

ð

3D Metafile Reference

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.



 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, LaserWriter,
and Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
QuickDraw and QuickDraw 3D, are
trademarks of Apple Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.

FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
PowerPC is a trademark of
International Business Machines,
used under license therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,

ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

ISBN 0-201-62202-5
1 2 3 4 5 6 7 8 9-MA-9998979695
First Printing, Month 1995

7

The paper used in this book meets
the EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

3D Metafile Reference/ [Apple Computer, Inc.].
p. cm.

Includes index.
ISBN 0-201-62202-5
1. Macintosh (Computer)—Programming. 2.

I. Apple Computer, Inc.
nnnn.n.nnnnnnn 1995
nnn.nnn—nnnn 95-nnnnn

CIP

This document was created with FrameMaker 4.0.4

v

Figures, Tables, and Listings

Chapter 1

3D Metafile Reference

1-1

Figure 1-1

Four instantiations of a box 1-10

Listing 1-1

A stream metafile 1-11

Listing 1-2

A normal metafile 1-11

Listing 1-3

A database metafile 1-12

Figure 1-2

Types of metafiles 1-14

Figure 1-3

A line 1-50

Figure 1-4

A polyline 1-53

Figure 1-5

A triangle 1-55

Figure 1-6

A simple polygon 1-57

Figure 1-7

A general polygon 1-60

Figure 1-8

A box 1-66

Figure 1-9

The default surface parameterization of a box 1-68

Figure 1-10

A trigrid 1-70

Figure 1-11

A mesh 1-73

Figure 1-12

An ellipse 1-82

Figure 1-13

A NURB curve 1-85

Figure 1-14

A NURB patch 1-91

Figure 1-15

An ellipsoid 1-94

Figure 1-16

A cylinder 1-99

Figure 1-17

A disk 1-102

Figure 1-18

A cone 1-104

Figure 1-19

A torus 1-107

Figure 1-20

The defalt surface parameterization of a torus 1-109

Figure 1-21

A marker 1-111

This document was created with FrameMaker 4.0.4

vi

C H A P T E R 1

Contents

1-1

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 3D Metafile Reference

Introduction 1-7
Metafile File Structure 1-8
Basic Data Types 1-15

Unsigned Integer Data Types 1-15
Signed Integer Data Types 1-15
Floating-Point Integer Data Types 1-15

Basic 3D Data Types 1-16
Two-Dimensional Points 1-16
Three-Dimensional Points 1-16
Three-Dimensional Rational Points 1-17
Four-Dimensional Rational Points 1-17
Color Data Types 1-18
Two-Dimensional Vectors 1-18
Three-Dimensional Vectors 1-18
Parameterizations 1-19
Tangents 1-20
Matrices 1-20

Abstract Data Types 1-21
Object Type 1-21
Size 1-21
Bitfields and Enumerated Types 1-22
Strings 1-23
Raw Data 1-23
File Pointers 1-24

Additional Type Definitions 1-28
Boolean Enumerated Types 1-28
Variable-Sized Integer Types 1-29

This document was created with FrameMaker 4.0.4

C H A P T E R 1

1-2

Contents

Metafile Object Specifications 1-29
Special Metafile Objects 1-29

3D Metafile Header 1-29
Tables of Contents 1-32
Reference Objects 1-37
UNIX Path 1-39
Macintosh Path 1-41
Types 1-42
Containers 1-44

String Objects 1-46
C Strings 1-46
Unicode Objects 1-47

Geometric Objects 1-49
Points 1-49
Lines 1-50
Polylines 1-52
Triangles 1-54
Simple Polygons 1-57
General Polygons 1-59
General Polygon Hints 1-64
Boxes 1-65
Trigrids 1-70
Meshes 1-73
Mesh Corners 1-77
Mesh Edges 1-80
Ellipses 1-82
NURB Curves 1-84
2D NURB Curves 1-87
Trim Loops 1-89
NURB Patches 1-90
Ellipsoids 1-94
Caps 1-96
Cylinders 1-98
Disks 1-102
Cones 1-103
Tori 1-106
Markers 1-110

Attributes 1-114

C H A P T E R 1

Contents

1-3

Diffuse Color 1-114
Specular Color 1-115
Specular Control 1-116
Transparency Color 1-118
Surface UV 1-119
Shading UV 1-121
Surface Tangents 1-122
Normals 1-124
Ambient Coefficients 1-125
Highlight State 1-126

Attribute Sets 1-128
Attribute Sets 1-128
Top Cap Attribute Sets 1-130
Bottom Cap Attribute Sets 1-131
Face Cap Attribute Sets 1-133

Attribute Set Lists 1-134
Geometry Attribute Set Lists 1-134
Face Attribute Set Lists 1-137
Vertex Attribute Set Lists 1-141

Styles 1-143
Backfacing Styles 1-143
Interpolation Styles 1-145
Fill Styles 1-147
Highlight Styles 1-148
Subdivision Styles 1-150
Orientation Styles 1-153
Receive Shadows Styles 1-155
Pick ID Styles 1-156
Pick Parts Styles 1-157

Transforms 1-159
Translate Transforms 1-159
Scale Transforms 1-160
Matrix Transforms 1-161
Rotate Transforms 1-162
Rotate-About-Point Transforms 1-164
Rotate-About-Axis Transforms 1-165
Quaternion Transforms 1-166
Shader Transforms 1-168

C H A P T E R 1

1-4

Contents

Shader UV Transforms 1-169
Lights 1-170

Attenuation and Fall-Off Values 1-170
Light Data 1-173
Ambient Light 1-174
Directional Lights 1-176
Point Lights 1-177
Spot Lights 1-179

Cameras 1-182
Camera Placement 1-182
Camera Range 1-184
Camera Viewport 1-185
Orthographic Cameras 1-188
View Plane Cameras 1-190
View Angle Aspect Cameras 1-192

Groups 1-194
Display Groups 1-194
Ordered Display Groups 1-196
Light Groups 1-197
I/O Proxy Display Groups 1-198
Info Groups 1-199
Groups (Generic) 1-201
Begin Group Objects 1-202
End Group Objects 1-203
Display Group States 1-204

Renderers 1-206
Wireframe Renderers 1-206
Interactive Renderers 1-208
Generic Renderers 1-209

Shaders 1-210
Shader Data Objects 1-210
Texture Shaders 1-212
Pixmap Texture Objects 1-213

View Objects 1-216
View Hints 1-216
Image Masks 1-218
Image Dimensions Objects 1-221
Image Clear Color Objects 1-222

C H A P T E R 1

Contents

1-5

Unknown Objects 1-223
Unknown Text 1-223
Unknown Binary 1-225

C H A P T E R 1

1-6

Contents

C H A P T E R 1

Introduction

1-7

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

3D Metafile Reference 1

This document describes the 3D Metafile, a file format designed to permit the
storage and interchange of 3D data.

▲ W A R N I N G

This information in this document is preliminary and is
subject to change.

▲

Introduction 1

The 3D Metafile is a file format for 3D graphics applications that make use of
the QuickDraw 3D graphics library or other object-based 3D graphics libraries.
This document describes the 3D Metafile file format.

The purposes of the metafile are

■

to establish a standard file format for 3D graphics files

■

to establish canonical forms for descriptions of familiar 3D graphics objects

This standard is put forward to promote compatibility among 3D graphics
applications and is meant to facilitate the transfer and exchange of data
between distinct applications. The file format also permits a project to be saved
to a file in such a way that it may be resumed or altered at a later time.

The metafile file format permits objects to be labeled and referenced. A metafile
may also include one or more tables of contents in which such labels and
references are listed. A table of contents may provide a complete catalog of the
items contained in a metafile and of all cross-references among those items.
However, a metafile is not itself a database and does not have the capabilities
of a database. Applications that wish to apply the capabilities of a database to
the contents of a metafile must connect that file to a preexisting database
program.

The canonical forms for descriptions of 3D graphics objects outlined in this
document embody an object- and class-based approach to 3D graphics and
reflect the structure of the QuickDraw 3D class hierarchy. This approach can be
described briefly as follows. First, a number of basic data types are introduced.
Next, more complex data types, called

objects,

 are defined in terms of these
basic data types. Finally, similar objects are grouped together to form classes of
objects, arranged in a hierarchical structure.

This document was created with FrameMaker 4.0.4

C H A P T E R 1

3D Metafile Reference

1-8

Metafile File Structure

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Each class of objects, and thus each object, is correlated with a particular node
in that structure. We use the terms

parent

 and

child

 to describe the relationships
among objects located at immediately adjacent and connected nodes in the
structure. For example, a color attribute may be included in a set of attributes
that is assigned to a geometric object. In that case, the geometric object is a
parent of the attribute set, which in turn is a parent of the color attribute, while
the color attribute is a child of the attribute set, which in turn is a child of the
geometric object. See the book

3D Graphics Programming With QuickDraw 3D

 for
complete details on this approach to the classification of 3D graphics objects.

The metafile file format includes two mechanisms that allow two or more
objects to be grouped together to form a more complex object having as much
hierarchical structure as desired. These mechanisms are the

 container

 and the

group,

 which are described in the sections “Containers” on page 1-44 and
“Groups” on page 1-194. The format also includes two special objects, file
pointers and reference objects, that can be used to instantiate previously
specified objects by reference. These objects are described in the sections “File
Pointers” on page 1-24 and “Reference Objects” on page 1-37.

This document defines a format for ASCII text files and also defines a format
for binary files. The two formats incorporate the same functional features, and
there is a one-to-one correspondence between their components. Most objects
are represented very similarly in the two formats. However, some objects, such
as file pointers, are represented differently in the two file formats, as described
below. Each text file has at least one binary file counterpart, and each binary file
has at least one text file counterpart, but in general that counterpart is not
unique.

Metafile File Structure 1

A metafile is simply a sequence or list of one or more valid metafile objects.
Each metafile must contain exactly one 3D metafile header, and this header
must be the first object to occur in the file. Objects following the header may
occur in any order permitted by the metafile class hierarchy. Currently, every
object that begins in a metafile must be wholly contained in that file; thus, it is
not legal to truncate the description of an object at the end of a file.

A metafile may include one or more tables of contents, but need not include
any. Should a metafile include more than one table of contents, each table of
contents should continue the record provided by the immediately previous

C H A P T E R 1

3D Metafile Reference

Metafile File Structure

1-9

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

table of contents (if such exists) without duplication. A table of contents may
contain information about objects occurring before or after it, or both, but
should not contain information about any object that either precedes an object
mentioned in a previous table of contents or follows an object mentioned in a
subsequent table of contents. Conventions for listing objects in tables of
contents are described in the section “Tables of Contents.”

There are three principal types of metafile: stream, normal, and database. The
type of a metafile is indicated by a flag in the metafile header. See the section
“3D Metafile Header” for complete details on these flags.

In a

stream

 file, objects can not be instantiated by reference; the complete
specification of an object must occur at each place in the file at which that object
is to be instantiated. Objects can be instantiated by reference in normal and
database files. In a

normal

 metafile, the complete specification of an object can
occur once only; an object can be instantiated multiply only by reference. No
such restrictions apply to database files. In a

database

 file, every object that can
be instantiated by reference and is not itself a reference object must be listed in
a table of contents (whether or not that object has been instantiated by
reference).

A stream file can but need not include a table of contents. A database file must
include a table of contents. A normal file in which objects are instantiated by
reference must include a table of contents; a normal file in which no objects are
instantiated by reference can but need not include a table of contents.

To illustrate the differences among the three types of metafile, we show how a
single model (Figure 1-1) is described in a text file of each type. The model
consists of four occurrences (at different locations) of a colored box.

C H A P T E R 1

3D Metafile Reference

1-10

Metafile File Structure

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Figure 1-1

Four instantiations of a box

The following is a complete specification of the colored box shown in Figure
1-1.

Container (

Box (0 1 0 0 0 1 1 0 0 0 0 0)

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

The expression

Container (...)

 is used subsequently to abbreviate this
specification. Transforms are used to place the box in various positions (each
transform applies to the object specified or referenced immediately subsequent
to it).

In a stream file, the specification of the box must occur four times, as shown in
Listing 1-1.

C H A P T E R 1

3D Metafile Reference

Metafile File Structure

1-11

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Listing 1-1

A stream metafile

3DMF (1 0 Stream Label0>) # header

Container (...) # first instantiation of box

Translate (3 0 0) # transform

Container (...) # second instantiation

Translate (0 3 0) # transform

Container (...) # third instantiation

Translate (-3 0 0) # transform

Container (...) # fourth instantiation

Such repetition can make stream files lengthy. However, a stream file can be
read by a parser having only sequential access to that file.

In a normal file, the box is completely specified once and is instantiated by
reference three times. The file pointers and reference objects used to effect
instantiations by reference are listed together in the table of contents. Other
referenceable objects (such as the transforms) that are instantiated once only are
not listed in the table of contents.

The normal metafile permits the most compact representation of the model.

Listing 1-2

A normal metafile

3DMetafile (1 0 Normal Label0>)

Label1: Container (...) # first instantiation

Translate (3 0 0)

Reference (1) # second instantiation

Translate (0 3 0)

Reference (1) # third instantiation

Translate (-3 0 0)

C H A P T E R 1

3D Metafile Reference

1-12

Metafile File Structure

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Reference (1) # fourth instantiation

Label0: TableOfContents (

2 -1 0 12

1

1 Label1>

)

Note

Label1>

 is a file pointer correlated with the label

Label1

that precedes the specification of the box.

Reference (1)

 is a reference object correlated with

Label1>

 (and thus with the specification of the box) in the
table of contents. See the section “File Pointers” on
page 1-24 for an explanation of how instantiation by
reference is accomplished through the use of these
objects.

◆

In a database file, the box is also instantiated by reference, and the file pointers
and reference objects used to instantiate it are listed in the table of contents.
And, (with the exception of reference objects themselves) all other
referenceable objects (the attribute set which contains the box’s color attributes,
and the transforms) are referenced, and all of these references are listed in the
table of contents.

The contents of a database file can be discovered quickly by inspection of its
tables of contents.

Listing 1-3

A database metafile

3DMetafile (1 0 Database Label0>)

Label1:

Container (

Box (0 1 0 0 0 1 1 0 0 0 0 0)

Label2:

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

C H A P T E R 1

3D Metafile Reference

Metafile File Structure

1-13

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

)

)

Label3:

Translate (3 0 0)

Reference (1)

Label4:

Translate (0 3 0)

Reference (1)

Label5:

Translate (-3 0 0)

Reference (1)

Label0:

TableOfContents (

2 -1 0 12

5

1 Label1>

2 Label2>

3 Label3>

4 Label4>

5 Label5>

)

Figure 1-2 shows, side by side, the three principal forms of a metafile.

C H A P T E R 1

3D Metafile Reference

1-14

Metafile File Structure

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Figure 1-2

Types of metafiles

3DMetafile (0 5 Database Label0>)

Label2:

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Label3:

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Label4:

Translate (2 0 0)

Reference (1)

Label5:

Translate (0 0 -2)

Reference (1)

Label6:

Translate (-2 0 0)

Reference (1)

Label0:

TableOfContents (

 Label1> # next TOC

 6 # reference seed

 -1 # typeSeed

 1 # tocEntryType

 16 # tocEntrySize

 5 # nEntries

 1 Label2>

 Box

 2 Label3>

 GeometryAttributeSet

 3 Label4>

 Translate

 4 Label5>

 Translate

 5 Label6>

 Translate

)

3DMetafile (0 5 Normal Label0>)

Label2:

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Label11:

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Label3:

Translate (2 0 0)

Reference (1)

Label4:

Translate (0 0 -2)

Reference (1)

Label5:

Translate (-2 0 0)

Reference (1)

Label0:

TableOfContents (

 Label1> # next TOC

 2 # reference seed

 -1 # typeSeed

 0 # tocEntryType

 12 # tocEntrySize

 1 # nEntries

 1 Label2>

)

3DMetafile (0 5 Stream Label0>)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Translate (2 0 0)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Translate (0 0 -2)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Translate (-2 0 0)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Normal organization Stream organization Database organization

C H A P T E R 1

3D Metafile Reference

Basic Data Types

1-15

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Basic Data Types 1

All metafile object specifications, including specifications of custom objects you
define yourself, must use only the following basic data types. Additional basic
data types may be introduced in the future if the need for them arises.

Unsigned Integer Data Types 1

Uns8

An unsigned 8-bit integer.

Uns16

An unsigned 16-bit integer.

Uns32

An unsigned 32-bit integer.

Uns64

An unsigned 64-bit integer.

Signed Integer Data Types 1

Int8

A signed 8-bit integer.

Int16

A signed 16-bit integer.

Int32

A signed 32-bit integer.

Int64

A signed 64-bit integer.

Floating-Point Integer Data Types 1

Float32

A single-precision 32-bit floating-point number.

Float64

A double-precision 64-bit floating-point number.

Note

Floating point numbers must be represented in the manner
specified by the IEEE floating-point standard (IEEE 754).
See the book

Inside Macintosh: PowerPC Numerics

 for
information on the IEEE floating-point standard.

◆

C H A P T E R 1

3D Metafile Reference

1-16

Basic 3D Data Types

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Basic 3D Data Types 1

The following 3D data types are defined using the basic data types described in
the previous section.

Two-Dimensional Points 1

typedef struct Point2D {

Float32 x;

Float32 y;

} Point2D;

typedef struct DPoint2D {

Float64 x;

Float64 y;

} DPoint2D;

Three-Dimensional Points 1

typedef struct Point3D {

Float32 x;

Float32 y;

Float32 z;

} Point3D;

typedef struct DPoint3D {

Float64 x;

Float64 y;

Float64 z;

} DPoint3D;

C H A P T E R 1

3D Metafile Reference

Basic 3D Data Types

1-17

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Three-Dimensional Rational Points 1

typedef struct RationalPoint3D {

Float32 x;

Float32 y;

Float32 w;

} RationalPoint3D;

typedef struct DRationalPoint3D {

Float64 x;

Float64 y;

Float64 w;

} DRationalPoint3D;

Four-Dimensional Rational Points 1

typedef struct RationalPoint4D {

Float32 x;

Float32 y;

Float32 z;

Float32 w;

} RationalPoint4D;

typedef struct DRationalPoint4D {

Float64 x;

Float64 y;

Float64 z;

Float64 w;

} DRationalPoint4D;

Note

Three- and four-dimensional points are used to represent
two- and three-dimensional points respectively in
homogeneous coordinate systems.

◆

C H A P T E R 1

3D Metafile Reference

1-18

Basic 3D Data Types

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

Color Data Types 1

typedef struct RGBColor {

Float32 red;

Float32 green;

Float32 blue;

} RGBColor;

IMPORTANT

The values in the fields of an RGB color data type must lie
in the closed interval [0, 1]. 0 is the minimum value; 1 is
the maximum value.

▲

The 3D metafile currently supports only the RGB (red, green blue) color model.

Two-Dimensional Vectors 1

typedef struct Vector2D {

Float32 x;

Float32 y;

} Vector2D;

typedef struct DVector2D {

Float64 x;

Float64 y;

} DVector2D;

Three-Dimensional Vectors 1

typedef struct Vector3D {

Float32 x;

Float32 y;

Float32 z;

} Vector3D;

C H A P T E R 1

3D Metafile Reference

Basic 3D Data Types

1-19

Draft. Confidential.



 Apple Computer, Inc. 5/30/95

typedef struct DVector3D {

Float64 x;

Float64 y;

Float64 z;

} DVector3D;

Parameterizations 1

typedef struct Param2D {

Float32 u;

Float32 v;

} Param2D;

typedef struct Param3D {

Float32 u;

Float32 v;

Float32 w;

} Param3D;

typedef struct DParam2D {

Float64 u;

Float64 v;

} DParam2D;

typedef struct DParam3D {

Float64 u;

Float64 v;

Float64 w;

} DParam3D;

C H A P T E R 1

3D Metafile Reference

1-20 Basic 3D Data Types

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Tangents 1

typedef struct Tangent2D {

Vector3D uTangent;

Vector3D vTangent;

} Tangent2D;

typedef struct Tangent3D {

Vector3D uTangent;

Vector3D vTangent;

Vector3D wTangent;

} Tangent3D;

typedef struct DTangent2D {

DVector3D uTangent;

DVector3D vTangent;

} DTangent2D;

typedef struct DTangent3D {

DVector3D uTangent;

DVector3D vTangent;

DVector3D wTangent;

} DTangent3D;

Matrices 1

typedef Float32 Matrix3x3 [3][3];

typedef Float32 Matrix4x4 [4][4];

typedef Float64 DMatrix3x3 [3][3];

typedef Float64 DMatrix4x4 [4][4];

C H A P T E R 1

3D Metafile Reference

Abstract Data Types 1-21
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Abstract Data Types 1

The 3D Metafile file format defines the following seven abstract data types:
object type, size, bitfield, enumerated type, file pointer, string, and raw data.
File pointers are discussed in another section. The other six abstract data types
are discussed in this section.

Object Type 1

Every metafile object has a type. In a text file, an object type is expressed by a
character string, such as Polygon. In a binary file, an object type is expressed by
a 4-byte code, such as plyg. In both text and binary files, every object
specification begins with an object type.

The metafile file format allows you to introduce new types of custom objects.
Whenever you do so, you must first declare and register a new type tag for
custom objects of that type. The manner in which new type tags may be
declared and registered is explained in the section “Types” on page 1-42.

Size 1

All metafile objects are padded to 4-byte boundaries; thus, the size of an object
is always a multiple of 4.

In a text file, object specifications are delimited by parentheses, as shown in the
following example:

Polygon (# object type

3 # number of vertices

0 0 0 # first vertex

1 0 0 # second vertex

0 1 0 # third vertex

)

The type Polygon and the parentheses are ignored when the size of the
polygon is computed. Only the sizes of the values in the fields of the structure

C H A P T E R 1

3D Metafile Reference

1-22 Abstract Data Types

Draft. Confidential.  Apple Computer, Inc. 5/30/95

are taken into account. This polygon is a structure having two fields. The value
in the first field is an unsigned 32-bit integer, and the value in the second field
is an array of three three-dimensional points (the array tag and encapsulating
brackets are omitted in the metafile specification). The size of an unsigned
32-bit integer is 4 bytes, and the size of a three-dimensional point is 12 bytes, so
the size of the above polygon is 40 bytes.

In a binary file, an object specification must always include a line that indicates
the size of that object. The above polygon would be specified in a binary file as
follows:

00: 706C6967 plyg # object type

04: 00000028 40 # object size

08: 00000003 3 # number of vertices

0A: 00000000 0.0 # x coordinate of first vertex

10: 00000000 0.0 # y coordinate of first vertex

14: 00000000 0.0 # z coordinate of first vertex

18: 3F800000 1.0 # x coordinate of second vertex

.

.

.

Indications of object type and object size do not contribute to the size of an
object. Thus, the size of the above polygon is 40 bytes, not 44 or 48.

An object may be of size 0. In a text file, an object of size 0 is described by a tag
followed by a pair of empty parentheses. For example, AttributeSet ()
specifies an object of size 0. Some objects have a defined default specification. If
such an object is represented as being of size 0, it is understood that the default
specification is intended.

