
QuickDraw 3D: A New Dimension for Macintosh
Graphics

PABLO FERNICOLA AND NICK THOMPSON

Reprinted with permission of Apple Computer, Inc. from develop, The
Apple Technical Journal, Issue 22.

Not for redistribution

develop, Apple’s quarterly technical journal, provides an in-depth look
at code and techniques that have been reviewed for robustness by
Apple engineers. Each issue comes with a CD that contains the source
code for that issue, as well as all back issues, Technical Notes, sample
code, and other useful software and documentation. Subscriptions to
develop are available through APDA (1-800-282-2732), AppleLink
DEV.SUBS, or Internet dev.subs@applelink.apple.com.

© 1995 Apple Computer, Inc. All rights reserved. Apple, the Apple
logo, APDA, AppleLink, and Macintosh are trademarks of Apple
Computer, Inc., registered in the U.S. and other countries. develop is a
trademark of Apple Computer, Inc.

QuickDraw 3D is a new technology that helps developers bring 3D
capabilities to their applications. It runs on all Power Macintosh
computers and offers high-performance 3D rendering and other features
that make working with 3D data easier. This article gives the basics
you’ll need to use QuickDraw 3D in your application, whether you’re a
consummate 3D developer, a classic 2D application developer, or a game
developer.

QuickDraw 3D is the newest enhancement to the Macintosh graphics architecture.
Developers have been requesting a 3D library, supported at the system level, since
the Macintosh was introduced. Although a number of Macintosh developers have
produced some amazing 3D applications, 3D graphics capabilities were relegated
to niche applications due to the lack of support at the core operating system level.
QuickDraw 3D, which is expected to ship in mid-1995, brings the ability to deal
with 3D graphics to all Power Macintosh applications: not only can traditional 3D
applications take advantage of it, but it provides base functionality for general-
purpose applications as well.

QuickDraw 3D is a Code Fragment Manager–based shared library, with a C-based
API. Here we’ll cover some concepts you need to know to get basic QuickDraw 3D
support into your application. This issue’s CD contains a prerelease version of the
QuickDraw 3D shared library, the 3D Viewer shared library, programming interfaces,
preliminary Inside Macintosh: QuickDraw 3D documentation, sample code, utility
libraries, and other goodies. Two of the sample programs are discussed in this article.

The API described in the article is based on a beta version of QuickDraw 3D;
although nearly final, the API may change before the final release of the software.•

In addition, we’ll talk about reading and writing data in QuickDraw 3D metafile
format, which is a way of representing 3D data in a consistent, transferable manner.
But first we’ll set the stage with some background information.

PABLO FERNICOLA AND
NICK THOMPSON

QuickDraw 3D: A New Dimension for
Macintosh Graphics

d e v e l o p Issue 22 June 19956

PABLO FERNICOLA (AppleLink PFF, eWorld
EscherDude) After spending many years working
in 3D graphics under operating systems named
**IX, in a faraway land called Alabama, Pablo
made the transition to real computers. After moving
to Silicon Valley, he learned to beat the traffic jams
by getting to work before 8 A.M. and going home
after 10 P.M. Now he can be found staring out the
window and wondering how he’s going to get
home on Interstate 280 after the next earthquake.•

NICK THOMPSON (AppleLink NICKT) is
currently establishing himself as the Mountain
Dew–guzzling fat fool of Developer Technical
Support. Unable to work the winter blubber off
due to killer waves that are preventing him from
surfing on the California coast, Nick has been
consoling himself with learning the wonder that is
QuickDraw 3D. He was last seen wandering
down one of the corridors at Apple mumbling to
himself.•

QUICKDRAW 3D — SO, WHAT’S THE BIG DEAL?
As we’ll explain further in this article, QuickDraw 3D provides developers with a
number of benefits:

• a rich set of high-level geometries

• built-in renderers that cover the base functionality needed by
developers

• immediate and retained graphics

• a common 3D file format

• human interface guidelines and widgets

• a 3D pointing-device manager that provides support for input
devices with more than two degrees of freedom

• pointing and picking support that enables user selection of 3D data

• transparent access to graphics accelerators

• an extensible, plug-in shading and rendering architecture

• implementation advantages over other 3D libraries

We’ve made dealing with 3D data in applications easier with QuickDraw 3D. By
creating a standard for data interchange, with a well-rounded metafile definition,
we’re enabling applications to read and write 3D data in a consistent format. The
metafile specification addresses requests from both end users (who couldn’t exchange
data between applications in a common format) and developers (who had to write
special-case code to deal with several different file formats).

QuickDraw 3D comes with a set of human interface guidelines to foster the adoption
of a consistent look and feel between applications (see “The QuickDraw 3D Human
Interface”). 3D applications today are geared toward the trained 3D expert; what you
learn in one application is generally not transferable to another application. By
following the QuickDraw 3D human interface guidelines, however, developers can
help make 3D graphics an integral part of the user experience within their applications.

QuickDraw 3D technology has been made possible in part by the dramatic performance
improvements in the Power Macintosh line of computers. The performance of
QuickDraw 3D is scalable across the Power Macintosh line; we’ve put in a lot of
effort to ensure that the performance on even entry-level computers is excellent.
With hardware acceleration, these computers can easily compete (and win) against
mid-range workstations costing a lot more money.

HOW QUICKDRAW 3D COMPARES WITH OTHER LIBRARIES
QuickDraw 3D offers many advantages over other 3D libraries. When using other
graphics libraries, you’re on your own if, for instance, you want to change the way a
scene is rendered (say, by doing ray tracing or applying procedural shading): you have
to reimplement all of the 3D architecture. With QuickDraw 3D, you only have to
write code to deal with the specific area that you want to change. And, even better,
the code you write can be used as a plug-in by other applications.

Unlike some libraries, QuickDraw 3D will be able to take advantage of a number of
3D hardware acceleration solutions, since acceleration was one of its design criteria.
Another important criterion was cross-platform support. For example, a renderer
could be written to take advantage of low-level 3D libraries, such as the Silicon
Graphics OpenGL graphics library.

