
See also
AutoToggle Property
FieldType Property Array
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Toggle Event

See also
AutoToggle Property
FieldType Property Array
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Numlock, ScrollLock, Capslock Properties

See also
FieldType Property Array
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Numlock, ScrollLock, Capslock Properties
Toggle Event

See also
FieldWidth Property Array
Message Property Array

See also
FieldWidth Property Array

See also
FieldType Property Array
FieldWidth Property Array

See also
FieldWidth Property Array
FloodColor Property
FloodField Property
FloodPercent Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
FieldWidth Property Array
FloodColor Property
FloodField Property
FloodInvertText Property
FloodPercent Property
ForeColor Property Array
Message Property Array

See also
FieldWidth Property Array
FloodColor Property
FloodField Property
FloodInvertText Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
FloodColor Property
FloodInvertText Property
FloodPercent Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
FloodField Property
FloodInvertText Property
FloodPercent Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
FieldWidth Property Array

See also
Alignment Property Array
ForeColor Property Array
Message Property Array

See also
Alignment Property Array
FieldWidth Property Array
ForeColor Property Array

See also
FieldWidth Property Array
RedrawField Property
Message Property Array

See also
FieldType Property Array
SpaceAfter Property Array

See also
FieldType Property Array
FieldWidth Property Array
Message Property Array

See also
AutoToggle Property
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Toggle Event

See also
FieldWidth Property Array

See also
AutoToggle Property
FieldType Property Array
Numlock, ScrollLock, Capslock Properties
Toggle Event

' Toggle Example, StatusBar Control

Const FIELD_NORMAL = 0
Const FIELD_CAPSLOCK = 1
Const FIELD_NUMLOCK = 2
Const FIELD_SCROLLOCK = 3
Const FIELD_CLOCK = 4

Sub Form_Load ()

Const ALIGN_LEFT = 0
Const ALIGN_RIGHT = 1
Const ALIGN_CENTER = 2

Const OFF = 0
Const ON = 1

' Align the statusbar to the bottom of the window
' and set the height
StatusBar1.Align = 2
StatusBar1.Height = 330

' Set messages for the toggle-keys
StatusBar1.CapsLockOnText = "CAPS"
StatusBar1.CapsLockOffText = "caps"
StatusBar1.NumLockOnText = "NUM"
StatusBar1.NumLockOffText = "num"
StatusBar1.ScrollLockOnText = "SCROLL"
StatusBar1.ScrollLockOffText = "scroll"

' The statusbar initializes three fields by setting their
' FieldWidth property to a value greater than zero.

 StatusBar1.FieldWidth(0) = 400
 StatusBar1.FieldWidth(1) = 40
 StatusBar1.FieldWidth(2) = 40

StatusBar1.FieldWidth(3) = 40

' The spacing between the fields is set
StatusBar1.SpaceAfter(0) = 4
StatusBar1.SpaceAfter(1) = 2
StatusBar1.SpaceAfter(2) = 2
' SpaceAfter(3) isn't set since this is the last field
' and it's SpaceAfter property isn't used.

 StatusBar1.FieldType(0) = FIELD_NORMAL ' Plain text (DEFAULT)

StatusBar1.FieldType(1) = FIELD_NUMLOCK ' Num-lock key status
StatusBar1.FieldType(2) = FIELD_CAPSLOCK ' Caps-lock key status
StatusBar1.FieldType(3) = FIELD_SCROLLOCK ' Scroll-lock key status

' Allow the user to double-click a toggle-field to toggle the key
StatusBar1.AutoToggle = True

' Turn num-lock on and turn caps- and scroll-lock off.
StatusBar1.NumLock = ON
StatusBar1.CapsLock = OFF
StatusBar1.ScrollLock = OFF

' The alignment for the last three fields is set to ALIGN_CENTER
StatusBar1.Alignment(1) = ALIGN_CENTER ' Center
StatusBar1.Alignment(2) = ALIGN_CENTER ' Center
StatusBar1.Alignment(3) = ALIGN_CENTER ' Center