IMPORTANT

With the exception of geometric objects, default object
specifications are not written to a file. ▲

Bitfields and Enumerated Types 1

Bitfields and enumerated types establish associations between unsigned
integers and ASCII text strings. The names of bitfields and enumerated types
may include either text characters or digits, but do not include blank spaces or

C H A P T E R 1

3D Metafile Reference

Abstract Data Types 1-23
Draft. Confidential.  Apple Computer, Inc. 5/30/95

punctuation marks. In binary files, bitfields and enumerated types are
represented by unsigned 32-bit integers such as (in hexadecimal) 0x00000001,
0x0000000E. The strophe symbol (|) is used to catenate bits both in text and
binary files.

Strings 1

In a text file, a string is a sequence of ASCII text symbols enclosed in double
quotation marks.

Only the following escape sequences may occur in a text file string:

\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\' single quotation mark
\" double quotation mark
In a binary file, a string is represented by a string of zero-terminated padded
characters. The size of a string in a binary file is determined as follows:

len = strlen(string);

pad = (len + 1) % 4

size = len + ((pad > 0) ? 4 - pad : 0)

Raw Data 1

Raw data are used to store information that is platform dependent or is
inherently nonalphanumeric.

In a text file, raw data are stored as hexadecimal strings prefixed by the
characters '0x'. Strings of raw data are not padded in text files. However, your
application may pad them if you wish.

In a binary file, raw data are stored as sequences of bytes, padded to a 4-byte
boundary. The size of raw data is computed as follows:

C H A P T E R 1

3D Metafile Reference

1-24 Abstract Data Types

Draft. Confidential.  Apple Computer, Inc. 5/30/95

pad = rawDataSize % 4

size = rawDataSize + (pad > 0 ? 4 - pad : 0)

File Pointers 1

DESCRIPTION

A metafile file pointer indicates the location of another object in that metafile,
to which it points. A file pointer and the object to which it points (called the
target object) must occur in the same file. A target object may occur before or
after an associated file pointer in a metafile. A file pointer may fail to have a
target object; such a file pointer is null. File pointers may occur both in ASCII
text metafiles and in binary metafiles. A file pointer is neither declared nor
initialized; it is identified as such by the positions in which it may appear and
(in a text file) by the type of expression used to represent it.

In a binary metafile, a file pointer is represented by an unsigned 64-bit integer
that reports the address or location of its target object in the metafile. A
generator of a binary metafile must determine the number of bytes by which a
target object is offset from the end of the header in order to write the correct
value of a pointer to that object and must update that file pointer whenever any
new objects are inserted between the positions occupied by the pointer and its
target object in the metafile.

Note
A file pointer is offset relative to the end of the header of
the file in which it occurs, not relative to the beginning of
that file. ◆

In an ASCII text metafile, a file pointer is represented by a character string
composed of at least two characters, the last of which is a right angle bracket
(>). Thus p> and Arrow> are file pointers; p, >, and Arrow are not. In a text file,
the target object of a file pointer must bear a label corresponding to that file
pointer. The label corresponding to a file pointer is the result of omitting the
final right angle bracket from the string representing that file pointer. For
example, the label corresponding to string> is string. Such a label is always
followed immediately by a colon, then by the target object: string:
targetobject. Each file pointer may correspond to at most one label, and each
label may correspond to at most one file pointer. A metafile should not contain

C H A P T E R 1

3D Metafile Reference

Abstract Data Types 1-25
Draft. Confidential.  Apple Computer, Inc. 5/30/95

a label that does not correspond to a file pointer, but the presence of such a
label does not invalidate a metafile.

Two types of file pointers may occur in a metafile, corresponding to two types
of target object a file pointer may have. The target object of a file pointer of the
first type is a table of contents; such a file pointer is meant to indicate the
location of a table of contents and serves no other purpose. (A file pointer of
this type must occur in the fourth field of each header. A file pointer of this
type must also occur in the first field of each table of contents; this pointer
points to the location of the next subsequent table of contents, if one exists. A
file pointer of this type may occur in no other position.)

The target object of a file pointer of the second type must be either an object of
type shared or a container the root object (that is, the first object) of which is of
type shared. The root object of a container may not be the target object of a file
pointer. The purpose of a file pointer of this type is to enable the metafile writer
to make repeated reference to a target object without repeating that object’s
definition. (A file pointer of this type may occur only in the second field of a
table of contents entry; thus, a metafile that contains file pointers of this type
must include at least one table of contents.) The way in which repeated
reference to an object is accomplished through the use of file pointers of this
type is explained in the next paragraph.

An application may also permit a user to make reference in one context to an
object specified or created in another context, in order to facilitate the
construction of complex objects from component objects and to permit the user
to place the same object in several scenes or at several positions in the same
scene without having to specify or create that object several times. In a metafile,
reference to objects defined elsewhere is accomplished in a manner involving
several components: a file pointer, a target object, an integer, an entry in a table
of contents, and a special metafile object called a reference object. (In a text file,
the label corresponding to a file pointer must also be present.) The object to be
referenced at some other position must be the target object of a file pointer.
That file pointer must appear together with an appropriately chosen integer in
an entry in a table of contents located in the file containing the target object. (If
that file contains no table of contents, then a table of contents must be created.)
The integer thus associated with that file pointer must be entered in the field of
a reference object, one occurrence of which must be placed at each position at
which the target object is to be referenced.

The target object, file pointer, and table of contents must all occur in the same
file. The reference object associated with a target object may occur in the same
file or in another file. A reference in a file to a target object located in the same

C H A P T E R 1

3D Metafile Reference

1-26 Abstract Data Types

Draft. Confidential.  Apple Computer, Inc. 5/30/95

file is termed internal; a reference in a file to a target object located in a different
file is termed external. In the latter case, the reference object must also have a
child object that indicates the location of the home file of the target object. A
lengthy specification may be modularized and spread across several files
through the use of external references. See the sections “Tables of Contents” on
page 1-32 and “Reference Objects” on page 1-37 for further information about
these objects.

There may be at most one file pointer to any target object; thus, once an integer
has been associated with a pointer to a target object in a table of contents entry,
that integer is the only integer that may be used (in any file) to reference that
target object. (A file pointer of this type that is not associated with a reference
object is legal, but serves no purpose.)

Clearly, a metafile reader must be programmed to recognize and to respond
appropriately to reference objects, tables of contents, and file pointers and not
to confuse them with other types of objects. As noted, a metafile may contain
file pointers and reference objects that are idle. A metafile reader cannot
determine whether a file pointer or reference object is idle by inspection of that
object; thus, an efficient reader should search out these special metafile objects
prior to reading the body of the metafile.

EXAMPLES

Here are some examples of legal uses of file pointers in an ASCII text metafile:

3DMetafile (# header

1 0

Normal

toc> # pointer to table of contents

)

.

.

.

Linus: Line (0 0 0 1 0 0) # label and target object

.

.

.

Translate (0 1 0)

Reference (1) # reference object

.

C H A P T E R 1

3D Metafile Reference

Abstract Data Types 1-27
Draft. Confidential.  Apple Computer, Inc. 5/30/95

.

.

toc: Table of Contents (# label and target object

nextTOC> # pointer to next table of contents

(may be idle)

...

1 Linus> # table of contents entry, including

file pointer and integer occurring in

related reference object

.

.

.

)

The file pointer Linus> is used to place its target object within the scope of a
translation; thus, it adds to the model the image of the original line under a
translation.

arrow:

BeginGroup (DisplayGroup ())

arrowTip:

BeginGroup (DisplayGroup ())

Translate (...)

Scale (...)

Container (

cone (...)

arrowColor:

Container (

AttributeSet ()

DiffuseColor (...)

)

)

EndGroup ()

arrowShaft:

BeginGroup (DisplayGroup ())

Scale (...)

Container (

Cylinder (...)

Reference (1)

C H A P T E R 1

3D Metafile Reference

1-28 Additional Type Definitions

Draft. Confidential.  Apple Computer, Inc. 5/30/95

)

EndGroup ()

EndGroup ()

. . .

toc:

TableOfContents (

...

1 arrowColor>

2 arrowTip>

3 arrowShaft>

4 arrow>

)

The complex object specified in this example is an arrow-shaped object having
a cylindrical shaft and a conical tip, both of which are the same color. The
components of the arrow are labeled and associated with file pointers so that
they may be referenced elsewhere if desired. The object labeled arrowColor
occurs within the definition of the object labeled arrowTip. The reference object
Reference (1) is used to include that object in the specification of the
arrow’s shaft, in order to assign to the arrow’s shaft the color already assigned
to its tip. See the sections “Display Groups” on page 1-194 and “Containers” on
page 1-44 for explanations of how these objects may be used to form complex
structured objects.

Additional Type Definitions 1

Boolean Enumerated Types 1

Text Binary
False 0x00000000
True 0x00000001

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-29
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Variable-Sized Integer Types 1

We define two variable-sized integer types Uns and Int. These integer types
are used primarily to pack arrays of indices. Objects must be padded to the
next long word whenever these integer types are used.

Use of Uns in packing should accord with the following conventions. If the
maximum index value is less than 256, use Uns8. If the maximum index value
is greater than or equal to 256 and less than or equal to 65,536, use Uns16. If the
maximum index value is greater than or equal to 65,536, use Uns32.

Use of Int in packing should accord with the following conventions. If the
maximum index value is greater than or equal to –127 and less than or equal to
128, use Int8. If the maximum index value is greater than or equal –32,767 and
less than or equal to –127, use Int16. If the maximum index value is less than
–32,767 or greater than or equal to 32,768, use Int32.

Metafile Object Specifications 1

The following sections contain descriptions of all currently valid metafile
objects. Each section concerns a particular type of metafile object, and indicates
the required form of specification for objects of that type in text files and in
binary files. Each section also includes an example of a valid text file object
specification and other pertinent information.

Special Metafile Objects 1

This section describes seven special metafile objects.

3D Metafile Header 1

LABELS

ASCII 3DMetafile

Binary 3DMF (= 0x33444D46)

C H A P T E R 1

3D Metafile Reference

1-30 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Each metafile header includes a flag that indicates the uses to which file
pointers and reference objects are put in that metafile. The flags that may
appear in a metafile header are defined by the metafile flags data enumeration.

METAFILE FLAGS

Normal 0x00000000

Stream 0x00000001

Database 0x00000002

Constant descriptions

Normal This flag indicates that, for every shared object specified in
the metafile, if that object is instanced more than once in
the metafile, then all instantiations of that object other than
its original specification are accomplished through the use
of file pointers and reference objects. If this flag is set, then
the full specification of an object never appears more than
once in the metafile. In order to read a normal metafile, a
parser should have random access to that file.

Stream This flag indicates that there are no internal references in
the metafile. (A reference in a file to an object located in the
same file is termed internal; a reference in a file to an object
located in a different file is termed external.) In order to
read a stream metafile, a parser need have sequential
access only.

Database This flag indicates that every shared object in the metafile
that is not itself a reference object is the target object of a
file pointer appearing in a table of contents in the metafile.
All of the contents of a database metafile may be
discovered by a parser through examination of its tables of
contents.

DATA FORMAT

Uns16 majorVersion

Uns16 minorVersion

MetafileFlags flags

FilePointer tocLocation

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-31
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
majorVersion The version number of the metafile. Currently, the version

number is 1.

minorVersion The revision number of the metafile. Currently, the
revision number is 0.

flags The flag of the header.
tocLocation A file pointer to the location (in the metafile) of a table of

contents object. If the value in this field is NULL, then the
entire metafile must be parsed in order to find any extant
tables of contents.

DATA SIZE

20

DESCRIPTION

A metafile header is a structure having four fields. The first two fields specify
the version and revision numbers of the metafile. The third field contains a flag
indicating the type of the metafile (normal, stream, or database). The fourth
field contains a pointer to the location of a table of contents for the metafile. A
metafile header in a file indicates that the file is a metafile and provides some
information about its contents.

Each metafile must contain exactly one metafile header, and this header must
precede every other object in that file. Though each metafile header contains a
pointer to the location of a table of contents, there need be no corresponding
table of contents in the metafile.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-32 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

EXAMPLE

3DMetafile (

1 0 # majorVersion, minorVersion

Normal # flag

toc> # file pointer

)

.

.

. # list of objects

toc: TableOfContents (...)

Tables of Contents 1

LABELS

ASCII TableOfContents

Binary toc (= 0x746F6320)

DATA TYPE DEFINITION: TOC ENTRY TYPE 0

TOCEntry (

Uns32 refID

FilePointer objLocation

)

SIZE

12

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-33
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA TYPE DEFINITION: TOC ENTRY TYPE 1

TOCEntry (

Uns32 refID

FilePointer objLocation

ObjectType objType

)

SIZE

16

Field descriptions
refID The value of the refID field of a reference object.

objLocation A pointer to the location of a referenceable metafile object.
objType The type tag of the target object of the file pointer listed in

the objLocation field.

Note
Type 1 table of contents entries allow a parser to determine
the type of a referenced object by inspection of tables of
contents; type 0 table of contents entries do not. The table
of contents entries in a stream metafile normally are of
type 0; the table of contents entries in a database metafile
normally are of type 1. ◆

DATA FORMAT

FilePointer nextTOC

Uns32 refSeed

Int32 typeSeed

Uns32 tocEntryType

Uns32 tocEntrySize

Uns32 nEntries

TOCEntry tocEntries[nEntries]

C H A P T E R 1

3D Metafile Reference

1-34 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
nextTOC A pointer to the location of the next table of contents in the

metafile. (If there is no subsequent table of contents, then
this pointer is idle.)

refSeed The least integer that may occur in the refID field of a
reference object added to the metafile after this table of
contents is written. The value in this field must be greater
than 0 and is incremented whenever a new reference object
is added to the preceding section of the metafile or is listed
in a TOC entry added to this table of contents.

typeSeed The greatest integer that may occur in the typeID field of a
type object added to the metafile after this table of contents
is written. The value in this field must be less than 0 and is
decremented whenever a new type object is added to the
preceding section of the metafile.

tocEntryType A numerical constant that indicates the type of the entries
contained in the table of contents. The permitted values of
this field are 0 and 1. A value of 0 indicates that all entries
in the array tocEntries[] are of type 0; a value of 1
indicates that all entries in that array are of type 1. The
occurrence of this constant should cause no confusion, as
all entries in any particular table of contents must be of the
same type.

tocEntrySize A numerical constant that indicates the binary sizes of the
entries contained in the table of contents. The permitted
values of this field are 12 and 16. If the value in the
previous field is 0, then the value in this field must be 12; if
the value in the previous field is 1, then the value in this
field must be 16. Again, this constant should cause no
confusion, as all entries in any particular table of contents
must be of the same size.

nEntries The number of entries contained in the table of contents;
that is, the size of the array tocEntries[]. If the value in
this field is 0, then that array is empty.

tocEntries[] An array of TOCEntry objects, all of which are of the same
entry type.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-35
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

20 + (tocEntrySize * nEntries)

DESCRIPTION

A table of contents is a structure that provides a record of associations made
between reference objects and file pointers. These associations are reported by
the TOC entries of the table of contents. A metafile reader must use its tables of
contents to discover linkages between reference objects and file pointers, as
there is no other record of those associations. See the sections “File Pointers” on
page 1-24 and “Reference Objects” on page 1-37 for complete details regarding
these objects.

A reference in a file to a target object located in the same file is termed internal;
a reference in a file to a target object located in a different file is termed external.
A metafile in which there are internal references or file pointers whose target
objects are not tables of contents must include at least one table of contents.

If a metafile contains more than one table of contents, then each table of
contents should continue the record provided by the immediately previous
table of contents (if such exists) without duplication. A table of contents may
contain information about objects occurring before or after it or both, but
should not contain information about any object that either precedes an object
mentioned in a previous table of contents or follows an object mentioned in a
subsequent table of contents.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-36 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

3DMF (

1 0

Normal

toc>

)

.

.

.

cube: box (...)

rotateTransform(...)

Reference (1) # internal reference

.

.

.

scaleTransform (. . .)

Container (

Reference (4) # external reference

UnixPath (".../geometryobjecs/ellipsoids/elli.1.a")

)

.

.

.

Type (-1 "Lino")

.

.

.

tory: Torus (...)

.

.

.

Reference (2)

.

.

.

Reference (1)

.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-37
Draft. Confidential.  Apple Computer, Inc. 5/30/95

.

.

Reference (1)

.

.

.

toc: TableOfContents (

nextTOC>

5 # refSeed

-2 # typeSeed

0 # tocEntryType

12 # tocEntrySize

2 # nEntries

1 cube> # TOCEntries

2 tory>

)

Reference Objects 1

LABELS

ASCII Reference

Binary rfrn (= 0x7266726E)

DATA FORMAT

Uns32 refID

Field descriptions
refID A nonnegative integer. If the value in this field is not 0,

then this reference object is linked to a file pointer and is
used to reference the target object of that file pointer. If the
value in this field is 0, then this reference object is not
linked to a file pointer. A value of 0indicates that the object
to be referenced is an entire file rather than an object
located within a file. The relevant file is specified in a

C H A P T E R 1

3D Metafile Reference

1-38 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

storage object that occurs as a child object to the reference
object.

DATA SIZE

4

DESCRIPTION

A reference object is used to permit an object defined elsewhere to be
referenced at one or more locations in a metafile. A reference in a file to a target
object located in the same file is termed internal; a reference in a file to a target
object located in a different file is termed external.

A reference object and the object it is intended to reference may be contained in
separate files. In such a case, the reference object must also have, as a child
object, a storage object that indicates the location of the home file of the object
to be referenced. See the sections “UNIX Path” on page 1-39 and “Macintosh
Path” on page 1-41 for descriptions of these objects. See the section “File
Pointers” on page 1-24 for an explanation of the relationships that must obtain
among a reference object, a table of contents, and a file pointer in order for that
reference object to serve its purpose.

PARENT HIERARCHY

Shared.

PARENT OBJECTS

A reference object sometimes but not always has a parent object.

CHILD OBJECTS

One UNIX path or Macintosh path object (optional). A reference object must
contain a child object whenever the object it is used to reference is (or is located
in) a separate file.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-39
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

.

.

.

Reference (23) #internal reference

.

.

.

toc: TableOfContents

nextTOC> 35 -1 0 12

.

.

.

20 CarFrame>

21 Axle>

23 WheelOfCar>

.

.

.

)

.

.

.

Container (#external reference

Reference (23)

UnixPath (".:car:parts.eb") #Unix pathname Object

)

UNIX Path 1

LABELS

ASCII UnixPath

Binary unix (= 0x756E6978)

C H A P T E R 1

3D Metafile Reference

1-40 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

String unixPath

Field descriptions
unixPath A character string consisting of a pathname enclosed in

double quotation marks.

DATA SIZE

sizeof(pathName)

DESCRIPTION

A UNIX path object may occur only as the child object of a reference object. Its
purpose is to allow a reference object located in one file to reference an object
located in another file. The file pointer, label, and table of contents entry
associated with the parent reference object are located in the home file of the
target object.

PARENT HIERARCHY

Shared, Storage.

PARENT OBJECTS

Always.

CHILD OBJECTS

None.

EXAMPLE

Container (#external reference

Reference (23)

UnixPath (".:Graphics:Models:Conics:Cone.3")

)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-41
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Note
In the above example, the object to be referenced is in the
file Cone.3. The file reader must open that file and search
its tables of contents to find the file pointer associated with
the integer 23 in order to locate that object. ◆

Macintosh Path 1

LABELS

ASCII MacintoshPath

Binary alis (= 0x616C6973)

DATA FORMAT

String pathName

Field descriptions
pathName A character string consisting of a Macintosh pathname

enclosed in double quotation marks. The pathname should
be specified in accordance with Macintosh pathname
conventions.

DATA SIZE

sizeof(String)

DESCRIPTION

A Macintosh path object may occur only as the child object of a reference
object. Its purpose is to allow a reference object located in one file to access a
target object located in another file. The file pointer, label, and table of contents
entry associated with the parent reference object are located in the home file of
the target object. This object may be used only on platforms running on the
Macintosh Operating System.

C H A P T E R 1

3D Metafile Reference

1-42 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Shared, storage.

PARENT OBJECTS

Always. This object may occur only as the child object of a reference object.

CHILD OBJECTS

None.

EXAMPLE

Container (

Reference (17)

MacintoshPath (... :3DGraphics:Models:Stemware.2)

Note
In the above example, the object to be referenced is in the
file Stemware.2. The file reader must open that file and
search its tables of contents to find the file pointer
associated with the integer 17 in order to locate that
object. ◆

Types 1

LABELS

ASCII Type

Binary type (= 0x74797065)

DATA FORMAT

Int32 typeID

String owner

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-43
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
typeID A negative integer. No two type objects in the same file

may have the same value in this field.

owner An ISO 9070 registered owner string. The value of this
field may not occur in any other type object.

DATA SIZE

4 + sizeof(String)

DESCRIPTION

The metafile file format permits the inclusion of custom objects, provided that
they have been assigned a type. The type object is used to declare a custom
data type, and must be used whenever a custom data type appears in a
metafile. A type object must appear in a file prior to any custom object of that
type. At most 231 (= 2,147,483,648) custom types may appear in a single file.

Note
To include a custom object in a binary metafile, you must
specify the size of that object, padded to the nearest byte.
To include a custom object in a text metafile, enclose the
object in parentheses and prefix the object’s typeID
number. ◆

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-44 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Type (

-1

"Program: Tree"

)

Type (

-1

"Program: Forest"

)

Containers 1

LABELS

ASCII Container

Binary cntr (= 0x636E7472)

DATA FORMAT

No data.

DATA SIZE

8k + Σ, where k is the number of elements of the container and Σ is the sum of
the sizes of those elements.

DESCRIPTION

A container is an ordered collection of objects. Containers are used to form
complex objects from simpler objects in ways permitted by the structure of the
metafile object hierarchy. In particular, child objects are attached to parent
objects through the use of containers. Every container must contain at least one
object. Containers may be nested. The relation of containment is not transitive
(that is, the elements of a container occurring within another container are not
themselves elements of the latter container). However, an object may be

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-45
Draft. Confidential.  Apple Computer, Inc. 5/30/95

instantiated more than once in a hierarchy of nested containers, as shown in the
example at the end of this section.

The notation for containers in text files is as follows:

Container (

object0
.

.

.

objectnobjects-1
)

Notations for contained objects are separated by blank spaces rather than by
punctuation marks, as is the case in the notation for other objects having
nonzero size.

The first element of a container is called the root object of that container. The
root object of a container must be a shared object, may not be a container itself,
and may not be the target object of a file pointer. The position in the metafile
object hierarchy of the root object of a container constrains the number, type,
and in some cases the order of occurrence of other elements of that container.
Each element of a container other than the root object must be either a
legitimate child object of the root object or another container. In the latter case,
the root object of the inner container must be a legitimate child object of the
root object of the outer one.

A container may be the target object of a file pointer.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-46 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

Cylinder (. . .)