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 7

WHAT YOU CAN DO WITH QUICKDRAW 3D
The 3D application development process can be broken down into four areas:
creation of 3D data into a set of data structures, manipulation of that data in the
human interface of the application, presentation of the data by displaying it, and
transportation of the data (saving to and reading from files). QuickDraw 3D provides
support in each of these areas. You can implement one or more of them in your
application:

• QuickDraw 3D geometries — If you’re planning to write an
application to deal with the creation of models, QuickDraw 3D
lets you define the representation of the objects to be modeled in
3D form.

• QuickDraw 3D human interface — Maybe you want to allow users
to visualize 3D data and models in a standalone application or as
part of an existing application. QuickDraw 3D’s human interface
guidelines and built-in widgets provide a consistent way of
manipulating 3D objects.

• QuickDraw 3D rendering and shading — Rendering turns the 3D
geometries into pixels; shading determines what color those pixels
should be. Realism can be added by applying textures to objects:
texture mapping takes a texture (usually from a picture source, such
as a picture of a brick wall) and wraps it around an object. For

d e v e l o p Issue 22 June 19958

QuickDraw 3D provides human interface guidelines (in
version 1.0) and a toolkit for implementing the guidelines
(to come in the second major release). A sample
application on this issue’s CD illustrates our current ideas
for a 3D human interface. By getting a preview of our
plans, you can start taking your applications along the
common path.

Our main goal is to provide integration into the
Macintosh experience. We feel that 3D graphics will
be the next popular multimedia data type — in the way
that 2D graphics, sound, and movies have been in the
past — and users will want to incorporate 3D data into
their documents in the same way that they can now
incorporate other multimedia data types. To do this they’ll
need an interaction model built on the 2D principles that
they’re familiar with.

Our guidelines offer suggestions and examples of how
things can be done. If your applications are targeted for
a very specific audience, and you know that audience
well, you may decide to communicate with them in a
different way, and that’s perfectly OK.

One of our guidelines, about direct manipulation through
the use of a widget, is illustrated in Figure 1. Here we’ve

appropriated the 2D grab handles that are popular in
many “draw” programs and extended them to 3D. A
widget is a set of handles for control of spatial parameters.
Some widgets, such as the scale tool shown in Figure 1,
indicate selection of a shape, while others make an
invisible object, such as a light or a camera, visible.

Figure 1. A scaling widget

Figure 2 shows what a full-featured 3D application might
look like. The emphasis here is on what’s the same as in
2D applications rather than on what’s unique. The
illustration shows a shape selected with a rotation widget,
a material selection palette, a room metaphor, and a
document containing multiple views of a scene.

THE QUICKDRAW 3D HUMAN INTERFACE
BY DAN VENOLIA

example, Figure 3 shows a dinosaur mesh rendered with a skin
texture picture as a texture map. In its second major release,
QuickDraw 3D will enable you to write plug-in renderers and
shaders and license them to other developers.

The dinosaur model was supplied in QuickDraw 3D metafile format courtesy
of Viewpoint DataLabs Intl.•

• QuickDraw 3D metafile format — If you want to provide 3D clip
art in the form of models, you’ll really be pleased with QuickDraw
3D’s metafile format. One of the common problems encountered
by users when working with several 3D applications is that of data
interchange, where one application’s file is not readable by another
due to the multitude of 3D data formats. QuickDraw 3D addresses
this problem by providing a standard for the interchange of 3D
data. This device- and platform-independent representation of 3D
data is extensible, so your custom data gets preserved. And all of
the elements for a scene can be stored in the metafile, including
lighting, camera objects, texture maps, and shaders.

ROAD MAP FOR ADOPTION
Based on our experience working with developers, we’ve created a road map for
adoption of QuickDraw 3D. Here we’ll look at how different application developers
might begin to adopt QuickDraw 3D, in order from the least to the greatest amount

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 9

Figure 2. Conceptual sketch of a 3D application

of support. These categories provide you with a general strategy for bringing
QuickDraw 3D into your applications.

• Developers of general-purpose 2D applications should add
support for the metafile format, enabling users to read and save
3D data within an application. This can be achieved by using the
3D Viewer, which allows 3D objects derived from metafile data to
be viewed and manipulated by the user.

• Developers who use other 3D libraries and may not be ready to
move to QuickDraw 3D just yet should at least add support for the
metafile format and additionally consider adopting the QuickDraw
3D human interface guidelines. Obviously, support for the
metafile format requires writing a parser to convert metafile data
to another internal representation (Apple will be supplying parser
code). Implementing the human interface guidelines will make the
application be compatible with and look consistent with other 3D
applications available on the Macintosh. Note that an application
that uses a 3D library other than QuickDraw 3D will have a
harder time using the 3D Viewer.

• Developers of existing 3D applications who want to take the first
step toward creating a QuickDraw 3D–savvy application should
take advantage of QuickDraw 3D’s rendering capabilities through
the use of immediate-mode rendering (more on this later). This
method provides not only fast rendering in software but also
transparent access to hardware, while allowing the application to
preserve its own data structures. In addition, these developers
should plan to add support for the metafile format and the human
interface guidelines.

• Developers who want to leave the low-level work to QuickDraw
3D, and concentrate on creating differentiating features within
their applications, should make their applications as QuickDraw
3D–savvy as possible. This means taking advantage of the full API,
including QuickDraw 3D’s data structures and geometries (which
provide metafile support virtually for free), rendering (both
immediate and retained modes), and the human interface
guidelines.

QUICKDRAW 3D ARCHITECTURE
The QuickDraw 3D architecture isolates in a layer within the system software those
things that all developers have to do, leaving them to concentrate on the code that
will allow their application to stand out. This architecture can be thought of as a
sandwich filling that sits between your application and the hardware it’s running on,

d e v e l o p Issue 22 June 199510

Figure 3. Dinosaur mesh mapped with a skin-like texture

isolating you from having to deal with operating system and hardware issues directly.
Like any good sandwich filling, if you examine it closely, you’ll see that it’s divided
into a number of appetizing chunks. Figure 4 shows some of the functional blocks
that make up QuickDraw 3D, with an emphasis on those areas that can be
customized by developers.

Let’s take a quick look at each of these functional areas, which we’ll expand on later.
Here we’ll use the word scene to describe not only the objects being modeled, but also
the lighting, camera settings, shaders, and other entities that affect the final
appearance on output devices.

Widgets are used to enhance the user experience for 3D applications. For example, to
allow the user to interact with an object, the application can draw grab handles, in the
form of a translation widget, to allow the object to be manipulated.

