second (bps) at which modem tool begins
direct mode connection. Default is 19200 bps.

Amount of time, in seconds, which the CD line must be
deasserted before considering the line disconnected. This
value is used for connection speeds less than 2400 bps.
Default is 3 seconds.

Amount of time, in seconds, which the CD line must be
deasserted before considering the line disconnected. This
value is used for connection speeds greater than 2400 bps.
Default is 15 seconds.

5-37

5-38

CHAPTER 5

Built-in Communication Tools

Modem Profile Option

A modem profile is a collection of information that describes the
characteristics of a modem, to be used by the modem controller for
configuring and connecting the modem. The modem profile option includes
an indication of support for asynchronous speed buffering (if so, CTS flow
control must be supported), support for special cellular configuration (e.g.,
signal attenuation), support for error control, connection speeds supported,
the highest speed supported for the DTE-DCE interface, maximum
command processing time, maximum characters per command line,
minimum delay between commands, and the strings used to configure the
modem for various types of connections.

Typically, individual applications do not need to set this option. The modem
profile is set by the modem setup, enabling a particular modem to work with
all applications that use a modem endpoint. Users pick the appropriate
modem setup in the Modem Preferences. See Chapter 6, “Modem Setup
Service,” for information about how to write a modem setup package. If for
some reason your application needs to customize the active modem profile,
set this option in the configuration options for the endpoint. Also, set the
kCMOModenPr ef s option in the configuration options and disable the
modem ID feature by setting f | dMbdemto ni | .

Here is an example that shows the use of this option:

| ocal nmodem D : = "gonzo";
| ocal ECnone := "ATC1";
| ocal EConly := "ATC1";
| ocal ECfall := "ATCL";
| ocal ECcell := "ATCL";
| ocal ECdirect := "ATCl1";

| ocal strSize :
StrLen(EConly) +
StrLen(ECfall) + StrLen(ECcell) + StrlLen(ECdirect);

StrLen(nodem D) + StrlLen(ECnone) +

Modem Tool

CHAPTER 5

Built-in Communication Tools

| ocal option := {

type:

" option,

| abel : kCMOModenPr ofi | e,
opCode: opSet Requi r ed,

form

data :

"tenpl at
{

arglist: [

1

true,
true,
true,
true,
1200,
1200,
2000,
40,

25,
strSize,
nodenl D,
ECnone,
EConl vy,
ECfal |,
ECcel |,
ECdi r ect

typelist: |

Modem Tool

"struct,
' bool ean
' bool ean
" bool ean
' bool ean
ul ong,
ul ong,
ul ong,

e,// not needed

/1 supports Cellular

/1 supports EC

/1 supports LCS

/1 direct connect only

/1l connect speeds

/1 config speed

/1 command response tineout

/1l max characters per conmand |ine

[l inter-conmand del ay
/1l modem strings |ength
/1 nmodemid string
/1 config string no EC
/1l config string EC only
/1 config string EX & fallback
/1 config string EC cellular
./l config string direct connect

, [l fSupportsCellular

, Il fSupportsiC

, Il fSupportsLCS

, Il fDirectConnectOnly

/1 fConnect Speeds

/1 fConfigSpeed

/1 fConmandResponseTi neCQut

5-39

CHAPTER 5

Built-in Communication Tools

"ulong, // fMaxCharsPer CrdLi ne

"ulong, // flnterCndDel ay

"ulong, // fModenBtringsLen

["array, 'char, 0], // fModem DString

['array, 'char, 0], // fConfigStrNoEC

["array, 'char, 0], // fConfigStrECOnly
["array, 'char, 0], // fConfigStrECAndFal | back
['array, 'char, 0], // fConfigStrCellular
["array, 'char, 0], // fConfigStrDirectConnect

b

The fields in the modem profile option frame are described in Table 5-15.

Table 5-15 Modem profile option fields

Option field Description

f SupportscCel | ul ar If t r ue, indicates modem profile contains an
f Confi gStrCel | ul ar. This string is used for cellular
type data connections (e.g., turn on MNP 10). If ni | , the
modem profile does not contain an
f Confi gStr Cel | ul ar. In this case, the normal data
mode configuration string is used for cellular connections.
Defaultisni | .

f Support seC If t r ue, indicates modem supports built-in error
correction, and the profile contains configuration strings
for error correction. Defaultis ni | .

continued

5-40 Modem Tool

CHAPTER 5

Built-in Communication Tools

Table 5-15

Modem profile option fields (continued)

Option field

f SupportsLCS

fDi rect Connect Only

f Connect Speeds

Modem Tool

Description

If t r ue, indicates modem supports line current sense. LCS
is used for determining when a user has lifted the phone
handset off hook. Applications take advantage of this
feature by allowing the modem to determine when it
should release the line for a voice call. If ni | , the modem
does not support LCS. In this case, an application can use
a dialog box and user interaction to determine when to tell
the modem to release the line (command ATH). Default
isnil.

If t r ue, indicates modem only supports direct connect
mode and can’t support speed buffer. In this case, the DTE
speed must be adjusted to the modem speed after carrier
is established. If ni | , indicates the modem supports speed
buffering, and use of CTS flow control. Defaultis t r ue.

Indicates speeds (in bps) at which modem can connect.
This value does not affect modem configuration. The
intention is for the application to read this value to
determine the modem capabilities. The default value is
255, representing these speeds: 300, 1200, 2400, 4800, 7200,
9600, 12000, and 14400. Here are the bit flags, which are
ORed together to yield the final value:

0x00000001 300 bps
0x00000002 1,200 bps
0x00000004 2,400 bps
0x00000008 4,800 bps
0x00000010 7,200 bps
0x00000020 9,600 bps
0x00000040 12,000 bps
0x00000080 14,400 bps
0x00000100 16,800 bps
0x00000200 19,200 bps
0x00000400 21,600 bps
0x00000800 24,000 bps
0x00001000 26,800 bps
0x00002000 29,000 bps
0x00004000 31,400 bps
continued
5-41

CHAPTER 5

Built-in Communication Tools

Table 5-15

Modem profile option fields (continued)

Option field
f Conf i gSpeed

f CommandResponseTi meQut

f MaxChar sPer QmiLi ne

f I nter QrdDel ay

f Modenst ri ngsLen

f Modem DSt ri ng

f Confi gStr NoEC

f ConfigStrEQNly

5-42 Modem Tool

Description

Indicates speed at which to configure modem, in bps.
Default is 19200.

Indicates how long (in milliseconds) the modem
command response state machine should wait for modem
response to a command before timing out. Default is 2000.

Indicates maximum number of characters per command
line, not counting the AT prefix and the ending carriage
return. The modem controller uses this number to ensure
the dial string does not exceed the modem’s capability. If
the number of characters in the dial string exceeds this
number, the dial string will be split into multiple
commands, with a semicolon (;) appended to the
intermediate dial string commands. Default is 40.

Indicates minimum amount of delay required between
modem commands, in milliseconds. This is the time from
last response received to next command sent. Default is 25.

Indicates length of modem strings in the remainder of the
fields for this option (packed together and null
terminated). This value includes the termination
characters.

Modem response to the ATl 4 command. If the modem
responds with more than one result string,

f Modem DSt ri ng should contain only one result string.
Default is unknown.

Modem command string used to configure modem for a
non-error-corrected connection. Uses speed buffering. This
string is used for FAX connections. Default is
“ATE0&C1512=12W2&K3&Q6\n".

Modem command string used to configure the modem for
an error corrected connection. Uses speed buffering. This
string should be ni | for modems that do not support
error correction. Defaultis ni | .

continued

CHAPTER 5

Built-in Communication Tools

Table 5-15 Modem profile option fields (continued)

Option field

Description

f Conf i gSt r ECAndFal | back Modem command string used to negotiate for error

correction. If error-correction negotiation fails, the modem
falls back to a non-error-corrected connection. Uses speed
buffering. This string should be ni | for modems that do
not support error correction. Defaultis ni | .

f ConfigStrCel | ul ar Modem command string used to configure the modem to

connect over a cellular connection. This command should
be used to turn on MNP 10 and power attenuation. Uses
speed buffering. This string should be ni | for modems
that do not support error correction. Defaultis ni | .

f Confi gStrDi rect Connect Modem command string used to configure the modem to

connect in direct mode. Speed buffering is disabled. After
connecting in data mode, the DTE speed is adjusted to
match the modem speed. Default is
“ATE0&C1512=12W2&K0&Q0\n".

Modem Error Control Type Option

This option specifies the type of error control protocol to use in the modem
connection. More than one type of error control protocol can be specified,
and the modem tool uses precedence to determine which type of error
control protocol to use for the connection. The pseudo-code for determining
error control precedence is as follows:

if (External EC is enabled) then
begi n
if (No ECis enabled) then
use f Confi gStrECAndFal | back
el se
use f ConfigStrECOnly
end
el se

Modem Tool 5-43

CHAPTER 5

Built-in Communication Tools

begi n
/* use internal EC */
attenpt MNP connecti on
if (MNP connection fails)
begi n
if (No EC is enabled)
fall back to normal connection

el se
di sconnect
end
el se
we' re connected with MP
end
Note

Cellular connections take precedence over external error

control. In other words, if the connection type is cel | ul ar,

as specified by the modem dialing option, see page 5-45,

f ConfigStrCel | ul ar is used even if external error

control is enabled separately. O

This option should be set at or before the endpoint Connect call. Here is an
example that shows the use of this option:

[ocal option := {
type: 'option,
| abel : KCMOVbdenECType,
opCode: opSet Negot i at e,
form ' nunber,
data : kModenECPr ot ocol None,

b

The possible values for the dat a slot are listed in Table 5-16. Note that these
values can be ORed together to specify multiple error control types. The
default is kModenECPr ot ocol MNP and kModenECPr ot ocol None ORed
together.

5-44 Modem Tool

CHAPTER 5

Built-in Communication Tools

Table 5-16 Modem error control type

Constant Value Description
kMbdenECPr ot ocol None 0x00000001 No error control
kMbdenECPr ot ocol MNP 0x00000002 Use internal MNP class 4
kMbdenECPr ot ocol Ext er nal 0x00000008 Use external modem’s

built-in error control

kModenEQ nt er nal Onl y x0x00000010 Connect with internal error
control only; overrides
other settings

Note

kMbdenECPr ot ocol None, kMbdenECPr ot ocol MNP, and

kModenECPr ot ocol Ext er nal had distinct meanings in

previous versions of the system. Although their meanings

are now enigmatic, they are maintained for backward

compatibility. O

If you use “use error control” but don’t set “no error control OK”, you do not
fall back to no error control because if error control can’t be negotiated with
the remote end, the connect/listen fails.

The Newton’s internal error control is always available. If you select “use
error control”, and the modem you are using has built-in error control, the
modem tool reconfigures itself to use the modem’s built-in error control.

Modems that support built-in error control also support fall-back. The
modem setups have two configuration strings for error control: one with
fall-back to no error control, the other with error control only. If you have
“use error control” set, one of these two strings is used; which string
depends on the value of “no error control OK”.

Modem Dialing Option

The modem dialing option is used to control the various parameters
associated with dialing. This option should be set at or before the endpoint
Connect call.

Modem Tool 5-45

CHAPTER 5

Built-in Communication Tools

Rather than setting the modem dialing option manually, you should use the
global function MakeModenOpt i on. This method reads the user preferences
and builds the modem dialing option frame for you. The MakeModenOpt i on
method is described on page 4-56 in Chapter 4, “Endpoint Interface.”

Here is an example that shows the use of this option:

[ocal option := {
type: 'option,
| abel : kCMOVbdenDi al i ng
opCode: opSet Requi r ed,
form 'tenplate,// not needed

data : {
arglist: [
true, /'l speakeron
true, /1 detectdialtone
true, /1 detectbusy
true, /1 dtnftonedialing
nil, /1 manual di al

2, /1 speakervol une

2, /1 waitforcarrier in seconds
2, /1 waitforblinddial in seconds
2, /1 commadel ay i n seconds

2, /1 ringtoanswerafter in rings

10, /1 the country ID

nil, /1 use fConfigStrCellular
1
typelist: [

'struct,

' bool ean, // fSpeakerOn
' bool ean, // fDetectDi al Tone
"bool ean, // fDetectBusy
' bool ean, // fDTMFToneDi al i ng
" bool ean, // fManual Di al
"char, // fSpeaker Vol une

5-46 Modem Tool

CHAPTER 5

Built-in Communication Tools

"byte, // fWaitForCarrier

"byte, // fWiitBeforeBlindD al
"byte, // fCommaDel ay

"byte, // fRi ngToAnswerAfter
‘“ulong, // fCountryld

"bool ean, // fCellul arConnection

b

The fields in the modem dialing option frame are described in Table 5-17.

Table 5-17 Modem dialing option fields

Option Field Description

f Speaker On If t r ue, the modem speaker is turned on during the carrier
establishment (ATML). If ni | , the speaker is off (ATMD).
Defaultistrue.

f Det ect Di al Tone If t r ue, the modem detects and requires dial tone before

f Det ect Busy

dialing (ATX4 or ATX2, depending on f Det ect Busy).Ifni |,
dial tone is not detected or required. In this case, the modem
waits f Wai t Bef or eBl i ndDi al seconds and then dials
(ATX3 or ATX1, depending on f Det ect Di al Tone). Default
istrue.

If t r ue, the modem detects the busy signal and reports this
with the BUSY result (ATX4 or ATX3, depending on the value
of f Det ect Di al Tone). If ni |, the busy signal is ignored and
the BUSY result code is not used (ATX2 or ATX1, depending
on value of f Det ect Di al Tone). Defaultistr ue.

f DTMFToneDi al i ng If t r ue, modem uses DTMF dialing (ATDT...). If ni | , modem

f Manual Di al

uses pulse dialing (ATDP...). Defaultis t r ue.

If t r ue, the modem goes off-hook to connect without dialing
a number (e.g., ATDT). If ni | , a phone number is required to
originate a modem connection. Default is ni | .

continued

Modem Tool 5-47

CHAPTER 5

Built-in Communication Tools

Table 5-17

Modem dialing option fields (continued)

Option Field
f Speaker Vol une

fWai t ForCarri er

f Wi t Bef oreBl i ndDi al

f CommaDel ay

f R ngToAnswer Af t er

fCountryld

f Cel | ul ar Connecti on

5-48 Modem Tool

Description

Modem speaker level. The value is used in the ATLn
command. The acceptable values are defined as follows:

kSpeaker Vol uneLow "T"
kSpeaker Vol uneMedi um "2"
kSpeaker Vol uneHi gh "3"

Note that these are one-character strings. Default is
kSpeaker Vol umeMedi um

Value used to set modem register S7. Units are seconds.
Indicates amount of time modem waits to establish carrier
after going off-hook. Default is 55.

Value used to set modem register S6. Units are seconds.
Indicates amount of time modem waits after going off hook
until dialing when dial tone is not required (when

f Det ect Di al Tone is ni |). Default is 3.

Value used to set modem register S8. Units are seconds.
Indicates length of pause in dialing when a comma occurs in
the dial string. Default is 1.

Used when modem endpoint Li st en call is made. The
modem tool listens for an incoming call. Value is used to
set modem register S0. Default is 2.

Indicates the current location of the user. This value is derived
from the Time Zones setting. The following values are
defined, based on the country codes:

kUSACount ryl d 1
kCanadaCountryl d 10
kJapanCountryl d 81

Default is KUSACount ryl d.

Indicates that the f Conf i gStr Cel | ul ar string from the
Modem Profile Option should be used.

CHAPTER 5

Built-in Communication Tools

Take care because some modem setups are written exclusively for cellular
modems, for example the “Moto Cellular” modem setup, see Chapter 6,
“Modem Setup Service,”. For this reason, set the value of

f Cel I ul ar Connecti on, tot r ue only if you are also specifying your own
modem profile that includes an f Cel | ul ar Connect i on string

Modem Connection Type Option

The modem connection type option configures the modem endpoint for the
type of connection desired. The modem tool distinguishes among voice
connections, fax connections, data connections, and cellular data connections.

For voice connections, the modem tool acts as an auto-dialer. The modem is
taken off-hook, the number is dialed, and the modem returns to command
mode without attempting to establish the carrier.

For fax connections, the modem tool configures the modem in EIA /TIA 578
Service Class One mode; then Class One commands are used to send a fax.

For data connections, the modem tool configures and connects the modem
according to the modem tool’s current configuration (for example active
modem profile, modem preferences).