Container (

AttributeSet ()

DiffuseColor (0 1 0)

)

Caps (Bottom)

Container (

BottomCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0 1 0)

)

)

)

String Objects 1

C Strings 1

LABELS

ASCII CString

Binary strc (= 0x73747263)

DATA FORMAT

String cString

Field descriptions
cString A string constant (that is, a sequence of ASCII characters

enclosed in double-quotation marks). See the section

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-47
Draft. Confidential.  Apple Computer, Inc. 5/30/95

“Strings” on page 1-23 for a list of the escape sequences
that may occur in a cString object.

DATA SIZE

sizeof(String)

DESCRIPTION

A C string may be used to include text in a metafile.

PARENT HIERARCHY

Shared, string.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

cString (

“Copyright Apple Computer, Inc., 1995”

)

Unicode Objects 1

LABELS

ASCII Unicode

Binary uncd (= 0x756E6364)

C H A P T E R 1

3D Metafile Reference

1-48 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

uns32 length

RawData unicode[length * 2]

Field descriptions
length The length of the encoded text.

unicode[] An array of raw data that encodes text.

DATA SIZE

4 + length * 2

DESCRIPTION

A unicode object may be used to include text in a binary metafile.

PARENT HIERARCHY

Shared, String.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Unicode (

6

0x457363686572

)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-49
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Geometric Objects 1

This section describes the geometric objects currently supported by the metafile
specification.

Points 1

LABELS

ASCII Point

Binary pnt (= 0x706E7420)

DATA FORMAT

Point3D point

Field descriptions
point A three-dimensional point.

DATA SIZE

12

DESCRIPTION

A point object is used to specify a point in world space. A point object may
appear only in a group or as part of the definition of a custom data type. Unlike
the corresponding point data type, a geometric point object may be assigned
attributes such as color. Thus, an application may use point objects to specify
visible dots.

DEFAULT SURFACE PARAMETERIZATION

None.

C H A P T E R 1

3D Metafile Reference

1-50 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Point (0 0 0)

DEFAULT SIZE

None.

Lines 1

Figure 1-3 shows a line.

Figure 1-3 A line

LABELS

ASCII Line

Binary line (= 0x6C696E65)

vertices[1].point

vertices[0].point

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-51
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

Point3D start

Point3D end

Field descriptions
start One endpoint of the line.

end The other endpoint of the line.

DATA SIZE

24

DESCRIPTION

A line is a straight segment in three-dimensional space defined by its two
endpoints. Attributes may be assigned to the vertices of a line and to the entire
line.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a line is (0, 0) at start and (1, 0) at
end.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional), vertex attribute set list (optional). An attribute set may
be used to assign attributes to the entire line. The vertex attribute set list may
include attribute sets for one or both vertices of the line. For the purpose of
attribute assignment, the start and end vertices of a line are indexed by the

C H A P T E R 1

3D Metafile Reference

1-52 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

integers 0 and 1 respectively. See the section “Vertex Attribute Set Lists” on
page 1-141 for a description of these lists.

EXAMPLE

Container (

Line (

0 0 0

1 0 0

)

Container (

VertexAttributeSetList (2 Exclude 0)

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

Container (

AttributeSet ()

DiffuseColor (0 0 1)

)

)

)

DEFAULT SIZE

None.

Polylines 1

Figure 1-4 shows a polyline.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-53
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-4 A polyline

LABELS

ASCII Polyline

Binary plin (= 0x706C696E)

DATA FORMAT

Uns32 numVertices

Point3D vertices[numVertices]

Field descriptions
numVertices The number of vertices of the polyline.

vertices[] An array of vertices that define the polyline.

DATA SIZE

4 + (numVertices * 12)

DESCRIPTION

A polyline is a collection of n lines defined by the n+1 points that define the
vertices of its segments. For 1≤i ≤n−1, the second vertex of the ith line is the
first vertex of the i+1st line; the n+1st vertex of a polyline is not connected to
the first. Attributes may be assigned separately to each vertex and to each
segment of a polyline as well as to the entire polyline.

vertices[1].point

vertices[2].point

vertices[3].point

vertices[4].point
vertices[0].point

C H A P T E R 1

3D Metafile Reference

1-54 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set, geometry attribute set list, vertex attribute set list. Use a vertex
attribute set list to assign attribute sets to as many vertices as desired; use a
geometry attribute set list to assign attribute sets to as many segments as
desired. Use an attribute set to assign attributes to the entire polyline.

EXAMPLE

PolyLine(

5 #numVertices

0 0 0 #first vertex

1 1 0 #second vertex

.5 .5 0

0 1 0

1 1 0

)

DEFAULT SIZE

None.

Triangles 1

Figure 1-5 shows a triangle.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-55
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-5 A triangle

LABELS

ASCII Triangle

Binary trng (= 0x74726E67)

DATA FORMAT

Point3D vertices[3]

Field descriptions
vertices[] An array of triangle vertices.

DATA SIZE

36

DESCRIPTION

A triangle is a closed plane figure defined by three vertices. Attributes may be
assigned to each vertex of a triangle and also to its entire face.

DEFAULT SURFACE PARAMETERIZATION

None.

vertices[0].point vertices[1].point

vertices[2].point

C H A P T E R 1

3D Metafile Reference

1-56 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Vertex attribute set list (optional), attribute set (optional). A vertex attribute set
list may be used to attach attributes to one or more vertices of the triangle. An
attribute set may be used to attach attributes to the entire face of the triangle.

EXAMPLE

Container (

Triangle (

-1 -0.5 -0.25

0 0 0

-0.5 1.5 0.45

)

Container (

VertexAttributeSetList (3 Exclude 0)

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

Container (

AttributeSet ()

DiffuseColor (0 1 0)

)

Container (

AttributeSet ()

DiffuseColor (0 0 1)

)

)

Container (

AttributeSet ()

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-57
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DiffuseColor (0.8 0.5 0.2)

)

)

DEFAULT SIZE

None.

Simple Polygons 1

Figure 1-6 shows a simple polygon.

Figure 1-6 A simple polygon

LABELS

ASCII Polygon

Binary plyg (= 0x706C7967)

DATA FORMAT

uns32 nVertices

Point3D vertices[nVertices]

vertices[0].point

vertices[4].point

vertices[2].point

vertices[1].point

vertices[3].point

C H A P T E R 1

3D Metafile Reference

1-58 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
nVertices The number of vertices of the polygon.

vertices[] An array of vertices that define the polygon.

DATA SIZE

4 + (numVertices * 12)

DESCRIPTION

A simple polygon is a convex plane figure defined by a list of vertices. In other
words, a simple polygon is a polygon defined by a single contour. (Vertices are
assumed to be coplanar to within floating-point tolerances.) The lines
connecting the vertices of a simple polygon do not cross. Attributes may be
assigned to each vertex of a simple polygon and also to its entire face.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Vertex attribute set list (optional), attribute set (optional). A vertex attribute set
list may be used to attach attribute sets to one or more vertices of the simple
polygon. An attribute set may be used to attach attributes to the entire face of
the simple polygon. For the purpose of attribute assignment, the vertices of a
polygon are indexed by position in the array vertices[]; that is, the index of
vertices[i] is i. See the section “Vertex Attribute Set Lists” on page 1-141 for
an explanation of the structure and syntax of these objects.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-59
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Polygon(

5 #nVertices

0 0 0

1 0 0

2 1 0

1 2 0

0 1 0

)

DEFAULT SIZE

None.

General Polygons 1

Figure 1-7 shows a general polygon.

C H A P T E R 1

3D Metafile Reference

1-60 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-7 A general polygon

LABELS

ASCII GeneralPolygon

Binary gpgn (= 0x6770676E)

POLYGON DATA DATA TYPE

uns32 nVertices

Point3D vertices[nVertices]

Field descriptions
nVertices The number of vertices of this contour of the general

polygon.

vertices[] An array of vertices that define this contour of the general
polygon.

contour[0].vertices[2]

contour[0].vertices[3]

contour[0].vertices[4]

contour[0].vertices[5]

contour[1].vertices[2]

contour[1].vertices[1]

contour[0].vertices[6]

contour[0].vertices[7]

contour[0].vertices[0]

contour[0].vertices[1]

contour[1].vertices[0]

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-61
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

Uns32 nContours

PolygonData polygons[nContours]

Field descriptions
nContours The number of contours of the general polygon.

polygons[] An array of contours that define the general polygon.

DATA SIZE

sizeof(PolygonData) = 4 + nVertices * 12

sizeof(GeneralPolygon) = 4 + sizeof(polygons[0...nContours-1])

DESCRIPTION

A general polygon is a closed plane figure defined by one or more lists of
vertices. In other words, a general polygon is a polygon defined by one or more
contours. Each contour may be concave or convex, and contours may be
nested. All contours, however, must be coplanar. A general polygon can have
holes in it. If it does, the even-odd rule is used to determine which regions are
included in the polygon. Attributes may be assigned to each vertex of each
contour of a general polygon and to the entire general polygon.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-62 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

Attribute set, general polygon hint, vertex attribute set list (all optional). Use an
attribute set to attach attributes to an entire general polygon. Use a general
polygon hint to specify whether a general polygon is concave, convex, or
complex; see the section “General Polygon Hints” on page 1-64 for complete
details on this object. Use a vertex attribute set list to assign attributes to the
vertices of the contours of a general polygon. For purposes of attribute
assignment, the vertices of a general polygon are indexed in the order of their
occurrence in the specification of that polygon; the index does not distinguish
between contours. For purposes of attribute assignment, the nth contour of a
general polygon is the contour defined by (polygons[n-1])[1], and the index
of the nth contour is n–1. The nth vertex of a general polygon is the pth vertex
of the mth contour, where

m = max{k ≤ nContours : Σ0≤i<κ−1 (polygons[i])[0] < n},

and n = Σ0≤i<m (polygons[i])[0]+ p; the index of the nth vertex of a
general polygon is n-1. The pth vertex of the mth contour of a general polygon
is the (Σ0≤i<µ−1 (polygons[i])[0] + p)th vertex of the general polygon; its
index is Σ0≤i<µ−1 (polygons[i])[0] + (p – 1). See the sections “Face Attribute
Set Lists” on page 1-137 and “Vertex Attribute Set Lists” on page 1-141 for
explanations of the structure and syntax of these objects.

EXAMPLE

Container (

GeneralPolygon (

2 # nContours

#contour 0

3 # nVertices, contour 0

-1 0 0 # vertex 0

1 0 0 # vertex 1

0 1.7 0 # vertex 2

#contour 1

3 # nVertices, contour 1

-1 0.4 0 # vertex 3

1 0.4 0 # vertex 4

0 2.1 0 # vertex 5

)

Container (

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-63
Draft. Confidential.  Apple Computer, Inc. 5/30/95

VertexAttributeSetList (6 Exclude 2 0 4) #see note

Container (

AttributeSet () # vertex 1

DiffuseColor (0 0 1)

)

Container (

AttributeSet () # vertex 2 (contour 0)

DiffuseColor (0 1 1)

)

Container (

AttributeSet () # vertex 3 (contour 1)

DiffuseColor (1 0 1)

)

Container (

AttributeSet () # vertex 5 (contour 1)

DiffuseColor (1 1 0)

)

)

Container (

AttributeSet ()

DiffuseColor (1 1 1)

)

)

Note
In the above example, the general polygon has two
contours. Each contour is a triangle. The triangles overlap.
The intersection of the triangles is included in an even
number of contours; thus, it constitutes a hole in the
general polygon. The relative complements of the triangles
are included in an odd number of contours; thus, they are
included in the general polygon. ◆

DEFAULT SIZE

None.

C H A P T E R 1

3D Metafile Reference

1-64 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

General Polygon Hints 1

LABELS

ASCII GeneralPolygonHint

Binary gplh (= 0x67706C68)

GENERAL POLYGON HINTS

Complex 0x00000000

Concave 0x00000001

Convex 0x00000002

Constant descriptions

Complex The parent general polygon may include concave, convex,
and self-intersecting polygons.

Concave All contours of the parent general polygon are concave
and none is self-intersecting.

Convex All contours of the parent general polygon are convex and
none is self-intersecting.

DATA FORMAT

GeneralPolygonHintEnum shapeHint

Field descriptions
shapeHint The value in this field must be one of the constants defined

above.

DATA SIZE

4

DESCRIPTION

A general polygon hint object is used to provide a reading application with an
indication of the shape of a general polygon.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-65
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Data.

PARENT OBJECTS

General polygon. A general polygon hint object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

GeneralPolygon (...)

GeneralPolygonHint (Complex)

)

DEFAULT VALUE

Complex.

Boxes 1

Figure 1-8 shows a box.

C H A P T E R 1

3D Metafile Reference

1-66 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-8 A box

LABELS

ASCII Box

Binary box (= 0x626F7820)

DATA FORMAT

Vector3D orientation

Vector3D majorAxis

Vector3D minorAxis

Point3D origin

Field descriptions
orientation The orientation of the box.

majorAxis The major axis of the box.

orientation

origin

ma
jo
rA
xi
s

minorAxis

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-67
Draft. Confidential.  Apple Computer, Inc. 5/30/95

minorAxis The minor axis of the box.
origin The origin of the box.

DATA SIZE

0 or 48

DESCRIPTION

A box is a three-dimensional object defined by an origin (that is, a corner of the
box) and three vectors that define the edges of the box that meet in that corner.
A box may be used to model a cube, rectangular prism, or other parallelipiped.
Attributes may be applied to each of the six faces of a box and to the entire
geometry of the box.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a box is as shown in Figure 1-9.

C H A P T E R 1

3D Metafile Reference

1-68 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-9 The default surface parameterization of a box

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Face attribute set list (optional), attribute set (optional). For the purpose of
attribute assignment, the faces of a box are indexed as follows:

Orientation

origin
majorAxis

(0,1)

(0,0)

(1,1)

(1,0)

Top

(0,1)

(0,0)

(1,1)

(1,0)

Left

(0,1)

(0,0)

(1,1)

(1,0)

Front

(0,1)

(0,0)

(1,1)

(1,0)

Right

(0,1)

(0,0)

(1,1)

(1,0)

Back

(1,0)

(1,1)

(0,0)

(0,1)

Bottom

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-69
Draft. Confidential.  Apple Computer, Inc. 5/30/95

0 The face perpendicular to the orientation vector having the
endpoint of the orientation vector as one of its vertices. In
Figure 1-9, this is the top face of the box.

1 The face perpendicular to the orientation vector having the
origin as one of its vertices. In Figure 1-9, this is the bottom
face of the box.

2 The face perpendicular to the major axis having the
endpoint of the major axis as one of its vertices. In
Figure 1-9, this is the front face of the box.

3 The face perpendicular to the major axis having the origin
as one of its vertices. In Figure 1-9, this is the back face of
the box.

4 The face perpendicular to the minor axis having the
endpoint of the minor axis as one of its vertices. In
Figure 1-9, this is the right face of the box.

5 The face perpendicular to the minor axis having the origin
as one of its vertices. In Figure 1-9, this is the front face of
the box.

EXAMPLE

Container (

Box (...)

Container (

FaceAttributeSetList (6 Exclude 2 1 4)

Container (

AttributeSet () #left face

DiffuseColor (1 0 0)

)

Container (

AttributeSet () #bottom face

DiffuseColor (0 1 1)

)

Container (

AttributeSet () #top face

DiffuseColor (0 1 0)

)

Container (

C H A P T E R 1

3D Metafile Reference

1-70 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

AttributeSet () #front face

DiffuseColor (1 0 1)

)

)

Container (

AttributeSet ()

DiffuseColor(0 0 0)

)

)

DEFAULT SIZE

For objects of size 0, the default is
1 0 0
0 1 0
0 0 1
0 0 0

Trigrids 1

Figure 1-10 shows a trigrid.

Figure 1-10 A trigrid

vertices[9]
vertices[10]

vertices[11]

vertices[7]

vertices[3]
vertices[2]

vertices[6]

vertices[0]

vertices[1]

vertices[4]

vertices[8]

6

7 8

0

1 2 3 4

10

119

5

vertices[5]

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-71
Draft. Confidential.  Apple Computer, Inc. 5/30/95

LABELS

ASCII TriGrid

Binary trig (= 0x74726967)

DATA FORMAT

Uns32 numUVertices

Uns32 numVVertices

Point3D vertices[numUVertices * numVVertices]

Field descriptions
numUVertices The number of vertices in the u parametric direction.

numVVertices The number of vertices in the v parametric direction.
vertices[] An array of vertices. The size of this array must equal the

number of vertices of the trigrid. Vertices are to be listed in
a rectangular order, first in the direction of increasing v,
then in the direction of increasing u. That is, the vertex
having parametric coordinates (u, v) precedes the vertex
having parametric coordinates (u’, v’) if and only if either
u < u’, or u = u’ and v < v’.

DATA SIZE

8 + (numUVertices * numVVertices * 12)

DESCRIPTION

A trigrid is a grid composed of triangular facets. The triangulation should be
serpentine (that is, quadrilaterals are divided into triangles in an alternating
fashion) to reduce shading artifacts when using Gouraud or Phong shading.
Attributes may be assigned to each vertex and to each facet of a trigrid, and
also to the entire trigrid.

PARENT HIERARCHY

Shared, shape, geometry.

C H A P T E R 1

3D Metafile Reference

1-72 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

None.

CHILD OBJECTS

Vertex attribute set list (optional), face attribute set list (optional), attribute set
(optional). A face attribute set list may be used to assign attributes to the facets
of a trigrid. The number of facets of a trigrid is the same as the number of its
vertices. The vertices and facets of a trigrid are indexed in the manner shown
by Figure 1-10. The vertex index prefers u to v and prefers 0 to 1; thus, it
follows the canonical lexicographical ordering of the points in uv parametric
space. The facet index is less easily defined but is readily apprehended.
Consider first the serpentine path through the trigrid along the diagonals
belonging to facets of the trigid. Now consider the alternative serpentine path
composed of segments connecting all and only those vertices not on the first
path. The second path passes through each facet and intersects all of the
diagonals on the first path. The facets of the trigrid are numbered in the order
that they would be encountered by a traveler along the second serpentine path.

EXAMPLE

Container (

TriGrid (

3 #numUVertices

4 #numVVertices

2 0 0 2 1 0 2 2 0 2 3 0

1 0 0 1 1 0 1 2 0 1 3 0

0 0 0 0 1 0 0 2 0 0 3 0

)

Container (

FaceAttributeSetList (12 include 61 3 5 7 9 11)

Container (

AttributeSet()

DiffuseColor (1 1 1)

)

.

.

.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-73
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Container (

AttributeSet()

DiffuseColor (1 1 1)

)

)

Container (

AttributeSet ()

DiffuseColor (0 0 0)

)

)

DEFAULT SIZE

None.

Meshes 1

Figure 1-11 shows a mesh.

Figure 1-11 A mesh

Mesh edge

Mesh face Mesh vertex

Mesh corner

C H A P T E R 1

3D Metafile Reference

1-74 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

LABELS

ASCII Mesh

Binary mesh (= 0x6D657368)

MESH FACE DATA TYPE

Int nFaceVertexIndices

Uns faceVertexIndices[|nFaceVertexIndices|]

Field descriptions
nFaceVertexIndices

An integer the absolute value of which is equal to the
number of indices to the vertices of a mesh face or mesh
contour: that is, equal to the number of vertices of that face
or contour. The value of this field may be positive or
negative. A positive value indicates that this mesh face
object specifies a face (to which attributes may be
assigned). A negative value indicates that this mesh face
object specifies a hole (here called a contour). The absolute
value of the value in this field must be at least 3.

faceVertexIndices[]
An array of indices to elements of the array vertices[],
where i is the index of vertices[i]. This array specifies a
verticed object by giving the indices of its vertices. The
specified object is either a face or a contour of the mesh, as
determined by the value of nVertices. The number of
fields of this array must equal the absolute value of the
value of the nVertices field.

DESCRIPTION

The mesh face data type is used to specify a verticed object and to specify
whether that object is a face or a contour of a mesh. This data type occurs only
as the value of a field in the faces[] array of a mesh specification.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-75
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

Uns32 nVertices

Vertex3D vertices[nVertices]

Uns32 nFaces

Uns32 nContours

MeshFace faces[nFaces + nContours]

Field descriptions
nVertices The number of vertices of the mesh. The value of this field

must be at least 3.

vertices[] An array of vertices.
nFaces The number of faces of the mesh.
nContours The number of contours of the mesh (that is, the number of

holes in the mesh).
faces[] An array of mesh face objects, each of which specifies

either a face or a contour (hole) of the mesh. The size of
this array is equal to the sum of the values of the
nVertices and nContours fields. Each array element that
specifies a face should precede any and all array elements
that specify holes in that face; any such latter elements
may occur in any order but should be grouped together
and should precede any subsequent array element that
specifies a face: if the value of field i specifies a face
intended to have n holes, then the objects that specify
those holes must occupy the next n fields: that is, fields i+1,
..., i+n.

DATA SIZE

sizeof(MeshFace) = fabs(Int) * 4
sizeof(Mesh) = 4 + nVertices * 12 + 8 +
sizeof(faces[0...nFaces+nContours-1])

DESCRIPTION

A mesh is an object defined by a collection of vertices, faces, and contours.
Meshes may be used to model polyhedra, grids, and other faceted objects. A
mesh may have a boundary. The term contour is used here to refer to a

C H A P T E R 1

3D Metafile Reference

1-76 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

polygonal hole contained in a single face of a mesh. A mesh face (or contour) is
a list of vertices that defines a polygonal facet. A face (or contour) need not be
planar, and a contour and its surrounding face need not be coplanar; however,
rendering of a mesh having a nonplanar face or contour, or having a contour
not coplanar with its surrounding face, may lead to unexpected results.

The specification of a mesh includes an array of vertices and an array of faces
and contours. The vertices of a mesh are indexed by array position; these
indices are used to specify the faces and contours of that mesh. Faces and
contours are also indexed by array position; this index does not distinguish
between faces and contours. Both of these indices are used in the specification
of child objects.

Attributes may be attached separately and selectively to the vertices, faces, face
edges, and corners of a mesh.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Face attribute set list (optional), vertex attribute set list (optional), mesh corners
(optional), mesh edges (optional). See the sections “Mesh Corners” on
page 1-77 and “Mesh Edges” on page 1-80 for descriptions of these objects.

EXAMPLE

Mesh (

10 # nVertices

-1 1 1 # enumeration of vertices

-1 1 -1

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-77
Draft. Confidential.  Apple Computer, Inc. 5/30/95

1 1 -1

1 -1 -1

1 -1 1

0 -1 1

-1 -1 0

-1 -1 -1

1 1 1

-1 0 1

7 # nFaces

0 # nContours

3 6 5 9 # enumeration of contours

5 7 6 9 0 1

4 2 3 7 1

4 2 8 4 3

4 1 0 8 2

5 4 8 0 9 5

5 3 4 5 6 7

)

DEFAULT SIZE

None.