Geometries are the encapsulation of data used to describe an object. Some geometries
are provided as part of QuickDraw 3D, resulting in a very concise representation; for
more information, see “QuickDraw 3D Geometries.” (QuickDraw 3D uses
geometries to draw widgets.)

The I/O layer provides support for metafiles. There are routines for reading and
writing 3D data to Storage objects, which may be disk or memory based and are
useful for providing Clipboard or drag and drop support in your application.

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 11

Application

I/O Picking Lights Camera Attributes Shaders

Hardware/OS

Customizable in 1.0

Renderers

Customizable in future versions

Geometries

Widgets

Accelerators

Figure 4. QuickDraw 3D architecture

The QuickDraw 3D geometries that are currently available are as follows: line,
polyline, triangle, point, simple polygon, general polygon, trigrid, mesh, box, marker,
NURB curve, and patch.

In addition, the following geometries are planned for the second major release of
QuickDraw 3D: torus, ellipse, ellipsoid, disk, cylinder, cone, and triangle strip. (In
version 1.0, you can create any of these geometries by representing them as
meshes.)

Where applicable, the geometries are parameterized so that they’re ready for texture
mapping or other shading effects.

QUICKDRAW 3D GEOMETRIES

Picking is used to determine which object a user chose. QuickDraw 3D’s picking
facilities are more extensive than in other 3D libraries, not only providing several
different types but also returning quite a bit of information to the application beyond
whether a hit took place.

Light objects supply the lighting for a scene. QuickDraw 3D provides four types of
light sources: ambient, directional, point, and spot. Based on the light sources for a
given scene and the illumination shader, the renderer makes intensity calculations for
each object’s surface and vertex contained in the scene.

Camera objects define a point of view into a particular scene. QuickDraw 3D provides
three different camera types: view angle, orthographic, and view plane.

Attributes are used to specify different characteristics for each object (or parts of an
object, such as its vertices or faces), and also to attach custom data to an object.

Shaders are used to modify or add data, on either a per vertex or a per pixel basis, as
geometries are being processed by the renderer — for example, illumination and
texturing shaders.

Renderers are the business end of QuickDraw 3D. A renderer is a set of routines used
to create a shaded synthetic model of the scene, based on the information stored in
the geometry and taking into account the lighting, surface attributes, and camera
location. QuickDraw 3D provides two basic renderers: a wireframe and an interactive
renderer. You can extend QuickDraw 3D by writing a plug-in renderer, developing
an accelerator card, or implementing a combination of both — a renderer tied to a
particular hardware setup.

IMPLEMENTING SUPPORT FOR THE 3D VIEWER
Now, on to the coding details. We realized that some application developers wouldn’t
want to get involved with the low-level details of a new API. We looked at the
QuickTime model and saw that a lot of developers implemented support for viewing
movie data by using movie controllers in their existing nonmultimedia applications.
We likewise wanted to allow applications to support the viewing of QuickDraw 3D
metafiles with minimal effort, so we’ve provided an additional shared library that
implements a 3D Viewer. The Viewer allows users to view and have a basic level of
interaction with 3D data without your having to make any QuickDraw 3D calls.
Figure 5 shows a Viewer implementation in a modified version of the Scrapbook.
(We used a preliminary version, so the Viewer interface may change.)

The car model was supplied in QuickDraw 3D metafile format courtesy of
Viewpoint DataLabs Intl.•

Adding Viewer support is simple — it requires only about five function calls. Your
application can check to see if the Viewer is available by calling Gestalt with the
constant gestaltQuickDraw3DViewer.

We’ll now look at how your application can create and use a QuickDraw 3D Viewer
object. In the application named Simple 3D Viewer on this issue’s CD, we create a
window in which the only object is a Viewer.

As you read through the code samples, you’ll notice that function names have a
“Q3” prefix, data types have a “TQ3” prefix, and constants have a “kQ3” prefix. The
part of a function name before the underscore indicates the object being operated on
(the class), while the part after the underscore indicates the operation (the method). For
example, to set the origin of a Box object, you’d call the function Q3Box_SetOrigin.•

d e v e l o p Issue 22 June 199512

CREATING AND DISPOSING OF A VIEWER OBJECT
Creating and disposing of a Viewer object is very easy to do. You attach a Viewer to a
window with the Q3ViewerNew function:

viewerObj = Q3ViewerNew((CGrafPtr)theWindow, &theRect, 0L);

This function takes a WindowPtr, a pointer to a Rect that describes the window area
where you want the 3D scene to appear, and a long word containing flags for
modifying the behavior of the Viewer. When you’re finished with the Viewer, you
need to dispose of it with the Q3ViewerDispose function:

Q3ViewerDispose(viewerObj);

ATTACHING DATA TO THE VIEWER
To display the contents of a metafile in your Viewer, you can use the Q3ViewerUseFile
function:

Q3ViewerUseFile(viewerObj, fileRefNum);

Q3ViewerUseFile takes a reference to the Viewer object and a file reference to a
previously opened QuickDraw 3D metafile. You can also display data from the
Clipboard or data you created yourself, with the Q3ViewerUseData function:

Q3ViewerUseData(viewerObj, myDataPtr, myDataSize);

This function takes a reference to a Viewer object, a pointer to the data, and the size
of the data in bytes. The data must be in metafile format.

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 13

Figure 5. Viewer implementation in the Scrapbook

HANDLING EVENTS
You need to modify your event loop slightly to give the Viewer the opportunity to
handle events, as follows:

wasViewerEvent = Q3ViewerEvent(viewerObj, theEvent);

Q3ViewerEvent takes a reference to a Viewer object and a pointer to an event record
(usually obtained from WaitNextEvent). This function allows the Viewer to respond
to events, such as a mouse-down event in one of its controls. It returns a value of type
Boolean that indicates whether the event was handled.

If the area occupied by the Viewer needs to be updated, you need to redraw the data
in your update event handler by calling Q3ViewerDraw:

theErr = Q3ViewerDraw(viewerObj);

OTHER VIEWER FUNCTIONALITY
The Viewer allows access to the View object for the scene, which enables you to
customize the Viewer’s behavior by changing the renderer or lighting for the scene
(more on Views later). Also, the Viewer provides support for cut, copy, and paste; see
the Simple 3D Viewer sample on the CD for an example.