' Set a message for the first field (the other three
' messages are ignored anyhow
StatusBar1.Message(0) = "Demonstration of the StatusBar control"

' Sets the FontBold property to False to get better readable texts
StatusBar1.FontBold = False

End Sub

Sub StatusBar1_Toggle(FieldType As Integer, KeyState As Integer)
Dim sMsg As String

Select Case FieldType
Case FIELD_NUMLOCK: sMsg = "Numlock"
Case FIELD_CAPSLOCK: sMsg = "Capslock"
Case FIELD_SCROLLOCK: sMsg = "Scroll-lock"

End Select
sMsg = sMsg + " is turned "
If KeyState Then sMsg = sMsg + "on." Else sMsg = sMsg + "off."
MsgBox sMsg

End Sub

' Progress Indicator Example, StatusBar Control

Sub Form_Load ()

' Only display one field of the statusbar control
StatusBar1.FieldWidth(0)=100
' Set the field to automatically expand
StatusBar1.ExpandField = 0
' Set the field to show a percentage
StatusBar1.FloodField = 0
' Set the field to invert the text not under the filled area
StatusBar1.FloodInvertText = True
' Don't display the percentage
StatusBar1.FloodShowPct = False

' Set a message for the percentage field
StatusBar1.Message(0) = "Busy creating database..."
StatusBar1.Align = 2
StatusBar1.FontBold = False
StatusBar1.Height = 400

End Sub

Sub Form_Click ()
StatusBar1.FloodPercent = StatusBar1.FloodPercent + 5

End Sub

' Click Example, StatusBar Control

Sub Form_Load ()
Dim I As Integer

WindowState = 2
StatusBar1.Align = 2
StatusBar1.FontBold = False
StatusBar1.Height = 400

For I = 0 To 7
StatusBar1.FieldWidth(I) = 50
StatusBar1.Message(I) = "Field " & Format$(I)

Next I

StatusBar1.FieldWidth(8) = 200
StatusBar1.Message(8) = "Click on any field"

End Sub

Sub StatusBar1_Click(Field As Integer)
Dim sMsg As String

If Field<>8 Then
sMsg = "Clicked on field " & Format$(Field)
StatusBar1.ForeColor(8) = QBColor(0)

Else
sMsg = "Hey, you clicked on me!"
StatusBar1.ForeColor(8) = RGB(0,0,255)

End If
StatusBar1.Message(8) = sMsg

End Sub

' StatusBar Initialize Example, StatusBar Control

Sub Form_Load ()

Const FIELD_NORMAL = 0
Const FIELD_CAPSLOCK = 1
Const FIELD_NUMLOCK = 2
Const FIELD_SCROLLOCK = 3
Const FIELD_CLOCK = 4

Const ALIGN_LEFT = 0
Const ALIGN_RIGHT = 1
Const ALIGN_CENTER = 2

Const CLOCK_HHMMSS = 0
Const CLOCK_HHMM = 1
Const CLOCK_HHMMSSAM = 2
Const CLOCK_HHMMAM = 3

Const RAISED = 1
Const HEAVY_RAISED = 2
Const INSET = 3
Const HEAVY_INSET = 4

' Align the statusbar to the bottom of the window
' and set the height
StatusBar1.Align = 2
StatusBar1.Height = 330

' Make the statusbar display a lightly inset font
StatusBar1.Font3D = INSET

' The statusbar initializes three fields by setting their
' FieldWidth property to a value greater than zero.

 StatusBar1.FieldWidth(0) = 400
 StatusBar1.FieldWidth(1) = 33
 StatusBar1.FieldWidth(2) = 70

' The first field is set to AutoExpand
' Since field 0 is the expand field, the specified width
' will be treated as the minimum width for this field"
StatusBar1.ExpandField = 0

' All fields receive their own Forecolor
StatusBar1.ForeColor(0) = QBColor(12) ' Red
StatusBar1.ForeColor(1) = QBColor(0) ' Black
StatusBar1.ForeColor(2) = RGB(0,0,255) ' Bright Blue

' The spacing between the fields is set
StatusBar1.SpaceAfter(0) = 4
StatusBar1.SpaceAfter(1) = 2

' SpaceAfter(2) isn't set since this is the last field
' and it's SpaceAfter property isn't used.