Mesh Corners 1

LABELS

ASCII MeshCorners

Binary crnr (= 0x63726E72)

MESHCORNER DATA TYPE

Uns32 vertexIndex

Uns32 nFaces

Uns32 faces[nFaces]

C H A P T E R 1

3D Metafile Reference

1-78 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
vertexIndex The index of a vertex of the parent mesh.

nFaces The number of faces of the parent mesh sharing the vertex
that is the value of the vertexIndex field which are to be
correlated with child objects of the mesh corners object.
The value of this field must not exceed the number of faces
of the parent mesh meeting at the vertex whose index is
the value of the vertexIndex field.

faces[] An array of face indices representing faces of the parent
mesh. The vertex whose index is the value of the
vertexIndex field must be among the vertices of each face
of the parent mesh whose face index appears in this array.
The number of fields of this array must equal the value of
nFaces.

DATA FORMAT

Uns32 nCorners

MeshCorner corners[nCorners]

Field descriptions
nCorners The number of corners of the parent mesh treated by this

mesh corners object.

corners[] An array of mesh corners data types. The elements of this
array are correlated with attribute sets which occur as
child objects of the mesh corners object. The number of
fields of this array must equal the value of nCorners.

DATA SIZE

sizeof(MeshCorner) = 8 + nFaces * 4

sizeof(MeshCorners) = 4 + sizeof(corners[0...nCorners-1])

DESCRIPTION

The mesh corners object is used to attach more than one attribute set to a vertex
of a mesh and to override other attributes inherited by a vertex or assigned to it
elsewhere. You can use mesh corners in various ways: for example, to apply

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-79
Draft. Confidential.  Apple Computer, Inc. 5/30/95

different normals and shadings in order to create the appearance of a sharp
edge or peak. This object occurs only as a child object to a mesh and always has
attribute sets as child objects of its own.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Mesh (always).

CHILD OBJECTS

Attribute sets (always). The number of child objects is equal to the value of the
numCorners field. Child objects are correlated with elements of the array
corners[] in the order of their occurrence in the specification of the mesh
corners object and its child objects; that is, the ith child object is correlated with
the ith element of the array corners[].

EXAMPLE

Container (

Mesh (...) # parent mesh

Container(

MeshCorners (

2 # numCorners

Corner 0

5 # vertexIndex

2 # faces

25 26 # face indices

Corner 1

5 # vertexIndex

2 # faces

23 24 # face indices

)

Container (

AttributeSet ()

C H A P T E R 1

3D Metafile Reference

1-80 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Normal (-0.2 0.8 0.3)

)

Container (

AttributeSet ()

Normal (-0.7 -0.1 0.4)

)

)

)

Mesh Edges 1

LABELS

ASCII MeshEdges

Binary edge (= 0x65646765)

MESH EDGE DATA TYPE

Uns32 vertexIndex1

Uns32 vertexIndex2

Field descriptions
vertexIndex1 The smaller of the indices of the two vertices of the mesh

edge. The indices are taken from the vertex index of the
parent mesh.

vertexIndex2 The larger of the indices of the two vertices of the mesh
edge.

IMPORTANT

The edge defined by a mesh edge data type must be an edge of
a face (not merely a contour) of the parent mesh. ▲

DATA FORMAT

Uns32 nEdges

MeshEdge edges[nEdges]

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-81
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
nEdges The number of edges of the parent mesh treated by this

Mesh Edge object. The value in this field must be greater
than 0 and less than or equal to the number of edges of
faces of the parent mesh.

edges[] An array of mesh edge data types. The elements of this
array are correlated with attribute sets that occur as child
objects of the mesh edges object. The number of fields of
this array must equal the value of nEdges.

DATA SIZE

4 + sizeof(edges[0...nEdges-1])

DESCRIPTION

The mesh edges object is used to attach attribute sets separately and selectively
to one or more edges of faces of a mesh.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Mesh (always).

CHILD OBJECTS

Attribute sets (always). The number of child objects is equal to the value of the
nEdges field. Child objects are correlated with elements of the array edges[] in
the order of their occurrence in the specification of the Mesh Edges object and
its child objects; that is, the ith child object is correlated with the ith element of
the array edges[].

C H A P T E R 1

3D Metafile Reference

1-82 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

Mesh (...)

Container (

MeshEdges (

2 # numEdges

0 1 # first edge

1 3 # second edge

)

Container (# first edge attribute set

AttributeSet ()

DiffuseColor (0.2 0.8 0.3)

)

Container (# second edge attribute set

AttributeSet ()

DiffuseColor (0.8 0.2 0.3)

)

)

)

Ellipses 1

Figure 1-12shows an ellipse.

Figure 1-12 An ellipse

minorRadius

majorRadius

origin

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-83
Draft. Confidential.  Apple Computer, Inc. 5/30/95

LABELS

ASCII Ellipse

Binary elps (= 0x656C7073)

DATA FORMAT

Vector3D majorAxis

Vector3D minorAxis

Point3D origin

Field descriptions
majorAxis The (semi-) major axis of the ellipse.

minorAxis The (semi-) minor axis of the ellipse.
origin The center of the ellipse.

DATA SIZE

0 or 36

DESCRIPTION

An ellipse is a two-dimensional object defined by an origin (that is, the center
of the ellipse) and two orthogonal vectors that define the major and minor radii
of the ellipse. The origin and the two endpoints of the major and minor radii
define the plane in which the ellipse lies. Attributes may be assigned only to
the entire ellipse.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-84 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Ellipse (

2 0 0 #majorRadius

0 1 0 #minorRadius

0 0 0 #origin

)

DEFAULT SIZE

For objects of size 0, the default is shown in the example above.

NURB Curves 1

Figure 1-13 shows a NURB curve.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-85
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-13 A NURB curve

LABELS

ASCII NURBCurve

Binary nrbc (= 0x6E726263)

DATA FORMAT

Uns32 order

Uns32 nPoints

RationalPoint4D points[nPoints]

Float32 knots[order + nPoints]

Field descriptions
order The order of the NURB curve. For NURB curves defined

by ratios of cubic B-spline polynomials, the order is 4. In
general, the order of a NURB curve defined by polynomial
equations of degree n is n+1. The value of this field must
be greater than 1.

C H A P T E R 1

3D Metafile Reference

1-86 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

nPoints The number of control points that define the NURB curve.
The value of this field must be greater than 1.

points[] An array of rational four-dimensional control points that
define the NURB curve. The w coordinate of each control
point must be greater than 0.

knots[] An array of knots that define the NURB curve. The
number of knots in a NURB curve is the sum of the values
in the order and nPoints fields. The values in this array
must be nondecreasing. Successive values may be equal,
up to a multiplicity equivalent to the order of the curve;
that is, if the order of a NURB curve is n, then at most n
successive values may be equal.

DATA SIZE

8 + (nPoints * 16) + ((nPoints + order) * 4)

DESCRIPTION

A nonuniform rational B-spline (NURB) curve is a three-dimensional projection
of a four-dimensional curve. A NURB curve is specified by its order, the
number of control points used to define it, the control points themselves, and
the knots used to define it. Attributes may be applied only to the entire NURB
curve.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-87
Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

NURBCurve (

4 # order

7 # nPoints

0 0 0 1 # points

1 1 0 1

2 0 0 1

3 1 0 1

4 0 0 1

5 1 0 1

6 0 0 1

0 0 0 0 0.25 0.5 0.75 1 1 1 1 # knots

)

DEFAULT SIZE

None.

2D NURB Curves 1

LABELS

ASCII NURBCurve2D

Binary nb2c (= 0x6E623263)

DATA FORMAT

Uns32 order

Uns32 nPoints

RationalPoint3D points[nPoints]

Float32 knots[order + nPoints]

C H A P T E R 1

3D Metafile Reference

1-88 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
order The order of the NURB curve. In general, the order of a

NURB curve defined by polynomial equations of degree n
is n+1. The value of this field must be greater than 1.

nPoints The number of control points that define the 2D NURB
curve. The value of this field must be greater than 1.

points[] An array of three-dimensional control points that define
the 2D NURB curve. The z coordinate of each point in this
array must be greater than 0.

knots[] An array of knots that define the 2D NURB curve. The
number of knots in a NURB curve is the sum of the values
in the order and nPoints fields. The values in this array
must be nondecreasing, but successive values may be
equal.

DATA SIZE

8 + 12 * nPoints + 4 * (order + nPoints)

DESCRIPTION

See the section “NURB Curves” on page 1-84 for a general description of
NURB curves. 2D NURB curves occur only as child objects to trim loop objects,
and trim loop objects occur only as child objects to NURB patches. This object
is the only two-dimensional curve permitted by 3D metafile version 1.0.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Trim loop object (always).

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-89
Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

DEFAULT SIZE

None.

Trim Loops 1

LABELS

ASCII TrimLoop

Binary trml (= 0x74726D6C)

DATA FORMAT

None.

DATA SIZE

0

DESCRIPTION

A trim loop object is used to bind two-dimensional curves to a NURB patch for
the purpose of trimming that patch. As of this release, only 2D NURB curves
may be used for trimming.

Trimming curves are attached to a NURB patch by placing them in a container
the root object of which is a trim loop object and placing that container in a
further container together with the relevant NURB patch.

The two-dimensional curves governed by a trim loop object must form a
sequence such that the last control point of the ith curve is also the first control
point of the i+1st curve, and the last control point of the last curve is also the
first control point of the first curve.

C H A P T E R 1

3D Metafile Reference

1-90 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Data.

PARENT OBJECTS

NURB patch (always).

CHILD OBJECTS

2D NURB curves (required). A trim loop object may have several child objects.

EXAMPLE

Container (

NURBPatch (...)

Container (

TrimLoop ()

NURBCurve2D (...)

.

.

.

NURBCurve2D (...)

)

DEFAULT SIZE

None.

NURB Patches 1

Figure 1-14 shows a NURB patch.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-91
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-14 A NURB patch

LABELS

ASCII NURBPatch

Binary nrbp (= 0x6E726270)

DATA FORMAT

Uns32 uOrder

Uns32 vOrder

Uns32 numMPoints

Uns32 numNPoints

controlPoints[10]

controlPoints[11]

controlPoints[9]

controlPoints[4]

controlPoints[0]

controlPoints[1]

controlPoints[2]

controlPoints[6]

controlPoints[5]

controlPoints[3]

controlPoints[7]

v
u

controlPoints[8]

C H A P T E R 1

3D Metafile Reference

1-92 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

RationalPoint4D points[numMPoints * numNPoints]

Float32 uKnots[uOrder + numMPoints]

Float32 vKnots[vOrder + numNPoints]

Field descriptions
uOrder The order of a NURB patch in the u parametric direction.

For NURB patches defined by ratios of B-spline
polynomials that are cubic in u, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which u is of degree n is n+1.

vOrder The order of a NURB patch in the v parametric direction.
For NURB patches defined by ratios of B-spline
polynomials that are cubic in v, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which v is of degree n is n+1.

numMPoints The number of control points in the u parametric direction.
The value of this field must be greater than 1.

numNPoints The number of control points in the v parametric direction.
The value of this field must be greater than 1.

points[] An array of rational four-dimensional control points that
define the NURB patch. The size of this array is as
indicated in the data format.

uKnots[] An array of knots in the u parametric direction that define
the NURB patch. The values in this array must be
nondecreasing, but successive values may be equal. The
size of this array is as indicated in the data format.

vKnots[] An array of knots in the v parametric direction that define
the NURB patch. The values in this array must be
nondecreasing, but successive values may be equal. The
size of this array is as indicated in the data format.

DATA SIZE

16 + (16 * numMPoints * numNPoints) + (uOrder + numNPoints +

vOrder + numMPoints) * 4

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-93
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

A NURB patch is a three-dimensional surface defined by ratios of B-spline
surfaces, which are three-dimensional analogs of B-spline curves.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization of a NURB patch is as shown in Figure
1-14.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Trim curves (optional). A trim curves object is a collection of two-dimensional
NURB curves that are used to trim a NURB surface. See the sections “Trim
Loops” on page 1-89 and “2D NURB Curves” on page 1-87 for descriptions of
these objects.

EXAMPLE

NURBPatch (

4 #uOrder

4 #vOrder

4 #numMPoints

4 #numNPoints

-2 2 0 1 -1 2 0 1 1 2 0 1 2 2 0 1 #points

-2 2 0 1 -1 2 0 1 1 0 5 1 2 2 0 1

-2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1

-2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1

C H A P T E R 1

3D Metafile Reference

1-94 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

0 0 0 0 1 1 1 1 #uKnots

0 0 0 0 1 1 1 1 #vKnots

)

Note
The control points of a NURB patch are listed in a
rectangular order, first in order of increasing v, then in
order of increasing u. ◆

DEFAULT SIZE

None.

Ellipsoids 1

Figure 1-15 shows an ellipsoid.

Figure 1-15 An ellipsoid

LABELS

ASCII Ellipsoid

origin

minorRadiusmajorRadius

v

u

orientation

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-95
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Binary elpd (= 0x656C7064)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Field descriptions
orientation The orientation of the ellipsoid.

majorRadius The major radius of the ellipsoid.
minorRadius The minor radius of the ellipsoid.
origin The origin (that is, the center) of the ellipsoid.

DATA SIZE

0 or 48

DESCRIPTION

An ellipsoid is a three-dimensional object defined by an origin (that is, the
center of the ellipsoid) and three pairwise orthogonal vectors that define the
orientation and the major and minor radii of the ellipsoid.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for an ellipsoid is as shown in Figure
1-15. To the left of the major radius, v = 0; to the right of the major radius, v = 1.
At the (top of the) orientation vector, and at the bottom of the ellipsoid, u = 0.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-96 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Ellipsoid ()

Ellipsoid (

2 0 0

0 1 0

0 0 1

0 0 0

)

Container (

Ellipsoid ()

Container (

AttributeSet ()

DiffuseColor (1 1 0)

)

)

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0
0 1 0
0 0 1
0 0 0

Caps 1

LABELS

ASCII Caps

Binary caps (= 0x63617073)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-97
Draft. Confidential.  Apple Computer, Inc. 5/30/95

CAPS FLAGS

None 0x00000000

Top 0x00000001

Bottom 0x00000002

Constant descriptions

None The parent cone or cylinder shall not have any caps.
Top The parent cylinder shall have a cap at the end opposite to

its base.
Bottom The parent cone or cylinder shall have a cap at its base.

DATA FORMAT

CapsFlags caps

Field descriptions
caps A bitfield expression specifying one or more flags.

DATA SIZE

4

DESCRIPTION

A cap is a plane figure having the shape of an oval that closes the base of a cone
or one end of a cylinder. A cone and a cylinder may each be supplied with a
bottom cap. Only a cylinder may be supplied with a top cap. The length of the
semimajor axis of a cap is equal to the length of the major radius of its parent
object; the length of the semiminor axis of a cap is equal to the length of the
minor radius of its parent object. A cap lies in a plane perpendicular to the
orientation vector of its parent object. The center of a top cap is at the end of the
orientation vector of its parent object; the center of a bottom cap is at the origin
of its parent object. A separate attribute set may be assigned to each cap of an
object having one or more caps.

PARENT HIERARCHY

Data, cap data.

C H A P T E R 1

3D Metafile Reference

1-98 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

Cone, cylinder (always).

CHILD OBJECTS

None.

EXAMPLE

Container (

Cone (...)

Caps (Top | Bottom)

Container (

BottomCapAttributeSet ()

DiffuseColor (0 1 0)

)

)

DEFAULT VALUE

None.

Cylinders 1

Figure 1-16 shows a cylinder.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-99
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-16 A cylinder

LABELS

ASCII Cylinder

Binary cyln (= 0x63796C6E)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Field descriptions
orientation The orientation of the cylinder.

majorRadius The major radius of the cylinder.
minorRadius The minor radius of the cylinder.
origin The origin (that is, the center of the base) of the cylinder.

DATA SIZE

0 or 48

origin

v

u
majorRadius minorRadius

orientation

C H A P T E R 1

3D Metafile Reference

1-100 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

A cylinder is a three-dimensional object defined by an origin (that is, the center
of the cylinder) and three mutually perpendicular vectors that define the
orientation and the major and minor radii of the cylinder. A cylinder may
include a top cap, a bottom cap, or both. Attributes may be assigned to each
included cap, to the face of the cylinder, and to the entire cylinder.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a cylinder is as shown in Figure 1-16.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Caps (top), top cap attribute set, caps (bottom), bottom cap attribute set, face
cap attribute set, attribute set. All child objects are optional.

EXAMPLE

Cylinder ()

Cylinder (

0 2 0

0 1 0

0 0 1

0 0 0

)

Container (

Cylinder ()

Caps (Bottom | Top)

Container (

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-101
Draft. Confidential.  Apple Computer, Inc. 5/30/95

BottomCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0 1 0)

)

)

Container (

FaceCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 0 1)

)

)

Container (

TopCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 1 0)

)

)

)

Note
In the above example, color attributes are attached to the
surface of the cylinder very indirectly. As you see, color
objects are elements of ordinary attribute sets rather than
of cap attribute sets. Those attribute sets are elements of
containers, which, in turn, are elements of cap attribute
sets. The cap attribute sets serve to bind the ordinary
attribute sets to the caps of the cylinder. ◆

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0
0 1 0
0 0 1
0 0 0

C H A P T E R 1

3D Metafile Reference

1-102 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Disks 1

Figure 1-17 shows a disk.

Figure 1-17 A disk

LABELS

ASCII Disk

Binary disk (= 0x6469736B)

DATA FORMAT

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Field descriptions
majorRadius The major radius of the disk.

minorRadius The minor radius of the disk.
origin The center of the disk.

DATA SIZE

0 or 36

v u

majorRadius
minorRadius

origin

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-103
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

A disk is a two-dimensional object defined by an origin (that is, the center of
the disk) and two vectors that define the major and minor radii of the disk. A
disk may have the shape of a circle, ellipse, or other oval. Attributes may be
assigned to the entire disk only.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a disk is as shown in Figure 1-17.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Disk (

1 0 0 # majorRadius

0 1 0 # minorRadius

0 0 0 # origin

)

DEFAULT SIZE

For objects of size 0, the default is as in the previous example.

Cones 1

Figure 1-18 shows a cone.

C H A P T E R 1

3D Metafile Reference

1-104 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-18 A cone

LABELS

ASCII Cone

Binary cone (= 0x636F6E65)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Field descriptions
orientation The orientation of the cone. This vector also specifies the

height of the cone.

majorRadius The major radius of the cone.
minorRadius The minor radius of the cone.
origin The origin (that is, the center of the base) of the cone.

minorRadius
majorRadius

orientation

origin

v

u

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-105
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

0 or 48

DESCRIPTION

A cone is a three-dimensional object defined by an origin (that is, the center of
the base) and three vectors that define the orientation and major and minor
radii of the cone. A cap may be attached to the base of a cone. Attributes may
be assigned to the cap and face of a cone, and also to the entire cone.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a cone is as shown in Figure 1-18.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Caps (optional), bottom cap attribute set (optional), face cap attribute set
(optional), attribute set (optional). A cone must have a bottom cap in order to
have a bottom cap attribute set. Use Caps (Bottom) to set a cap on the base
of a cone.

EXAMPLE

Container (

Cone (

0 1 0 # orientation

0 0 1 # major axis

1 0 0 # minor axis

0 0 0 # origin

)

C H A P T E R 1

3D Metafile Reference

1-106 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Caps (Bottom)

Container (

BottomCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

)

Container (

FaceCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0 0 1)

)

)

)

Note
See the note in the section “Cylinders” for an explanation
of cap attribute sets. ◆

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0

0 1 0

0 0 1

0 0 0

Tori 1

Figure 1-19 shows a torus.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-107
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-19 A torus

LABELS

ASCII Torus

Binary tors (= 0x746F7273)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Float32 ratio

Field descriptions
orientation The orientation of the torus. This field specifies the axis of

rotation and half-thickness of the torus. The orientation
must be orthogonal to both the major and minor radii.

majorRadius The major radius of the torus.
minorRadius The minor radius of the torus.
origin The center of the torus.
ratio The ratio of the length of the major radius of the rotated

ellipse to the length of the orientation vector of the torus.

minorRadius

majorRadiusr origin

orientation

C H A P T E R 1

3D Metafile Reference

1-108 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

(In Figure 1-19, this is ρ ÷ length(orientation.) This field
indicates the eccentricity of a vertical cross-section through
the torus (wide if ρ > 1, narrow if ρ < 1).

DATA SIZE

0 or 52

DESCRIPTION

A torus is a three-dinensional object formed by the rotation of an ellipse about
an axis in the plane of the ellipse that does not cut the ellipse. The major and
minor radii of the torus are the distance of the center of the ellipse from that
axis.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a torus is as shown in Figure 1-20.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-109
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-20 The defalt surface parameterization of a torus

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

Cross section

Top view

v=1

v=0

u=0

u=1

v=1

v=0

Orientation

minorRadius

majorRadius

C H A P T E R 1

3D Metafile Reference

1-110 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLES

Container (

Torus (

0 .2 0 #orientation

1 0 0 #majorRadius

0 0 1 #minorRadius

0 0 0 #origin

.5 #ratio

)

Container (

AttributeSet ()

DiffuseColor (1 1 0)

)

)

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0

0 1 0

0 0 1

0 0 0

1

Markers 1

Figure 1-21 shows a marker.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-111
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Figure 1-21 A marker

LABELS

ASCII Marker

Binary mrkr (= 0x6D726B72)

DATA FORMAT

Point3D location

Uns32 width

Uns32 height

Uns32 rowBytes

Int32 xOffset

Int32 yOffset

RawData data[imageSize]

Field descriptions
location The origin of the marker.

width The width of the marker, in pixels. The value of this field
must be greater than 0.

height The height of the marker, in pixels. The value of this field
must be greater than 0.

rowBytes The number of bytes in a row of the marker.
xOffset The number of pixels, in the horizontal direction, to offset

the upper-left corner of the marker from the origin
specified in the location field.

yOffset The number of pixels, in the vertical direction, to offset the
upper-left corner of the marker from the origin specified in
the location field.

C H A P T E R 1

3D Metafile Reference

1-112 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

data[] This field defines a bitmap that specifies the image to be
drawn.

DATA SIZE

32 + (rowBytes * height) + padding

DESCRIPTION

A marker is a two-dimensional object typically used to indicate the position of
an object (or part of an object) in a window. The marker is drawn perpendicular
to the viewing vector, aligned with the window, with its origin at the specified
location. A marker is always drawn with the same size, shape, and orientation,
no matter what transformations are active. However, a transformation may
move the origin and thereby affect the position of the marker in the window.
Attributes may be assigned only to the entire marker; these attributes apply to
those bits in the bitmap that are set to 1.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Container (

Marker (

0.5 0.5 0.5 # location

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-113
Draft. Confidential.  Apple Computer, Inc. 5/30/95

56 # width

6 # height

7 # rowBytes

-28 # xOffset

-3 # yOffset

0x7E3C3C667E7C18606066666066187C3C

0x607E7C661860066066607C1860066666

0x6066007E3C3C667E6618

)

Container (

AttributeSet ()

DiffuseColor (0.8 0.2 0.6)

)

)

Marker (

0 0 0 # location

32 # width

32 # height

4 # rowBytes

-16 # xOffset

-16 # yOffset

0x001000402167E0201098181011300C08

0x1E60C6860D403A461880274CB0C041FC

0x60A0811C608301193080119E30908B38

0x18604E300CC1CA3037B23C7043181870

0x0387E82001A01DC000502B4000502A80

0x00506A80005DD3000076220000484C00

0x00501800006060000041800000420000

0x0042000000FF000000FF000000FF0000

)

DEFAULT SIZE

None.