When connecting, if more than one type of connection is enabled, the
connection type of the highest precedence is initiated. Connection
precedence is: voice (highest), then fax, then data (lowest).

When listening for a connection, voice takes precedence. If both data and
fax are enabled, the type of connection is determined by the modem
handshaking.

This option should be set at or before the endpoint Connect call.
Here is an example that shows the use of this option:
| ocal option := {

type: 'option,

| abel : kCMOVbdentConnect Type,

opCode: opSet Requi r ed,
form 'tenplate,// not needed

Modem Tool 5-49

CHAPTER 5

Built-in Communication Tools

data : {
arglist: [
nil, /1 voice enabl ed
nil, /1 fax enabl ed
true, /1 data enabl ed
nil, /1 reserved
nil, /1 inmediate connection
1.
typelist: [
"struct,

' bool ean, // fVoiceEnable
' bool ean, // fFaxEnable
"bool ean, // fDataEnable
' bool ean, // reserved
"bool ean, // flmediate

b

The fields in this option frame are described in Table 5-18.

Table 5-18 Modem connection type option fields

Option Field Description

f Voi ceEnabl e If t r ue, enables voice connection (auto dial with modem).
Defaultis ni | .

f FaxEnabl e If t r ue, enables fax connection. Defaultis ni | .

f Dat aEnabl e If t r ue, enables data connection. Defaultist r ue.

f I mredi at e If t r ue, go off hook immediately after configuring modem.

The dialing step (or when listening, the waiting for ring step)
is skipped. Default is ni | .

5-50 Modem Tool

CHAPTER 5

Built-in Communication Tools

Modem Connection Speed Option

The modem connect speed option indicates modem-to-modem raw
connection speed, in bps. This value is not a measure of throughput, which
can vary because of compression, but instead is a measure of the raw bit rate
of the modem-to-modem connection. This option is read only. The intended
use is for determining modem connection speed, while the modem is
connected. This option should be read only when the endpoint is in the
connected state.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : kKkCMOMbdenConnect Speed,
opCode: opGet Current,
form ' nunber,
data : O,

b

Modem Fax Capabilities Option

The modem fax capabilities option indicates fax service class capabilities and
modem modulation capabilities. This option is valid only after the endpoint
Bi nd call.

If you use this option to set these capabilities, then the values constrain
capabilities present in the modem. If you use this option to get the capabili-
ties, then the values returned are the values for the modem ORed by the
current values set with this option. By default the capabilities of the modem
are not constrained.

Normally you don’t need to set this option because the modem setup chosen
by the user handles it. For example the “Moto Cellular” modem setup
constrains the fax send /receive speed to 4800 baud. See Chapter 6, “Modem
Setup Service,” for information about how to write modem setup packages.

Modem Tool 5-51

5-52

CHAPTER

5

Built-in Communication Tools

Here is an example that shows the sue of this option:

| ocal opti

on =

{

type: 'option,
| abel : kCMOVbdenfFaxCapabi liti es,
opCode: opGet Current,

form 'tenplate,// not needed

data :
ar gl

{
ist: [

Ol

1.

O O O O O O

typelist:
"struct,

Modem Tool

ul ong,
ul ong,
ul ong,
ul ong,
ul ong,
ul ong,
ul ong,

[

/1
/1
/1
/1
/1
/1
/1

/1 Ret ur ned
/I Ret ur ned
/I Ret ur ned
/1 Ret ur ned
/I Ret ur ned

f Serviceld

f Ext endedResul t

f Servi ced ass

f Transmi t Dat aMbd

f Transm t HDLCDat aMbd
f Recei veDat aMod

f Recei veHDLCDat aivbd

CHAPTER 5

Built-in Communication Tools

The fields in the modem fax capabilities option frame are described in

Table 5-19.

Table 5-19

Modem Fax Capabilities Option Fields

Option field
f Servi ced ass

f Transmi t Dat aMbd

f Tr ansm t HDLCDat aMbd

f Recei veDat avbd

f Recei veHDLCDat aMbd

Modem Tool

Description

Indicates which fax service classes are supported by the
modem. The following service classes can be returned:

Constant Value Meaning

kModenfFaxCl assO 0x00000001 no fax service
kModenfFaxC assl 0x00000002 HDLC modulation
kModenfaxCl ass2 0x00000004 T.30 modulation
kmodemFaxClass2=0 0x0000000008 Approved class 2 spec

Indicates transmit modulations supported by the AT+FTM=x
command. See Table 5-20 for possible return values. The array
of possible values needs to be ORed together.

Indicates transmit HDLC modulations supported by the
AT+FTH=X command. See Table 5-20 for possible return
values. The array of possible values needs to be ORed
together.

Indicates receive modulations supported by the AT+FRM=x
command. See Table 5-20 for possible return values. The array
of possible values needs to be ORed together.

Indicates receive HDLC modulations supported by the
AT+FRMEX command. See Table 5-20 for possible return
values. The array of possible values needs to be ORed
together.

5-53

5-54

CHAPTER 5

Built-in Communication Tools

Fax modulation return values are described in Table 5-20.

Table 5-20 Modem Fax Modulation Return Values

Constant Value Description

kV21Ch2Mod 0x00000001 V.21 (300 bps)

kV27Ter 24Mod 0x00000002 V.27 ter (2400 bps)

kV27Ter 48Mod 0x00000004 V.27 ter (4800 bps)
kV29_72Mod 0x00000008 V.29 (7200 bps)

kV17_72NMod 0x00000010 V.17 (7200 bps)

kV17st _72Mod 0x00000020 V.17 short train (7200 bps)
kV29_96Mod 0x00000040 V.29 (9600 bps)

kV17_96Mod 0x00000080 V.17 (9600 bps)

kV17st _96Mbd 0x00000100 V.17 short train (9600 bps)
kV17_12NMod 0x00000200 V.17 (12000 bps)

kV17st _12Mod 0x00000400 V.17 short train (12000 bps)
kV17_14NMod 0x00000800 V.17 (14400 bps)

kV17st _14Mobd 0x00001000 V.17 short train (14400 bps)

Modem Voice Support Option

The modem voice support option is used to determine if the modem
supports line current sense (LCS). If the modem is capable of supporting
LCS, it automatically releases the phone line, by going on hook, when the
user lifts the handset when a voice connection is made with the modem tool.

A modem which supports LCS ignores the ATHO command when auto
dialing for a voice connection. Instead, it waits until it senses the current
draw when the handset is lifted. If the active modem does not support LCS,
the modem goes on hook when the modem endpoint Di sconnect call

Modem Tool

CHAPTER 5

Built-in Communication Tools

is made. If the user has not lifted the handset when the Di sconnect call is
made, the phone call is terminated. This option is read only and is valid only
after the endpoint Bi nd call.

Here is an example of this option:

| ocal option := {
type: 'option,
| abel : KCMOMbdemVoi ceSupport,
opCode: opGet Current,
form '"template,// not needed
data : {
arglist: [
true, /'l supports LCS
1,
typelist: [
" bool ean, // fSupportsLCS

b

The single Boolean field in the dat a slot returns t r ue if the modem
supports LCS and ni | if it does not.

MNP Speed Negotiation Option

This option controls the MNP speed negotiation. If you use this option before
or when connecting, the modem tool negotiates with the remote end to
change the data speed to the specified level. After connecting, you can
determine the connection speed by getting the current value with the
kCMOWNPDat aRat e option.

Generally, KCMOSer i al | OPar ns should be used to set up things before
connecting, and then kCMOSer i al Bi t Rat e should be used to change
speeds during later negotiations. It doesn’t make sense to use both in the

Modem Tool 5-55

CHAPTER 5

Built-in Communication Tools

same call; if you do, the speed ends up at the rate specified by the latter
option in the option array.

The speed shift is negotiated in the link request (LR) packet and is fully
backwards compatible; previous implementations that don’t support this
feature simply ignore the speed negotiation LR parameter.

Note

The MNP link request packets are sent at the original
connect speed (set with either the kCMOSer i al | OPar ns
or KCMOSer i al Bi t Rat e options). When the
kCMOVNPSpeedNegot i at i on option is used, it negotiates
the MNP data rate speed, and the serial port speed is set to
this value. D

Here is an example that shows the use of this option:

local option := {
type: 'option,
| abel : KCMOVNPSpeedNegot i ati on,
opCode: opSet Negot i at e,
form 'tenplate,// not needed
data : {
arglist: [
57600, /1 speed in bps
1,
typelist: [
'struct,
"long, // fSpeed

b

The single integer field in the dat a slot specifies the desired data rate speed
in bps. The default value is 57600.

5-56 Modem Tool

CHAPTER 5

Built-in Communication Tools

MNP Compression Option

The MNP compression option is used to configure the data compression
options in the modem tool. Data compression can only be supported on
MNP connections. The modem tool supports V.42bis compression and MNP
Class 5 compression.

The type of compression used during a connection must be negotiated with
the remote connection end. If both V.42bis and MNP Class 5 compression
types are enabled, the compression used for the connection is negotiated
with the remote end. V.42bis compression is given top priority, followed by
MNP Class 5. If neither compression can be used, the connection can be
made with no compression. This option should be set at or before the
endpoint Connect call.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : KCMOVNPConpr essi on,
opCode: opSet Requi r ed,
form ' nunber,
data : kMNPConpressi onNone, // no conpression

b

The possible values for the dat a slot are listed in Table 5-21. Note that these
values can be ORed together to specify multiple compression types. The
default is all three values ORed together.

Table 5-21 MNP compression type

Constant Value Description

kMNPConpr essi onNone 0x00000001 No compression

kIMNPConpr essi onM\P5 0x00000002 Use MNP class 5 compression
kMNPConpr essi onV42bi s 0x00000008 Use V.42bis compression

Modem Tool 5-57

5-58

CHAPTER 5

Built-in Communication Tools

MNP Data Statistics Option

The MNP data statistics option is a read-only option that reports some
performance statistics from the current MNP connection. Valid results can be
obtained by reading this option while the endpoint is being connected and
after it is in the connected state.

Here is an example that shows the use of this option:

| ocal option := {

type: 'option,

| abel : KCMOVNPSt at i sti cs,

opCode: opGet Current,

form 'tenplate,// not needed

data : {

arglist: |
o, /1l adapt val ue

/1 It retrans count
/1 Ir retrans count
/1l total retransm ssions
/1 rcv broken total
/1 force ack total
/1l rcv async err total
/1 frames received
/1 frames transmtted
/1l bytes received
/1 bytes transmitted
/1 wite bytes in
/1 wite bytes out
/1 read bytes in
/1 read bytes out
/1 wite flush count

OO0 0000000000 oo o

Modem Tool

CHAPTER 5

Built-in Communication Tools

typelist: |
"struct,
"ulong, //
"ulong, //
"“ulong, //
"ulong, //
"ulong, //
"“ulong, //
"ulong, //
"ulong, //
"“ulong, //
"ulong, //
"ulong, //
"“ulong, //
"ulong, //
"ulong, //
"“ulong, //
"ulong, //

b

f Adapt Val ue

f LTRet r ansCount
f LRRet r ansCount
f RetransTot a

f RevBr okenTot a

f For ceAckTot al

f RevAsyncErr Tot a
f FramesRcvd

f FranesXm t ed

f Byt esRcvd

f Byt esXmit ed
fWiteBytesln
fWiteBytesQut

f ReadByt esl n

f ReadByt esQut
fWiteFl ushCount

The fields in this option frame are described in Table 5-22.

Table 5-22 MNP data statistics option fields
Option Field Description
f Adapt Val ue Maximum size data packet when the connection supports adaptive packet

sizing (Class 4). Default is 196.

f LTRet r ansCount
Default is 0.

f LRRet r ansCount

Modem Tool

Number of times current data packet (LT) has been retransmitted.

Retransmission count for connect packet (LR - link request). Default is 0.

continued

5-59

CHAPTER 5

Built-in Communication Tools

Table 5-22 MNP data statistics option fields (continued)

Option Field Description

f Ret ransTot al Total number of LT frame retransmissions during connection. Default is 0.

f RevBr okenTot al Total number of broken frames received during connection. Default is 0.

f For ceAckTot al Total number of forced acknowledgments during connection. Default is 0.

f RevAsyncEr r Tot al Total number of serial driver async errors (overruns) received during
connection. Default is 0.

f FramesRevd Total number of frames received during connection. Default is 0.

f FramesXnited Total number of frames transmitted during connection. Default is 0.

f Byt esRcvd Total number of data bytes received during connection. Includes packet
header/tail. Default is 0.

fBytesXmted Total number of data bytes transmitted during connection. Includes
packet header/tail. Default is 0.

fWiteBytesln Total number of user data bytes transmitted during connection (before
compression). Default is 0.

fWiteBytesQut Total number of user data bytes transmitted during connection (after
compression). Default is 0.

f ReadByt esl n Total number of user data bytes received during connection
(before decompression). Default is 0.

f ReadByt esQut Total number of user data bytes received during connection
(after decompression). Default is 0.

f Wit eFl ushCount Number of flush calls to V.42bis compressor during connection.
Default is 0.

5-60 Modem Tool

CHAPTER 5

Built-in Communication Tools

Infrared Tool

This section describes the infrared (IR) communication tool.

The infrared tool permits only half-duplex communication. If you are using
the infrared communication tool, do not activate an input spec and expect to
output data.

Because the infrared tool supports packetized data, an endpoint can include
kPacket and KEOP and kMor e flags to control sending and receiving
framed (packetized) data. For more information on these flags, see “Sending
Data” beginning on page 4-17 of Chapter 4, “Endpoint Interface.”

Here’s an example of how to create an IR endpoint:

nylrEP : = {_proto: protoBasi cEndpoi nt};
myOptions = |
{ | abel: kCVBSI owl R,
type: ' servi ce,
opCode: opSetRequired }];
returned Options:= nylrEP: Instantiate(nylrEP, nyQptions);

The infrared tool supports some options, which are summarized in
Table 5-46 and described in detail in the following subsections.

Infrared Tool 5-61

CHAPTER 5

Built-in Communication Tools

Table 5-23 Summary of Infrared Options

Label Value Use when Description

kCMOSI owl RConnect “irco” When Controls how the connection
Initiating is made

kCMOSI owl RPr ot ocol Type “irpt” After Read-only option returns the
Connecting protocol and speed of the

connection

kCMOSI owt RSt at s “irst” After Read-only option returns

Connecting statistics about the data

received and sent

Infrared Connection Option

This option to controls how the infrared connection is made. You can set it in
the I nst anti at e, Bi nd, or Connect methods.

Here is an example that shows the use of this option:

| ocal option := {
| abel : kCMOSI oW RConnect,// "irco"
type: 'option,
opCode: opSet Negoti at e,
data: {
arglist: [connect],
typelist: ['ulong]

5-62 Infrared Tool

CHAPTER 5

Built-in Communication Tools

The connect field is interpreted as a series of bit flags. The connect field
bit flags are as follows:

Constant Value Description

kNor mal Connect 0 Normal connection, if set

i r Symmetri cConnect 1 Allows symmetric connection, if set
irActiveConnection 2 This bit is set by the infrared tool to

indicate the type of connection made

The kNor mal Connect constant indicates that the infrared tool should
connect normally as controlled by the use of the Connect or Li st en calls. If
you use the Connect call, the tool connects in active mode, expecting the
remote device to be listening passively. If you use the Li st en call, the tool
connects in passive mode, expecting the remote device to be connecting
actively.

Thei r Symmet ri cConnect constant indicates that the tool should open in
symmetric mode; that is, the Connect call can act either as a Connect or a
Li st en, depending on what the remote side is doing. If the remote side is
also attempting to open an active connection (via Connect) then the local
side opens as if Li st en had been called instead.

Client applications can determine in which state the tool was actually
opened by looking at the second bit, i r Act i veConnect i on. If this bit is
set, the tool opened as the active side (Connect). If this bit is cleared, the
tool opened as the passive side (Li st en).

Infrared Protocol Type Option

The infrared protocol type option is a read-only option that reports the
protocol and speed of the current infrared connection. Valid results can be
obtained by reading this option during or after the endpoint is in the
connected state, or while a connection is being negotiated.

Infrared Tool 5-63

5-64

CHAPTER 5

Built-in Communication Tools

Here is an example of this option:

| ocal
| abel : kCMOS| ow RProt ocol Type, //
type: 'option,
opCode: opGet Current,
data: {

b

option := {

arglist: |
pr ot ocol ,
options

1,

typelist: [
"ul ong,
"ul ong

"irpt"

The possible values for the pr ot ocol field are as follows:

Constant Value Description

kUsi ngNegoti atel R 0

kUsi ngShar pl R 1
kUsi ngNewt on1)
kUsi ngNewt on2 4

The tool is negotiating a connection

using the negotiation protocol (Sharp
protocol with Apple extensions). No
connection has been made.