PROGRAMMING WITH THE QUICKDRAW 3D API:
ERROR CHECKING AND INITIALIZATION
Now let’s look at programming with the QuickDraw 3D API, starting with error
checking and initialization. First, the QuickDraw 3D shared library needs to be
installed in the Extensions folder or in the same folder as your project. During your
development cycle you should use the debugging version of the library for extensive
error checking.

Error checking may seem like a weird place to start, but checking and responding to
what QuickDraw 3D is trying to tell you will save a great deal of trouble and strife
during development. The QuickDraw 3D error manager provides several levels of
error checking along with functions for checking the last error that occurred. The
error checking, which is similar to that in QuickDraw GX, has three levels: errors,
warnings, and notices.

• Errors are the most severe indication of a problem and can be
divided into two kinds, fatal and nonfatal. You can determine
whether an error is fatal with the call

TQ3Boolean Q3Error_IsFatalError(TQ3Error theError);

For a complete list of errors provided by QuickDraw 3D, look in
the QuickDraw 3D header files.

• Warnings are less severe than errors, but you should be prepared
to handle them. If the system generates a warning based on a
recoverable situation that you ignore, often an unrecoverable error
may occur later.

• Notices indicate problems that may exist with the way you’re using
the QuickDraw 3D library. Although they’re less severe than
warnings, you should take note of what notices are telling you,
to prevent problems from occurring later in your application’s
execution. Notices are generated only in the debugging version.

d e v e l o p Issue 22 June 199514

You can install your own error, warning, and notice handlers, which can write the
error information to a window or file or present a dialog or alert. Presenting too
many alerts can be annoying to the user, so you should probably log errors, warnings,
and notices to a file or a status window, and present a dialog or an alert only for fatal
errors from which no recovery is possible.

DEFINING AND INSTALLING AN ERROR HANDLER
Handlers for errors, warnings, and notices are all similar — they’re functions that
take an error code of type TQ3Error and have no return value. Listing 1 shows a
definition of an error handler.

Once handlers have been defined, it’s a snap to install them. For example, you would
install the error handler defined in Listing 1 as follows:

Q3Error_Register(MyErrorHandler, 0L);

INITIALIZING QUICKDRAW 3D
Before you can use QuickDraw 3D, you need to call Gestalt to see if the library is
installed, using the constant gestaltQuickDraw3D. You then need to initialize the
library as shown in Listing 2. You call the Q3Initialize function to ensure that the
QuickDraw 3D library gets a chance to allocate its internal data structures and to
initialize any subcomponents (such as plug-in shaders) that it needs to call. You then
do other initialization as needed, such as installing an error handler. The return value
indicates whether the call was successful.

When your application is about to quit, you should shut down your connection to the
QuickDraw 3D library by calling Q3Exit, also shown in Listing 2. (Obviously a real
application would have more sophisticated error handling here.)

CREATING AND DRAWING A SIMPLE 3D OBJECT: THE BOX
APPLICATION
The Box application on this issue’s CD is a simple QuickDraw 3D program that
opens a window, displays 3D boxes in the window, and rotates the boxes (see
Figure 6). While this isn’t a useful application as such, it covers all the basics needed
to create and display objects using QuickDraw 3D. It also illustrates double buffering
support, which helps an application provide flicker-free drawing when animating

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 15

Listing 1. Error handler

static void MyErrorHandler(TQ3Error firstError, TQ3Error lastError,
long refCon)

{
char buf[512];

sprintf(buf, "ERROR %d - %s\n", lastError,
getErrorString(lastError)); // Get the error as a C string.

if (gErrorFile == NULL)
gErrorFile = fopen("error.output", "w+");

if (gErrorFile != NULL)
fputs(buf, gErrorFile);

}

geometries; QuickDraw 3D’s double buffering takes advantage of hardware double
buffering when available.

For a more complex example, see the Modeller program on the CD, which
shows most of the things a QuickDraw 3D application needs to do, such as reading
and writing metafiles, texture mapping, and using interpolation styles.•

We define the following data structure to store the information that QuickDraw 3D
needs to model and render our scene:

d e v e l o p Issue 22 June 199516

Figure 6. A window from the Box sample program

Listing 2. Initializing and closing the connection to the library

void Initialize3DStuff(void)
{

if (Q3Initialize() == kQ3Failure) {
// Handle the error.
StopAlert(kQD3DInitFailed);
ExitToShell();

}
MyErrorInit();

}

void Exit3DStuff(void)
{

if (Q3Exit() == kQ3Failure) {
// Handle the error.
StopAlert(kQD3DExitFailed);
ExitToShell();

}
}

struct _documentRecord {
TQ3ViewObject fView; // The view for the scene
TQ3GroupObject fModel; // Object in scene being modeled
TQ3StyleObject fInterpolation; // Style used when rendering
TQ3StyleObject fBackFacing; // Whether to draw shapes that face

// away from the camera
TQ3StyleObject fFillStyle; // Drawn as solid filled objects or

// decomposed to components
TQ3Matrix4x4 fRotation; // The transform for the model

};
typedef struct _documentRecord DocumentRec, *DocumentPtr, **DocumentHdl;

We can create a new instance of this type, initialize it with the required values, and
store a reference to it in each window’s refCon field.

OBJECT CREATION
Creating a simple object — like a box — is straightforward. We’ll make four copies
of the box, each with its own transform. The code to create these boxes is shown in
Listing 3. We can store the boxes in our document simply by storing the value
returned by this function in our document’s fModel field.

Notice that we dispose of the boxes after adding them to the document group.
QuickDraw 3D will create references to the boxes in the document group, so we can
safely dispose of them. To be good QuickDraw 3D citizens and to make more effective
use of memory, we need to dispose of each QuickDraw 3D object as soon as we’re
done with it. QuickDraw 3D keeps track of the reference count of each object to help
detect memory leaks. If you’re using the debugging version of QuickDraw 3D, it will
tell you when you call Q3Exit if there are any objects remaining that need to be
disposed of.

RETAINED AND IMMEDIATE MODE RENDERING
We talked earlier about retained and immediate modes. Which mode to use is the
subject of big philosophical arguments in the world of 3D graphics. Some developers
prefer one over the other as a matter of principle; other developers make a choice
based on the type of application being developed. QuickDraw 3D offers the best of
both worlds: not only does it support both ways of rendering geometric data, it also
allows you to mix these types in the same rendering loop.