C H A P T E R 1

3D Metafile Reference

1-114 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Attributes 1

Diffuse Color 1

LABELS

ASCII DiffuseColor

Binary kdif (= 0x6B646966)

DATA FORMAT

ColorRGB diffuseColor

Field descriptions
diffuseColor A structure having three fields: red, green, blue. The

permitted values of these fields are 32-bit floating-point
numbers in the closed interval [0, 1], where 0 is the
minimum value and 1 is the maximum value.

DATA SIZE

12

DESCRIPTION

Diffuse color is the color of the light of a diffuse reflection (the type of reflection
that is characteristic of light reflected from a dull, non-shiny surface). A diffuse
color attribute specifies the color of the light diffusely reflected by the objects to
which it is assigned.

PARENT HIERARCHY

Element, attribute.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-115
Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

Attribute sets. A diffuse color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

DiffuseColor (0 1 0)

)

Specular Color 1

LABELS

ASCII SpecularColor

Binary kspc (= 0x6b737063)

DATA FORMAT

ColorRGB specularColor

Field descriptions
specularColor A structure having three fields: red, green, blue. The

permitted values of these fields are 32-bit floating-point
numbers in the closed interval [0, 1], where 0 is the
minimum value and 1 is the maximum value.

DATA SIZE

12

C H A P T E R 1

3D Metafile Reference

1-116 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

Specular color is the color of the light of a specular reflection (specular
reflection is the type of reflection that is characteristic of light reflected from a
shiny surface). A specular color attribute specifies the color of the light
specularly reflected by the objects to which it is assigned. Note that the diffuse
color and specular color assigned to the same object can differ.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A specular color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

DiffuseColor (.1 .1 .1) # near-black

SpecularColor (1 1 1) # white

)

Specular Control 1

LABELS

ASCII SpecularControl

Binary cspc (= 0x63737063)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-117
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

Float32 specularControl

Field descriptions
specularControl The exponent to be used in computing the intensity of the

specular color of one or more objects. The value of this
field must be greater than or equal to 0, and is normally an
integer greater than or equal to 1.

DATA SIZE

4

DESCRIPTION

A specular control object specifies the specular reflection exponent used in the
Phong and related illumination models.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A specular control object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

DiffuseColor (1 0 0) # red

SpecularColor (1 1 1) # white highlights

SpecularControl (60) # sharp fall-off

C H A P T E R 1

3D Metafile Reference

1-118 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

)

Ellipsoid()

)

Transparency Color 1

LABELS

ASCII TransparencyColor

Binary kxpr (= 0x6B787072)

DATA FORMAT

ColorRGB transparency

Field descriptions
transparency A structure having three fields: red, green, blue. The

permitted values of these fields are 32-bit floating-point
numbers in the closed interval [0, 1], where 0 is the
minimum value and 1 is the maximum value.

DATA SIZE

12

DESCRIPTION

A transparency color attribute affects the amount of color allowed to pass
through an object that is not opaque. The transparency color values are
multiplied by the color values of obscured objects during pixel color
computations. Thus, the transparency color values (1 1 1) indicate complete
transparency and the values (0 0 0) indicate complete opacity. The values
(0 1 0) indicate that all light in the green color channel is allowed to pass
through the foreground object, and no light in the red and blue channels is
allowed to pass through the foreground object.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-119
Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A transparency color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

TransparencyColor (.5 .5 .5)

)

Surface UV 1

LABELS

ASCII SurfaceUV

Binary sruv (= 0x73727576)

DATA FORMAT

Param2D surfaceUV

Field descriptions
surfaceUV The values in the two fields of this structure specify a

surface uv parameterization for one or more objects. Both
of these values must be floating-point numbers greater
than or equal to 0 and less than or equal to 1.

C H A P T E R 1

3D Metafile Reference

1-120 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

8

DESCRIPTION

A surface UV object is used to specify a surface uv parameterization for one or
more objects. A surface UV object is normally used in conjunction with a trim
shader.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute set. A Surface UV object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

Mesh (...)

Container (

VertexAttributeSetList (

200 Include 4 10 21 22 11

)

Container (

AttributeSet ()

SurfaceUV (0 0)

)

Container (

AttributeSet ()

SurfaceUV (0 1)

)

Container (

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-121
Draft. Confidential.  Apple Computer, Inc. 5/30/95

AttributeSet ()

SurfaceUV (1 1)

)

Container (

AttributeSet ()

SurfaceUV (1 0)

)

)

)

Shading UV 1

LABELS

ASCII ShadingUV

Binary shuv (= 0x73687576)

DATA FORMAT

Param2D shadingUV

Field descriptions
shadingUV The values in the two fields of this structure specify

parameters in u and v for the purpose of shading. Both of
these values must be floating-point numbers greater than
or equal to 0 and less than or equal to 1.

DATA SIZE

8

DESCRIPTION

A Shading UV object is used to specify uv parameters for the purpose of
shading. A shading UV object is normally used in conjunction with a texture
shader.

C H A P T E R 1

3D Metafile Reference

1-122 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute set. A shading UV object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

ShadingUV (0 0)

)

Surface Tangents 1

LABELS

ASCII SurfaceTangent

Binary srtn (= 0x7372746E)

DATA FORMAT

Vector3D paramU

Vector3D paramV

Field descriptions
paramU The tangent in the u parametric direction.

paramV The tangent in the v parametric direction.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-123
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

24

DESCRIPTION

A surface tangent object is used to specify three-dimensional tangents to the
surface of a geometric object. These tangents serve to indicate the direction of
increasing u and v in the surface parameterization of that object.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute set. A surface tangent always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

SurfaceUV (0 0)

SurfaceTangent (

1 0 0

0 1 0

)

)

C H A P T E R 1

3D Metafile Reference

1-124 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Normals 1

LABELS

ASCII Normal

Binary nrml (= 0x6E726D6C)

DATA FORMAT

Vector3D normal

Field descriptions
normal The surface normal at a vertex. This vector should be

normalized.

DATA SIZE

12

DESCRIPTION

The surface normal at a vertex of a verticed object is the average of the normals
to the faces of that object sharing that vertex. This normal is obtained by
normalizing the relevant face normal vectors, adding those vectors together,
and normalizing the result. The surface normal vector is used in Gouraud
shading calculations.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A normal always has a parent object.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-125
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

AttributeSet ()

Normal (-1 0 0)

)

Ambient Coefficients 1

LABELS

ASCII AmbientCoefficient

Binary camb (= 0x63616D62)

DATA FORMAT

Float32 ambientCoefficient

Field descriptions
ambientCoefficient

The value of this field must lie in the closed interval [0, 1].
0 is the minimum value, 1 is the maximum value.

DATA SIZE

4

DESCRIPTION

The ambient coefficient is a measure of the level of an object’s reflection of
ambient light. Ambient coefficients may be assigned separately and selectively
to the facets and vertices of faceted and verticed objects, and the same ambient
coefficient may be assigned to several objects by placing the coefficient in a
suitably located attribute set.

C H A P T E R 1

3D Metafile Reference

1-126 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. An ambient coefficient always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

AmbientCoefficient (0.5)

DiffuseColor (1 1 1)

)

Highlight State 1

LABELS

ASCII HighlightState

Binary hlst (= 0x686C7374)

DATA FORMAT

Boolean highlighted

Field descriptions
highlighted A value of True indicates that affected geometric objects

are to receive the highlighting effects specified by an
associated highlight style object during rendering. A value
of False indicates that the affected objects are not to
receive those effects.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-127
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

4

DESCRIPTION

A highlight state object is used to specify whether affected geometric objects
are to receive highlighting effects during rendering. The relevant highlighting
effects are specified by an associated highlight style object. If a geometric
object’s highlight state is set to True (and an associated highlight style object
has been defined), then any renderer that supports highlighting will apply the
attributes specified by the highlight style object to that geometric object when
rendering; these attributes will override incompatible attributes assigned to
that geometric object by other means. A highlight state object is idle if no
associated highlight style object exists. See the section “Highlight Styles” on
page 1-148 for complete details on highlight style objects.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A highlight state object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

Container (

HighlightStyle () # highlight style object

Container (

AttributeSet ()

DiffuseColor (1 0 0) # highlighting: red color

)

)

C H A P T E R 1

3D Metafile Reference

1-128 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Container (

Polygon (...)

Container (

AttributeSet ()

DiffuseColor (0 0 1) # polygon’s normal color: blue

HighlightState (True) # polygon is to be highlighted

) and will appear red when

) rendered

Attribute Sets 1

Attribute Sets 1

LABELS

ASCII AttributeSet

Binary attr (= 0x61747472)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An attribute set is a collection of attributes to be applied to an object, a facet of
an object, or a vertex of an object. An attribute set may include attribute objects
of as many types as desired, but may include only one attribute object of any
particular type. Thus, an attribute set may contain both a diffuse color attribute
and a specular color attribute, but may not contain two diffuse color attributes.

Though any attribute object may be included in any attribute set, some
attributes cannot sensibly be applied to objects of certain types. For example, a

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-129
Draft. Confidential.  Apple Computer, Inc. 5/30/95

normal cannot sensibly be applied to an entire view, as encapsulated in a view
hints object. An application should disregard such attribute specifications.

Attributes may be assigned to other objects only indirectly, through the use of
attribute sets. Attributes are included in an attribute set by placing the attribute
objects and the attribute set object together in a container. The attributes in that
set may be assigned to a geometric object by placing the relevant container and
the geometric object together in a further container.

An attribute set may also be placed in a cap attribute set of any type; in this
way, attributes may be assigned separately and selectively to the caps and face
of a cone or cylinder. Attribute sets may also be placed in face, geometry, and
vertex attribute set lists; in this way, attributes may be assigned separately and
selectively to the facets, segments, and vertices of geometric objects having
those features. An attribute set may also be placed in a group. Unless
overridden, the attributes in an attribute set placed in a hierarchically
structured group are inherited by objects at lower levels in the hierarchy of that
group. (An application should not permit an attribute to be inherited by an
object to which that attribute cannot sensibly be applied.) See the sections on
cap attribute sets, attribute set lists, and groups for complete details on the
composition of these objects.

PARENT HIERARCHY

Shared, set.

PARENT OBJECTS

Any geometric object, cap attribute set, attribute set list, or group. An attribute
set always has a parent object.

CHILD OBJECTS

Attributes: ambient coefficient, diffuse color, specular color, specular control,
transparency color, highlight state, shading UV, surface UV (all optional).

C H A P T E R 1

3D Metafile Reference

1-130 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

Polygon (...) # all attributes in set applied to polygon

Container (# container puts attributes in set

AttributeSet ()

AmbientCoefficient (...)

DiffuseColor (...)

SpecularColor (...)

SpecularControl (...)

Normal (...)

)

)

Top Cap Attribute Sets 1

LABELS

ASCII TopCapAttributeSet

Binary tcas (= 0x74636173)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A top cap attribute set is used to attach attributes to the top cap of a cylinder
that has an optional top cap. The attributes to be assigned to the cap are placed
in a regular attribute set in the usual manner. Then the container holding the
regular attribute set and the attributes is placed in the cap attribute set by
including that container and the cap attribute set in a further container.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-131
Draft. Confidential.  Apple Computer, Inc. 5/30/95

The attributes associated with a top cap attribute set are not drawn if the parent
object lacks a top cap.

PARENT HIERARCHY

Data, cap data.

PARENT OBJECTS

Cylinder (always).

CHILD OBJECTS

Attribute set (optional). An empty top cap attribute set has no effect.

EXAMPLE

Container (

Cylindner (...)

Caps (Top)

Container (

TopCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0.2 0.9 0.4)

)

)

)

Bottom Cap Attribute Sets 1

LABELS

ASCII BottomCapAttributeSet

Binary bcas (= 0x62636173)

C H A P T E R 1

3D Metafile Reference

1-132 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A bottom cap attribute set is used to attach attributes to the bottom cap of a
cone or cylinder that has an optional bottom cap. The attributes to be assigned
to the cap are placed in a regular attribute set in the usual manner. Then the
container holding the regular attribute set and the attributes is placed in the
cap attribute set by including that container and the cap attribute set in a
further container.

The attributes associated with a bottom cap attribute set are not drawn if the
parent object lacks a bottom cap.

PARENT HIERARCHY

Data, cap data.

PARENT OBJECTS

Cone, cylinder (always).

CHILD OBJECTS

Attribute set (optional). An empty bottom cap attribute set has no effect.

EXAMPLE

Container (

Cylinder ()

Caps (Bottom)

Container (

BottomCapAttributeSet ()

Container (

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-133
Draft. Confidential.  Apple Computer, Inc. 5/30/95

AttributeSet ()

DiffuseColor (0.2 0.9 0.4)

)

)

)

Face Cap Attribute Sets 1

LABELS

ASCII FaceCapAttributeSet

Binary fcas (= 0x66636173)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A face cap attribute set is used to attach an attribute set to the surface of a cone
or cylinder but not to its caps. This object is used to apply attributes to a cone
or cylinder in a way that does not cause them to be inherited by its caps.

PARENT HIERARCHY

Data, cap data.

PARENT OBJECTS

Cone, cylinder (always).

C H A P T E R 1

3D Metafile Reference

1-134 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

Attribute set (optional). An empty face cap attribute set has no effect.

EXAMPLE

Container (

Cylinder ()

Caps (Top)

Container (

AttributeSet ()

SurfaceShader (...)

)

Container (

FaceCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

)

)

Attribute Set Lists 1

Geometry Attribute Set Lists 1

LABELS

ASCII GeometryAttributeSetList

Binary gasl (= 0x6761736C)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-135
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

Uns32 nObjects

PackingEnum packing

Uns32 nIndices

Uns indices[nIndices]

Field descriptions
nObjects The total number of instances of the relevant feature of the

parent geometric object possessed by that object. If the
parent object is a polyline, the relevant feature is polyline
segment, so the value of this field is the total number of
segments of the polyline.

packing See the section “Face Attribute Set Lists” on page 1-137 for
a complete explanation of this field.

nIndices The size of the following array. See the section “Face
Attribute Set Lists” on page 1-137 for a complete
explanation of this field.

indices[] An array of indices. A standard method of indexing
instances of the relevant feature of the parent object is
assumed to have been established, as with the segments of
a polyline. The values of this field are the indices of such
instances and are to be specified in increasing order. See
the section “Face Attribute Set Lists” on page 1-137 for a
complete explanation of this field.

DATA SIZE

16 + nIndices * sizeof(Uns) + padding

DESCRIPTION

A geometry attribute set list is used to assign sets of attributes separately and
selectively to distinct instances of a tractable feature of geometric objects. A
standard method of indexing the instances of such a feature is presupposed by
a geometry attribute set list.

At present, the polyline is the only primitive geometric object to which a
geometry attribute set list may be attached. The attribute sets appearing in a
geometry attribute set list are assigned to the line segments of which the

C H A P T E R 1

3D Metafile Reference

1-136 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

polyline is composed, not to the vertices of the polyline. (To attach attributes to
the vertices, use a vertex attribute set list.)

The standard index of the segments of a polyline is described in the section
“Polylines.” To recapitulate, the segment having index i is the segment having
as its endpoints vertices[i] and vertices[i+1].

PARENT HIERARCHY

Data, attribute set list.

PARENT OBJECTS

Polyline (always).

CHILD OBJECTS

Attribute sets (required). See the section “Face Attribute Set Lists” on
page 1-137 for a complete explanation of how child objects are correlated with
instances of the relevant features of the parent geometric object.

EXAMPLE

Container (

PolyLine (...) #parent geometric object

Container (

GeometryAttributeSetList ()

6 exclude 4 # there are 6 segments; exclude 4 of them

0 2 3 5 # indices of the segments to be excluded

#child objects

Container (

AttributeSet ‘ #applied to segment 1

DiffuseColor (...)

)

Container (

AttributeSet #applied to segment 4

DiffuseColor (...)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-137
Draft. Confidential.  Apple Computer, Inc. 5/30/95

)

)

)

Face Attribute Set Lists 1

LABELS

ASCII FaceAttributeSetList

Binary fasl (= 0x6661736C)

PACKING ENUM DATA TYPE

PackingEnum

The permitted values are include (= 0x00000000) and exclude (=
0x00000001).

DATA FORMAT

Uns32 nObjects

PackingEnum packing

Uns32 nIndices

Uns32 indices[nIndices]

Field descriptions
nObjects The total number of faces or facets of the parent object. If

the parent object is a box, the value of this field is 6. If the
parent object is a trigrid, the value of this field is the
number of vertices used to define that trigrid, which is also
the number of facets of the trigrid. If the parent object is a
mesh, the value of this field is the number of faces of that
mesh.

packing The value of this field determines whether the facets of the
parent object of the set list to receive attributes are those
whose facet indices appear in the array indices[] or are

C H A P T E R 1

3D Metafile Reference

1-138 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

those whose indices do not appear in that array. A value of
include indicates the former; exclude indicates the latter.
You may wish to select include if most facets of the parent
object are not to receive any attributes. Should any other
value appear in this field, the entire set list and all of its
child objects should be ignored.

nIndices The number of facets of the parent object to which the
action specified in the packing field is to be applied; that is,
the number of facets to be included in (or excluded from)
the group of facets to receive attributes. The value of this
field may not exceed that of the nObjects field.

indices[] An array of facet indices. The values in the fields of this
array are the indices of those facets of the parent object to
be subject to the action of the value of the packing field, in
the event that the number of facets to receive attributes is
less than the value in the nObjects field. The size of this
array must equal the value in the nIndices field. Indices
are to be entered in fields of this array in increasing order;
no index may appear more than once. If the value in the
packing field is include, then the field values represent
those facets which are to receive attributes in consequence
of the set list. If the value in the packing field is exclude,
then the field values represent those facets that are not to
receive attributes in consequence of the set list. If the value
in the packing field is exclude and the value in the
nIndices field is 0, then this field may be left unspecified;
similarly, if the value in the packing field is include and
the value in the nIndices field is equal to the value in the
nObjects field, then this field may be left unspecified.

DATA SIZE

16 + nIndices * sizeof(Uns) + padding

DESCRIPTION

A face attribute set list is used to assign sets of attributes separately and
selectively to one or more facets of a multi-faceted geometric object (that is, to
the faces of a box or mesh, or to the triangular facets of a trigrid). A face
attribute set list may not be assigned to a general polygon. The listed attribute

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-139
Draft. Confidential.  Apple Computer, Inc. 5/30/95

sets themselves occur as child objects of the set list object and are correlated
with facets of the parent object of the set list as described later in this section.
You may think of the child objects as the items in the set list; officially, the set
list is the object defined in this section.

For convenience, the packing field allows you to choose whether to specify (by
inclusion) the facets to receive attributes or to specify (by exclusion) the facets
not to receive attributes. The number of child objects you must specify is equal
to the number of facets actually to receive attributes, whichever option you
select for the packing field. You may wish to specify by inclusion rather than
by exclusion if most facets are not to receive any attributes. This option can
reduce the size of the indices[] array, save work, and save disk space.

If the value of the packing field of a set list is include, then the number of
child objects of that set list must equal the value of the nIndices field of that
set list. If the value of the packing field is exclude, then the number of child
objects must equal the (absolute value of) the difference between the values of
the nObjects and nIndices fields.

Child objects are correlated with facets of the parent object of the set list as
follows. Let the child objects of the set list be enumerated in the order of their
occurrence in the metafile. If the value of the packing field is include, then the
ith child object is correlated with the facet whose index is the value of the ith
field of the array indices[], or indices[i-1]. If the value of the packing field
is exclude, then the ith child object is correlated with the facet whose facet
index is the ith element of the sequence (in increasing order) of facets whose
indices do not appear in the array indices[]. For example, suppose that the
parent object is a mesh having 17 faces, packing is set to exclude, nIndices is
11, and the elements of indices[] are 1, 2, 4, 6, 7, 8, 11, 12, 13, 14, 16. Then six
facets are to receive attributes: facets 0, 3, 5, 9, 10, 15, so the set list will have six
child objects c0,..., c5. The third child object (that is, c2) is correlated with facet 5,
and, in general, the ith element of the sequence <c0,..., c5> is correlated with the
ith element of the sequence <0, 3, 5, 9, 10, 15>.

The index used to enumerate the facets of a multifaceted geometric object is
described in the section pertaining to that object. Indices begin with zero, so
that the index of the i+1st facet of a multifaceted object is i. The index used to
construct an attribute set list must be standard.

PARENT HIERARCHY

Data, attribute set list.

C H A P T E R 1

3D Metafile Reference

1-140 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

Box, mesh, trigrid.

CHILD OBJECTS

Attribute sets (required). The number of child objects is determined in the
manner indicated in the description of a face attribute set list.

EXAMPLE

Container (

TriGrid (...) #parent object

Container (

FaceAttributeSetList ()

6 #nObjects (parent has six facets;

exclude #packing (exclude

4 #nIndices (four of them:

0 2 3 5 #indices[] (these four.)

#begin list

Container (

AttributeSet #apply to facet 1

DiffuseColor (...)

)

Container (

AttributeSet #apply to facet 4

DiffuseColor (...)

#end list

)

)

)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-141
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Vertex Attribute Set Lists 1

LABELS

ASCII VertexAttributeSetList

Binary vasl (= 0x7661736C)

DATA FORMAT

Uns32 nObjects

PackingEnum packing

Uns32 nIndices

Uns indices[nIndices]

Field descriptions
nObjects The number of vertices of the parent geometric object.

packing See the section “Face Attribute Set Lists” on page 1-137 for
a complete explanation of this field.

nIndices Size of the following array. See the section “Face Attribute
Set Lists” on page 1-137 for a complete explanation of this
field.

indices[] An array of vertex indices. See the section “Face Attribute
Set Lists” on page 1-137 for a complete explanation of this
field.

DATA SIZE

16 + nIndices * sizeof(Uns) + padding

DESCRIPTION

A vertex attribute set list is used to assign sets of attributes separately and
selectively to the vertices of a verticed geometric object. Among the primitive
metafile geometric objects, the following have vertices: general polygons, lines,
meshes, polygons, polylines, triangles, and trigrids.

The index used to enumerate the vertices of an object of one of these types is
described in the section on objects of that type. To recapitulate, in all cases the

C H A P T E R 1

3D Metafile Reference

1-142 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

vertices are enumerated in the order of their occurrence in the specification of
the parent geometric object. In the case of a general polygon, the index does not
distinguish between contours.

PARENT HIERARCHY

Data, attribute set list.

PARENT OBJECTS

General polygon, line, mesh, polygon, polyline, triangle, trigrid. A vertex
attribute set list always has a parent object.

CHILD OBJECTS

Attribute sets (required). See the section “Face Attribute Set Lists” on
page 1-137 for a complete explanation of how child objects are correlated with
aspects of the parent geometric object.