A connection has been made to a

Sharp OZ/IQ or similar device using
the standard Sharp protocol.

A connection has been made to a

Newton 1.x device using the Sharp
protocol with Apple extensions.

A connection has been made to a

Newton 2.x device using the Sharp
protocol with Apple extensions.

Infrared Tool

CHAPTER 5

Built-in Communication Tools

The possible values for the opt i ons field are as follows:

Constant Value Description

kUsi ng9600 1 Connection speed is 9600 bps
kUsi ng19200 2 Connection speed is 19200 bps
kUsi ng38400 4 Connection speed is 38400 bps

The infrared tool uses the Sharp Infrared protocol. Because of the
characteristics of this protocol, we suggest setting sendFl ags to kPacket
and to KEOP every time you send data. For more information on sendF| ags
see, “Output Spec Frame” beginning on page 4-36 of Chapter 4, “Endpoint
Interface.” If you don’t set sendFl ags to this value, the protocol only sends
after 512 bytes of data are queued up. This queuing means input scripts do
not terminate when you expect them to. For the receiving side, the queuing
means you will terminate after every output if you set useEOP to t r ue. If
you are using byt eCount, you should set useEOP to ni | if you want to
trigger on byt eCount instead of EOP. For more information on useEOP and
byt eCount, see “Input Spec Termination Frame” beginning on page 4-41 of
Chapter 4, “Endpoint Interface.”

Infrared Statistics Option

The infrared statistics option is a read-only option that reports various
statistics on the current infrared connection. Valid results can be obtained by
reading this option during or after the endpoint is in the connected state.

Here is an example that shows the use of this option:

| ocal option := {
| abel : kCMOS| oW RSt ats,// "irst”
type: 'option,
opCode: opGetCurrent,
data: {

Infrared Tool 5-65

CHAPTER 5

Built-in Communication Tools

arglist: |
dat aPacket sl n,
checkSuntrrs,
dat aPacket sCut ,
dat aRetri es,
fal seStarts,
serial Errs,
protocol Errs
1,
typelist: [
"ul ong,
ul ong,
ul ong,
ul ong,
ul ong,
ul ong,
ul ong

s

The fields in the infrared statistics option frame are described in Table 5-24.

Table 5-24 Infrared statistics option fields

Option Field Description

dat aPacket sin Number of data packets received
checkSuntrrs Number of checksum errors in received packets

dat aPacket sQut Number of data packets sent
dat aRetries Number of retries performed while sending
fal seStarts Not used

continued

5-66 Infrared Tool

CHAPTER 5

Built-in Communication Tools

Table 5-24 Infrared statistics option fields (continued)
Option Field Description
serial Errs Number of bytes with parity or framing errors or

serial chip buffer overruns

protocol Errs Number of unexpected or out-of-sequence packets.
These can occur because a packet was garbled in
transmission and the two sides became
unsynchronized.

AppleTalk Tool

The AppleTalk tool enables access to the ADSP (Apple Data Stream Protocol),
ZIP (Zone Information Protocol), and NBP (Name Binding Protocol)
components of the AppleTalk protocol stack.

Here’s an example of how to create an AppleTalk endpoint:

myATal KEP : = {_proto: protoBasi cEndpoi nt};
myOptions := |
{ I abel: kCVBAppl eTal ki D,
type: ' servi ce,
opCode: opSet Requi red
b
{ label: kC\VBApp! eTal ki D,
type: ‘option,

opCode: opSet Required,
dat a: { arglist: ["adsp"],// or KCMOAppl eTal KADSP
typelist:]
"struct
["array, 'char, 4]

]

AppleTalk Tool 5-67

CHAPTER 5

Built-in Communication Tools

{ I abel: kCMOENndpoi nt Nane,

type: 'option,

opCode: opSet Requi red,

dat a: { arglist: [kADSPEndpoint],

typelist:]

'struct
["array, 'char, 4]
]

P
results : = nmyATal KEP: I nstanti at e(nyATal KEP, nyOpti ons);

Note that you do not need to call OpenAppl eTal k or Cl oseAppl eTal k to
use AppleTalk. The AppleTalk endpoint automatically opens and closes the
drivers for you when the endpoint methods Bi nd and UnBi nd are called,
respectively.

The AppleTalk tools supports some options, which are summarized in
Table 5-46 and described in detail in the following subsections.

Table 5-25 Summary of AppleTalk options

Label Value Use When Description
kCVARout eLabel “rout” When Sets an AppleTalk NBP
connecting address
kCMDAppl eTal kBuf f er “bsiz” When Sets the size of the send,
connecting receive, and attention
buffers
kCMOSer i al Byt esAvai | abl e “sbav” After Read-only option returns
connecting the number of bytes
available in the receive
buffer

5-68 AppleTalk Tool

CHAPTER 5

Built-in Communication Tools

AppleTalk Address Option

During the connection phase you'll need to supply an address option that
gives an AppleTalk NBP address.

Here is an example that shows the use of this option:

local NBPStr := "PrinterNane: Laserwiter@one";// address
| ocal size := StrLen(NBPStr);

local opt := {
| abel : KCMARout eLabel
type: 'address,
opCode: opSet Requi r ed,
data: {
arglist: [
kNamedAppl eTal kAddress, // type
kNanmedAppl eTal kAddress, // naned addr type
kDef aul t Li nk, /[l = "sltk"
si ze, /1 length
NBPSt 1, /1 NBP string
1,
typelist: [
'struct,
"l ong,
"l ong,
["array, 'char, 4],
"ul ong,
["array, 'unicodeChar, 0],

b

Note you need to set the size and NBPSX’s where “size” is the length in
bytes of the “NOP string” you are passing.

AppleTalk Tool 5-69

CHAPTER 5

Built-in Communication Tools

Note also that you must pass the KCMARout eLabel option in to ADSP's
Connect and Li st en options. For Connect, it's who you're connecting to;
for Listen, it's who you are.

Alternatively, to construct an address option, you can call the global function
MakeAppl et al kOpt i on instead. For more information on
MakeAppl et al kOpt i on, see page 4-56 in Chapter 4, “Endpoint Interface.”

AppleTalk Buffer Size Option

You can supply a buffer size option to specify the sizes of the send, receive,
and attention buffers. You must specify a separate option per buffer type.

This option can be set in conjunction with the Connect and Li st en
methods only.

The buffer types are identified by integers, as follows:

Buffer type Identifier Default size
Send kSndbuf f er 511
Receive kRevBuf f er 511
Attention kAt nBuf f er 0

For example:

| ocal opt := {

| abel : kCMOAppl eTal kBuf f er,

type: 'option,

opCode: opSet Requi r ed,

data: {

arglist: [
kBuf fer Type, // buffer type (kSndbuffer,
kRevBuf fer, or kAtnBuffer)

kSi ze, // buffer size in bytes

1.

5-70 AppleTalk Tool

CHAPTER 5

Built-in Communication Tools

typelist: |
"struct,
"ul ong,
"l ong,

b

AppleTalk Bytes Available Option

This read-only option returns the number of bytes waiting to be read from
the receive buffer.

The AppleTalk bytes available option is used after the endpoint is connected.

Here is an example that shows the use of this option:

| ocal option := {
type: 'option,
| abel : KCMOSer i al Byt esAvai | abl e,
opCode: opGet Current,
form ' nunber,
result: nil,// not needed; returned
data: 0, // returned

b

AppleTalk Functions

A number of global functions are provided for obtaining the addresses of
other devices on the network.

Opening and Closing the AppleTalk Drivers

It is not necessary to call OQpenAppl eTal k in order to access zone
information because all other functions open AppleTalk if necessary, but you
may want to do so for efficiency’s sake. In that case you can do many more

AppleTalk Tool 5-71

5-72

CHAPTER 5

Built-in Communication Tools

lookups or make other functions calls without the overhead of repeated
openings and closings of AppleTalk.

In order to access zone information, you need to first open the AppleTalk
drivers with QpenAppl eTal k. When you're finished, be sure to close the
drivers with O oseAppl eTal k.

Note that if you are using an AppleTalk endpoint, the AppleTalk drivers are
opened automatically when the endpoint Bi nd method is called, and are
closed when the endpoint UnBi nd method is called.

OpenAppleTalk

OpenAppl eTal k()

Opens the AppleTalk drivers, returning zero if successful. You may call
OpenAppl eTal k as many times are you like, but you must call

Cl oseAppl eTal k at least as many times as you call OpenAppl eTal k.
If AppleTalk is open, QpenAppl eTal k simply increments a counter
and returns.

CloseAppleTalk

G oseAppl eTal k()

Closes the AppleTalk drivers, returning zero if successful. You can call

C oseAppl eTal k as many times as you like. If AppleTalk is not open, this
call does nothing. If the open counter is 1, this call closes the AppleTalk
drivers; otherwise it decrements the open count. It is not necessary to call
Cl oseAppl eTal k in order to access zone information because all other
functions open AppleTalk if necessary.

AppleTalkOpenCount

Appl eTal kOQpenCount ()

Returns the open count for the AppleTalk drivers. A return value of zero
means the drivers are closed.

AppleTalk Tool

CHAPTER 5

Built-in Communication Tools

Obtaining Zone Information

There are several functions for obtaining zone information, which are
described in the following sections.

HaveZones
HaveZones()

Returns t r ue if a connection exists and zones are available. Returns ni | if
there are no zones. This function automatically opens and closes the
AppleTalk drivers as needed, so you don’t need to call OpenAppl eTal k or
Cl oseAppl eTal k.

GetMyZone
Get MyZone()

Returns a string naming the current AppleTalk zone. A return value of “*”
identifies the default zone, usually meaning that no AppleTalk router was
found. This function automatically opens and closes the AppleTalk drivers as
needed, so you don’t need to call QpenAppl eTal k or O oseAppl eTal k.

GetZonelList
Get Zoneli st ()

Returns an array containing strings of all the existing zone names, or returns
ni | if no zones are available (which usually means no router is visible). This
function automatically opens and closes the AppleTalk drivers as needed, so
you don’t need to call OpenAppl eTal k or Cl oseAppl eTal k.

GetNames
Get Nanmes (fromWhat)

Returns a string or an array of names based on the fromWhat parameter.
fromWhat A network address in the form nane: t ype@one.

If fromWhat is a string, Get Nanes returns a string; if fromWhat is an array,
Cet Names returns an array of names.

AppleTalk Tool 5-73

5-74

CHAPTER 5

Built-in Communication Tools

Here’s an example that shows the use of this function:

userconfiguration.currentPrinter. printerName
#4415501 "ldiot Savante:LaserWiter @RD1/
NewHaven- Local Tal k"

Get Nanmes(userconfiguration.currentPrinter. printerNane)
#4417791 "ldi ot Savante"

GetZoneFromName

Get ZoneFr onNane(fromWhat)

Returns the zone name as a string based on the fromWhat parameter
fromWhat A network address in the form nane: t ype@one.
For example:

Get ZoneFr omNane(userconfiguration.currentPrinter.

pri nt er Nane)
#44184A9 " RD1/ NewHaven- Local Tal k"

NBPStart

NBPSt ar t (entity)

Begins a lookup of network entities, as specified by the entity parameter. This
function automatically opens the AppleTalk drivers, so you don’t need to
first call OpenAppl eTal k.

This function returns a lookup ID that is used with the other NBP functions
described in this section. This function returns ni | if the lookup can’t
be started.

entity A string specifying the type of entity to search for and
the zones in which to search. The entity string must
have the form “name: type@one”. You can use the wild
card characters “*” to identify the local zone, “=" to
match all strings, and “=” (Option—x) to match a

AppleTalk Tool

CHAPTER 5

Built-in Communication Tools

partially specified string. For example “=: =Laser =@ ”
searches for all entities whose type contains the string
“Laser” in the local zone. The characters “:” and “@” are
reserved, to separate the name from the type, and the

type from the zone, respectively.

To get the names of the entities that are found, use the NBPGet Narres
function. For example, to look for LaserWriters in the current zone, use
this code:

| ookupl D : = NBPStart("=:LaserWiter@");
NBPGet Nanes(| ookupl D) ;

NBPGetCount
NBPCet Count (lookupID)

Returns the number of entities the currently running NBP lookup has found.

lookupID The lookup ID returned by the NBPSt ar t function used
to start this lookup.

Here is an example of using this function:

| ookupl D : = NBPStart ("=:LaserWiter@");
NBPGet Count (| ookupl D) ;

NBPGetNames
NBPCet Nanes (lookupID)

Returns an array of strings that are the names found by NBPSt ar t .

lookupID The lookup ID returned by the NBPSt ar t function used
to start this lookup.

For an example of using this function, see NBPSt art .

AppleTalk Tool 5-75

5-76

CHAPTER 5

Built-in Communication Tools

NBPStop

NBPSt op(lookupID)

Terminates a lookup started by NBPSt ar t , returning zero if successful, or
-10067 if not. NBPSt op automatically closes the AppleTalk drivers.

lookupID The lookup ID returned by the NBPSt ar t function used
to start this lookup.

NetChooser Function

The Newton system implements a NetChooser, similar in function to the Mac
OS Chooser, as part of the root view. You can use the function

Get Root () . Net Chooser : OpenNet Chooser to display a list of network
entities from which the user can make a selection.

NetChooser:OpenNetChooser

Net Chooser : OpenNet Chooser (zone, lookupName, startSelection,
who, connText, headerText, lookforText)

This function displays the chooser view.

zone A string identifying the pre-defined AppleTalk zone;
specify ni | for the current zone.

lookupName A string identifying the name of the entity to be
looked up.

startSelection A string identifying the name of an entity to be selected

as the default.

who An identifier naming the context that does the
notification; sel f specifies the current context.

connText The string to be placed in the button that will select
the service.

headerText The string to be placed in the title string, and also in
possible notifications.

AppleTalk Tool

CHAPTER 5

Built-in Communication Tools

lookforText A string that informs the user what the chooser is trying
to find. The lookforText is appended to the string
“Looki ng for”.This string appears while the list is
being assembled, or when the user chooses Change
Zone.

Here’s an example that shows the use of this function:

Get Root () . Net Chooser : openNet Chooser (nil ,"=:LaserWiter@,
nil, self, "Use printer, sir", "Printer", "printers");

This example opens the NetChooser view and displays the lookforText string
while the search is in progress, see Figure 5-2.

Figure 5-2 NetChooser view while searching

Select a Printer:

Looking for printers___

(e) ®)

When the search has been completed, the NetChooser fills in the
available choices, see Figure 5-3.

AppleTalk Tool 5-77

CHAPTER 5

Built-in Communication Tools

Figure 5-3 NetChooser view displaying printers

Select a Printer:

Bones

calvin's hamewark
CraMinci

Idiot Savante

Lab Rat

Mo Berts

Shane's Yery Crum

T

Zone: RD1/MewHaven-LocalTalk

[Change Zone] [Use printer, sir]@

NetworkChooserDone

To obtain the user’s selection, you need to provide a method called

Net wor kChooser Done. This method should have the following format:
nyChooser : Net wor kChooser Done(currentSelection, currentZone)
currentSelection Returns the selected entity

currentZone Returns the currently selected AppleTalk zone.
Here’s an example that shows the use of this function:

Chooser Sanple : = {

/1 open our network connection
openNet wor kScript: func()

begi n

Get Root () . Net Chooser : openNet Chooser (ni |l ,"=: LaserWiter@,
nil, self, "Use printer, sir", "Printer", "printers");
end,

/1 called when the user selects an item

net wor kChooser Done: func(current Sel ecti on, currentZone)
begi n

Print("Current Selection =" && currentSel ection);

5-78 AppleTalk Tool

CHAPTER 5

Built-in Communication Tools

Print("Current Zone =" && current Zone);
end

b

Chooser Sanpl e: OpenNet wor kScri pt ()
#1A TRUE

/1 select the network entity, close the Chooser

"Current Selection = |diot Savante"
"Current Zone = RD1/ NewHaven- Local Tal k"

Resource Arbitration Options

You can construct a communication tool to share its resource with other
communication tools. For example, you might need to use a hardware port
that other tools want to use. This section describes how you can implement
resource sharing in your communication tool.