Retained and immediate modes are simply methods of rendering, without the
usual connotation of the term “mode” (a state that you must exclusively remain in once
you get into it). Although this terminology has become common in the field of 3D
graphics, retained rendering and immediate rendering calls can in fact be freely
mixed.•

In retained mode, the definition and storage of the geometries are kept internal to
QuickDraw 3D (as an abstract object). This mode provides convenient features for
caching, rejection of entire objects based on clipping and culling, preservation of
tessellated surfaces, multiple instantiation of objects (drawing multiple versions of an
object but storing its definition only once), and conversion between geometry types.
Retained mode is useful when the geometry has to be passed around to different
modules within the application or to plug-in renderers. Extensive geometry editing
functions are provided as part of the QuickDraw 3D API, which makes it easy to alter
the data associated with each geometric object.

In immediate mode, the application keeps the only copy of the geometry. This is
particularly useful when your application needs to reference data that’s in a format

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 17

d e v e l o p Issue 22 June 199518

Listing 3. Creating four boxes

TQ3GroupObject MyNewModel()
{

TQ3GroupObject myGroup;
TQ3GeometryObject myBox;
TQ3BoxData myBoxData;
TQ3GroupPosition myGroupPosition;
TQ3ShaderObject myIlluminationShader;
TQ3Vector3D translation;
TQ3SetObject faces[6];
short face;

// Create a group for the complete model.
if ((myGroup = Q3DisplayGroup_New()) != NULL) {

// Define a shading type for the group and add the shader to
// the group.
myIlluminationShader = Q3PhongIllumination_New();
Q3Group_AddObject(myGroup, myIlluminationShader);

// Set up the colored faces for the box data.
myBoxData.faceAttributeSet = faces;
myBoxData.boxAttributeSet = nil;
MyColorBoxFaces(&myBoxData);

// Create the box itself.
Q3Point3D_Set(&myBoxData.origin, 0, 0, 0)
Q3Vector3D_Set(&myBoxData.orientation, 0, 1, 0);
Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 1);
Q3Vector3D_Set(&myBoxData.minorAxis, 1, 0, 0);
myBox = Q3Box_New(&myBoxData);

// Put four references to the box into the group, each one with
// its own translation.
translation.x = 0; translation.y = 0; translation.z = 0;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);
translation.x = 2; translation.y = 0; translation.z = 0;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);
translation.x = 0; translation.y = 0; translation.z = -2;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);
translation.x = -2; translation.y = 0; translation.z = 0;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);

}

// Dispose of the objects we created here.
if (myIlluminationShader != NULL)

Q3Object_Dispose(myIlluminationShader);
for (face = 0; face < 6; face++) {

if (myBoxData.faceAttributeSet[face] != NULL)
Q3Object_Dispose(myBoxData.faceAttributeSet[face]);

}
if (myBox != NULL)

Q3Object_Dispose(myBox);
return myGroup;

}

different from the one used by QuickDraw 3D or when a large number of vertices
that make up the geometry are being edited continuously — for example, in the
animation of a stress analysis for mechanical design.

The code in Listing 3 creates the boxes in retained mode, by creating objects that
encapsulate the box data; QuickDraw 3D then manages the box data for us. If you
want to add QuickDraw 3D rendering and drawing to an existing application with its
own 3D data structures, you can draw in immediate mode instead. To draw a box in
immediate mode, you simply initialize the values in the TQ3BoxData structure to the
appropriate values and then draw the data directly in a rendering loop (described
later) by calling the following function:

myStatus = Q3Box_Submit(&myBoxData);

Because you never create a QuickDraw 3D object, there’s no need to call
Q3Object_Dispose.

Notice that in Listing 3 we initialize an object using a data structure of type
TQ3BoxData. This structure contains all of the information required to draw a Box
geometry, but is not an object in itself. Because of this we don’t call Q3Object_Dispose
on the box data structure, but we do call it on the Box object.•

THE DRAW CONTEXT
All window system dependencies are isolated to a layer we call the draw context.
This makes porting your application easier (and it also makes it easier for us to
port QuickDraw 3D to other platforms). Although QuickDraw 3D is platform
independent, of course at some point you’ll need to deal with the realities of a
particular platform’s window system, in this case the Mac OS.

This is where the concept of a draw context comes in. It’s a means for QuickDraw 3D
to interface with the host environment. There’s a special draw context for the Mac
OS, called a Macintosh draw context; information describing this context is stored in
a TQ3MacDrawContext object, which contains the information necessary for
QuickDraw 3D to image the data on a computer running the Mac OS.

Listing 4 is a routine from the Box application that creates a Macintosh draw context
the size of a window that we pass in. We’re telling QuickDraw 3D to create a buffer
in which to image the data; this is referred to as the back buffer. If we’re using double
buffering (that is, we set the doubleBufferState field of the Macintosh draw context to
true), the front buffer will be the window associated with the draw context. The data
is copied from the back buffer to the front buffer when Q3View_EndRendering is
called. This helps provide flicker-free animation if you’re animating the object being
viewed.

Sometimes you might want to be able to get at the back buffer yourself; for example,
you might want to create a picture preview of some metafile data to place on the
Clipboard along with the metafile data, so that applications that don’t support
metafiles can display the picture. QuickDraw 3D makes this possible by providing a
different type of draw context, called a pixmap draw context, which can be based on a
GWorld. First you need to create a GWorld the size of the window area; then you
can create a pixmap draw context as shown in Listing 5.

When using a pixmap draw context, you must keep the GWorld’s PixMap locked all
the time (which implies that you need to call LockPixels on it, to help avoid heap
fragmentation). Also, the PixMap must be 32 bits deep — other depths are not
supported.

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 19

THE CAMERA
A camera is a QuickDraw 3D object used to project a 3D scene onto a 2D plane. It
defines a point of view on the scene and a method of projection onto the viewing
plane. QuickDraw 3D provides three types of camera:

• View angle or perspective — This type of camera is defined in terms
of a viewing angle and horizontal-to-vertical aspect ratio. It’s the
most common camera type because it provides a natural-looking
perspective.

• Orthographic — This is a parallel projection, where the direction of
projection is perpendicular to the projection plane. Orthographic
projections are generally less realistic than perspective projections;
however, they’re popular for engineering drawings because parallel
lines remain parallel in the projection, rather than converging to a
single point on the horizon.