 StatusBar1.FieldType(0) = FIELD_NORMAL ' Plain text (DEFAULT)

StatusBar1.FieldType(1) = FIELD_NUMLOCK ' Num-lock key status
StatusBar1.FieldType(2) = FIELD_CLOCK ' Clock

'Set the type of clock to use (12 hour clock with seconds)
StatusBar1.ClockFormat = CLOCK_HHMMSSAM

' The alignment for the last two field is set to ALIGN_CENTER
StatusBar1.Alignment(1) = ALIGN_CENTER ' Center
StatusBar1.Alignment(2) = ALIGN_CENTER ' Center

' Set a message for the first field (the other two
' messages are ignored anyhow
StatusBar1.Message(0) = "Demonstration of the StatusBar control"

' Sets the FontBold property to False to get better readable texts
StatusBar1.FontBold = False

End Sub

Toggle Event, StatusBar Control
see also example

Description
Occurs when the user presses one of the Caps-lock, Num-lock or Scroll-lock keys on the
keyboard or double-click a field width FieldType 1, 2 or 3 and the AutoToggle property has
been set to True.

Syntax
Sub StatusBar1_Toggle (Index As Integer, FieldType As Integer, KeyState As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array.    The FieldType
argument specifies the special key that was toggled. It has one of the following three
values:

Value Short name Description
1 FIELD_CAPSLOCK Caps-lock has been toggled
2 FIELD_NUMLOCK Num-lock has been toggled
3 FIELD_SCROLLOCK Scroll-lock has been toggled
The KeyState argument is a boolean argument and specifies whether the toggled key
was toggled on or off.
The example shows you a possible way to react to the Toggle event. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

Click Event, StatusBar Control
see also example

Description
Occurs when the user presses and then releases the left-mouse button over a field of the
StatusBar control. You can not trigger the Click event for the StatusBar event in code.

Syntax
Sub StatusBar1_Click (Index As Integer, Field As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array.    The Field
argument specifies the number of the text-field that was clicked on. You can use this
number to take some action whenever the user clicks on a field.
The example shows you a possible way to react to the Click event. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

Font3D Property, StatusBar Control
see also example

Description
Specifies how that StatusBar control displays the text in the text-fields.

Usage
[form!]StatusBar1.Font3D [= setting%]

Remarks
The StatusBar can display fonts in five different ways. The Font3D property takes one of
the following values to specify the way the Statusbar displays the font in a text-field.

Value Short name Description
0 DEFAULT (Default) Simply displays the selected font.
1 RAISED Displays the font slightly raised.
2 HEAVY_RAISED Displays a heavy raised font.
3 INSET Displays the font slightly inset.
4 HEAVY_INSET Display a heavy inset font.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

ClockFormat Property, StatusBar Control
see also example

Description
Specifies the time-format for text-fields with FieldType 3 (FIELD_CLOCK).

Usage
[form!]StatusBar1.ClockFormat [= setting%]

Remarks
The StatusBar can display four different clocks. The ClockFormat property takes one of
the following values to specify the time-format of a text-field with FieldType set to 3.

Value Short name Description
0 CLOCK_HHMMSS (Default) Display a 24-hour clock with seconds.
1 CLOCK_HHMM Displays a 24-hour clock without the seconds.
2 CLOCK_HHMMSSAM Displays a 12-hour clock with seconds prefixed by AM

or PM.
3 CLOCK_HHMMAM Displays a 12-hour clock without the seconds prefixed

by AM or PM.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

NumLock, CapsLock and ScrollLock Properties, StatusBar Control
see also example

Description
Sets or returns the current state of the num-lock, caps-lock or scroll-lock key.