The communication tool base provides a default implementation of resource
arbitration that uses two options to control the release of a tool’s resources:

= The resource-passive claim option (kCMOPassi veCd ai m) has a Boolean
value that specifies whether or not a communication tool is claiming its
resources passively or actively. If this value is t r ue, the communication
tool is claiming its resources passively and will allow another tool to claim
it. If this value is f al se, the communications tool is claiming its resources
actively and will not allow another application to claim it.

= The resource-passive state option (kCMOPassi veSt at e) has a Boolean
value that specifies whether or not the current state of the communication
tool supports releasing resources. If this value is set, and
kCMOPassi ved ai mist r ue, your communications tool is willing to
relinquish use of its passively claimed resources. If this value is f al se,
the communication tool is not willing to relinquish use of its passively
claimed resources.

Resource Arbitration Options 5-79

CHAPTER 5

Built-in Communication Tools

Table 5-26 Resource arbitration options

Label Value Use when Description
kCMOPassiveClaim "cpem" Before bind Specifies whether your tool claims
resources actively or passively
kCMOPassi veSt at e "cpst” Typically Specifies whether your tool releases
on listen resources
Here are two examples that show the use of these options. The first
demonstrates claiming the tool passively. Passive claiming must take place
before binding. By default all tools are claimed actively.
{
| abel : kCMOPassi veC ai m
type: "option,
opCode: opSet Requi r ed,
data: {
arglist: |
true, /1 passively clai mnodem
]]
typelist: [
kStruct,
kBool ean,
]
}
}]
The second is an example of using the tool passively. For instance, if you are
listening on a tool you may pass this option down specifying an ar gl i st
value of t r ue. By default tools are in an active state.
5-80 Resource Arbitration Options

CHAPTER 5

Built-in Communication Tools

{
| abel : kCMOPassi veSt at e,
type: ‘option,
opCode: opSet Requi red,
data: {
arglist: [
true, /1 passively claimnodem
3
typelist: [
kStruct,
kBool ean,
]
1,
Summary

Constants and Variables

Table 5-27 Serial chip specification option constants

Constant Value Description
Parity Support Constants
kSer Cap_Parity_Space 0x00000001 No parity

kSer Cap_Parity_Mark 0x00000002 Mark parity
kSer Cap_Parity_Cdd 0x00000004 Odd parity
kSerCap_Parity_Even 0x00000008 Even parity

continued

Summary 5-81

CHAPTER 5

Built-in Communication Tools

Table 5-27 Serial chip specification option constants

Constant Value Description

Data and Stop Bits Support Constants

kSer Cap_DataBits_5 0x00000001 5 data bits

kSer Cap_Dat aBits_6 0x00000002 6 data bits

kSer Cap_Dat aBits_7 0x00000004 7 data bits

kSer Cap_Dat aBits_8 0x00000008 8 data bits
kSerCap_StopBits_1 0x00000010 1 stop bit
kSerCap_StopBits 1 5 0x00000020 1.5 stop bits

kSer Cap_StopBits_ 2 0x00000040 2 stop bits

kSer Cap_StopBits_All 0x00000070 Supports all stop bit choices
kSer Cap_DataBits_All 0x0000000F Supports all data bit choices

Serial chip types

kSeri al Chi p8250 0x00 8250 UART

kSeri al Chi p16450 0x01 16450 UART

kSeri al Chi p16550 0x02 16550 UART

kSeri al Chi p8530 0x20 8530 UART (SCC chip)

kSeri al Chi p6850 0x21 6850 UART (Brick ASIC
modem port UART)

kSeri al Chi p6402 0x22 6402 UART (Brick ASIC
infrared port UART)

kSeri al Chi pVoyager 0x23 Cirrus Voyager UART chip

kSeri al Chi pUnknown 0x00 Unknown type of UART

5-82 Summary

CHAPTER 5

Built-in Communication Tools

Table 5-28 Serial circuit control option constants

Constant Value Description

Serial Output Lines

kSer Qut DTR 0x01 DTR line

kSer Qut RTS 0x02 RTS line (also known as HSKo on the

external serial port)

Serial Input Lines

kSer | nDSR 0x02 DSR line

kSer | nDCD 0x08 DCD line (also known as GPi on the
external serial port)

kSer | nRI 0x10 RI line (also known as GPi on the external
serial port)

kSer | nCTS 0x20 CTS line (also known as HSKi on the

external serial port)

kSer | nBr eak 0x80

Table 5-29 Stop bits field constants

Constant Value Description

k1St opBits 0 1 stop bit (default)
klpt5StopBits 1 1.5 stop bits

k2St opBits 2 2 stop bits

Summary 5-83

5-84

CHAPTER 5

Built-in Communication Tools

Table 5-30 Parity field constants

Constant Value Description
kNoParity 0 No parity (default)
kQddParity 1 Odd parity
kEvenParity 2 Even parity

Table 5-31 Data bits constants

Value
(Number of
Constant data bits)

k5Dat aBi t s 5
k6Dat aBi t s 6
k7Dat aBi ts 7
k8Dat aBi t s 8 (default)

Table 5-32 Field interface speed constants

Constant Value
kExt er nal C ock 1

k300bps 300

k600bps 600
k1200bps 1200
k2400bps 2400
k4800bps 4800
k7200bps 7200
k9600bps 9600 (default)

continued

Summary

CHAPTER 5

Built-in Communication Tools

Table 5-32 Field interface speed constants

Constant
k12000bps
k14400bps
k19200bps
k38400bps
k57600bps
k115200bps
k230400bps

Value
12000
14400
19200
38400
57600
115200
230400

Table 5-33 Serial event constants

Constant
kSeri al Event Br eakSt art edMask

kSeri al Event Br eakEndedMask

kSeri al Event DCDNegat edMask

kSeri al Event DCDAsser t edMask
kSeri al Event HSKi Negat edMask

kSeri al Event HSKi Assert edMask
kSeri al Event Ext A kDet ect Enabl eMask

Summary

Value
0x00000001

0x00000002

0x00000004

0x00000008
0x00000010

0x00000020
0x00000040

Description

A serial line break condition is
detected

A serial line break condition
ends

The DCD line is negated
(DCD is also known as GPi in
the external serial port)

The DCD line is asserted

The CTS line is negated (CTS
is also known as HSKi in the
external serial port)

The CTS line is asserted

The serial tool detects more
than 100 transitions per
second on the CTS line, and
thus assumes this line is a
clock input

5-85

CHAPTER 5

Built-in Communication Tools

Table 5-34 Data slot constants:

Constant Value Description

kSer d k_Def aul t 0x00 Use the default

kSerd k_Di vi deBy_1 0x80 Divide by 1

kSer d k_Di vi deBy_16 0x81 Divide by 16

kSerd k_D vi deBy_32 0x82 Divide by 32

kSerd k_Di vi deBy_64 0x83 Divide by 64

:I'able 5-35 Modem error control type

Constant Value Description
kMbdenECPr ot ocol None 0x00000001 No error control
kMbdenECPr ot ocol MNP 0x00000002 Use internal MNP class 4
kMbdenECPr ot ocol Ext er nal 0x00000008 Use external modem’s

built-in error control

Table 5-36 Modem service type constants

Constant
kMbdenfFaxd assO

kMbdenfFaxd assl
kMbdenfFaxd ass2

5-86 Summary

Value
0x00000001

0x00000002
0x00000004

Description

No fax service
HDLC modulation

T.30 modulation

CHAPTER 5

Built-in Communication Tools

Table 5-37 Modem fax modulation return values

Constant Value Description

kV21Ch2Mod 0x00000001 V.21 (300 bps)

k\V27Ter 24Mod 0x00000002 V.27 ter (2400 bps)
k\V27Ter 48Mbd 0x00000004 V.27 ter (4800 bps)
kV29_72Md 0x00000008 V.29 (7200 bps)
kV17_72Mod 0x00000010 V.17 (7200 bps)

kV17st _72Mod 0x00000020 V.17 short train (7200 bps)
kV29_96Mod 0x00000040 V.29 (9600 bps)
kV17_96Mod 0x00000080 V.17 (9600 bps)

kV17st _96Mdd 0x00000100 V.17 short train (9600 bps)
kV17_12Mod 0x00000200 V.17 (12000 bps)

kV17st _12Mod 0x00000400 V.17 short train (12000 bps)
kV17_14Mod 0x00000800 V.17 (14400 bps)

kV17st _14Mod 0x00001000 V.17 short train (14400 bps)

Table 5-38 MNP compression type

Constant Value Description

kMNPConpr essi onNone 0x00000001 No compression

kIMNPConpr essi onM\P5 0x00000002 Use MNP class 5 compression
kM\PConpr essi onV42bi s 0x00000008 Use V.42bis compression

Summary

5-87

5-88

CHAPTER 5

Built-in Communication Tools

Table 5-39 The protocol field constants

Constant Value Description

kUsi ngNegoti atel R 0 The tool is negotiating a connection
using the negotiation protocol (Sharp
protocol with Apple extensions). No
connection has been made.

kUsi ngShar pl R 1 A connection has been made to a
Sharp OZ/IQ or similar device using
the standard Sharp protocol.

kUsi ngNewt onl 2 A connection has been made to a
Newton 1.x device using the Sharp
protocol with Apple extensions.

kUsi ngNewt on2 4 A connection has been made to a
Newton 2.x device using the Sharp
protocol with Apple extensions.

Table 5-40 The options field constants:

Constant Value Description

kUsi ng9600 1 Connection speed is 9600 bps
kUsi ng19200 2 Connection speed is 19200 bps
kUsi ng38400 4 Connection speed is 38400 bps

Functions and Methods

AppleTalk Functions

OpenAppl eTal k()
G oseAppl eTal k()

Appl eTal kOQpenCount ()

Summary

CHAPTER 5

Built-in Communication Tools

Zone Information Methods

HaveZones()

Get MyZone()

Get ZonelLi st ()

Get Nanmes (fromWhat)

Cet ZoneFr omNane(fromWhat)
NBPSt ar t (entity)

NBPGet Count (lookupID)
NBPGet Names (lookupID)
NBPSt op(lookuplD)

NetChooser Function

Net Chooser : OQpenNet Chooser (zone, lookupName, startSelection,
who, connText, headerText, lookforText)

Registration Methods

Get CommConf i g(name, type, serviceld)
RegCommConf i g(id, configuration)
UnRegComConf i g(id)

Options

Table 5-41 Summary of serial options

Value Use When Description
kOMDBer i al HAChi pLoc "schp" Before Sets which serial hardware to use
binding
kCMOBer i al Chi pSpec "sers" Any time Sets which serial hardware to use

and returns information about the
serial hardware

kOvOBeri al A rcui t Control "sctl" After Controls usage of the serial interface

connecting lines

continued

Summary 5-89

CHAPTER 5

Built-in Communication Tools

Table 5-41

Summary of serial options (continued)

Label

kCMGeri al Buffers

kOMser i al | QPar s

kCMSeri al Bi t Rat e

kOMDQut put FI owCont r ol Par ns
kGMO nput Fl owCont r ol Par s

kCOMBer i al Br eak

kCMXSeri al D scard

kOMGer i al Event Enabl es

kOMCSer i al Byt esAvai | abl e

kCMBerial | Cstats

kHVOSer Ext A ockDi vi de

Table 5-42

Value
"sbuf"

"SiOp"

"sbps "

" "

oflc
TR
"Sbrk”

"gdsc”

"sevt"

"shav"

"sios"

rediv"

Use When

Before
connecting

Any time

Any time
Any time
Any time

After
connecting

After
connecting

After
connecting

After
connecting

After
Connecting

After
binding

Description

Sets the size of the input and output
buffers

Sets the bps rate, stop bits, data bits,
and parity options

Changes the bps rate
Sets output flow control parameters
Sets input flow control parameters

Sends a break

Discards data in input and / or output
buffer

Configures the serial tool to complete
an endpoint event on particular state
changes

Read-only option returns the number
of bytes available in the input buffer

Read-only option reports statistics
from the current serial connection

Used only with an external clock to
set the clock divide factor

Summary of serial with MNP options

Label

kCMOVNPConpr essi on

k CMOWNPDat aRat e

5-90

Summary

Value

umnpcn

"eter”

Use When

After
connecting,
before
running

Any time

Description

Sets the data compression type (see
page 5-57)

Configures internal MNP timers

CHAPTER 5

Built-in Communication Tools

Table 5-43 Summary of framed serial options

Label Value
kCOMOFr ani ngPar ns "fram"
kOMOFr anedAsyncSt at s "frst"

Table 5-44 Summary of modem options

Use When
Any time

Any time

Description
Configures data framing parameters
Read-only option returns the number

of bytes discarded while looking for a
valid header

Label Value

kCMOvbdenPr ef s "mpre"
kOvOVbdenPr of i | e "mpro"
kOMOVbdenECType "mecp"
kOVOWbdenDi al i ng "mdo

kOvOvbdenConnect Type "mcto"
kOMOWbdenConnect Speed "mspd'

kOMOVbdentaxCapabi l i ti es "mfax"

kOVOMbdenVoi ceSuppor t "mvso"

Summary

Use When
Any time

Any time

Any time

Any time

Any time

After
connecting

After bind,
before
connecting

After bind,
before
connecting

Description

Configures the modem controller

Override modem setup selected in
preferences. Use when instatiating.

Specifies the type of error control
protocol to be used in the modem
connection

Controls the parameters associated
with dialing

Configures the modem endpoint for
the type of connection desired (voice,
fax, data, or cellular data)

Read-only option indicating modem
to modem raw connection speed

Read-only option indicating the fax
service class capabilities and modem
modulation capabilities

Read-only option indicating if the
modem supports line current sense

(LCS)

continued

5-91

CHAPTER 5

Built-in Communication Tools

Table 5-44 Summary of modem options (continued)

Label Value Use When Description
kCMOMNPSpeedNegot i at i on "mnpn" Any Time Sets MNP data rate speed
kCMOWVNPConpr essi on "mnpc" After Sets the data compression type
connecting,
before
running
kCMOWNPSt at i sti cs "mnps" After Read-only option reporting
connecting performance statistics from the

current MNP connection

Table 5-45 Summary of infrared options

Label Value
kCMOSI owl RConnect "irco"
kCMOSI ow RPr ot ocol Type “irpt"
kCMOS|I owl RSt at s "irst"

Use When Description

When Controls how the

initiating connection is made

After Read-only option returns

connecting the protocol and speed of
the connection

After Read-only option returns

connecting statistics about the data

Table 5-47 Resource arbitration options

received and sent

Label Value Use When
kCMOPassi ved ai m "cpem” Any time
kCMOPassi veSt at e "cpst" Any time

5-92 Summary

Description

Specifies whether your tool claims
resources actively or passively

Specifies whether your tool releases
resources

CHAPTER 5

Built-in Communication Tools

Table 5-46 Summary of AppleTalk options

Label Value Use When Description
kCVARout eLabel "rout" When Sets an AppleTalk NBP
connecting address
kCMOAppl eTal kBuf f er "bsiz" When Sets the size of the send,
connecting receive, and attention
buffers
kCMOSer i al Byt esAvai | abl e "sbav" After Read-only option returns
connecting the number of bytes
available in the receive
buffer

Summary 5-93

CHAPTETR 6

Modem Setup Service

This chapter contains information about the modem setup capability in
Newton system software. You should read this chapter if you need to define
a modem setup package for your application. You will also want to refer to
chapter 5 “Built-in Communication Tools” for information on the Modem
Tool constants discussed here.

This chapter describes:

= the modem setup service and how it works with modem setup packages.
» the user interface for modem setup.

= the modem characteristics required by the Newton modem tool.

= the constants, methods, and functions you use in defining a modem setup.

CHAPTER 6

Modem Setup Service

About the Modem Setup Service

6-2

This section provides detailed conceptual information on the modem setup
service. Specifically, it covers the following:

» a description of the modem setup user interface
s the programmatic process by which a modem is setup
» modem requirements

The modem setup service allows many different kinds of modems to be used
with Newton device. Each kind of modem can have an associated modem
setup package, which can configure a modem endpoint to match the
particular modem.

A modem setup package is installed on the Newton as an automatically
loaded package. This means that when the package is loaded, the modem
setup information is automatically stored in the system soup and then the
package is removed. No icon appears for the modem setup in the Extras
Drawer. Instead, modem setups are accessed through a picker in the Modem
preferences view.

Modem setup packages can be supplied by modem manufacturers, or can be
created by other developers.

A modem setup package can contain four parts:

» General information. The beginning of a modem setup package specifies
general information about the modem corresponding to the package—for
example, the modem’s name and version number.