• View plane — This is a perspective projection defined in terms of
an arbitrary viewing plane. This type of camera is useful for
providing an off-axis view, which is used for scrolling.

We use a view angle camera for the Box application, creating the camera with the
routine in Listing 6.

LIGHTING
QuickDraw 3D includes a number of different light objects that can be used to
provide illumination to the surfaces in a scene. Lighting is additive, meaning that the

d e v e l o p Issue 22 June 199520

Listing 4. Creating a Macintosh draw context

TQ3DrawContextObject MyNewDrawContext(WindowPtr theWindow)
{

TQ3DrawContextData myDrawContextData;
TQ3MacDrawContextData myMacDrawContextData;
TQ3DrawContextObject myDrawContext;
TQ3ColorRGB clearColor;

Q3ColorRGB_Set(&clearColor, 1, 1, 1);
myDrawContextData.clearImageState = kQ3True;
myDrawContextData.clearImageMethod = kQ3ClearMethodWithColor;
myDrawContextData.clearImageColor = clearColor;
myDrawContextData.paneState = kQ3False;
myDrawContextData.maskState = kQ3False;
myDrawContextData.doubleBufferState = kQ3True;
myMacDrawContextData.drawContextData = myDrawContextData;
myMacDrawContextData.window = (CGrafPtr) theWindow; // The window

// associated with the view
myMacDrawContextData.library = kQ3Mac2DLibraryNone;
myMacDrawContextData.viewPort = nil;
myMacDrawContextData.grafPort = nil;

// Create draw context and return it; if nil, caller must handle it.
myDrawContext = Q3MacDrawContext_New(&myMacDrawContextData);
return myDrawContext;

}

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 21

Listing 5. Creating a pixmap draw context

TQ3DrawContextObject MyNewPixmapDrawContext(GWorldPtr theGWorld)
{

TQ3PixmapDrawContextData myPixmapDCData;
TQ3ColorRGB clearColor;
PixMapHandle hPixMap;
Rect srcRect;

Q3ColorRGB_Set(&clearColor, 1, 1, 1);

// Fill in the draw context data.
myPixmapDCData.drawContextData.clearImageState = kQ3True;
myPixmapDCData.drawContextData.clearImageMethod =

kQ3ClearMethodWithColor;
myPixmapDCData.drawContextData.clearImageColor = clearColor;
myPixmapDCData.drawContextData.paneState = kQ3False;
myPixmapDCData.drawContextData.maskState = kQ3False;
myPixmapDCData.drawContextData.doubleBufferState = kQ3False;
hPixMap = GetGWorldPixMap(theGWorld);
LockPixels(hPixMap);
srcRect = theGWorld->portRect;
myPixmapDCData.pixmap.width = srcRect.right - srcRect.left;
myPixmapDCData.pixmap.height = srcRect.bottom - srcRect.top;
myPixmapDCData.pixmap.rowBytes = (**hPixMap).rowBytes & 0x7FFF;
myPixmapDCData.pixmap.pixelType = kQ3PixelTypeRGB32;
myPixmapDCData.pixmap.pixelSize = 32;
myPixmapDCData.pixmap.bitOrder = kQ3EndianBig;
myPixmapDCData.pixmap.byteOrder = kQ3EndianBig;
myPixmapDCData.pixmap.image = (**hPixMap).baseAddr;

return Q3PixmapDrawContext_New(&myPixmapDCData);
}

Listing 6. Creating the camera

TQ3CameraObject MyNewCamera(WindowPtr theWindow)
{

TQ3ViewAngleAspectCameraData perspectiveData;
TQ3CameraObject camera;

TQ3Point3D from = { 0.0, 0.0, 13.0 };
TQ3Point3D to = { 0.5, 0.5, -1.5 };
TQ3Vector3D up = { 0.0, 1.0, 0.0 };
float fieldOfView = 0.523593333;
float hither = 0.001;
float yon = 1000;

perspectiveData.cameraData.placement.cameraLocation = from;
perspectiveData.cameraData.placement.pointOfInterest = to;
perspectiveData.cameraData.placement.upVector = up;
perspectiveData.cameraData.range.hither = hither;

(continued on next page)

amount of lighting applied to a particular surface will be the sum of the lighting from
all sources. There are four light types:

• Ambient — This is the amount of light added to all surfaces in a
scene. Since this light type has no location, it doesn’t cast shadows.

• Directional — Sometimes referred to as an “infinite” light, this
light source emits parallel rays of light in a specific direction. The
intensity of this light source doesn’t change as the distance from
the light changes.

• Point — This light source emits rays of light in all directions from
a particular point location. A point light is attenuated, meaning that
the intensity of the light decreases as the distance from the light
increases; QuickDraw 3D provides a set of constants to control
this behavior.

• Spot — This type of light emits a circular cone of light from a
point source in a particular direction. A spot light is attenuated
both by the distance from the source and by the position across the
cone; the intensity of light at the center of the cone is greater than
the intensity at the edge of the cone.

Listing 7 shows an extract from our sample’s MyNewLights routine; here we create a
point light and add it to a light group.

THE VIEW
Once you’ve added the light to a group, you can associate the group with the View
object for your scene. A View object keeps track of the information necessary to
render an entire scene, tying together the different parts of QuickDraw 3D. In our
simple example it ties together the draw context, camera, lights, and renderer. Listing
8 shows the code we use to create the View object for the Box program.