EXAMPLE

Container (

GeneralPolygon (# parent geometric object

2 # nContours

#contour 0

3 # nVertices, contour 0

-1 0 0 # vertex 0

1 0 0 # vertex 1

0 1.7 0 # vertex 2

#contour 1

3 # nVertices, contour 1

-1 0.4 0 # vertex 3

1 0.4 0 # vertex 4

0 2.1 0 # vertex 5

)

Container (

VertexAttributeSetList (6 Exclude 2 0 4) # set list

Container (# child objects

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-143
Draft. Confidential.  Apple Computer, Inc. 5/30/95

AttributeSet () # vertex 1 (contour 0)

DiffuseColor (0 0 1)

)

Container (

AttributeSet () # vertex 2 (contour 0)

DiffuseColor (0 1 1)

)

Container (

AttributeSet () # vertex 3 (contour 1)

DiffuseColor (1 0 1)

)

Container (

AttributeSet () # vertex 5 (contour 1)

DiffuseColor (1 1 0)

)

)

Container (

AttributeSet ()

DiffuseColor (1 1 1)

)

)

Styles 1

Backfacing Styles 1

LABELS

ASCII BackfacingStyle

Binary bckf (= 0x62636B66)

C H A P T E R 1

3D Metafile Reference

1-144 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

BACKFACING STYLES

Both 0x00000000

Culled 0x00000001

Flipped 0x00000002

Constant descriptions

Both A renderer should draw shapes that face toward and away
from the camera. If a shape has only frontfacing attributes,
those attributes are used for both sides of the shape.

Culled A renderer should not draw shapes that face away from
the camera (this is not the same as hidden surface removal).

Flipped A renderer should draw shapes that face toward and away
from the camera. If a shape has only frontfacing attributes,
those attributes are used for both sides of the shape, but
the normals of backfacing shapes are inverted, so that they
face toward the camera.

DATA FORMAT

BackfacingEnum backfacing

backfacing The value in this field must be one of the three constants
defined above.

DESCRIPTION

A scene’s backfacing style determines whether or not a renderer draws shapes
that face away from a scene’s camera. This style object defines some of the
characteristics of a renderer and generally applies to all of the objects in a
model.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-145
Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (OrderedDisplayGroup ())

Matrix (...)

BackfacingStyle (Both)

Mesh (...)

Mesh (...)

EndGroup ()

Interpolation Styles 1

LABELS

ASCII InterpolationStyle

Binary intp (= 0x696E7470)

INTERPOLATION STYLES

None 0x00000000

Vertex 0x00000001

Pixel 0x00000002

Constant descriptions

None No interpolation is to occur. The renderer is to apply each
effect uniformly across a surface.

Vertex The renderer is to interpolate values linearly across a
verticed surface, using the values at the vertices.

Pixel The renderer is to calculate a value of each effect for every
pixel in the image.

C H A P T E R 1

3D Metafile Reference

1-146 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

InterpolationStyleEnum interpolationStyle

Field descriptions
interpolationStyle

The value in this field must be one of these constants:
None, Vertex, or Pixel.

DATA SIZE

4

DESCRIPTION

A scene’s interpolation style determines the method of interpolation a renderer
uses when applying lighting or other shading effects to a surface. A value of
None causes the surfaces of a model to have a faceted appearance; the other
two values cause its surfaces to be rendered smoothly.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ())

InterpolationStyle (Vertex)

Container (

Triangle (...)

VertexAttributeSetList (...)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-147
Draft. Confidential.  Apple Computer, Inc. 5/30/95

.

.

.

)

EndGroup ()

Fill Styles 1

LABELS

ASCII FillStyle

Binary fist (= 0x66697374)

FILL STYLES

Filled 0x00000000

Edges 0x00000001

Points 0x00000002

Empty 0x00000003

Constant descriptions

Filled The renderer should draw shapes as solid filled objects.
Edges The renderer should draw shapes as the sets of lines that

define the edges of surfaces.
Points The renderer should draw shapes as the sets of points that

define the vertices of surfaces.
Empty [To be supplied.]

DATA FORMAT

FillStyleEnum fillStyle

Field descriptions
fillStyle The value of this field must be one of these constants:

Filled, Edges, Points, Empty.

C H A P T E R 1

3D Metafile Reference

1-148 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

4

DESCRIPTION

A scene’s fill style determines whether an object is drawn as a solid filled object
or is decomposed into a set of edges or points.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ())

FillStyle (Edges)

Container (

Mesh (...)

VertexAttributeSetList (...)

)

Torus (...)

EndGroup()

Highlight Styles 1

LABELS

ASCII HighlightStyle

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-149
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Binary high (= 0x68696768)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A highlight style object is used to specify attributes to be applied to selected
geometric objects during rendering. Any renderer that supports highlighting
will use the attributes specified by a highlight style object to override
incompatible attributes assigned to affected geometric objects in other ways.
The attributes specified by a highlight style object are applied to a geometric
object only if that geometric object also has a highlight state attribute that is set
to True. See the section “Highlight State” on page 1-126 for complete details on
highlight state attributes.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (required).

EXAMPLE

BeginGroup (DisplayGroup ())

Container (

HighlightStyle () # highlight style object

C H A P T E R 1

3D Metafile Reference

1-150 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Container (

AttributeSet ()

DiffuseColor (0 0 1) # highlight attribute

)

Container (

Polygon (...)

Container (

AttributeSet ()

DiffuseColor (1 0 0)

HighlightState (True) # polygon will be highlighted

)

)

Container (

Box

Container (

AttributeSet ()

DiffuseColor (0 1 0)

HighlightState (False)# box will not be highlighted

)

)

Container (

Line (...) # line will not be highlighted

Container (

AttributeSet ()

DiffuseColor (1 1 1)

)

)

)

EndGroup ()

Subdivision Styles 1

LABELS

ASCII SubdivisionStyle

Binary sbdv (= 0x7364636C)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-151
Draft. Confidential.  Apple Computer, Inc. 5/30/95

SUBDIVISION METHOD ENUM DATA TYPE

Constant 0x00000000
WorldSpace 0x00000001
ScreenSpace 0x00000002

Note
There are two data formats. ◆

FIRST DATA FORMAT

SubdivisionMethodEnum subdivisionMethod

Float32 value1

Field descriptions
subdivisionMethod

The value in this field must be one of the specifiers
WorldSpace or ScreenSpace. A value of WorldSpace
indicates that the renderer subdivides a curve (or surface)
into polylines (or polygons) whose sides have a
world-space length that is at most as large as the value
specified in the value1 field. A value of ScreenSpace
indicates that the renderer subdivides a curve (or surface)
into polylines (or polygons) whose sides have a length that
is at most as large as the number of pixels specified in the
value1 field.

value1 For world-space subdivision, the maximum length of a
polyline segment (or polygon side) into which a curve (or
surface) is subdivided. For screen-space subdivision, the
maximum number of pixels in a polyline segment (or
polygon side) into which a curve (or surface) is
subdivided. The value in this field should be greater than 0.

DATA SIZE

8

C H A P T E R 1

3D Metafile Reference

1-152 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

SECOND DATA FORMAT

SubdivisionMethodEnum subdivisionMethod

Uns32 value1

Uns32 value2

Field descriptions
subdivisionMethod

The value in this field must be the specifier Constant. This
value indicates that the renderer subdivides a curve into a
number of polyline segments and a surface into a mesh of
polygons.

value1 The number of polylines into which a curve should be
subdivided, or the number of vertices in the u parametric
direction of the polygonal mesh into which a surface is
divided. The value in this field should be greater than 0.

value2 The number of vertices in the v parametric direction of the
polygonal mesh into which a surface is divided. The value
in this field should be greater than 0.

DATA SIZE

12

DESCRIPTION

A scene’s subdivision style determines how a renderer decomposes smooth
curves and surfaces into polylines and polygonal meshes for display purposes.
Different specifiers and numerical values determine different degrees of
fineness of approximation.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-153
Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ()

SubdivisionStyle (Constant 32 32)

Ellipsoid (...)

)

Container (

SubdivisionStyle (WorldSpace 12)

Box (...)

)

EndGroup ()

Orientation Styles 1

LABELS

ASCII OrientationStyle

Binary ornt (= 0x6F726E74)

ORIENTATION STYLES

CounterClockwise 0x00000000

Clockwise 0x00000001

Constant descriptions

CounterClockwise

The front face of a polygonal shape is defined using the
righthand rule.

Clockwise The front face of a polygonal shape is defined using the
lefthand rule.

C H A P T E R 1

3D Metafile Reference

1-154 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

OrientationEnum orientation

Field descriptions
orientation The value in this field must be one of these constants:

CounterClockwise, Clockwise.

DATA SIZE

4

DESCRIPTION

A scene’s orientation style determines which side of a planar surface is
considered (by the renderer) to be the “front” side. This style may be changed
in order to change the orientation of a polygonal shape.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup(DisplayGroup ())

OrientationStyle (Clockwise)

.

.

.

EndGroup ()

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-155
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Receive Shadows Styles 1

LABELS

ASCII ReceiveShadowsStyle

Binary rcsh (= 0x72637368)

DATA FORMAT

Boolean receiveShadows

Field descriptions
receiveShadows A value of True indicates that objects are to receive

shadows; a value of False indicates that objects are not to
receive shadows.

DATA SIZE

4

DESCRIPTION

A scene’s receive shadows style specifies whether or not obscured objects shall
receive shadows in rendering.

Note
Some lights also specify whether or not the objects they
illuminate shall cast shadows. However, objects in the
scope of a receive shadows style set to False do not
receive shadows, whether or not they are also
appropriately situated to receive shadows from a light set
to cast shadows. ◆

PARENT HIERARCHY

Shared, shape, style.

C H A P T E R 1

3D Metafile Reference

1-156 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ())

PointLight (...)

ReceiveShadows (True)

Mesh (...)

Mesh (...)

Mesh (...)

EndGroup ()

Pick ID Styles 1

LABELS

ASCII PickIDStyle

Binary pkid (= 0x706B6964)

DATA FORMAT

Uns32 id

Field descriptions
id An integer, supplied by your application.

DATA SIZE

4

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-157
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

A pick ID style object is used to correlate the class of objects within its scope
with an integer. This integer may be included in the specification of a picking
operation to restrict that operation to the objects in that class. A pick ID style
object must be placed in a group or container to have effect; the scope of a pick
ID style object placed in a group (or container) is the class of objects located
between that style object and the end of that group (or container).

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

PickIDStyle (8)

Pick Parts Styles 1

LABELS

ASCII PickPartsStyle

Binary pkpt (= 0x706B7074)

PICK PARTS STYLES

Object 0x00000000

Face 0x00000001

Edge 0x00000002

C H A P T E R 1

3D Metafile Reference

1-158 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Vertex 0x00000003

Constant descriptions

Object The hit list for picking contains only whole objects.
Face The hit list for picking contains faces of objects.
Edge The hit list for picking contains edges of objects.
Vertex The hit list for picking contains vertices of objects.

DATA FORMAT

PickPartsFlags pickParts

Field descriptions
pickParts The value in this field must be one of the four flags

specified in the PickPartsFlags data enumeration.

DATA SIZE

4

DESCRIPTION

A pick parts style object is used to specify the sort of object to be picked during
the operation of picking. The flags Face, Edge, and Vertex are used to pick
meshes; the flag Object is used to pick all other objects. The default flag is
Object.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-159
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

PickPartsStyle (Object)

Transforms 1

Translate Transforms 1

LABELS

ASCII Translate

Binary trns (= 0x74726E73)

DATA FORMAT

Vector3D translate

Field descriptions
translate A translation in three dimensions, specified by a vector.

DATA SIZE

12

DESCRIPTION

A translate transform moves an object along the x, y, and z axes by the values
specified by its translation vector. Thus, the transform Translate (i j k)
moves each point P = <Px, Py, Pz> in its scope to the point P’ = <Px+i, Py+j, Pz+k>.

PARENT HIERARCHY

Shared, shape, transform.

C H A P T E R 1

3D Metafile Reference

1-160 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Translate (-1 1 0)

Scale Transforms 1

LABELS

ASCII Scale

Binary scal (= 0x7363616C)

DATA FORMAT

Vector3D scale

Field descriptions
scale A scaling vector.

DATA SIZE

12

DESCRIPTION

A scale transform scales an object along the x, y, and z axes by the values
specified by its scaling vector.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-161
Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Scale (2 2 2)

Matrix Transforms 1

LABELS

ASCII Matrix

Binary mtrx (= 0x6D747278)

DATA FORMAT

Matrix4x4 matrix

Field descriptions
matrix A 4-by-4 array specifying a custom matrix transformation.

The specified matrix should be invertible.

DATA SIZE

64

C H A P T E R 1

3D Metafile Reference

1-162 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

A matrix transform is a transform by an arbitrary invertible 4-by-4 matrix.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Matrix (

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

)

Rotate Transforms 1

LABELS

ASCII Rotate

Binary rott (= 0x726F7474)

AXIS ENUM DATA TYPE

X 0x00000000

Y 0x00000001

Z 0x00000002

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-163
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

AxisEnum axis

Float32 radians

Field descriptions
axis The axis of rotation. The value in this field must be one of

these constants: X, Y, or Z.

radians The number of radians to rotate around the axis of rotation.

DATA SIZE

8

DESCRIPTION

A rotate transform rotates an object about the x, y, or z axis by a specified
number of radians.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Rotate (# rotate about the z axis by -1.57 radians

Z

-1.57

)

C H A P T E R 1

3D Metafile Reference

1-164 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Rotate-About-Point Transforms 1

LABELS

ASCII RotateAboutPoint

Binary rtap (= 0x72746170)

DATA FORMAT

AxisEnum axis

Float32 radians

Point3D origin

Field descriptions
axis The axis of rotation.

radians The number of radians to rotate about the axis of rotation.
origin The point at which the rotation is to occur.

DATA SIZE

20

DESCRIPTION

A rotate-about-point transform rotates an affected object by the specified
number of radians about the line parallel to the value in the axis field and
passing through the point specified in the origin field.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-165
Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

EXAMPLE

Rotate (

Y # axis

1.0 # radians

2 3 4 # origin

)

Rotate-About-Axis Transforms 1

LABELS

ASCII RotateAboutAxis

Binary rtaa (= 0x72746161)

DATA FORMAT

Point3D origin

Vector3D orientation

Float32 radians

Field descriptions
origin The origin of the axis of rotation.

orientation The orientation of the axis of rotation. This vector should
be normalized.

radians The number of radians by which an affected object is
rotated.

DATA SIZE

28

C H A P T E R 1

3D Metafile Reference

1-166 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

A rotate-about-axis transform rotates an object about an arbitrary axis in space
by a specified number of radians. The value in the origin field and the
orientation vector are used to define the axis of rotation.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

RotateAboutAxis (

20 0 0 # origin

.33 .33 .34 # orientation

1.57 # radians

)

Quaternion Transforms 1

LABELS

ASCII Quaternion

Binary qtrn (= 0x7174726E)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-167
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

Float32 w

Float32 x

Float32 y

Float32 z

Field descriptions
w The w component of the quaternion transform.

x The x component of the quaternion transform.
y The y component of the quaternion transform.
z The z component of the quaternion transform.

DATA SIZE

16

DESCRIPTION

A quaternion transform rotates and twists an object in a manner determined by
the mathematical properties of quaternions.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Quaternion (0.2 0.7 0.2 1.57)

C H A P T E R 1

3D Metafile Reference

1-168 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Shader Transforms 1

LABELS

ASCII ShaderTransform

Binary sdxf (= 0x73647866)

DATA FORMAT

Matrix4x4 shaderTransform

Field descriptions
shaderTransform A 4-by-4 matrix.

DATA SIZE

64

DESCRIPTION

A shader transform transforms a shaded object into a distinct world-space
coordinate system. A shader transform does not affect the current
transformation hierarchy and does not affect the manner in which the object to
which it is applied is drawn.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Any shader. A shader transform always has a parent object.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-169
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

CustomShader ()

ShaderTransform (

1 0 0 0

0 1 0 0

0 0 1 0

2 3 4 1

)

)

Shader UV Transforms 1

LABELS

ASCII ShaderUVTransform

Binary sduv (= 0x73647576)

DATA FORMAT

Matrix3x3 matrix

Field descriptions
matrix A 3-by-3 matrix.

DATA SIZE

36

DESCRIPTION

A shader uv transform may be used to transform the surface uv
parameterization of a geometric object prior to shading. A shader uv transform
may be used to rotate a texture map.

C H A P T E R 1

3D Metafile Reference

1-170 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Data.

PARENT OBJECTS

Any shader. A shader uv transform always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

TextureShader ()

ShaderUVTransform (

1 0 0

0 1 0

0.2 0.3 1

)

PixmapTexture (...)

)

Lights 1

Attenuation and Fall-Off Values 1

Some lights suffer attenuation; that is, a loss of intensity over distance. The
application determines the degree of attenuation of a light by specifying
substituends for three distinct variables in a complex term that occurs in
whatever formula it uses to compute the intensity of that light at a given
distance from its source. The choice of constants determines whether the light
suffers attenuation and, if so, the degree to which its intensity diminishes as a
function of distance. These constants are specified in a data structure of the
following type.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-171
Draft. Confidential.  Apple Computer, Inc. 5/30/95

ATTENUATION DATATYPE

Float32 c0

Float32 c1

Float32 c2

DESCRIPTION

The attenuation factor determined by an attenuation data type is expressed by
the result of replacing the variables c0, c1, c2 by the values of the fields c0, c1,
c2 in the complex term

(Here l is the location of the light source, p is the illuminated point, and dl, p is
the distance from l to p.)

The initial intensity of a light is multiplied by its attenuation factor when the
intensity of the light at a point is computed. Thus, if c0 = 1 and c1 = c2 = 0, then
the light does not suffer attenuation over distance. If c1 = 1 and c0 = c2 = 0, then
the intensity of the light at a point p diminishes in proportion to the distance
between p and the light source, provided that that distance is at least one unit.
If c2 = 1 and c0 = c1 = 0, then the intensity of the light at p diminishes in
proportion to the square of the distance between p and the light source, again
provided that that distance is at least one unit. If c0 = c2 = 1 and c1 = 0, then the
intensity of the light at p diminishes in proportion to the sum of 1 and the
square of the distance between p and the light source.

The attenuation factor is not clamped to a maximum value. Thus, for some
choices of c0, c1, c2, the intensity of a light may exceed its source intensity at
distances of less than one unit, driving the RGB color values of the light toward
the maximum of (1, 1, 1), or pure white.

The amount of illumination that a point illuminated by a light receives from
that light also depends on several other factors. Among these factors are the
diffuse and specular reflection characteristics of the surface that contains that
point and the relative positions of the light source, the illuminated point, and
the viewer (the camera).

1

c0 c1dl p, c2dl p,
2

+ +
--

 
 
 

C H A P T E R 1

3D Metafile Reference

1-172 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

LIGHT FALL-OFF VALUES

A spot light specifies a cone of light emanating from a source location. Within
the inner cone defined by the hot angle of a spot light, the light may suffer
attenuation over distance from the light source. Within the outer section of the
cone between the hot angle and the outer angle of a spot light, the light may
suffer further attenuation.

Spot lights have a fall-off value that determines the manner of attenuation of
the light from the edge of the cone defined by the hot angle to the edge of the
cone defined by the outer angle. The direction of fall off is perpendicular to the
ray from the source location through the center of the cone. The amount of
additional attenuation determined by any fall-off value is the same along all
rays from the location of the light source forming the same angle with the axis
of the cone.

The following constants specify four fall-off values a spot light may have.

FALLOFF VALUES

None 0x00000000

Linear 0x00000001

Exponential 0x00000002

Cosine 0x00000003

Constant descriptions

None The intensity of the light is not affected by the distance
from the center of the cone to the edge of the cone.

Linear The intensity of the light at the edge of the cone falls off at
a constant rate from the intensity of the light at the center
of the cone.

Exponential The intensity of the light at the edge of the cone falls off
exponentially from the intensity of the light at the center of
the cone.

Cosine The intensity of the light at the edge of the cone falls off as
the cosine of the outer angle from the intensity of the light
at the center of the cone.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-173
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Light Data 1

LABELS

ASCII LightData

Binary lght (= 0x6C676874)

DATA FORMAT

Boolean isOn

Float32 intensity

ColorRGB color

Field descriptions
isOn A value of True indicates that the parent light is active (is

on). A value of False indicates that the parent light is
inactive (is off).

intensity The intensity of the parent light at its source. The value in
this field must be in the closed interval [0, 1]. 0 is the
minimum value; 1 is the maximum value.

color The RGB color of the parent light.

DATA SIZE

20

DESCRIPTION

A light data object specifies the color and source intensity of a parent light, and
whether that light is currently active or inactive. A light object that does not
have a light data object as a child object should be given the default values
indicated below.

Note
A value of less than 1.0 in the intensity field of a light data
object affects the color of the parent light. ◆

C H A P T E R 1

3D Metafile Reference

1-174 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Data.

PARENT OBJECTS

A light data object always has a parent object; the parent object is always a light
object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AmbientLight ()

LightData (

True # is on

0.75 # intensity

0.7 0.3 0.4 # color

)

)

DEFAULT SETTING

True # isOn

1.0 # intensity (full)

1 1 1 # color (white)

Ambient Light 1

LABELS

ASCII AmbientLight

Binary ambn (= 0x616D626E)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-175
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

Ambient light is a base amount of light that is added to the illumination of all
surfaces in a scene. Ambient light has no apparent source or location; its
intensity is constant, and it does not cast shadows.

PARENT HIERARCHY

Shared, shape, light.

PARENT OBJECTS

None.

CHILD OBJECTS

Light data (optional). If no child object is specified, the light should have the
properties specified in the default setting of a light data object.

EXAMPLE

Container (

ViewHints ()

.

.

.

BeginGroup (DisplayGroup ())

Container (

AmbientLight ()

LightData (...)

)

C H A P T E R 1

3D Metafile Reference

1-176 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Container (

DirectionalLight()

LightData (...)

)

EndGroup ()

)

Directional Lights 1

LABELS

ASCII DirectionalLight

Binary drct (= 0x64726374)

DATA FORMAT

Vector3D direction

Boolean castsShadows

Field descriptions
direction The direction of the directional light. This vector should be

normalized.

castsShadows A value of True indicates that the light casts shadows; a
value of False indicates that the light does not cast
shadows.

DATA SIZE

16

DESCRIPTION

A directional light is a light that emits parallel rays in a specific direction. A
directional light may be set to cast shadows.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-177
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Note
Some style objects also specify whether or not objects in a
scene shall receive shadows. However, objects in the scope
of a receive shadows style set to False do not receive
shadows, whether or not they are also appropriately
situated to receive shadows from a light set to cast
shadows. ◆

PARENT HIERARCHY

Shared, shape, light.

PARENT OBJECTS

None.

CHILD OBJECTS

Light data (optional). If no child object is specified, the light should have the
properties specified in the default setting of a light data object.

EXAMPLE

Container (

DirectionalLight (1 0 0 True)

LightData (...)

)

Point Lights 1

LABELS

ASCII PointLight

Binary pntl (= 0x706E746C)

C H A P T E R 1

3D Metafile Reference

1-178 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

Point3D location

Attenuation attenuation

Boolean castsShadows

Field descriptions
location The location of the source of the point light.

attenuation This structure determines the amount that the intensity of
the light diminishes over distance. See the section
“Attenuation and Fall-Off Values” on page 1-170 for a
description of this structure.

castsShadows A value of True specifies that objects illuminated by the
light are to cast shadows; a value of False specifies that
objects illuminated by the light are not to cast shadows.