= A modem tool preferences option. The part of the package that contains
specifications that configure the modem controller. See “Modem
Preferences Option” beginning on page 5-34 for full details.

= A modem tool profile option. This part of the package describes the
characteristics of the modem—for example, whether the modem supports
cellular data connections, error correction protocols, and so forth. For

About the Modem Setup Service

CHAPTER 6

Modem Setup Service

more information on this option, see the section “Modem Profile Option”
beginning on page 5-38)

= A fax profile option. This part of the package describes the characteristics
of the fax—for example, the speed at which faxes can be sent and

received. This option is particularly useful to limit fax speeds over cellular
connections.

Because of the way the modem setups are used and the way parameters are
defined, separate profiles need to be made for cellular and landline
operations if a modem supports both—unless the modem automatically
senses and configures itself. If you want to give the user the option to limit
fax speeds, which is a common practice with cellular connections, you may
want a third profile that specifies the fax profile option.

Note

The constants and code shown in this chapter apply to the
NTK project which is provided by technical support. This
project provides an easy way to create modem setups. O

The Modem Setup User Interface

The user chooses the current modem setup in the Modem preferences, as
shown in Figure 6-1. The Modem Setup item is a picker, when tapped it,
displays all of the modem setups installed in the system. The chosen modem
setup is the default used by all applications.

Figure 6-1 Modem preferences view

Modem volume of f

Require dial tone ¥/

{7 Pulzz Dialing 4 Tone Dialing

Connect using Defanlt
#Nodem setup Newton Modem

Use Defaults

About the Modem Setup Service 6-3

CHAPTER 6

Modem Setup Service

The Modem Setup Process

All communication applications that use a modem endpoint make use of the
modem setup service. When a modem endpoint | nst ant i at e call is made,
but before the Bi nd and Connect methods have completed, the current
modem setup is invoked.

Note

If the modem endpoint option list includes the modem
profile option (KCMOVbdenPr of i | e), the modem setup is
not invoked. This allows modem applications to override the
modem setup when configuring the modem for special
purposes. 0

Here is what happens in the | nst ant i at e method when the modem setup
is invoked:

1. The kCMOVbdenPr ef s option is added to the endpoint configuration
options, and the f Enabl ePassThr u field is set to t r ue. This enables
the endpoint to operate in pass-through mode. In this mode, the
modem endpoint is functionally equivalent to a serial endpoint for
input and output.

2. Next, the modem endpoint is instantiated and connected in pass-
through mode.

3. The system sets the modem preferences (kCMOVbdenPr ef s) and modem
profile (kCMOMbdenPr of i | e) options as defined in the modem setup.

Note

A modem setup method is executed only once—when the
endpoint is instantiated—even if the endpoint is
subsequently used for multiple connections. O

4. The modem endpoint is reconfigured with pass-through mode disabled,
and control is returned to the client application, which can proceed with
Bi nd and Connect calls.

“Defining a Modem Setup” on page 6-6 describes how to define a
modem setup.

About the Modem Setup Service

CHAPTER 6

Modem Setup Service

Modem Communication Tool Requirements

The Newton modem communication tool expects certain characteristics from
a modem. These characteristics are described here.

The modem tool expects a PCMCIA modem to use a 16450 or
16550 UART chip.

Hardware flow control is expected in both serial and PCMCIA modems.
In modems not supporting hardware flow control, direct connect support
is required, and the modem profile constant kdi r ect Connect Onl y must
be set to t r ue. This means that the modem tool and the modem must be
running at the same bit rate, allowing for no compression or error
correction protocols to be used by the modem. (When operating in direct
connect mode, the data rate of the modem tool is automatically adjusted
to the data rate stated in the “"CONNECT SEXTETS” message.)

The modem tool expects control signals to be used as follows:
o The modem tool uses RTS to control data flow from the modem.
o The modem uses CTS to control data flow from the modem tool.

o Support of the DCD signal is optional. In general, the modem tool
expects DCD to reflect the actual carrier state. The usage of this signal
by the modem tool is governed by the kuseHar dwar eCD constant.

The modem tool expects non-verbose textual responses from the modem.
The modem tool expects no echo.

The modem tool currently supports the Class 1 protocol for FAX

connections. The configuration string defined by the constant

kConf i gSt r NoECis used for sending and receiving FAX documents.

Additionally, these other requirements apply to the FAX service:

o Flow control is required. In modems not supporting hardware flow
control (where kDi r ect Connect Onl y =t r ue), XON /XOFF software
flow control must be enabled.

o Buffering must be enabled.
o The kConf i gSpeed constant must be set to at least 19200.

About the Modem Setup Service 6-5

CHAPTER 6

Modem Setup Service

Defining a Modem Setup

The parts of a modem setup are specified in an Newton Toolkit (NTK) text
file, which is provided by Newton Technical Support. The modem
preferences and profile options are specified by setting constants. The
following subsections describe each part of the modem setup.

Setting Up General Information

The beginning of a modem setup contains general information about the
setup and the modem to which it corresponds. Here is an example:

const ant kModemNane: = "Speedy Fast XL";
const ant kVersion:= 1;
constant kOrgani zation: = "Speedy Conputer, Inc.";

The value of kMbdenmNamne appears in the Modem preferences. It is usually
the name of the modem. The constant kVer si on identifies the version of the
modem setup package. The constant kOr gani zat i on indicates the source
of the modem setup package. See Table 6-3 on page 6-10 for complete details
on these constants.

Setting the Modem Preferences Option

This modem option configures the modem controller. Here is an example:

constant kldvbdem := nil;

constant kUseHardwareCD := true;
constant kUseConfigString := true;
constant kUseDi al Options := true;
const ant kHangUpAt Di sconnect := true;

6-6 Defining a Modem Setup

CHAPTER 6

Modem Setup Service

Table 6-4 on page 6-11 describes these constants. For additional information
about these items, see the section “Modem Preferences Option” beginning on
page 5-34.

Setting the Modem Profile Option

This modem profile option describes the modem characteristics, to be used
by the modem controller. Here is an example:

constant kSupportskiC : = true;

constant kSupportsLCS: = nil;

constant kDirectConnectOnly := nil;

const ant kConnect Speeds: = ' [300, 1200, 2400, 4800, 7200,
9600, 12000, 14400];

constant kConfi gSpeed: = 38400;

const ant kConmmandTi neout : = 2000;

const ant kMaxChar sPer Li ne: = 40;

const ant ki nt er CndDel ay: = 25;

constant kModem DString := "unknown";

constant kConfi gStrNoEC. = " ATEO&AO0&B1&C1&H1I&MDS12=12\ n";

constant kConfigStrECOnl y: =" ATEO&A0&B1&C1&H1&NMES12=12\ n";

const ant kConfi gSt r ECAndFal | back :
" ATEO&AO&B1&C1&H1&WAS12=12\ n";

constant kConfi gStrDirect Connect
" ATEO&AO&BO&C1&HO&MDS12=12\ n";

Table 6-5 on page 6-12 describes these constants. For additional information
about these items, see the section “Modem Profile Option” beginning on
page 5-38.

When the modem tool establishes communication with the modem through

an endpoint, a configuration string is normally sent to the modem (as long as
kuseConfi gStringistrue). Several configuration strings are defined in a
typical modem profile; the one that is sent depends on the type of connection

Defining a Modem Setup 6-7

6-8

CHAPTER 6

Modem Setup Service

requested and other parameters set in the modem profile. Table 6-1
summarizes when each kind of configuration string is used:

Table 6-1 Summary of configuration string usage

Configuration string
kConf i gSt r NoEC

kConfi gStr ECOnl y

kConf i gSt r ECAndFal | back

kConfi gStrD rect Connect

When used

The default configuration used for data
connections when kDi r ect Connect Onl y
is ni | . Also used for FAX connections.

Used for data connections that require error
correction. This configuration string is used
only if requested by an application. The
constant ksuppor t SECmustbe t r ue for
this configuration string to be used.

Used for data connections that allow error
correction, but that can fall back to
non—error—corrected mode. This
configuration string is used only if
requested by an application.

The default configuration used for data
connections when kDi r ect Connect Onl y
istrue.

Setting the Fax Profile Option

The fax profile option describes the fax characteristics to be used by the fax

tool. Here is an example:

constant kTransm t Dat avbd

+ KV27Ter 48N\bd;
const ant kRecei veDat aMbd
+ kV27Ter 48N\od;

Defining a Modem Setup

kV21Ch2Mbd + KV27Ter 24Mod

kV21Ch2Mod + KV27Ter 24Mod

CHAPTER 6

Modem Setup Service

on page 6-19 describes these constants.This example limits the faxing to 4800
bps for both send and receive messages. If neither of these constants is
defined, then the fax send and receive speeds are not restricted.

The speed at which faxes are sent and received are specified by configuration
strings. Table 6-2 lists the strings available for these two constants.

Table 6-2 Available fax speeds

Configuration string
kV21Ch2Mbd

kv27Ter 24Mod
kV27Ter 48Mod
kV29_72Mbd
kV17_72Mod
kV17st _72Mod
kV29_96Md
kV17_96Md
kV17st _96Md
kV17_12Mbod
kV17st _12Mod
kV17st _14Mod

Defining a Modem Setup

Value

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00001000

Bits
per second

300
2400
4800
7200
7200
7200
9600
9600
9600
12000
12000
14400

6-9

CHAPTER 6

Modem Setup Service

Modem Setup Service Reference

This section describes the constants and methods used by the modem
setup service.

Constants

The following sections contain descriptions of the constants you use in the
general information, preferences, and profile parts of the modem setup.

Modem Setup General Information

The following constants specify general information about the modem setup.

Table 6-3 Constants for modem setup general information
Constant Description
kMbdeniNane A string consisting of the name that identifies this modem setup

shows up in the Modem Preferences picker. Typically this is the
name of the modem.

kVer si on An integer identifying the version number of this modem setup
package. The system prevents a modem setup package with an
equivalent or lower version number from overwriting one with a
higher version number that is already installed on a Newton.

kQrgani zat i on A string indicating the developer of the modem setup package.

6-10 Modem Setup Service Reference

CHAPTER 6

Modem Setup Service

Modem Setup Preferences

The following constants specify the modem setup preferences for
configuring the modem controller.

Table 6-4 Constants for modem setup preferences
Constant Description
ki dMbdem Set to ni | to prevent the modem tool from executing a modem
ID sequence and automatically setting the modem profile.
kuseHar dwar eCD This is generally set to t r ue for PCMCIA modems. For serial

kuseConfi gStri ng

kuseD al Opti ons

khangUpAt D sconnect

modems, a setting of t r ue requires a special cable that connects
the CD signal from the modem to the GPi serial pin on the
Newton. A setting of t r ue causes the modem tool to sense the
CD line to detect loss of carrier. If this constant is set to ni |,

the CD line is ignored.

Set this to t r ue, unless the modem happens to be configured
correctly when it is reset, which is very unlikely. A setting of

t r ue means that a modem configuration string is to be sent

to the modem before initiating a connection. The modem
configuration string is defined in the modem profile option and
depends on the connection type. If this constant is set to ni | , no
modem configuration string is sent.

Set this to t r ue to send the default dialing configuration
string to the modem, following the configuration string.

The default dialing configuration string is
ATMLL2X4S7=060S8=001S6=003\ n. If you specify ni | , the
dialing configuration string is not sent to the modem.

Set this to t r ue. This setting causes a “clean” hang-up
sequence to occur when the modem disconnects. If this
constant is set to ni | , no hang-up commands are sent to
the modem on disconnect.

Modem Setup Service Reference 6-11

CHAPTER 6

Modem Setup Service

Modem Setup Profile Constants

The modem profile constants describe the modem characteristics, which are
used by the modem controller.

Note:

Where the backslash (\) is used in a configuration string,
you must specify two of them together (\ \), since a single
backslash is used as the escape character in NewtonScript. O

Table 6-5 Constants for the modem setup profile
Constant Description
kSupport seC Specify t r ue if the modem supports any error correction

protocols (such as MNP 5, V.42, LAPM) and the profile contains
configuration strings for error correction. Note that

kdi rect Connect Onl y must also be ni | . Specify ni | if the
modem does not support error correction.

kSuppor t sSLCS Specify t r ue if the modem supports LCS (Line Current Sense);
otherwise, specify ni | otherwise. LCS is used for determining
when a user has lifted the telephone handset off the hook.
Applications can take advantage of this feature by allowing the
modem to determine when it should release the line for a voice
telephone call.

kDi r ect Connect Onl y

Normally this is set to ni | . Set to t r ue if the modem does not
support error correction or buffering.

kConnect Speeds An array indicating the speeds (in bps) at which the modem can
connect. This array is not used, except by application that want to
determine the modem capabilities.

continued

6-12 Modem Setup Service Reference

CHAPTER 6

Modem Setup Service

Table 6-5

Constants for the modem setup profile (continued)

Constant
kCommandTi meout

kMaxChar sPer Li ne

kl nt er OndDel ay

kModem DStri ng

Description

Indicates how long (in milliseconds) the modem tool should wait
for a modem response to a command before timing out. A setting
of 2000 ms is usually sufficient, though some modems may require
3000 or 4000 ms.

Indicates the maximum number of command line characters that
the modem can accept, not counting the AT prefix and the ending
carriage return.

Indicates the minimum amount of delay required between modem
commands, in milliseconds. This is the time from the last response
received to the next command sent. A setting of 25 ms is usually
sufficient, though you can adjust this to up to 40 ms if necessary.
This setting should be kept as low as possible.

Normally set this to the string “ unknown” . This string is used if
the modem tool attempts to identify the modem using the ATI 4
command. It should be set to the same string with which the
modem responds.

continued

Modem Setup Service Reference 6-13

CHAPTER 6

Modem Setup Service

Table 6-5

Constants for the modem setup profile (continued)

Constant
kConfi gSt r NoEC

Description

The configuration string used for non—error—corrected data
connections when kDi r ect Connect Onl y ist r ue, and for
FAX connections. This configuration string must enable speed
buffering. The default string is as follows:

EO
&C1
S12=12

W2

&K3

&b

Echo off (always required)
DCD indicates the true state of the remote carrier

Escape guard time is 240 ms (12*20). Modems usually set
S12 to 50.

Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use Q0
with X1 or X4, and V1.

Enables bidirectional RTS/CTS flow control. The modem
uses CTS to control flow from the Newton, and the
Newton uses RTS to control flow from the modem. This
does not work on all modems. An alternate form is

\ @\ X0. It is possible that &R0 and \ D1 will be required
as well.

Use normal buffered mode. Again, this does not work on
all modems. An alternate form is to use \ NO, or on some
modems \ N7.

Without hardware flow control (kdi r ect Connect Onl y ist r ue),
software flow control should be used for FAX connections. In this
case, instead of &K3, use the following commands:

&K4

&R1

\ DO

Enables bidirectional XON /XOFF flow control. The
modem and Newton halt data flow when they receive
XOFF (DC3) and resume data flow when they receive
XON (DC1). This does not work on all modems. An
alternate form is \ QL\ XO.

Assume RTS is always asserted. This does not work
on all modems.

Force CTS on at all times. This does not work on
all modems.

continued

6-14 Modem Setup Service Reference

CHAPTER 6

Modem Setup Service

Table 6-5 Constants for the modem setup profile (continued)
Constant Description
kConfi gStr EQOnl y The configuration string used for data connections that require

error correction. This configuration string must enable speed
buffering and can be used only if hardware flow control can be

enabled.

EO
&C1
S12=12

W

&K3

&b

\ N6

%C1

\ ML

The default string is ni | . Here is an example:

Echo off (always required).
DCD indicates the true state of the remote carrier.

Escape guard time is 240 ms (12*20). Modems usually set
S12 to 50.

Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use Q0
with X1 or X4, and V1.

Enables bidirectional RTS/CTS flow control. The modem
uses CTS to control flow from the Newton, and the
Newton uses RTS to control flow from the modem.

This does not work on all modems. An alternate form

is \ @\ XO0. It is possible that &R0 and \ D1 are required
as well.

Use reliable mode. Again, this does not work on all
modems. An alternate form is to use &W# or \ N6.

Try to establish a reliable LAPM link; if that fails, try to
establish an MNP link, and if that fails, disconnect. You
could also try \ N4, especially for cellular connections.
Enable bilateral MNP 5 or V.42bis data compression.
(Note that this can be interpreted differently on different
modems.)