Usage
[form!]StatusBar1.NumLock [= setting%]
[form!]StatusBar1.CapsLock [= setting%]
[form!]StatusBar1.ScrollLock [= setting%]

Remarks
You can use the NumLock, CapsLock and ScrollLock properties to set or get the state of the
num-lock, caps-lock keys.
The NumLock, CapsLock and ScrollLock properties are only available at run-time, since they
are of no use in the design time environment (its much quicker to press one of the keys
than to set it explicitly through the Properties-window). These properties always reflect the
current state of the toggle keys, so if you set the NumLock property to one (ON) and a user
presses the Num-Lock key after that, getting the NumLock property will return zero (OFF).
There are two possible settings for the NumLock, CapsLock and ScrollLock properties:

Value Short Name Meaning
0 OFF The state of num--lock, caps-lock or scroll-lock is

(turned) off.
1 ON The state of num--lock, caps-lock or scroll-lock is

(turned) on.

Data Type
Integer (Enumerated)

The example demonstrates the use of the NumLock, CapsLock and ScrollLock properties.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

AutoToggle Property, StatusBar Control
see also example

Description
Specifies if the user can toggle the special keys num-lock, caps-lock and scroll-lock by
double clicking on a field with FieldType 1, 2 or 3.

Usage
[form!]StatusBar1.AutoToggle [= setting%]

Remarks
The AutoToggle property only has effect when you have defined fields with FieldType 1, 2 or
3. There are two possible settings for the AutoToggle property:

AutoToggle Result
True Toggles num-lock, caps-lock or scroll-lock when a user

double-clicks on such a field.
False Does not toggle num-lock, caps-lock or scroll-lock on

double-clicks.

Data Type
Integer (Boolean)

The example demonstrates the use of the AutoToggle property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodInvertText Property, StatusBar Control
see also example

Description
Specifies whether or not to change the color of the text according to the progress of the
percentage in the text of the text-field specified by the the FloodField property.

Usage
[form!]StatusBar1.FloodInvertText [= setting%]

Remarks
The FloodInvertText property affects the text that is displayed in the text-field specified by
the FloodField property. There are two possible settings for the FloodInvertText property:

FloodInvertText Color of text-field
True The text-color of the text displayed in the text-field is

different for the text on the progress indicator bar and
the space next to the bar. The text-color in the space
right next to the bar is set to the same color as the
color specified in the FloodColor property. The text on
the bar is drawn with the color specified in the
ForeColor property array for that field.

False The entire text is displayed in the color specified in the
ForeColor property array.

Data Type
Integer (Boolean)

The example demonstrates the use of the FloodInvertText property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodShowPct Property, StatusBar Control
see also example

Description
Specifies whether or not to include the percentage in the text of the text-field specified
by the the FloodField property.

Usage
[form!]StatusBar1.FloodShowPct [= setting%]

Remarks
The FloodShowPct property affects the text that is displayed in the text-field specified by
the FloodField property. Another thing that affects the text is the Message property for
that text-field. There are four possible combinations:

FloodShowPct Message Contents of text-field
True some text The text specified in the Message property-array

followed by a colon, followed by the percentage (taken
from the FloodPercent property).

True empty Only the percentage.
False some text The text specified in the Message property-array.
False empty empty

Data Type
Integer (Boolean)

The example demonstrates the use of the FloodShowPct property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodPercent Property, StatusBar Control
see also example

Description
Specifies the percentage of the text-field specified by the FloodField property to be filled.

Usage
[form!]StatusBar1.FloodPercent [= setting%]

Remarks
The FloodPercent property sets or retrieves the percentage of the text-field that will be
filled with the color specified by the FloodColor property. If the FloodPercent property is
set to a value smaller than zero or greater than one hundred it's value is automatically
adjusted. This setting will have no effect is the FloodField property is set to -1 or the
FloodField property is set to a field with a FieldWidth of zero.