DATA SIZE

20

DESCRIPTION

A point light is a light that emits rays in all directions from a specific point
source. A point light may suffer attenuation over distance, and may cast
shadows.

Note
Some style objects also specify whether or not objects in a
scene shall receive shadows. However, objects in the scope
of a receive shadows style set to False do not receive
shadows, whether or not they are also appropriately
situated to receive shadows from a light set to cast
shadows. ◆

PARENT HIERARCHY

Shared, shape, light.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-179
Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

None.

CHILD OBJECTS

Light data (optional). If no child object is specified, the light should have the
properties specified in the default setting of a light data object.

EXAMPLE

BeginGroup (DisplayGroup ())

Triangle (...)

Box (...)

Container (

PointLight (

-10, 1, -1 # location

1 0 1 # attenuation

True # casts shadows

)

LightData (...)

)

EndGroup ()

Spot Lights 1

LABELS

ASCII SpotLight

Binary spot (= 0x73706F74)

DATA FORMAT

Point3D location

Vector3D orientation

Boolean castsShadows

Attenuation attenuation

C H A P T E R 1

3D Metafile Reference

1-180 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Float32 hotAngle

Float32 outerAngle

FallOffEnum fallOff

Field descriptions
location The location of the source of the spot light.

orientation The orientation of the cone of light emitted by the spot
light. The direction of this vector is toward the light source.
This vector should be normalized.

castsShadows A value of True specifies that objects illuminated by the
light are to cast shadows; a value of False indicates that
objects illuminated by the light are not to cast shadows.

attenuation This structure determines the amount that the intensity of
the light diminishes over distance. See the section
“Attenuation and Fall-Off Values” on page 1-170 for a
description of this structure.

hotAngle The half-angle (specified in radians) from the center of the
cone of light within which the light remains at constant full
intensity. The value in this field should be in the half-open
interval [0, π/2).

outerAngle The half-angle (specified in radians) from the center to the
edge of the cone of the spot light. The value in this field
should be in the half-open interval [0, π/2), and should not
be less than the value in the hotAngle field.

fallOff The fall-off value for the spot light. The value in this field
determines the manner of attenuation of the light from the
edge of the hot angle to the edge of the outer angle. See the
section “Attenuation and Fall-Off Values” on page 1-170
for a description of the constants that can be used in this
field.

DATA SIZE

44

DESCRIPTION

A spot light is a light source that emits a circular cone of light in a specific
direction from a specific location. Every spot light has a hot angle and an outer

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-181
Draft. Confidential.  Apple Computer, Inc. 5/30/95

angle that together define the shape of the cone of light and the amount of
attenuation that occurs from the center of the cone to the edge of the cone. The
attenuation of the light’s intensity from the edge of the hot angle to the edge of
the outer angle is determined by the light’s fall-off value.

Note
Some style objects also specify whether or not objects in a
scene shall receive shadows. Thus, conflicting shadowing
instructions can be sent to a renderer. The outcome in such
a case is renderer specific, application specific, or both. ◆

PARENT HIERARCHY

Shared, shape, light.

PARENT OBJECTS

None.

CHILD OBJECTS

Light data. If no child object is specified, the light should have the properties
specified in the default setting of a light data object.

EXAMPLE

Container (

SpotLight (

0 9 0 # location

0 1 0 # orientation

True # castsShadows

0 0 1 # attenuation

0.3 # hotAngle

0.5 # outerAngle

Linear # fallOff

)

LightData (...)

)

C H A P T E R 1

3D Metafile Reference

1-182 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Cameras 1

Camera Placement 1

LABELS

ASCII CameraPlacement

Binary cmpl (= 0x636D706C)

DATA FORMAT

Point3D location

Point3D pointOfInterest

Vector3D upVector

Field descriptions
location The location (in world-space coordinates) of the eye point

of the parent camera.

pointOfInterest The point at which the parent camera is aimed, in
world-space coordinates.

upVector The up vector of the parent camera. This vector should be
perpendicular to the viewing direction defined by the
values in the location and pointOfInterest fields. This
vector should be normalized.

DATA SIZE

36

DESCRIPTION

A camera placement object defines the location, point of interest, and
orientation of its parent camera, in world-space coordinates. The camera vector
(also called the view vector) is defined to be the vector pointOfInterest -
location. This vector is normal to the projection plane and to the clipping

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-183
Draft. Confidential.  Apple Computer, Inc. 5/30/95

planes, and the distances from the camera to those planes are measured along
this vector.

A camera placement object determines the coordinate system of the projection
plane as follows. The origin of the projection plane is the point at the
intersection of the projection plane and the line through the location and point
of interest. The y axis of the projection plane coincides with the projection onto
the projection plane of the up vector, and the x axis of the projection plane is
the axis such that it, the y axis of the projection plane, and the inverse of the
camera vector form a righthanded coordinate system.

If no camera placement object is specified for a camera, that camera should
receive the default camera placement values specified below.

PARENT HIERARCHY

Data.

PARENT OBJECTS

View angle aspect camera, view plane camera, orthographic camera. A camera
placement object always has a camera as a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewAngleAspectCamera (...)

CameraPlacement (

0 0 30 # location on z axis

0 0 0 # point of interest is the origin

0 1 0 # up vector aligned with yaxis

)

)

C H A P T E R 1

3D Metafile Reference

1-184 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DEFAULT VALUES

0 0 1 # location

0 0 0 # pointOfInterest

0 1 0 # upVector

Camera Range 1

LABELS

ASCII CameraRange

Binary cmrg (= 0x636D7267)

DATA FORMAT

Float32 hither

Float32 yon

Field descriptions
hither The distance from the location of the parent camera to the

near clipping plane. The value in this field should be
greater than 0.

yon The distance from the location of the parent camera to the
far clipping plane. The value in this field should be greater
than the value in the hither field.

DATA SIZE

8

DESCRIPTION

A camera range object is used to set the near and far clipping planes of its
parent camera. Distances are measured in the direction defined by the camera
vector, which is normal to both clipping planes.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-185
Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Data.

PARENT OBJECTS

View angle aspect camera, view plane camera, orthographic camera. A camera
placement object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewPlaneCamera (...)

CameraPlacement (...)

CameraRange (

.01 # hither

75 # yon

)

)

Camera Viewport 1

LABELS

ASCII CameraViewPort

Binary cmvp (= 0x636D7670)

DATA FORMAT

Point2D origin

Float32 width

Float32 height

C H A P T E R 1

3D Metafile Reference

1-186 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
origin The origin of the view port of the parent camera. The

abscissa and ordinate of this point should lie in the closed
interval [–1, 1]. The value in this field is the upper-left
corner of the view port.

width The width of the view port of the parent camera. The value
in this field should lie in the half-open interval (0, 2], and
should not be greater than the absolute value of the
difference between 1 and the abscissa of the origin.

height The height of the view port of the parent camera. The
value in this field should lie in the half-open interval (0, 2],
and should not be greater than the difference between –1
and the ordinate of the origin.

DATA SIZE

16

DESCRIPTION

Every camera specifies the dimensions of the largest (rectangular) image that
that camera can produce (called the parent image), either explicitly or implicitly.
The parent image may be specified by giving the coordinates of its vertices, by
giving the height to width ratio of its sides, or in some other fashion. The
camera view port object specifies the subregion of the parent image that is
actually to be drawn. The value in the origin field defines the upper left
corner of the view port; the values in the other two fields determine the lengths
of the sides of the view port.

The default setting specified below sets the view port equal to the parent
image. Other settings may be used to clip the parent image to desired
specifications.

Camera view port specifications are made in a coordinate system in which the
height-to-width ratio of the parent image is one to one, and the coordinates of
the upper-left and lower-right corners of that image are (–1, 1) and (1, –1),
respectively. The actual height-to-width ratio of the parent image may not be
one to one. If not, then view port specifications should be made under the
assumption that the view port will be rescaled by the inverse of the
height-to-width ratio of the parent image after the view port specifications
have been made. Thus, if the height-to-width ratio of the parent image is i/j,

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-187
Draft. Confidential.  Apple Computer, Inc. 5/30/95

and the height-to-width ratio of the image actually to be drawn is i’/j’, then the
height-to-width ratio of the rectangle specified in the view port should be i’j/ij’.
Any view port having a different height-to-width ratio will result in a distorted
image.

PARENT HIERARCHY

Data.

PARENT OBJECTS

View angle aspect camera, view plane camera, orthographic camera. A camera
viewport object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

CameraViewPort (

-0.5 0.5

1.0

1.0

)

DEFAULT VALUES

-1 1 # origin at upper left corner of the parent image

2 # width is the entire width of the parent image

2 # height is the entire height of the parent image

C H A P T E R 1

3D Metafile Reference

1-188 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Orthographic Cameras 1

LABELS

ASCII OrthographicCamera

Binary orth (= 0x6F727468)

DATA FORMAT

Float32 left

Float32 top

Float32 right

Float32 bottom

Field descriptions
left The x coordinate (in the camera’s coordinate system) of the

upper left corner of the front face of the view volume. Or,
the distance from the center of the camera lens (that is, the
view rectangle) to the left side of the lens.

top The y coordinate (in the camera’s coordinate system) of the
upper left corner of the front face of the view volume. Or,
the distance from the center of the camera lens (that is, the
view rectangle) to the top side of the lens.

right The x coordinate (in the camera’s coordinate system) of the
lower right corner of the front face of the view volume. Or,
the distance from the center of the camera lens (that is, the
view rectangle) to the right side of the lens.

bottom The y coordinate (in the camera’s coordinate system) of the
lower right corner of the front face of the view volume. Or,
the distance from the center of the camera lens (that is, the
view rectangle) to the left side of the lens.

DATA SIZE

16

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-189
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

An orthographic camera is a parallel projection camera that employs an
orthographic projection to obtain its image. The direction of projection is the
opposite of the camera vector (that is, location - pointOfInterest), the
projection plane is the near clipping plane, and the projection is thus along a
normal to the projection plane. The origin of the projection plane is the point at
hither (camera vector); if the absolute values of the fields top and bottom are
equal, and the absolute values of the fields left and right are equal, then the
origin of the projection plane is at the center of the front face of the view
volume.

PARENT HIERARCHY

Shared, shape, camera.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

Camera placement, camera range, camera view port (optional). If a camera
does not have one of these child objects, then it should be assigned the default
values specified in the section on that child object.

EXAMPLE

OrthographicCamera (

-10

-10

10

10

)

C H A P T E R 1

3D Metafile Reference

1-190 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

View Plane Cameras 1

LABELS

ASCII ViewPlaneCamera

Binary vwpl (= 0x7677706C)

DATA FORMAT

Float32 viewPlane

Float32 halfWidthAtViewPlane

Float32 halfHeightatViewPlane

Float32 centerXOnViewPlane

Float32 centerYOnViewPlane

Field descriptions
viewPlane The distance from the camera location to the view plane.

halfWidthAtViewPlane

One half the width of the view plane window.
halfHeightAtViewPlane

The value in the halfWidthAtViewPlane field divided by
the horizontal-to-vertical aspect ratio of the view port. The
value in this field determines the half-height of the view
plane window.

centerXOnViewPlane

The x coordinate of the center of the view plane window,
specified in the view plane coordinate system.

centerYOnViewPlane

The y coordinate of the center of the view plane window,
specified in the view plane coordinate system.

DATA SIZE

20

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-191
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

A view plane camera is a type of perspective camera defined in terms of an
arbitrary view plane. The camera vector is normal to the view plane, and the
distance from the camera location to the view plane is measured in the
direction defined by the camera vector. The window on the view plane and its
center are defined in the projection plane coordinate system determined by the
camera’s camera placement object. The view volume of a view plane camera is
determined by the four rays through the camera location and through the four
corners of the rectangular window on the view plane, together with the two
clipping planes. The view volume is the frustum whose top is the rectangle
having as its vertices the intersections of these four rays with the near clipping
plane and whose base is the rectangle having as its vertices the intersections of
these rays with the far clipping plane.

The center of projection of a view plane camera is the camera location point. If
the center of the window defined by a view plane camera is not at the origin of
the view plane, then the camera yields an off-axis view. The projection
determined by a view plane camera may have one, two, or three principal
vanishing points.

A view plane camera may be used to obtain a close-up image of a single object
by using the approximate center and dimensions of that object to specify the
size and location of the window on the view plane.

PARENT HIERARCHY

Shared, shape, camera.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

Camera placement, camera view port, camera range (optional). If a camera
does not have one of these child objects, then it should be assigned the default
values specified in the section on that child object.

C H A P T E R 1

3D Metafile Reference

1-192 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

ViewPlaneCamera (

20

15.0

15.0

18

29

)

CameraPlacement (...)

CameraRange (...)

CameraViewPort (...)

)

View Angle Aspect Cameras 1

LABELS

ASCII ViewAngleAspectCamera

Binary vana (= 0x76616E61)

DATA FORMAT

Float32 fieldOfView

Float32 aspectRatioXtoY

Field descriptions
fieldOfView An angle, specified in radians, that defines the maximum

field of view of the camera. The value in this field should
lie in the open interval (0, π).

aspectRatioXtoY The horizontal-to-vertical aspect ratio of the camera. If the
value in this field is less than 1.0, the camera’s field of view
is vertical; otherwise, the camera’s field of view is
horizontal.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-193
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

8

DESCRIPTION

A view angle aspect camera is a type of perspective camera defined in terms of
a field of view angle and a horizontal-to-vertical aspect ratio. The aspect ratio
determines the ratio of the base to the height of the rectangles that define the
top and base of the camera’s view volume. These rectangles lie in the near and
far clipping planes, respectively, are upright in the camera’s coordinate system,
and are centered at the points of intersection of the line along the camera vector
and the clipping planes.

If the aspect ratio is less than 1.0, then the field of view angle is in the x = 0
plane of the camera’s coordinate system. Otherwise, the field of view angle is
in the y = 0 plane of the camera’s coordinate system. In both cases the rays that
define the angle intersect in the camera location point, and the field of view
angle is bisected by the ray from the camera location defined by the camera
vector. The center of projection is the camera location point. The view volume
of a view angle aspect camera is symmetrical about its center line. The method
of projection determined by a view angle aspect camera has one principal
vanishing point, located at the origin of the projection plane.

PARENT HIERARCHY

Shared, shape, camera.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

Camera placement, camera view port, camera range (optional). If a camera
does not have one of these child objects, then it should be assigned the default
values specified in the section on that child object.

C H A P T E R 1

3D Metafile Reference

1-194 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

ViewAngleAspectCamera (

1.7

1.0

)

CameraPlacement (...)

CameraRange (...)

CameraViewPort (...)

)

Groups 1

Display Groups 1

LABELS

ASCII DisplayGroup

Binary dspg (= 0x6C697374)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A display group is a list of drawable objects and containers the root objects of
which are drawable objects. Types of drawable objects include geometric
objects, attribute sets, styles, transforms, and other display groups. A display
group is delimited by begin group and end group objects.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-195
Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

CHILD OBJECTS

Display group state (optional). If no child object is specified, group state flags
should be set to the default values specified in the section “Display Group
States” on page 1-204.

EXAMPLE

BeginGroup (Display Group())

SubdivisionStyle (Constant 32 32)

Container (

Mesh (...)

VertexAttributeSetList (...)

FaceAttributeSetList (...)

)

Container (

Mesh (...)

VertexAttributeSetList (...)

FaceAttributeSetList (...)

)

.

.

.

EndGroup ()

C H A P T E R 1

3D Metafile Reference

1-196 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Ordered Display Groups 1

LABELS

ASCII OrderedDisplayGroup

Binary ordg (= 0x6F72646C)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An ordered display group is a display group in which the objects listed are
sorted by type. The elements of an ordered display group are listed in the
following order: transforms, styles, attribute sets, shaders, geometric objects,
other groups. An ordered display group is delimited by begin group and End
group objects.

PARENT HIERARCHY

Shared, shape, group, display group.

PARENT OBJECTS

None.

CHILD OBJECTS

Display group state (optional). If no child object is specified, group state flags
should be set to the default values specified in the section “Display Group
States” on page 1-204.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-197
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

BeginGroup (OrderedDisplayGroup ())

RotateTransform (...)

ScaleTransform (...)

SubdivisionStyle (...)

BackfacingStyle (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

EndGroup ()

Light Groups 1

LABELS

ASCII LightGroup

Binary lghg (= 0x676C6768)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A light group is simply a list of light objects. A light group is delimited by
begin group and end group objects.

PARENT HIERARCHY

Shared, shape, group.

C H A P T E R 1

3D Metafile Reference

1-198 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (LightGroup ())

AmbientLight ()

DirectionalLight (...)

SpotLight (...)

EndGroup ()

I/O Proxy Display Groups 1

LABELS

ASCII IOProxyDisplayGroup

Binary iopx (= 0x70727879)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An I/O proxy display group is used to place distinct specifications of the same
model together in a group. The purpose of an I/O proxy display group is to
permit a reading application that does not recognize all specifications of a
model to pass over those that it does not recognize until it encounters one that

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-199
Draft. Confidential.  Apple Computer, Inc. 5/30/95

it does recognize and can use to recover the model. For example, a pentagon
may be represented by either a mesh or a polygon. If both representations are
placed together in an I/O proxy display Group, then a reading application that
recognizes meshes but does not recognize polygons can recover the pentagon
from its mesh representation.

Representations of a model in an I/O proxy display Group should appear in
preferential order: any representation of a model is to be preferred to any other
representation of that model occurring later in the group. While drawing,
bounding, or picking, the reading application should use the first
representation of the model that it recognizes and should ignore all other
representations.

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (IOProxyDisplayGroup ())
Polygon (...) # first preference

GeneralPolygon (...) # second preference

Mesh # third preference

EndGroup ()

Info Groups 1

LABELS

ASCII InfoGroup

C H A P T E R 1

3D Metafile Reference

1-200 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Binary info (= 0x696E666F)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An info group is a list of string objects delimited by begin group and end group
objects. An info group allows objects containing information in text form to be
placed together in a group.

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (InfoGroup ())

CString (...)

.

.

.

CString (...)

EndGroup ()

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-201
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Groups (Generic) 1

LABELS

ASCII Group

Binary grup (= 0x67727570)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A group (generic) is simply a list of drawable objects, delimited by begin group
and end group objects.

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-202 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

BeginGroup (Group ())

.

.

.

EndGroup ()

Begin Group Objects 1

LABELS

ASCII BeginGroup

Binary bgng (= 0x62676E67)

DESCRIPTION

A begin group object is used to declare a group and to delimit the start of that
group. Every group must begin with a begin group object.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-203
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

BeginGroup(

DisplayGroup () # empty group

)

EndGroup ()

End Group Objects 1

LABELS

ASCII EndGroup

Binary endg (= 0x656E6467)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An end group object is placed immediately after the last object in a group and
is used to delimit that group.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

1-204 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ()) # empty group

EndGroup ()

Display Group States 1

LABELS

ASCII DisplayGroupState

Binary dgst (= 0x64677374)

DISPLAY GROUP STATE FLAGS

None 0x00000000

IsInline 0x00000001

DoNotDraw 0x00000002

NoBoundingBox 0x00000004

NoBoundingSphere 0x00000008

DoNotPick 0x00000010

Constant descriptions

None No flags are specified.
IsInline The parent group is to be executed inline (that is, without

pushing the graphics state on a stack before execution and
popping it after execution). This flag is used to prevent the
objects in the parent group from inheriting properties
specified at a higher level in a hierarchical model
containing the parent group. If this flag is set, then objects
in the parent group receive only those properties specified
in that group.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-205
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DoNotDraw The parent group is not to be drawn when rendering or
picking. If this flag is set, then the parent group is not to be
traversed when it is encountered in a hierarchical model.

NoBoundingBox The bounding box of the parent group is not to be used for
rendering.

NoBoundingSphere

The bounding sphere of the parent group is not to be used
for rendering.

DoNotPick The parent group is not eligible for inclusion in the hit list
of a pick object.

DATA FORMAT

DisplayGroupStateFlags traversalFlags

Field descriptions
traversalFlags A bitfield expression specifying one or more display group

state flags.

DATA SIZE

4

DESCRIPTION

A display group state object is used to specify a set of flags that determines
how its parent display group is to be traversed during rendering or picking
and whether a bounding box or bounding sphere is to be used during
rendering. If a display group does not have a display group state object as a
child object, that group’s state flags should be set to the default state specified
below.

In a text file, a display group state object should be placed together with a
group object in the begin group object that immediately precedes that group.

PARENT HIERARCHY

Data.

C H A P T E R 1

3D Metafile Reference

1-206 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

Display group, ordered display group. A display group state object always has
a parent object.

CHILD OBJECTS

None.

DEFAULT DISPLAY GROUP STATE FLAGS

None (= 0x00000000)

EXAMPLE

BeginGroup (

DisplayGroup ()

DisplayGroupState (DoNotPick)

)

.

.

.

EndGroup ()

Renderers 1

Wireframe Renderers 1

LABELS

ASCII WireFrame

Binary wrfr (= 0x77726672)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-207
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A wireframe renderer creates line drawings of models. Such a renderer does
not decompose polylines or polygons during rendering. It can render all
backfacing, point, and edge drawing styles.

PARENT HIERARCHY

Shared, renderer.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

Wireframe ()

ViewPlaneCamera (...)

PointLight (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

)

C H A P T E R 1

3D Metafile Reference

1-208 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Interactive Renderers 1

LABELS

ASCII InteractiveRenderer

Binary ctwn (= 0x6374776E)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

The interactive renderer uses a fast and accurate depth-sorting algorithm for
drawing solid, shaded surfaces as well as vectors. The interactive renderer is
also capable of rendering highly detailed, complex models with very realistic
surface illumination and shading, but at the expense of time and memory.

PARENT HIERARCHY

Shared, renderer.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

None.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-209
Draft. Confidential.  Apple Computer, Inc. 5/30/95

EXAMPLE

Container (

ViewHints ()

InteractiveRenderer ()

ViewPlaneCamera (...)

PointLight (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

)

Generic Renderers 1

LABELS

ASCII GenericRenderer

Binary gnrr (= 0x676E7272)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A generic renderer performs no rendering functions, but may be used to pick
or to accumulate state.

PARENT HIERARCHY

Shared, renderer.

C H A P T E R 1

3D Metafile Reference

1-210 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

GenericRenderer ()

ViewPlaneCamera (...)

PointLight (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

)

Shaders 1

Shader Data Objects 1

LABELS

ASCII Shader

Binary shdr (= 0x73686472)

SHADER UV BOUNDARY TYPES

Wrap 0x00000000

Clamp 0x00000001

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-211
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Constant descriptions

Wrap Values outside the valid range of uv values are to be
wrapped. To wrap a shader effect is to replicate the entire
effect across the mapped area.

Clamp Values outside the valid range of uv values are to be
clamped. To clamp a shader effect is to replicate the
boundaries of the effect across the portion of the mapped
area that lies outside the valid range.