Enable V.42 detection phase.

continued

Modem Setup Service Reference 6-15

CHAPTER 6

Modem Setup Service

Table 6-5 Constants for the modem setup profile (continued)

Constant Description

kConf i gSt r ECAndFal | back

The configuration string used for data connections that allow
error—-corrected communication, and if error correction negotiation
fails, the modem falls back to a non—error corrected connection.
This configuration string must enable speed buffering and can be
used only if hardware flow control can be enabled. The default
string is ni | . Here is an example:

EO Echo off (always required).

&C1 DCD indicates the true state of the remote carrier.

S12=12 Escape guard time is 240 ms (12*20). Modems usually set
S12 to 50.

W Report connection in “CONNECT bps” format. Not all

modems accept this command. An alternative is to use Q0
with X1 or X4, and V1.

&K3 Enables bidirectional RTS/CTS flow control. The modem
uses CTS to control flow from the Newton, and the
Newton uses RTS to control flow from the modem. This
does not work on all modems. An alternate form is
\ @B\ XO0. It is possible that &R0 and \ D1 are required as
well.

&b Use reliable mode and fall back depending on the value
in register S36. Again, this does not work on all modems.
An alternate form is to use &0, &4, or \ N7.

%uC1 Enable bilateral MNP 5 or V.42bis data compression.
(Note that this can be interpreted differently on different
modems.)

\ ML Enable V.42 detection phase.

continued

6-16 Modem Setup Service Reference

CHAPTER 6

Modem Setup Service

Table 6-5 Constants for the modem setup profile (continued)

Constant Description

kConfi gStrDi rect Connect

The configuration string used for data connections for modems
that have no speed buffering, and have no error correction or
compression built in (kdi r ect Connect Onl y is set tot r ue). The
default string is as follows:

EO
&C1

Echo off (always required)
DCD indicates the true state of the remote carrier

S12=12 Escape guard time is 240 ms (12*20). Modems usually set

W

&KO0

&

%0

S12 to 50.

Report connection in “CONNECT bps” format. Not all
modems accept this command. An alternative is to use Q0
with X1 or X4, and V1.

Disable serial port flow control. The Newton must be
dynamically configured to match speeds with the
modem’s negotiated speed. This does not work on all
modems. An alternate form is \ QO\ XO.

Use direct connect mode. Again, this does not work on all
modems. An alternate form is to use \ N1.

Disable data compression. (Note that this can be
interpreted differently on different modems.)

Modem Setup Service Reference 6-17

CHAPTER 6

Modem Setup Service

Fax Profile Option

The following constants specify the fax setup preferences for configuring the
modem controller.

Table 6-6 Constants for the fax profile
Constant Description
kTr ansni t Dat aMbd Specifies the set of speeds at which the fax can

be sent. If this constant isn’t defined, then the
fax send speed isn’t restricted

kRecei veDat aMbd Specifies the set of speeds at which the fax can
be received. If this constant isn’t defined, then
the fax receive speed isn't restricted

Summary of the Modem Setup Service

Constants

Constants for modem setup general information
kModemNane

kVer si on

kOrgani zati on

Constants for modem setup preferences
ki dMbdem

kuseHar dwar eCD
kuseConfigString

kuseDi al Opti ons

khangUpAt Di sconnect

Constants for the modem setup profile
kSupport seC

kSupport sLCS

kDi r ect Connect Onl y

kXonnect Speeds

kXonmandTi meout

6-18 Modem Setup Service Reference

CHAPTER 6

Modem Setup Service

kMaxChar sPer Li ne

kl nt er CndDel ay

kModen DSt ri ng

kConfi gSt r NoEC

kConfi gStr ECOnl y

kConf i gSt r ECAndFal | back
kConfi gStrDirect Connect

Constants for the fax profile
kTransm t Dat aMbd
kRecei veDat aMbd

Modem Setup Service Reference

6-19

Glossary

Action button

alias

callback spec

class

cursor

The small envelope button used in applications to send
data to other places. When tapped, it displays a picker
listing routing actions available for the current item.

An object that consists of a reference to another object.
An alias is used to save space, since the alias object is
small, and it can be used to reference very large objects.
Resolving an alias refers to retrieving the object that the
alias references. See also entry alias.

A frame that is passed as an argument to an endpoint
method. The callback spec frame contains slots that
control how the endpoint method executes, and it
contains a completion method that is called when the
endpoint operation completes.

A symbol that describes the data referenced by an
object. Arrays, frames, and binary objects can have
user-defined classes.

An object returned by the Quer y method. The cursor
contains methods used to iterate over a set of soup
entries meeting the criteria specified in the query. The
addition or deletion of entries matching the query
specification is automatically reflected in the set of

GL-1

GL-2

GLOSSARY

data definition

data form

endpoint

endpoint option

entry alias

EOP
In/Out Box

input spec

entries referenced by the cursor, even if the changes
occur after the original query was made.

A frame containing slots that define a particular type of
data and the methods that operate on that data. The
soup entries which it defines are to be used by an
application and stored in its soup. A data definition is
registered with the system. The shortened term dataDef
is sometimes used.

A symbol that describes the transformations that need
to take place when data is exchanged with other
environments. When you send data or set endpoint
options, the data form defines how to convert the data
from its NewtonScript format. When you receive data or
get endpoint options, the data form defines the type of
data expected.

An object created from the proto

pr ot oBasi cEndpoi nt, or one of its derivative protos.
This object encapsulates and maintains the details of the
specific connection, and it allows you to control the
underlying communication tool.

An endpoint option is specified in a frame that is passed
in an array as an argument to one of the endpoint
methods. Endpoint options select the communication
tool to use, control its configuration and operation, and
return result code information from each endpoint
method call.

An object that provides a standard way to save a
reference to a soup entry. Entry aliases themselves may
be stored in soups.

End of packet indicator.

The application that serves as a central repository for all
incoming and outgoing data handled by the Routing
and Transport interfaces.

A frame used in receiving endpoint data that defines
how incoming data should be formatted, termination
conditions that control when the input should be
stopped, data filtering options, and callback methods.

GLOSSARY

item frame

name reference

option frame

output spec

routing format

routing slip

stationery

target

The frame that encapsulates a routed (sent or received)
object and that is stored in the In/Out Box soup.

A frame that contains a soup entry or an alias to a soup
entry, often, though not necessarily, from the Names
soup. The frame may also contain some of the
individual slots from the soup entry.

A frame passed as a parameter to an endpoint method
that selects the communication tool to use, controls its
configuration and operation, and returns result code
information from the endpoint method.

A special type of callback spec that is used with an
endpoint method. An output spec contains a few
additional slots that allow you to pass special protocol
flags and to define how the data being sent is translated.

A frame that describes how an object to be sent (routed)
is to be formatted. Some examples include print routing
formats, which describe how to visually format data,
and frame routing formats, which describe the internal
structure of a frame.

A view that looks like an envelope. The transport
displays this view after the user selects a
transport-based action from the Action picker. This view
is used by a transport to collect information needed to
send the item.

Refers to the capability of having different kinds of data
within a single application (such as plain notes and
outlines in the Notepad) and/or to the capability of
having different ways of viewing the same data (such as
the Card and All Info views in the Names file).
Implementing stationery involves writing data
definitions and view definitions. See also data
definition and view definition.

The object being sent. Sometimes the target consists of
multiple items encapsulated in a single frame, for
example, when multiple items are selected from an
overview for sending.

GL-3

GL-4

GLOSSARY

transport

view definition

A special type of Newton application that is used to
send and/or receive data. Transports communicate with
the In/Out Box on one end and to an endpoint object on
the other end. They provide user interface features such
as routing slips, routing headers, status slips, and
preferences slips.

A view template that defines how data from a particular
data definition is to be displayed. A view definition is
registered with the system under the name of the data
definition to which it applies. The shortened term
viewDef is sometimes used.

Index

A

Accept 4-46
action button 2-4, GL-1
accessing routing actions from 2-4
adding to user interface 2-5
bypassing 2-66
default placement of 2-52
minimum actions for including 2-12
placement of 2-5
protoActionButton 2-51
Action picker
choosing a transport from 2-9
including a separator line in 2-28
types of routing actions 2-5
address
converting e-mail to internet 3-10
address class 3-7
AddText 3-77
alias GL-1
AppClosed 3-49
AppInFront 3-50
Applnstalled 2-69
AppleTalk address option 5-69
AppleTalk buffer size option 5-70
AppleTalk bytes available option 5-71
AppleTalk functions
CloseAppleTalk 5-72
GetMyZone 5-73
GetNames 5-73
GetZoneList 5-73
NetChooser function 5-89
OpenAppleTalk 5-72
AppleTalk functions and methods 5-71, 5-76
AppleTalkOpenCount 5-72

GetZoneFromName 5-74
HaveZones 5-73
NBPGetCount 5-75, 5-76
NBPGetNames 5-75
NBPStart 5-74
NetChooser 5-76
NetworkChooserDone 5-78
AppleTalkOpenCount 5-72
AppleTalk tool 5-67
address option 5-69
buffer size option 5-70
bytes available option 5-71
application
asynchronous operation of 4-3
data structures used by 4-33
linking endpoint with 4-32
synchronous operation of 4-4
application data class registry 2-40
application-defined actions 2-28
AppOpened 3-50
arglist array 4-8
asynchronous cancellation 4-29
asynchronous serial tool 5-2
AutoPutAway 2-38, 2-75
auxForm slot 2-19
auxiliary view
changing page orientation with 2-23
displaying 2-19
instantiating with BuildContext 2-19

B

basic endpoint 4-1, 4-12

IN-1

INDEX

Bind 4-44
BottomOfSlip 3-80
BuildText 3-77

C

callback spec 4-35, GL-1
defining 4-3
Cancel 4-50
cancelling requests 4-28
asynchronously 4-29
synchronously 4-30
CancelRequest 3-13, 3-51
CanPutAway 3-52
CheckOutbox 3-53
chooser function 5-89
class GL-1
ClassAppByClass 2-69
CloseAppleTalk 5-72
CloseStatusDialog 3-53
communications architecture 1-1
communication tools
built-in 5-1
serial 5-2
compatibility 4-11
routing 2-11
completion
CompletionScript 4-26
handling unexpected 4-26
CompletionScript 4-35, 4-40
configuration string usage 6-8
Connect 4-45
connection
checking state of 4-31
using custom communication tools with 4-31
ConnectionDetect 3-53
constants
fax profile option 6-18
general information 6-10
modem setup preferences 6-11

IN-2

modem setup profile 6-12
context frame 3-68
ContinueSend 3-82
CountPages 2-61
CreateTargetCursor 2-67
current format 2-11
cursor GL-1

D

data
filter options 4-23
formatting 4-19
sampling incoming 4-25
sending 4-17
streaming 4-27
use of PartialScript with 4-25
data definition GL-2
data form GL-2
data forms 4-5
binary data 4-27
tagging data with 4-5
template 4-8
types of 4-6
uses of 4-8
data structures 4-33
callback spec 4-35
input spec 4-37
option frame 4-33
output spec 4-36
data termination
conditions for 4-20

ending with particular data 4-20

sequence for 4-21

use of termination slot with 4-20

use of useEOP slot with 4-21
data types for routing 2-10
dataTypes slot 2-7
data view

registering formats as 2-20

INDEX

DeleteTransport 3-91
Disconnect 4-47
Dispose 4-45

E

e-mail address
converting to internet 3-10
endpoint GL-2
binary data 4-27
callback spec 4-35
canceling requests 4-28
compatibility 4-11
constants 4-59
data filter options 4-23
data forms 4-5
data structures 4-33, 4-63
data termination conditions 4-20
data translators 4-58
encoding slot 4-43
error codes 4-61
error handling 4-31
example of linking 4-32
functions and methods 4-56, 4-68
input form 4-19
input spec 4-17
input target 4-19
input time-out 4-23
instantiating 4-16
linking 4-32
option frame 4-33
protos 4-43, 4-66
rcvOptions slot 4-24
setting options 4-13
summary of 4-59
terminating 4-16
using 4-12
endpoint functions and methods
Accept 4-46
Bind 4-44

Cancel 4-50
CompletionScript 4-35, 4-40
Connect 4-45
Disconnect 4-47
Dispose 4-45
EventHandler 4-52
ExceptionHandler 4-52
FlushInput 4-50
FlushPartial 4-50
Input 4-49
InputScript 4-38
Instantiate 4-44
Listen 4-46
MakeAppleTalkOption 4-56
MakeModemOption 4-56
MakePhoneOption 4-57
Option 4-51
Output 4-48
Partial 4-50
PartialScript 4-40
ProgressScript 4-55
SetInputSpec 4-49
State 4-53
StreamIn 4-53
StreamOut 4-55
Translate 4-57
UnBind 4-45
endpoint interface
about 4-2
description of 4-1
protoBasicEndpoint 1-4, 4-2
endpoint option GL-2
endpoint options
setting 4-15
specifying 4-13
entry alias GL-2
EOP GL-2
error control type
modem option 5-43
error handling
in endpoints 4-31
in transports 3-22

IN-3

INDEX

establishing a connection
with Connect 4-16
with Listen 4-16
EventHandler 4-52
ExceptionHandler 4-52
exception handling
in endpoints 4-31

F

faxing 2-23
preparation for 2-13
sequence of events for 2-24
fax profile option 6-3, 6-18
fields slot 2-19
filter options 4-23
use of byteProxy slot with 4-23
use of filter slot with 4-23
filter slot
details of 4-42
FlushInput 4-50
FlushPartial 4-50
FormatChanged 3-80
format frame 2-50
FormatInitScript 2-60
format picker
in routing slip 3-33
formatting data 4-19

framed asynchronous serial tool 5-27

frame format
creating 2-26
multiple 2-27
fromRef slot
setting in item frame 3-15
functions and methods
Accept 4-46
AddText 3-77
AppClosed 3-49
AppInFront 3-50
Applnstalled 2-69

IN-4

AppleTalkOpenCount 5-72
AppOpened 3-50
AutoPutAway 2-38, 2-75
Bind 4-44

BottomOfSlip 3-80
BuildText 3-77

Cancel 4-50
CancelRequest 3-51
CanPutAway 3-52
CheckOutbox 3-53
ClassAppByClass 2-69
CloseStatusDialog 3-53
CompletionScript 4-35, 4-40
Connect 4-45
ConnectionDetect 3-53
ContinueSend 3-82
CountPages 2-61
CreateTargetCursor 2-67
DeleteTransport 3-91
Disconnect 4-47
Dispose 4-45
EventHandler 4-52
ExceptionHandler 4-52
FlushInput 4-50
FlushPartial 4-50
FormatChanged 3-80
FormatInitScript 2-60
GetActiveView 2-69
GetConfig 3-54
GetCurrentFormat 3-93
GetCursorFormat 2-60
GetDefaultFormat 2-64
GetDefaultOwnerStore 3-54
GetFolderName 3-55
GetFormatTransports 2-64
GetFromText 3-55
GetGroupTransport 3-93
GetltemInfo 3-56
GetltemStateString 3-56
GetltemTime 3-57
GetltemTitle 3-57
GetltemTransport 2-70

INDEX

GetNameText 3-57
GetRouteFormats 2-63
GetRouteScript 2-70
GetStatusString 3-58
GetTargetCursor 2-67
GetTargetInfo 2-70
GetTitle 2-49
GetTitleInfoShape 3-58
GetToText 3-59
GetTransportScripts 3-59
GetZoneFromName 5-74
HandleError 3-60
HandleThrow 3-61
HaveZones 5-73
IgnoreError 3-61
InfoChanged 3-78

Input 4-49

InputScript 4-38
InstallScript 3-62
Instantiate 4-44
IOBoxExtensions 3-62
IsInltem 3-63

IsLogltem 3-63
ItemCompleted 3-63
ItemCompletionScript 3-94
ItemDeleted 3-64
ItemDuplicated 3-65
ItemPutAway 3-65
ItemRequest 3-65

Listen 4-46
MakeAppleTalkOption 4-56
MakeBodyAlias 2-58
MakeLogEntry 3-66
MakeModemOption 4-56
MakePhoneOption 4-57
MissingTarget 3-67
NBPGetCount 5-75, 5-76
NBPGetNames 5-75
NBPStart 5-74
NetChooser 5-76
NetworkChooserDone 5-78
NewFromltem 3-67

Newltem 3-68
NormalizeAddress 3-68
OpenRoutingSlip 2-65
Option 4-51

Output 4-48
OwnerInfoChanged 3-81
Partial 4-50
PartialScript 4-40
PowerOffCheck 3-70
PrepareToSend 3-81