THE RENDERING LOOP
All drawing must be done in a rendering loop. This is necessary because we don’t
know in advance how much memory is required to render a complex model. The
loop should fit neatly into your application, because most Macintosh applications will
localize drawing in the update event–handling code, which is where you’ll call your
rendering loop for QuickDraw 3D. A simple rendering loop will look like Listing 9.

d e v e l o p Issue 22 June 199522

perspectiveData.cameraData.range.yon = yon;
perspectiveData.cameraData.viewPort.origin.x = -1.0;
perspectiveData.cameraData.viewPort.origin.y = 1.0;
perspectiveData.cameraData.viewPort.width = 2.0;
perspectiveData.cameraData.viewPort.height = 2.0;
perspectiveData.fov = fieldOfView;
perspectiveData.aspectRatioXToY =

(float) (theWindow->portRect.right - theWindow->portRect.left) /
(float) (theWindow->portRect.bottom - theWindow->portRect.top);

camera = Q3ViewAngleAspectCamera_New(&perspectiveData);

return camera;
}

Listing 6. Creating the camera (continued)

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 23

Listing 7. Creating a point light in a light group

lightGroup = Q3LightGroup_New();

pointData.lightData.isOn = kQ3True;
pointData.lightData.brightness = 0.80;
pointData.lightData.color.r = 1.0;
pointData.lightData.color.g = 1.0;
pointData.lightData.color.b = 1.0;
pointData.location.x = -10.0;
pointData.location.y = 0.0;
pointData.location.z = 10.0;
pointData.castsShadows = kQ3False;
pointData.attenuation = kQ3AttenuationTypeNone;
light = Q3PointLight_New(&pointData);

Q3Group_AddObject(lightGroup, light);
Q3Object_Dispose(light);

Listing 8. Creating the View object

TQ3ViewObject MyNewView(WindowPtr theWindow)
{

TQ3Status myStatus;
TQ3ViewObject myView;
TQ3DrawContextObject myDrawContext;
TQ3RendererObject myRenderer;
TQ3CameraObject myCamera;
TQ3GroupObject myLights;

myView = Q3View_New();

// Create and set the draw context.
myDrawContext = MyNewDrawContext(theWindow);
myStatus = Q3View_SetDrawContext(myView, myDrawContext);
Q3Object_Dispose(myDrawContext);

// Create and set the renderer. Use the interactive software renderer.
myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive);
myStatus = Q3View_SetRenderer(myView, myRenderer);
Q3Object_Dispose(myRenderer);

// Create and set the camera.
myCamera = MyNewCamera(theWindow);
myStatus = Q3View_SetCamera(myView, myCamera);
Q3Object_Dispose(myCamera);

// Create and set the lights.
myLights = MyNewLights();
myStatus = Q3View_SetLightGroup(myView, myLights);
Q3Object_Dispose(myLights);

return myView;
}

Recall that earlier we set up our Macintosh draw context to use double buffering; this
causes all drawing to take place in the back buffer. The calls in the rendering loop
draw into the active buffer, which we have set up to be the back buffer. The image
data is copied from the back buffer to the front buffer (in this case the window) when
Q3View_EndRendering is called.

A rendering loop for a pixmap draw context would be similar to the routine in
Listing 9, except you would need to copy the data from your PixMap to the screen
yourself, generally with CopyBits.

THE QUICKDRAW 3D METAFILE
Here we’ll take a brief look at the architecture of QuickDraw 3D’s metafile format
(file type '3DMF') and at how you can provide metafile support in your application.

The QuickDraw 3D metafile comes in two forms: plain-text (ASCII) and binary.
Table 1 shows the differences between these two forms. The plain-text form is more
useful for debugging purposes; once your application is debugged, it’s more efficient
to use the binary form, which may be read and written much faster and may require
less storage space on disk.

d e v e l o p Issue 22 June 199524

Listing 9. The rendering loop

TQ3Status DocumentDraw3DData(DocumentPtr theDocument)
{

Q3View_StartRendering(theDocument->fView);
do {

Q3Style_Submit(theDocument->fInterpolation, theDocument->fView);
Q3Style_Submit(theDocument->fBackFacing, theDocument->fView);
Q3Style_Submit(theDocument->fFillStyle, theDocument->fView);
Q3MatrixTransform_Submit(&theDocument->fRotation,

theDocument->fView);
Q3DisplayGroup_Submit(theDocument->fModel, theDocument->fView);

} while (Q3View_EndRendering(theDocument->fView)
== kQ3ViewStatusRetraverse);

return kQ3Success;
}

Table 1. Differences between plain-text and binary metafiles

Primitive Plain-text Binary
Integer Text representation Int 8/16/32/64
Unsigned Text representation Uns 8/16/32/64
Float Text representation Float 32/64
Object type ObjectName 4-byte code
Sizes Parentheses delimited Uns32
File pointer Label>, Label: pairs Uns64
Enumerated types EnumName Uns32
Bit fields Mask1 | Mask2 | ... Uns32
String "Quoted String" Padded C string
Raw data Hex string (e.g., 0xAB02) Stored raw

The metafile format supports a wide range of primitive data types, including 1-, 2-,
4-, and 8-byte signed and unsigned integers and 4- and 8-byte IEEE floating-point
numbers, together with a range of types for describing 3D data. In addition, metafiles
may contain big- or little-endian numbers, making them ideal for storing data that
may be used in a cross-platform manner.

METAFILE ORGANIZATION
There are three distinct types of metafile organization: normal, stream, and database.
The organization of the file can affect both the size of the file and the time it takes to
access the data in the file. Let’s look at a simple example in which a single Box object
is drawn four times at different positions by means of four different Transform
objects, as was shown in Figure 6. The three types of organization are illustrated in
Figure 7. (Note that # marks the beginning of a comment.) These types are as
follows:

• Normal — This is the most compact representation. Referenced
objects are listed in a Table of Contents (TOC). In our example,
only the Box object is listed in the TOC. The Transform objects
don’t appear in the TOC because they were referenced only once.
Note that random access to the file is needed to resolve references,
since after reading a reference, the metafile parser needs to skip
forward to the TOC, and back to resolve the references.

• Stream — There is no TOC, and references to objects are written
as copies of the objects themselves. This may result in a larger file
if a lot of object references were used, but it allows for a sequential
search. A sequential search is very useful for reading from the file
and imaging to a printer, since each object can be read, imaged,
and disposed of. This organization is also useful as a wire protocol
for imaging on remote machines.

• Database — Every object is logged into the TOC, even if it’s not
referenced. Each TOC entry contains the type of the object.
Accessing the TOC lets you see all the information contained in
the file without having to read in all of the file and create objects.
This would be useful for creating a catalog of textures, for
example.

USING METAFILES
The simplest way to access data in metafiles is to use the QuickDraw 3D API. First,
there are two types of objects you need to understand:

• TQ3FileObject — Objects of this type maintain state information
and provide an interface between a given file format and a Storage
object. File objects are used to read and write data in metafile
format from and to Storage objects.

• TQ3StorageObject — Objects of this type act as an interface to a
type of physical stream-based storage (for example, memory and
files). Storage objects are used to represent a piece of physical
storage.