DATA FORMAT

ShaderUVBoundaryEnum uBounds

ShaderUVBoundaryEnum vBounds

Field descriptions
uBounds The value in this field determines whether values in the u

parametric direction that lie outside the valid range are
wrapped or clamped by the parent shader.

vBounds The value in this field determines whether values in the v
parametric direction that lie outside the valid range are
wrapped or clamped by the parent shader.

DATA SIZE

8

DESCRIPTION

A shader data object is a boundary-handling method specifier that determines
how a parent shader handles parametric uv values that are outside the valid
range (namely, 0 to 1).

PARENT HIERARCHY

Data.

C H A P T E R 1

3D Metafile Reference

1-212 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

Any shader. A shader data object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

CustomShader (...)

ShaderData (Wrap Clamp)

)

DEFAULT VALUES

Wrap Wrap

Texture Shaders 1

LABELS

ASCII TextureShader

Binary txsu (= 0x74787375)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A texture shader is used to apply a texture to a surface in shading.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-213
Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT HIERARCHY

Shared, shape, shader, surface shader.

PARENT OBJECTS

None.

CHILD OBJECTS

Pixmap texture object. A texture shader always has one child object.

EXAMPLE

Container (

TextureShader ()

PixmapTexture (...)

)

Pixmap Texture Objects 1

LABELS

ASCII PixmapTexture

Binary txpm (= 0x7478706D)

ENDIAN TYPES

BigEndian 0x00000000

LittleEndian 0x00000001

Constant descriptions

BigEndian Packing is to be done in a big-endian manner.
LittleEndian Packing is to be done in a little-endian manner.

C H A P T E R 1

3D Metafile Reference

1-214 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PIXEL TYPES

RGB8 0x00000000

RGB16 0x00000001

RGB24 0x00000002

RGB32 0x00000003

Constant descriptions

RGB8 8 bits are devoted to each pixel in the pixmap.
RGB16 16 bits are devoted to each pixel in the pixmap.
RGB24 24 bits are devoted to each pixel in the pixmap.
RGB32 32 bits are devoted to each pixel in the pixmap.

DATA FORMAT

Uns32 width

Uns32 height

Uns32 rowBytes

Uns32 pixelSize

PixelTypeEnum pixelType

EndianEnum bitOrder

EndianEnum byteOrder

RawData image[rowBytes * height]

Field descriptions
width The width of the pixmap. The value in this field must be

greater than 0.

height The height of the pixmap. The value in this field must be
greater than 0.

rowBytes The number of bytes in a row of the pixmap. The value in
this field cannot be less than the product of the values in
the width and pixelSize fields.

pixelSize The size of each pixel in the pixmap. The value in this field
must be greater than 0 and less than 32.

pixelType The type of the pixels of the pixmap.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-215
Draft. Confidential.  Apple Computer, Inc. 5/30/95

bitOrder The order in which the bits in a byte are addressed. This
field must contain one of the constants BigEndian or
LittleEndian.

byteOrder The order in which the bytes in a word are addressed. This
field must contain one of the constants BigEndian or
LittleEndian.

image[] The array that defines the pixmap.

DATA SIZE

28 + rowBytes * height + padding

DESCRIPTION

A pixmap texture object is a generic method of transferring pixmap data that is
used in conjunction with a texture shader.

PARENT HIERARCHY

Shared, texture.

PARENT OBJECTS

Texture shader. A pixmap texture object sometimes, but not always, has a
parent object.

CHILD OBJECTS

None.

EXAMPLE

PixmapTexture (

256 256 # width/height

128 # rowBytes

32 # pixelSize

RGB24

BigEndian BigEndian

C H A P T E R 1

3D Metafile Reference

1-216 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

0x00123232...

0x...

)

View Objects 1

View Hints 1

LABELS

ASCII ViewHints

Binary vwhn (= 0x7677686E)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

The view hints object is used to group together all of the objects needed to
render an image from a model (that is, a renderer, a camera, lights, and any
additional information to be supplied to the renderer). These other objects
occur as child objects to the view hints object; a container may be used to group
them together. The container holding a view hints object and its associated
rendering specifications should be placed immediately before the models to be
rendered according to those specifications.

A metafile may contain more than one view hints object. If a metafile contains
more than one view hints object, the specifications associated with each view
hints object are inherited by all subsequent view hints objects, unless
overridden by contrary specifications. Accordingly, a subsequent view hints
object need have as child objects only those specifications that differ from those

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-217
Draft. Confidential.  Apple Computer, Inc. 5/30/95

of its predecessors. For example, you may wish to render the same model using
different cameras, while keeping the lights and other specifications intact. Once
the initial specifications have been made, you need only specify a different
camera together with a new view hints object. The model may be placed in the
scope of a subsequent view hints object through the use of a reference object;
the specification of the model need not be repeated.

PARENT HIERARCHY

Shared.

PARENT OBJECTS

None.

CHILD OBJECTS

Renderer, camera, lights (as many as desired), attribute set, image dimensions,
image mask, image clear color (all optional).

EXAMPLE

3DMetafile (1 0 Normal toc>)

Container (

ViewHints ()

Container (

ViewAngleAspectCamera (0.73 1.0)

CameraPlacement (

0 0 30

0 0 0

0 1 0

)

)

DirectionalLight (-0.7 -0.7 -0.65)

Container (

AttributeSet ()

DiffuseColor (0.2 0.2 0.2)

SpecularControl (3)

C H A P T E R 1

3D Metafile Reference

1-218 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

)

ImageDimensions (200 200)

)

ref1:

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

Container (

ViewHints ()

Container (

ViewAngleAspectCamera (0.73 1.0)

CameraPlacement (

0 10 0

0 0 0

0 1 0

)

)

)

Reference (1)

Image Masks 1

LABELS

ASCII ImageMask

Binary immk (= 0x696D6D6B)

DATA FORMAT

Uns32 width

Uns32 height

Uns32 rowBytes

RawData image[rowBytes * height]

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-219
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Field descriptions
width The width, in bits, of the bitmap whose bits are listed in

the array image[]. The value in this field should be greater
than 0.

height The height, in bits, of the bitmap whose bits are listed in
the array image[]. The value in this field should be greater
than 0.

rowBytes The number of bytes in a row of the bitmap.
image[] An array of bit specifications.

DATA SIZE

12 + (rowBytes * height) + padding

DESCRIPTION

An image mask is a bitmap that is used to mask out certain portions of an
image. The values in the width and height fields of an image mask specify the
boundaries of the rectangular subregion of an image that is actually to be
drawn. (Width and height are measured from the upper-left corner of the
image to which a mask is applied.) Each bit listed in the array images[]
corresponds to 1 pixel in the rectangle defined by the width and height of the
mask. If a bit is set, then the corresponding pixel is drawn with the color
determined by the underlying image. If a bit is clear, then the corresponding
pixel is drawn black. Normally, an image mask is applied to an image after that
image has been rasterized.

An image dimensions object may be used together with an image mask: the
former may be used to clip an image, and the latter may be used to filter the
clipped image.

PARENT HIERARCHY

Data, view hints data.

PARENT OBJECTS

View hints. An image mask always has a parent object.

C H A P T E R 1

3D Metafile Reference

1-220 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

EXAMPLE

3DMetafile (1 0 Normal toc>)

Container (

ViewHints ()

ImageDimensions (32 32)

ImageClearColor (1 1 1)

ImageMask (

32 32 # width, height

4 # rowBytes

BigEndian # bitOrder

0x000000000FFFF8000FFFF8000FFFF800

0x0FFFF8000FFFF8000FFFF8000FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0C61FFE00F24FFE00E64FFE00F24FFE0

0x0F24FFE00C61FFE00FFFFFE000000000

)

)

Rotate (X 0.25)

Rotate (Y 0.23)

Container (

Torus (0 0.7 0 0 0 1 1 0 0 0 0 0 0.7)

Container (

AttributeSet ()

DiffuseColor (0.2 0.9 0.9)

)

)

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-221
Draft. Confidential.  Apple Computer, Inc. 5/30/95

Image Dimensions Objects 1

LABELS

ASCII ImageDimensions

Binary imdm (= 0x696D646D)

DATA FORMAT

Uns32 width

Uns32 height

Field descriptions
width The preferred width, in pixels, of the displayed portion of

an image.

height The preferred height, in pixels, of the displayed portion of
an image.

DATA SIZE

8

DESCRIPTION

An image dimensions object is used to specify the height and width of the
rectangular portion of an image that is to be displayed. The height and width
of an image dimensions object are measured from the upper-left corner of the
image to which that image dimensions object is applied. Normally, an image is
rasterized before an image dimensions object is applied to it. An image
dimensions object may be used together with an image mask: the former may
be used to clip an image, and the latter may be used to filter the clipped image.

PARENT HIERARCHY

Data, view hints data.

C H A P T E R 1

3D Metafile Reference

1-222 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

PARENT OBJECTS

View hints. An image dimensions object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

ImageDimensions (32 32)

ImageMask (...)

)

Image Clear Color Objects 1

LABELS

ASCII ImageClearColor

Binary imcc (= 0x696D6363)

DATA FORMAT

ColorRGB clearColor

Field descriptions
clearColor The RGB color to be given to the visible background of a

model when an image is rendered from that model.

DATA SIZE

4

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-223
Draft. Confidential.  Apple Computer, Inc. 5/30/95

DESCRIPTION

An image clear color object is used to assign color to the background of a
model in a rendered image when the model does not itself completely fill that
image.

PARENT HIERARCHY

Data, view hints data.

PARENT OBJECTS

View hints. An image clear color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

ImageDimensions (...)

ImageClearColor (1 1 1)

.

.

.

)

Unknown Objects 1

Unknown Text 1

LABELS

ASCII UnknownText

C H A P T E R 1

3D Metafile Reference

1-224 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

Binary uktx (= 0x756B7478)

DATA FORMAT

String asciiName

String contents

Field descriptions
asciiName The object type of the unknown object, enclosed in double

quotation marks.

contents The specification (without encapsulation) of the unknown
object, enclosed in double quotation marks. Blank space
and comments in the original object specification of the
unknown object may be omitted when this field is written.

DATA SIZE

sizeof(asciiName) + sizeof(contents)

DESCRIPTION

An unknown text object is used to transport unknown data found in a text file.
It is an encapsulated replica of that unknown data. In the usual case, an
unknown text object contains an ill-formed object specification. Your file
reading program may be designed to transport the data contained in an
unknown text object, to validate and convert the data to a specification of a
known object, or to discard the data.

An unknown text object may occur in a binary file as well as in a text file.

PARENT HIERARCHY

Shared, shape.

PARENT OBJECTS

Any object that may have a child object may be a parent object to an unknown
text object.

C H A P T E R 1

3D Metafile Reference

Metafile Object Specifications 1-225
Draft. Confidential.  Apple Computer, Inc. 5/30/95

CHILD OBJECTS

None.

EXAMPLE

UnknownText (

"Sphere" # unknown object type

"1 0 0 0 1 0 0 0 1 0 0 a" # illegal specification

)

Unknown Binary 1

LABELS

ASCII UnknownBinary

Binary ukbn (= 0x756B626E)

DATA FORMAT

Int32 objectType

Uns32 objectSize

EndianEnum byteOrder

RawData objectData[objectSize]

Field descriptions
objectType The binary representation of the type of the unknown

object.

objectSize The size of the unknown object.
byteOrder The byte order of the unknown object. The information in

this field is needed to transport unknown data between
processors and permits parsing endian-specific primitives
contained in the object data.

objectData[] The specification of the unknown object in the form of raw
data.

C H A P T E R 1

3D Metafile Reference

1-226 Metafile Object Specifications

Draft. Confidential.  Apple Computer, Inc. 5/30/95

DATA SIZE

12 + sizeof(objectData)

DESCRIPTION

An unknown binary object is used to transport unknown data found in a
binary file. It is an encapsulated replica of that unknown data. In the usual
case, an unknown binary object contains an ill-formed object specification. Your
file reading program may be designed to transport the data contained in an
unknown text object, to validate and convert the data to a specification of a
known object, or to discard the data.

An unknown binary object may occur in a text file as well as in a binary file.

PARENT HIERARCHY

Shared, shape.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

UnknownBinary (

1701605476

4

BigEndian

0x0AB2

)

IN-227

Index

Numerals

3D metafile headers 1-29 to 1-32

A

abstract data types 1-21 to 1-28
ambient coefficients 1-125 to 1-126
ambient light 1-174 to 1-176
ASCII text files 1-8
attenuation (of lights) 1-170 to 1-171
attributes 1-114 to 1-128
attribute set lists 1-134 to 1-143
attribute sets 1-128 to 1-134

B

backfacing styles 1-143 to 1-145
basic 3D data types 1-16 to 1-20
basic data types 1-15
begin group objects 1-202 to 1-203
binary files 1-8
bitfields 1-22
boolean enumerated types 1-28
bottom cap attribute sets 1-131 to 1-133
boxes 1-65 to 1-70

C

C 1-46
camera objects 1-182 to 1-194
camera placement objects 1-182 to 1-184
camera range objects 1-184 to 1-185
camera viewport objects 1-185 to 1-187

caps objects 1-96 to 1-98
child objects 1-8
color data types 1-18
cones 1-103 to 1-106
containers 1-44 to 1-46
containers, nesting of 1-44
containers, notation for 1-45
contours (of general polygons) 1-61
C strings 1-46 to 1-47
custom objects 1-43
custom objects, type of 1-43
cylinders 1-98 to 1-101

D

database files 1-9
diffuse color objects 1-114 to 1-115
directional lights 1-176 to 1-177
disks 1-102 to 1-103
display groups 1-194 to 1-195
display group state objects 1-204 to 1-206

E

ellipses 1-82 to 1-84
ellipsoids 1-94 to 1-96
end group objects 1-203 to 1-204
entries, number of (in table of contents) 1-34
entry size (in table of contents) 1-34
enumerated types 1-22
enumerated types, boolean 1-28
escape sequences 1-23
even-odd rule 1-61
external references 1-26

This document was created with FrameMaker 4.0.4

I N D E X

IN-228

F

face attribute set lists 1-137 to 1-140
face cap attribute sets 1-133 to 1-134
fall-off values (of lights) 1-172
file pointers 1-24 to 1-28
fill styles 1-147 to 1-148
flags, metafile 1-30
floating-point integer data types 1-15

G

general polygon hints objects 1-64 to 1-65
general polygons 1-59 to 1-63
generic renderers 1-209 to 1-210
geometric objects 1-49 to 1-113
geometry attribute set lists 1-134 to 1-137
group objects 1-194 to 1-206
groups (generic) 1-201 to 1-202

H

headers 1-29
hierarchy 1-7
highlight state objects 1-126 to 1-128
highlight styles 1-148 to 1-150

I

image clear color objects 1-222 to 1-223
image dimensions objects 1-221 to 1-222
image masks 1-218 to 1-220
info groups 1-199 to 1-200
Int 1-29
interactive renderers 1-208 to 1-209
internal references 1-26
interpolation styles 1-145 to 1-147
I/O proxy display groups 1-198 to 1-199

L

labels 1-24
light data objects 1-173 to 1-174
light groups 1-197 to 1-198
light objects 1-170 to 1-181
lines 1-50 to 1-52

M

Macintosh path objects 1-41 to 1-42
markers 1-110 to 1-113
matrix data types 1-20
matrix transforms 1-161 to 1-162
mesh corners objects 1-77 to 1-80
mesh edges objects 1-80 to 1-82
meshes 1-73 to 1-77
metafile file structure 1-8 to 1-13
metafiles

database 1-9
normal 1-9
stream 1-9
types of 1-9

N

normal files 1-9
normals 1-124 to 1-125
null file pointers 1-24
NURB curves 1-84 to 1-87
NURB curves, 2D 1-87 to 1-89
NURB patches 1-90 to 1-94

O

objects 1-7
object sizes 1-21
object types 1-21
offset, relative 1-24
ordered display groups 1-196 to 1-197

I N D E X

IN-229

orientation styles 1-153 to 1-154
orthographic cameras 1-188 to 1-189
owner strings (in type objects) 1-43

P

packing enum data type 1-137
parameterization data types 1-19
parent objects 1-8
pick ID styles 1-156 to 1-157
pick parts styles 1-157 to 1-159
pixmap texture objects 1-213 to 1-216
point lights 1-177 to 1-179
point objects 1-49 to 1-50
points, three-dimensional 1-16
points, two-dimensional 1-16
polygons, general 1-59 to 1-63
polygons, simple 1-57 to 1-59
polylines 1-52 to 1-54

Q

quaternion transforms 1-166 to 1-167

R

rational points, four-dimensional 1-17
rational points, three-dimensional 1-17
raw data 1-23
receive shadows styles 1-155 to 1-156
reference, external 1-26
reference, internal 1-26
reference objects 1-37 to 1-39
references 1-25
ref ID 1-37
ref seed (in table of contents) 1-34
renderer objects 1-206 to 1-210
revision numbers (of metafiles) 1-31
RGB color data types 1-18
root objects (of containers) 1-45

rotate-about-axis transforms 1-165 to 1-166
rotate-about-point transforms 1-164 to 1-165
rotate transforms 1-162 to 1-163

S

scale transforms 1-160 to 1-161
set lists 1-134 to 1-143
shader data objects 1-210 to 1-212
shader objects 1-210 to 1-216
shader transforms 1-168 to 1-169
shader UV transforms 1-169 to 1-170
shading UV objects 1-121 to 1-122
signed integer data types 1-15
simple polygons 1-57 to 1-59
special metafile objects 1-29 to 1-48
specular color objects 1-115 to 1-116
specular control objects 1-116 to 1-118
spot lights 1-179 to 1-181
stream files 1-9
String 1-46
string constants 1-46
string objects 1-46 to 1-48
strings 1-23
style objects 1-143 to 1-159
subdivision styles 1-150 to 1-153
surface normals 1-124 to 1-125
surface tangents 1-122 to 1-123
surface UV objects 1-119 to 1-121

T

tables of contents 1-32 to 1-37
tangents (two- and three-dimensional) 1-20
tangents, surface 1-122 to 1-123
target object 1-24
text files 1-8
texture shaders 1-212 to 1-213
toc entry types 1-32 to 1-33
tocLocation file pointers 1-31
top cap attribute sets 1-130 to 1-131

I N D E X

IN-230

tori 1-106 to 1-110
transform objects 1-159 to 1-170
translate transforms 1-159 to 1-160
transparency color objects 1-118 to 1-119
triangles 1-54 to 1-57
trigrids 1-70 to 1-73
trim loops objects 1-89 to 1-90
type ID 1-43
type objects 1-42 to 1-44
types (of objects) 1-21
type seed (in table of contents) 1-34

U

Unicode objects 1-47 to 1-48
UNIX path objects 1-39 to 1-41
unknown binary objects 1-225 to 1-226
unknown objects 1-223 to 1-226
unknown text objects 1-223 to 1-225
Uns 1-29
unsigned integer data types 1-15

V

variable-sized integer types 1-29
vectors, three-dimensional 1-18
vectors, two-dimensional 1-18
version number (of metafiles) 1-31
vertex attribute set lists 1-141 to 1-143
view angle aspect cameras 1-192 to 1-194
view hints objects 1-216 to 1-218
view objects 1-216 to 1-223
view plane cameras 1-190 to 1-192

W

wireframe renderers 1-206 to 1-207

I N D E X

IN-231

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Proof pages
were created on an Apple LaserWriter

NTX

 printer. Final page negatives were
output directly from text files on an Agfa
Large-Format Imagesetter. Line art was
created using Adobe Illustrator



 and
Adobe Photoshop



. PostScript



, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Courier.

WRITER

Malcolm MacFail

LEAD WRITER

Tim Monroe

DEVELOPMENTAL EDITORS

Beverly Zegarski

ILLUSTRATOR

Sandee Karr

PROJECT MANAGER

Patricia Eastman

Special thanks to Kent Davidson,
Pablo Fernicola, and Klaus Strelau.

This document was created with FrameMaker 4.0.4

	3D Metafile Reference
	Introduction
	Metafile File Structure
	Basic Data Types
	Unsigned Integer Data Types
	Signed Integer Data Types
	Floating- Point Integer Data Types

	Basic 3D Data Types
	Two- Dimensional Points
	Three- Dimensional Points
	Three- Dimensional Rational Points
	Four- Dimensional Rational Points
	Color Data Types
	Two- Dimensional Vectors
	Three- Dimensional Vectors
	Parameterizations
	Tangents
	Matrices

	Abstract Data Types
	Object Type
	Size
	Bitfields and Enumerated Types
	Strings
	Raw Data
	File Pointers

	Additional Type Definitions
	Boolean Enumerated Types
	Variable- Sized Integer Types

	Metafile Object Specifications
	Special Metafile Objects
	3D Metafile Header
	Tables of Contents
	Reference Objects
	UNIX Path
	Macintosh Path
	Types
	Containers

	String Objects
	C Strings
	Unicode Objects

	Geometric Objects
	Points
	Lines
	Polylines
	Triangles
	Simple Polygons
	General Polygons
	General Polygon Hints
	Boxes
	Trigrids
	Meshes
	Mesh Corners
	Mesh Edges
	Ellipses
	NURB Curves
	2D NURB Curves
	Trim Loops
	NURB Patches
	Ellipsoids
	Caps
	Cylinders
	Disks
	Cones
	Tori
	Markers

	Attributes
	Diffuse Color
	Specular Color
	Specular Control
	Transparency Color
	Surface UV
	Shading UV
	Surface Tangents
	Normals
	Ambient Coefficients
	Highlight State

	Attribute Sets
	Attribute Sets
	Top Cap Attribute Sets
	Bottom Cap Attribute Sets
	Face Cap Attribute Sets

	Attribute Set Lists
	Geometry Attribute Set Lists
	Face Attribute Set Lists
	Vertex Attribute Set Lists

	Styles
	Backfacing Styles
	Interpolation Styles
	Fill Styles
	Highlight Styles
	Subdivision Styles
	Orientation Styles
	Receive Shadows Styles
	Pick ID Styles
	Pick Parts Styles

	Transforms
	Translate Transforms
	Scale Transforms
	Matrix Transforms
	Rotate Transforms
	Rotate- About- Point Transforms
	Rotate- About- Axis Transforms
	Quaternion Transforms
	Shader Transforms
	Shader UV Transforms

	Lights
	Attenuation and Fall- Off Values
	Light Data
	Ambient Light
	Directional Lights
	Point Lights
	Spot Lights

	Cameras
	Camera Placement
	Camera Range
	Camera Viewport
	Orthographic Cameras
	View Plane Cameras
	View Angle Aspect Cameras

	Groups
	Display Groups
	Ordered Display Groups
	Light Groups
	I/ O Proxy Display Groups
	Info Groups
	Groups (Generic)
	Begin Group Objects
	End Group Objects
	Display Group States

	Renderers
	Wireframe Renderers
	Interactive Renderers
	Generic Renderers

	Shaders
	Shader Data Objects
	Texture Shaders
	Pixmap Texture Objects

	View Objects
	View Hints
	Image Masks
	Image Dimensions Objects
	Image Clear Color Objects

	Unknown Objects
	Unknown Text
	Unknown Binary

	Index