PrintNextPageScript 2-59, 2-60, 2-61

ProgressScript 4-55
PutAway 2-39
PutAwayScript 2-76
QueueRequest 3-71
ReceiveRequest 3-72
RegAppClasses 2-71
RegEmailSystem 3-91
RegInboxApp 2-72
RegisterViewDef 2-72
RegTransport 3-90
ResolveBody 2-59
RouteScript 2-30
Send 2-62
SendRequest 3-72
SetConfig 3-73
SetDefaultFormat 2-65
SetInputSpec 4-49
SetStatusDialog 3-74
SetupSlip 2-56

State 4-53

StreamlIn 4-53
StreamOut 4-55
TargetIsCursor 2-68
TargetSize 2-58
TextScript 2-57
Translate 4-57
TranslateError 3-75
TransportChanged 3-82
TransportNotify 2-73, 3-20
UnBind 4-45
UnRegAppClasses 2-74

IN-5

INDEX

UnRegEmailSystem 3-93
UnReglnboxApp 2-74
UnRegisterViewDef 2-74

UnRegTheseAppClasses 2-75

UnRegTransport 3-91

VerifyRoutingInfo 2-77, 3-76
ViewSetupChildrenScript 2-59

G

GetActiveView 2-69
GetConfig 3-54
GetCurrentFormat 3-93
GetCursorFormat 2-60
GetDefaultFormat 2-64
GetDefaultOwnerStore 3-54
GetFolderName 3-55
GetFormatTransports 2-64
GetFromText 3-55
GetGroupTransport 3-93
GetltemInfo 3-56
GetltemStateString 3-56
GetltemTime 3-57
GetltemTitle 3-57
GetltemTransport 2-70
GetMyZone 5-73
GetNames 5-73
GetNameText 3-57
GetRouteFormats 2-63
GetRouteScript 2-70
GetStatusString 3-58
GetTargetCursor 2-67
GetTargetInfo 2-70
GetTitle 2-49
GetTitleInfoShape 3-58
GetToText 3-59

GetTransportScripts 3-19, 3-59

GetZoneFromName 5-74
GetZoneList 5-73
glossary GL-1

IN-6

H

HandleError 3-60

HandleThrow 3-61

handling termination of input 4-24
HaveZones 5-73

IgnoreError 3-61
in box 2-2
application data class registry 2-40
application registry 2-37, 2-40
receiving items 2-37
routing 2-4
sorting items 2-2
soup 2-3
storing incoming data 2-3
viewing items 2-41
InfoChanged 3-78
infrared connection option 5-62
infrared protocol type option 5-63
infrared statistics option 5-65
infrared statistics option fields 5-66
infrared tool 5-61
infrared connection option 5-62
infrared protocol type option 5-63
infrared statistics option 5-65
infrared statistics option fields 5-66
In/Out Box GL-2
extending the user interface 3-19
in/outbox 1-3
Input 4-49
input
termination of 4-24
use of InputScript message for 4-24
input buffer
removing data from 4-25
input data forms 4-18
InputScript 4-38

INDEX

input spec 4-17, 4-37, GL-2
components of 4-17
data filter 4-23
data termination 4-20
filter slot 4-42
flushing input 4-26
input form 4-19
input target 4-19
input time-out 4-23
receive options 4-24
setting up 4-26
slot applicability 4-18, 4-19
target slot 4-40, 4-41
uses for 4-4
InstallScript 3-62
Instantiate 4-44
intelligent assistant
supporting 2-36
use of GetActiveView with 2-36
IOBoxExtensions 3-62
IR Tool 5-61
IsInltem 3-63
IsLogltem 3-63
ItemCompleted 3-17, 3-63
ItemCompletionScript 3-94
ItemDeleted 3-64
ItemDuplicated 3-65
item frame 3-3, GL-3
creating 3-14
ItemPutAway 3-65
ItemRequest 3-65

K

kCMARouteLabel 5-70
kCMOSerialBitRate 5-55
kCMOSeriallOParms 5-55
kCommandTimeout 6-13
kConfigStrDirectConnect 6-17
kConfigStrECAnd Fallback 6-16

kConfigStrECOnly 6-15
kConfigStrNoEC 6-14
kConnectSpeeds 6-12
kDirectConnectOnly 6-12
khangUpAtDisconnect 6-11
kidModem 6-11
kInterCmdDelay 6-13
kMaxCharsPerLine 6-13
kModemIDString 6-13
kModemName 6-10
kOrganization 6-10
kReceiveDataMod 6-18
kSupportsEC 6-12
kSupportsLCS 6-12
kTransmitDataMod 6-18
kuseConfigString 6-11
kuseDialOptions 6-11
kuseHardwareCD 6-11
kVersion 6-10

L

lastFormats slot 2-11
Link Request 5-56, 5-59
Listen 4-46
logging

in transports 3-17
LR (Link Request) 5-56

M

MakeAppleTalkOption 4-56
MakeBodyAlias 2-58
MakeLogEntry 3-66
MakeModemOption 4-56
MakePhoneOption 4-57
margins slot

default value 2-22

INDEX

example of 2-22
MissingTarget 3-67
MNP class 5 compression 5-57
MNP compression

modem tool 5-57

serial tool 5-26
modem address option 5-33
modem connection speed option 5-51
modem connection type option 5-49
modem connection type option fields 5-50
modem dialing option 5-45
modem dialing option fields 5-47
modem error control type option 5-43
modem fax capabilities option 5-51
modem fax capabilities option fields 5-53
modem fax modulation return values 5-54, 5-87
modem MNP data statistics option 5-58
modem MNP data statistics option fields 5-59
modem MNP compression option 5-57
modem MNP speed negotiation option 5-55
modem preferences option 5-34
modem preferences option fields 5-36
modem profile option 5-38
modem profile option fields 5-40
modem setup

configuration string usage 6-8

constants 6-10

definition 6-6

general information 6-6

general information constants 6-10, 6-18

operation 6-4

package 6-2

preferences 6-11

preferences constants 6-11, 6-18

preferences option 6-6

process 6-4

profile constants 6-12, 6-18

profile option 6-7, 6-8

user interface 6-3
modem setup package 6-1
modem setup service 6-1

about 6-2

IN-8

required modem characteristics 6-1
user interface 6-1
modem tool
address option 5-33
connection speed option 5-51
connection type option 5-49
connection type option fields 5-50
dialing option 5-45
dialing option fields 5-47
error control type option 5-43
fax capabilities option 5-51
fax capabilities option fields 5-53
fax modulation return values 5-54, 5-87
MNP data statistics option 5-58
MNP data statistics option fields 5-59
MNP compression option 5-57
MNP speed negotiation option 5-55
preferences option 5-34, 6-2
preferences option fields 5-36
profile option 5-38, 6-2
profile option fields 5-40
requirements 6-5
voice support option 5-54
modem voice support option 5-54
modulation return values
modem tool 5-54, 5-87

N

name reference 3-4, GL-3
creating 2-34
example of 2-34
NBPGetCount 5-75, 5-76
NBPGetNames 5-75
NBPStart 5-74
NetChooser 5-76
NetChooser function 5-89
NetChooser functions and methods 5-76
NetworkChooserDone 5-78
NewFromltem 3-67

INDEX

Newltem 3-68
overriding to add slots 3-16
NormalizeAddress 3-68

O

OpenAppleTalk 5-72
OpenRoutingSlip 2-65
Option 4-51
option frame 4-33, GL-3
example of 4-13
result slot 4-15
options
resource arbitration 5-79
setting 4-11
specifying 4-13
orientation slot 2-23
out box 2-2
receiving items 2-37
routing actions 2-4
sorting items 2-2
soup 2-4
transmitting data 2-4
viewing items 2-41
Output 4-48
output spec 4-36
output spec 4-3, 4-36, GL-3
OwnerInfoChanged 3-81
owner information
using in routing slip 3-35

P

page layout
controlling orientation of 2-23
layout of multiple items 2-23
margins slot 2-22
on a separate page 2-23

Partial 4-50
PartialScript 4-40
power-off
handling unexpected 4-32
notification of 4-32
PowerOffCheck 3-70
preferences
for transports 3-18
preferences template 3-39
PrepareToSend 3-81
printer
changing 2-36
specifying 2-35
printer slot
protoPrinterChooserButton 2-35
print format
use with faxing 2-60
printing 2-23
preparation for 2-13
sequence of events for 2-24
PrintNextPageScript 2-59, 2-60, 2-61
ProgressScript 4-55
protection slot 2-42
protoActionButton 2-51
protoAddressPicker 3-36, 3-84
protoBasicEndpoint 4-12, 4-43
features of 4-2
protoFormatPicker 3-83
protoFrameFormat 2-26, 2-53
protoFullRouteSlip 3-32, 3-78
protoPrinterChooserButton 2-52
protoPrintFormat 2-21, 2-53
protoRoutingFormat 2-27, 2-53
protoSendButton 3-83
protoSenderPopup 3-38, 3-85
protoStatusTemplate 3-23
protoStreamingEndpoint 4-27, 4-53
proto templates
protoActionButton 2-51
protoAddressPicker 3-36, 3-84
protoBasicEndpoint 4-12, 4-43
protoFormatPicker 3-83

IN-9

INDEX

protoFrameFormat 2-26, 2-53
protoFullRouteSlip 3-32, 3-78
protoPrinterChooserButton 2-52
protoPrintFormat 2-21, 2-53
protoRoutingFormat 2-27, 2-53
protoSendButton 3-83
protoSenderPopup 3-38, 3-85
protoStatusTemplate 3-23
protoStreamingEndpoint 4-53
protoTransport 3-6, 3-43
protoTransportHeader 3-77
protoTransportPrefs 3-40, 3-86
protoTransport 3-6, 3-43
protoTransportHeader 3-77
protoTransportPrefs 3-40, 3-86
PutAway 2-39
PutAwayScript 2-76

Q

QueueRequest 3-12, 3-71

R

ReceiveRequest 3-10, 3-72
receiving data
alternative methods of 4-26
appSymbol slot 2-37
AutoPutAway method 2-38
flushing data 4-26
looking at incoming data 4-26
preparing for 4-19
PutAway method 2-39
specifying flags for 4-22
with Input 4-26
receiving large objects 4-27
RegAppClasses 2-71
RegEmailSystem 3-91

IN-10

RegInboxApp 2-72
RegisterViewDef 2-72
RegTransport 3-90
ResolveBody 2-59
resource arbitration options 5-79
result slot 4-15
routeFormats slot 2-12
RouteScript 2-30
example of 2-31
RouteScripts array 2-48
routeScripts slot 2-27, 2-28, 2-29
defining a method identified by 2-30
routing 2-2
about 2-1
application-specific 2-27
current format 2-11
data types 2-10
dataTypes slot 2-7
data view registration 2-20
formats 2-7
handling multiple items 2-30
lastFormats slot 2-11
out box 2-2
programmatic sending 2-32
protoFrameFormat 2-26, 2-53
protoPrintFormat 2-21, 2-53
protoRoutingFormat 2-27, 2-53
providing transport-based actions 2-12
receiving data 2-37
routeFormats slot 2-12
routeScripts slot 2-27
sending items programmatically 2-32
transport-related 2-12
using 2-12
view definitions 2-41
viewing items in in/out box 2-41
routing actions
application-specific 2-27
building 2-6
disabling application-specific 2-31
performing 2-29
routing compatibility 2-11

INDEX

routing format GL-3 UnReglnboxApp 2-74
routing formats UnRegisterViewDef 2-74

creating new 2-27
example of 2-20

functions to use 2-21
registering 2-10, 2-20, 2-21
use of builtin 2-10
routing functions and methods
Applnstalled 2-69
AutoPutAway 2-38, 2-75
ClassAppByClass 2-69
CountPages 2-61
CreateTargetCursor 2-67
FormatInitScript 2-60
GetActiveView 2-69
GetCursorFormat 2-60
GetDefaultFormat 2-64
GetFormatTransports 2-64
GetltemTransport 2-70
GetRouteFormats 2-63
GetRouteScript 2-70
GetTargetCursor 2-67
GetTargetInfo 2-70
GetTitle 2-49
MakeBodyAlias 2-58
OpenRoutingSlip 2-65

PrintNextPageScript 2-59, 2-60, 2-61

PutAway 2-39
PutAwayScript 2-76
RegAppClasses 2-71
RegInboxApp 2-72
RegisterViewDef 2-72
ResolveBody 2-59
RouteScript 2-30
Send 2-62
SetDefaultFormat 2-65
SetupSlip 2-56
TargetlsCursor 2-68
TargetSize 2-58
TextScript 2-57
TransportNotify 2-73
UnRegAppClasses 2-74

UnRegTheseAppClasses 2-75
VerifyRoutingInfo 2-77
ViewSetupChildrenScript 2-59
routing interface 1-3
action picker 2-4
current format 2-11
formats for 2-7
inbox 2-2
out box 2-4
routing slip 3-32, GL-3
picking address in 3-36
positioning child views in 3-35
setting sender in 3-38
using owner information in 3-35

S

Send 2-62

example of 2-32
send button

in routing slip 3-33
sending data 4-17
sending large objects 4-27
SendRequest 3-9, 3-72
send request

request frame 3-72
send request causes 3-73
serial buffer size option 5-12
serial bytes available option 5-22
serial chip location labels 5-5
serial chip location option 5-4
serial chip specification option 5-5
serial chip specification option fields 5-7
serial circuit control option 5-9
serial configuration option 5-14
serial data rate option 5-16
serial discard data option 5-19
serial event configuration option 5-20

IN-11

INDEX

serial event constants 5-21, 5-85
serial external clock divide option 5-25
serial flow control option fields 5-18
serial flow control options 5-17
serial framing configuration option 5-29
serial framing configuration option fields 5-30
serial framing statistics option 5-31
serial MNP data rate option 5-27
serial options 5-3, 5-28, 5-89, 5-91
serial send break option 5-18
serial statistics option 5-23
serial statistics option fields 5-24
serial tool 5-2
buffer size option 5-12
bytes available option 5-22
chip location labels 5-5
chip location option 5-4
chip specification option 5-5
circuit control option 5-9
configuration option 5-14
data rate option 5-16
discard data option 5-19
event configuration option 5-20
event constants 5-21, 5-85
external clock divide option 5-25
flow control option 5-17
flow control option fields 5-18
framed asynchronous 5-27
framing configuration option 5-29
framing configuration option fields 5-30
framing statistics option 5-31
MNP compression 5-26
MNP data rate option 5-27
send break option 5-18
serial chip specification option fields 5-7
standard asynchronous 5-2
statistics option 5-23
statistics option fields 5-24
summary of serial options 5-3, 5-28, 5-89, 5-91
SetConfig 3-73
SetDefaultFormat 2-65
SetInputSpec 4-49

IN-12

SetStatusDialog 3-27, 3-74
SetupSlip 2-56
specifying a printer 2-35
State 4-53
stationery GL-3
statusTemplate 3-23
statusTemplate subviews
vBarber 3-25
vConfirm 3-24
vGauge 3-25
vProgress 3-25
vStatus 3-24
vStatusTitle 3-24
StreamlIn 4-53
streaming endpoint 4-27
StreamOut 4-55
synchronous cancellation 4-30

T

target 2-4, GL-3
TargetIsCursor 2-68
target object
getting and verifying 2-13
TargetSize 2-58
target slot
details of 4-40
template data form 4-8
arglist array 4-8
setting options 4-11
typelist array 4-8
termination slot
details of 4-41
TextScript 2-57
Translate 4-57
TranslateError 3-75
transport 2-2, 3-2, GL-4
canceling an operation 3-13
communication with applications 3-20
displaying status to user 3-23

INDEX

error handling 3-22
grouping 3-7
group picker 3-34
installing 3-6

parts 3-2

power-off handling 3-23
preferences template 3-39
queueing a new request 3-12

receiving data 3-10

routing information template 3-30
routing slip template 3-32

sending data 3-9

status template 3-23

storing preferences 3-18

uninstalling 3-6
TransportChanged 3-82
transport interface 1-5
transport methods

AddText 3-77
AppClosed 3-49
AppInFront 3-50
AppOpened 3-50
BottomOfSlip 3-80
BuildText 3-77
CancelRequest 3-51
CanPutAway 3-52
CheckOutbox 3-53
CloseStatusDialog 3-53
ConnectionDetect 3-53
ContinueSend 3-82
DeleteTransport 3-91
FormatChanged 3-80
GetConfig 3-54
GetCurrentFormat 3-93

GetDefaultOwnerStore 3-54

GetFolderName 3-55
GetFromText 3-55
GetGroupTransport 3-93
GetltemInfo 3-56
GetltemStateString 3-56
GetltemTime 3-57
GetltemTitle 3-57