Why have this two-stage approach? The answer is that all the machine dependencies
are localized in the Storage object, which allows files to be used to read and write data
from differing types of physical storage with the same set of routines. For example,
you can use the same File object to write to a Storage object that represents a file on
your hard disk and to write to another Storage object that represents a block of
memory that will be passed to the Scrap Manager.

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 25

The usual method for using File and Storage objects is to create a new instance of a
Storage object and attach it to a newly created File object using Q3File_SetStorage,
as shown in Listing 10.

Reading data from metafiles. There are three routines that you can use to help
with reading the data: Q3File_GetNextObjectType, Q3File_ReadObject, and
Q3File_SkipObject. Listing 11 illustrates the technique used to read drawable data
from a metafile. The code loops through the file, getting each object and checking to
see if the object is drawable; if so, it adds the object to a group object.

Because we’re isolating the implementation details of how the metafile data is stored
in the Storage object that we associated with the File object at its creation time, we
don’t care how the metafile data we’re reading is physically stored. What this means
is that we could use the routine above to read data from the scrap, from a handle
supplied by the Drag Manager, or from a file, as long as the storage object attached to
the file is set up properly.

d e v e l o p Issue 22 June 199526

3DMetafile (0 5 Database Label0>)

Label2:

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Label3:

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Label4:

Translate (2 0 0)

Reference (1)

Label5:

Translate (0 0 -2)

Reference (1)

Label6:

Translate (-2 0 0)

Reference (1)

Label0:

TableOfContents (

 Label1> # next TOC

 6 # reference seed

 -1 # typeSeed

 1 # tocEntryType

 16 # tocEntrySize

 5 # nEntries

 1 Label2>

 Box

 2 Label3>

 GeometryAttributeSet

 3 Label4>

 Translate

 4 Label5>

 Translate

 5 Label6>

 Translate

)

3DMetafile (0 5 Normal Label0>)

Label2:

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Label11:

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Label3:

Translate (2 0 0)

Reference (1)

Label4:

Translate (0 0 -2)

Reference (1)

Label5:

Translate (-2 0 0)

Reference (1)

Label0:

TableOfContents (

 Label1> # next TOC

 2 # reference seed

 -1 # typeSeed

 0 # tocEntryType

 12 # tocEntrySize

 1 # nEntries

 1 Label2>

)

3DMetafile (0 5 Stream Label0>)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Translate (2 0 0)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Translate (0 0 -2)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Translate (-2 0 0)

Container (

 Box (

 0 1 0 0 0 1 1 0 0 0 0 0)

 Container (

 GeometryAttributeSet ()

 DiffuseColor (0.9 0.9 0.2)

)

)

Normal organization Stream organization Database organization

Figure 7. Three types of metafile organizations (representing Figure 6)

Writing data to metafiles. Data is written to files similarly to the way it’s drawn in
a rendering loop. Depending on the available memory and the complexity of the
model, QuickDraw 3D may need to traverse the model in the group more than once
in order to write all the data out (this is the same reason that the rendering needs to
be done in a loop). As shown below, you need to preface your file-writing loop with a
call to Q3File_BeginWrite, and test the value returned by Q3File_EndWrite to see if
there’s a need to traverse the data again.

Q3File_OpenWrite(file, kQ3FileModeNormal);
Q3File_BeginWrite(file);
do {

Q3Object_Write(group, file);
} while (Q3File_EndWrite(file) == kQ3FileStatusRetraverse);
Q3File_Close(file);

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 27

Listing 10. Attaching a Storage object to a file

TQ3FileObject MyGetNewFile(FSSpec *myFSSpec, TQ3Boolean *isText)
{

TQ3FileObject myFileObj;
TQ3StorageObject myStorageObj;
OSType myFileType;
FInfo fndrInfo;

// We assume the FSSpec passed in was valid and get the file
// information. We need to know the file type; this routine may get
// called by an Apple-event handler, so we can't assume a type -- we
// need to get it from the FSSpec.
FSpGetFInfo(myFSSpec, &fndrInfo);
myFileType = fndrInfo.fdType;

if (myFileType == '3DMF')
*isText = kQ3False;

else if (myFileType == 'TEXT')
*isText = kQ3True;

else
return NULL;

// Create a new Storage object and new File object.
if (((myStorageObj = Q3FSSpecStorage_New(myFSSpec)) == NULL)

|| ((myFileObj = Q3File_New()) == NULL)) {
if (myStorageObj != NULL)

Q3Object_Dispose(myStorageObj);
return NULL;

}

// Set the storage for the File object.
Q3File_SetStorage(myFileObj, myStorageObj);
Q3Object_Dispose(myStorageObj);

return myFileObj;
}

GO TO IT!
QuickDraw 3D lowers the bar for application developers who want to put support
for 3D data into their applications. By providing support for the features that all
developers need to have in applications — geometries, metafile support, rendering,
and human interface — QuickDraw 3D allows you to concentrate on the features and
facilities that set your application apart.

d e v e l o p Issue 22 June 199528

Listing 11. Reading from a metafile

TQ3Status MyReadModelFromFile(TQ3FileObject theFile, TQ3GroupObject
myGroup)

{
if (theFile != NULL) {

TQ3Object myTempObj;
TQ3Boolean isEOF;

// Read objects from the file.
do {

Q3File_ReadObject(theFile, &myTempObj);
if (myTempObj != NULL) {

// We want the object in our main group only if we can
// draw it.
if (Q3Object_IsDrawable(myTempObj))

Q3Group_AddObject(myGroup, myTempObj);
// We either added the object to the main group, or we don't
// care, so we can safely dispose of it.
Q3Object_Dispose(myTempObj);

}
// Check to see if we've reached the end of the file yet.
Q3File_IsEndOfFile(theFile, &isEOF);

} while (isEOF == kQ3False);
}
if (myGroup != NULL)

return kQ3Success;
else

return kQ3Failure;
}

Thanks to our technical reviewers Kent Davidson,
Eiichiro Mikami, Don Moccia, and Dan Venolia,
and to all the members of the QuickDraw 3D team.
Special thanks to Kent and Dan for supplying
information used in this article and to David

Vasquez for his Viewer sample. Thanks also to
the Shawn and John team (Shawn Hopwood,
Apple’s 3D evangelist, and our marketing
weenie, John Alfano) for their input.•