GetNameText 3-57
GetStatusString 3-58
GetTitleInfoShape 3-58
GetToText 3-59
GetTransportScripts 3-59
HandleError 3-60
HandleThrow 3-61
IgnoreError 3-61
InfoChanged 3-78
InstallScript 3-62
IOBoxExtensions 3-62
IsInltem 3-63
IsLogltem 3-63
ItemCompleted 3-63

ItemCompletionScript 3-94

ItemDeleted 3-64
ItemDuplicated 3-65
ItemPutAway 3-65
ItemRequest 3-65
MakeLogEntry 3-66
MissingTarget 3-67
NewFromltem 3-67
Newltem 3-68
NormalizeAddress 3-68
OwnerInfoChanged 3-81
PowerOffCheck 3-70
PrepareToSend 3-81
QueueRequest 3-71
ReceiveRequest 3-72
RegEmailSystem 3-91
RegTransport 3-90
SendRequest 3-72
SetConfig 3-73
SetStatusDialog 3-74
TranslateError 3-75
TransportChanged 3-82
UnRegEmailSystem 3-93
UnRegTransport 3-91
VerifyRoutingInfo 3-76

TransportNotify 2-73, 3-20
transport object 3-6
transport protos

IN-13

INDEX

protoAddressPicker 3-36, 3-84
protoFormatPicker 3-83
protoFullRouteSlip 3-32, 3-78
protoSendButton 3-83
protoSenderPopup 3-38, 3-85
protoTransport 3-6, 3-43
protoTransportHeader 3-77
protoTransportPrefs 3-40, 3-86
transport templates
preferences 3-39
routing information 3-30
routing slip 3-32
status 3-23
typelist array 4-8
data types for 4-9

U

UnBind 4-45
UnRegAppClasses 2-74
UnRegEmailSystem 3-93
UnRegInboxApp 2-74
UnRegisterViewDef 2-74
UnRegTheseAppClasses 2-75
UnRegTransport 3-91

\%

V.42bis 5-57

vBarber 3-25

vConfirm 3-24
VerifyRoutingInfo 2-77, 3-76
vGauge 3-25

view definition GL-4

for viewing items in in/out box 2-41

hiding from In/Out Box 2-42
protection slot 2-42
ViewSetupChildrenScript 2-59

IN-14

voice support 5-54
vProgress 3-25
vStatus 3-24
vStatusTitle 3-24

INDEX

IN-16

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from the
text and graphics files. Line art was
created using Adobe " Illustrator.
PostScriptTM, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®.

LEAD WRITER
Christopher Bey

WRITERS
Christopher Bey, Yvonne Tornatta, Dirk
van Nouhuys

PROJECT LEADER
Christopher Bey

ILLUSTRATOR
Peggy Kunz

EDITORS
Linda Ackerman, David Schneider, Anne
Szabla

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Gerry Kane

Special thanks to J. Christopher Bell and
Gavin Peacock.

	Figures and Tables
	About This Book
	Audience
	Related Books
	Sample Code
	Conventions Used in This Book
	Special Fonts
	Tap Versus Click
	Frame Code

	Developer Products and Support
	Undocumented System Software Objects

	Overview
	Figure�1-1 Communications architecture
	NewtonScript Application Communications
	Routing Through the In/Out Box
	Endpoint Interface

	Low-Level Communications
	Transport Interface
	Communication Tool Interface

	Routing Interface
	About Routing
	The In/Out Box
	Figure�2-1 In Box and Out Box overviews
	The In Box
	The Out Box

	Action Picker
	Figure�2-2 Action picker

	Routing Formats
	Figure�2-3 Transport selection mechanism for actio...
	Figure�2-4 Format picker in routing slip
	Table�2-1 Routing data types
	Current Format

	Routing Compatibility
	Print Formats

	Using Routing
	Providing Transport-Based Routing Actions
	Getting and Verifying the Target Object
	Getting and Setting the Current Format
	Supplying the Target Object
	Storing an Alias to the Target Object
	Handling a Multi-Item Selection
	Displaying an Auxiliary View
	Registering Routing Formats

	Creating a Print Format
	Page Layout
	Printing and Faxing

	Creating a Frame Format
	Creating a New Type of Format
	Providing Application-Specific Routing Actions
	Performing the Routing Action
	Handling Multiple Items
	Handling No Target Item

	Sending Items Programmatically
	Creating a Name Reference
	Specifying a Printer

	Supporting the Intelligent Assistant
	Receiving Data
	Automatically Putting Away Items
	Manually Putting Away Items
	Registering to Receive Foreign Data
	Filing Items That Are Put Away

	Viewing Items in the In/Out Box
	Changing View Definition Behavior
	View Definition Slots

	Advanced Alias Handling

	Routing Reference
	Data Structures
	Item Frame
	RouteScripts Array
	Format Frame

	Protos
	protoActionButton
	protoPrinterChooserButton
	Routing Format Protos
	SetupItem
	TextScript
	TargetSize
	MakeBodyAlias
	ResolveBody
	ViewSetupChildrenScript
	PrintNextPageScript
	GetCursorFormat
	FormatInitScript
	CountPages

	Functions and Methods
	Send-Related Functions and Methods
	Send
	GetRouteFormats
	GetFormatTransports
	GetDefaultFormat
	SetDefaultFormat
	OpenRoutingSlip

	Cursor-Related Functions
	CreateTargetCursor
	GetTargetCursor
	TargetIsCursor

	Utility Functions and Methods
	AppInstalled
	ClassAppByClass
	GetActiveView
	GetItemTransport
	GetRouteScripts
	GetTargetInfo
	RegAppClasses
	RegInboxApp
	RegisterViewDef
	TransportNotify
	UnRegAppClasses
	UnRegInboxApp
	UnRegisterViewDef
	UnRegTheseAppClasses

	Application-Defined Methods
	AutoPutAway
	PutAwayScript
	ItemCompletionScript
	VerifyRoutingInfo

	Summary of the Routing Interface
	Constants
	Data Structures
	Protos
	Functions and Methods
	Application-Defined Methods

	Transport Interface
	About Transports
	Transport Parts
	Item Frame

	Using the Transport Interface
	Providing a Transport Object
	Installing the Transport
	Setting the Address Class
	Grouping Transports
	Sending Data
	Sending All Items
	Converting an E-Mail Address to an Internet Addres...
	Receiving Data
	Handling Requests When the Transport is Active
	Canceling an Operation
	Obtaining an Item Frame
	Completion and Logging
	Storing Transport Preferences and Configuration In...
	Extending the In/Out Box Interface
	Application Messages
	Error Handling
	Power-Off Handling

	Providing a Status Template
	Table�3-1 Status view subtypes
	Figure�3-1 Status view subtypes
	Controlling the Status View

	Providing a Routing Information Template
	Providing a Routing Slip Template
	Using protoFullRouteSlip
	Positioning Elements in the Lower Portion of the R...
	Using Owner Information

	Using protoAddressPicker
	Using protoSenderPopup

	Providing a Preferences Template

	Transport Interface Reference
	Protos
	protoTransport
	Table�3-2 Preferences slots
	AppClosed
	AppInFront
	AppOpened
	CancelRequest
	CanPutAway
	CheckOutbox
	CloseStatusDialog
	ConnectionDetect
	GetConfig
	GetDefaultOwnerStore
	GetFolderName
	GetFromText
	GetItemInfo
	GetItemStateString
	GetItemTime
	GetItemTitle
	GetNameText
	GetStatusString
	GetTitleInfoShape
	GetToText
	GetTransportScripts
	HandleError
	HandleThrow
	IgnoreError
	InstallScript
	IOBoxExtensions
	IsInItem
	IsLogItem
	ItemCompleted
	ItemDeleted
	ItemDuplicated
	ItemPutAway
	ItemRequest
	MakeLogEntry
	MissingTarget
	NewFromItem
	NewItem
	NormalizeAddress
	Table�3-3 E-mail address translations

	PowerOffCheck
	QueueRequest
	ReceiveRequest
	SendRequest
	Table�3-4 Causes of a send request

	SetConfig
	SetStatusDialog
	TranslateError
	VerifyRoutingInfo

	protoTransportHeader
	BuildText
	AddText
	InfoChanged

	protoFullRouteSlip
	BottomOfSlip
	FormatChanged
	OwnerInfoChanged
	PrepareToSend
	ContinueSend
	TransportChanged

	protoFormatPicker
	LabelActionScript

	protoSendButton
	PickActionScript

	protoAddressPicker
	protoSenderPopup
	protoTransportPrefs
	Table�3-5 Slots in silentPrefs frame
	Table�3-6 Slots in sendPrefs frame
	Table�3-7 Slots in outboxPrefs frame
	Table�3-8 Slots in inboxPrefs frame

	Functions and Methods
	Utility Functions
	RegTransport
	UnRegTransport
	DeleteTransport
	RegEmailSystem
	UnRegEmailSystem
	GetCurrentFormat
	GetGroupTransport

	Application-Defined Method
	ItemCompletionScript

	Summary of the Transport Interface
	Constants
	Protos
	Functions and Methods

	Endpoint Interface
	About the Endpoint Interface
	Asynchronous Operation
	Synchronous Operation
	Input
	Data Forms
	Table�4-1 Data forms (continued)
	Table�4-2 Data form applicability
	Template Data Form
	Table�4-3 Data types for typelist array

	Endpoint Options
	Compatibility

	Using the Endpoint Interface
	Setting Endpoint Options
	Initialization and Termination
	Establishing a Connection
	Sending Data
	Receiving Data Using Input Specs
	Table�4-4 Input spec slot applicability
	Specifying the Data Form and Target
	Specifying Data Termination Conditions
	Specifying Flags for Receiving
	Specifying an Input Time-Out
	Specifying Data Filter Options
	Specifying Receive Options
	Handling Normal Termination of Input
	Periodically Sampling Incoming Data
	Handling Unexpected Completion
	Special Considerations

	Receiving Data Using Alternative Methods
	Streaming Data In and Out
	Working With Binary Data
	Canceling Operations
	Asynchronous Cancellation
	Synchronous Cancellation

	Other Operations
	Error Handling
	Power-Off Handling
	Linking the Endpoint With an Application

	Endpoint Interface Reference
	Data Structures
	Endpoint Option Frame
	Callback Spec Frame
	CompletionScript

	Output Spec Frame
	Input Spec Frame
	InputScript
	PartialScript
	CompletionScript

	Input Spec Target Frame
	Input Spec Termination Frame
	Input Spec Filter Frame

	Protos
	protoBasicEndpoint
	Instantiate
	Bind
	UnBind
	Dispose
	Connect
	Listen
	Accept
	Disconnect
	Output
	SetInputSpec
	Input
	Partial
	FlushInput
	FlushPartial
	Cancel
	Option
	ExceptionHandler
	EventHandler
	State

	protoStreamingEndpoint
	StreamIn
	StreamOut
	ProgressScript

	Functions and Methods
	Utility Functions
	MakeAppleTalkOption
	MakeModemOption
	MakePhoneOption
	Translate
	Table�4-5 Data translators

	Summary of the Endpoint Interface
	Constants and Symbols
	Table�4-6 Data form symbols
	Table�4-7 Typelist data types
	Table�4-8 Option opcode constants
	Table�4-9 Endpoint error codes (continued)
	Table�4-10 Option error codes
	Table�4-11 Endpoint state constants
	Table�4-12 Other endpoint constants

	Data Structures
	Protos
	Functions and Methods

	Built-in Communication Tools
	Serial Tool
	Standard Asynchronous Serial Tool
	Table�5-1 Summary of serial options (continued)
	Serial Chip Location Option
	Table�5-2 Serial chip location labels

	Serial Chip Specification Option
	Table�5-3 Serial chip specification option fields ...
	Table�5-4 Serial chip specification option constan...

	Serial Circuit Control Option
	Table�5-5 Serial circuit control option fields
	Table�5-6 Serial circuit control option constants ...

	Serial Buffer Size Option
	Serial Configuration Option
	Serial Data Rate Option
	Serial Flow Control Options
	Table�5-7 Serial flow control option fields

	Serial Send Break Option
	Serial Discard Data Option
	Serial Event Configuration Option
	Table�5-8 Serial event constants

	Serial Bytes Available Option
	Serial Statistics Option
	Table�5-9 Serial statistics option fields

	Serial External Clock Divide Option

	Serial Tool with MNP Compression
	Table�5-10 Summary of serial tool with MNP options...
	Serial MNP Data Rate Option

	Framed Asynchronous Serial Tool
	Table�5-11 Summary of framed serial options
	Serial Framing Configuration Option
	Table�5-12 Serial framing configuration option fie...
	Figure�5-1 Default Serial Framing

	Serial Framing Statistics Option

	Modem Tool
	Table�5-13 Summary of modem options (continued)
	Modem Address Option
	Modem Preferences Option
	Table�5-14 Modem preferences option fields (contin...

	Modem Profile Option
	Table�5-15 Modem profile option fields (continued)...

	Modem Error Control Type Option
	Table�5-16 Modem error control type

	Modem Dialing Option
	Table�5-17 Modem dialing option fields (continued)...

	Modem Connection Type Option
	Table�5-18 Modem connection type option fields

	Modem Connection Speed Option
	Modem Fax Capabilities Option
	Table�5-19 Modem Fax Capabilities Option Fields
	Table�5-20 Modem Fax Modulation Return Values

	Modem Voice Support Option
	MNP Speed Negotiation Option
	MNP Compression Option
	Table�5-21 MNP compression type

	MNP Data Statistics Option
	Table�5-22 MNP data statistics option fields (cont...

	Infrared Tool
	Table�5-23 Summary of Infrared Options
	Infrared Connection Option
	Infrared Protocol Type Option
	Infrared Statistics Option
	Table�5-24 Infrared statistics option fields (cont...

	AppleTalk Tool
	Table�5-25 Summary of AppleTalk options�
	AppleTalk Address Option
	AppleTalk Buffer Size Option
	AppleTalk Bytes Available Option
	AppleTalk Functions
	Opening and Closing the AppleTalk Drivers
	OpenAppleTalk
	CloseAppleTalk
	AppleTalkOpenCount

	Obtaining Zone Information
	HaveZones
	GetMyZone
	GetZoneList
	GetNames
	GetZoneFromName
	NBPStart
	NBPGetCount
	NBPGetNames
	NBPStop

	NetChooser Function
	NetChooser:OpenNetChooser
	Figure�5-2 NetChooser view while searching
	Figure�5-3 NetChooser view displaying printers

	NetworkChooserDone

	Resource Arbitration Options
	Table�5-26 Resource arbitration options

	Summary
	Constants and Variables
	Table�5-27 Serial chip specification option consta...
	Table�5-28 Serial circuit control option constants...
	Table�5-29 Stop bits field constants
	Table�5-30 Parity field constants
	Table�5-31 Data bits constants
	Table�5-32 Field interface speed constants
	Table�5-33 Serial event constants
	Table�5-34 Data slot constants:
	Table�5-35 Modem error control type
	Table�5-36 Modem service type constants
	Table�5-37 Modem fax modulation return values
	Table�5-38 MNP compression type
	Table�5-39 The protocol field constants
	Table�5-40 The options field constants:

	Functions and Methods
	AppleTalk Functions
	Zone Information Methods
	NetChooser Function
	Registration Methods

	Options
	Table�5-41 Summary of serial options (continued)
	Table�5-42 Summary of serial with MNP options
	Table�5-43 Summary of framed serial options
	Table�5-44 Summary of modem options (continued)
	Table�5-45 Summary of infrared options
	Table�5-46 Summary of AppleTalk options
	Table�5-47 Resource arbitration options

	Modem Setup Service
	About the Modem Setup Service
	The Modem Setup User Interface
	Figure�6-1 Modem preferences view

	The Modem Setup Process
	Modem Communication Tool Requirements

	Defining a Modem Setup
	Setting Up General Information
	Setting the Modem Preferences Option
	Setting the Modem Profile Option
	Table�6-1 Summary of configuration string usage �

	Setting the Fax Profile Option
	Table�6-2 Available fax speeds�

	Modem Setup Service Reference
	Constants
	Modem Setup General Information
	Table�6-3 Constants for modem setup general inform...

	Modem Setup Preferences
	Table�6-4 Constants for modem setup preferences

	Modem Setup Profile Constants
	Table�6-5 Constants for the modem setup profile (c...

	Fax Profile Option
	Table�6-6 Constants for the fax profile

	Summary of the Modem Setup Service
	Constants

	Glossary
	Index