Data Type
Integer

The example demonstrates the use of the FloodPercent property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodField Property, StatusBar Control
see also example

Description
Specifies which field is to be used as a progress indicator.

Usage
[form!]StatusBar1.FloodField [= setting%]

Remarks
The FloodField property allows you to use one field of the StatusBar control as a progress
indicator. The message for this field (specified in the Message property array) will be
placed before the percentage specified in the FloodPercent property. A colon is
automatically inserted between the message and the percentage. If no message is
specified for the text-field the colon is omitted. The FloodShowPct property specifies
whether or not to append the actual percentage to the message specified for the
FloodField.
If the FloodField property is set to a field that has a FieldWidth of zero, the FloodField is
not displayed.
The field is filled with the color specified by the FloodColor property.

Data Type
Integer

The example demonstrates the use of the FloodPercent property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodColor Property, StatusBar Control
see also example

Description
Sets or retrieves the color used to paint the area inside a text-field when the statusbar is
used as a percentage indicator (only when the FloodField property is setting is other than
-1).

Usage
[form!]StatusBar1.FloodColor [= color&]

Remarks
The FloodColor property has the same range of settings as standard Visual Basic color
settings.
Use this property with FloodField and FloodPercent to cause the StatusBar to display a
colored percentage bar indicating the degree of completion of a task.
At design time you can set this property by entering a hexadecimal value in the Settings
box or by    clicking the three dots that appear at the right of the Settings box. Clicking
this button displays a dialog    box that allows you to select a FloodColor setting from the
Visual Basic Color Palette.

Note
The FloodColor property defaults to bright blue: RGB (0, 0, 255). The valid range for a
normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range
equals 0; the lower three bytes, from least to most significant, determine the amount of
red, green, and blue, respectively. The red, green, and blue components are each
represented by a number between 0 and 255 (&HFF).

Data Type
Long

The example demonstrates the use of the FloodPercent property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

SpaceAfter Property Array, StatusBar Control
see also example

Description
Sets or retrieves the spacing between the text-fields StatusBar control.

Usage
[form!]StatusBar1.SpaceAfter(I) [= setting%]

Remarks
The SpaceAfter property array allows you to define the spacing between the text-fields in
the StatusBar control. It specifies how much space (in pixels) to leave behind a text-field
before the next text-field is shown. The index in the SpaceAfter array is the same index
as in the FieldWidth and Message arrays. So if you set SpaceAfter(0) to 4, you define a
spacing of 4 pixels after the first field. The default setting is 3 pixels, but you can set it to
any value you like.

Data Type
Integer

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

RedrawField Property, StatusBar Control
see also

Description
Forces the StatusBar to redisplay one or all text-fields.

Usage
[form!]StatusBar1.RedrawField [= setting%]

Remarks
If you specify an alternate Alignment and ForeColor for a text-field, the field is not
updated automatically. This is done on purpose to avoid flickering if you want to display a
new message in a different color.
If you only want to change the forecolor or alignment of a field without changing the
message, use the RedrawField property to redisplay the message with the new settings.
Specifying -1 for the RedrawField property forces all messages to be redrawn. Of course,
you can also force the StatusBar control to redraw all fields by using the Refresh method
or by assigning the Message property of a field to itself (StatusBar1.Message(0) =
StatusBar1.Message(0)), but using the RedrawField property is more efficient.
This property is not available at design time and write-only at run-time.

Data Type
Integer

Message Property Array, StatusBar Control
see also example

Description
Sets or retrieves the text to be displayed in one of the text-fields of the StatusBar
control.

Usage
[form!]StatusBar1.Message(I) [= message$]

Remarks
Setting a new message for a text-field automatically redisplays the message, so be sure
to set other properties, like Alignment or ForeColor, before you change the message. If
the message is to big to fit in the field, the message is clipped.
Only text-fields with a FieldWidth bigger than zero are displayed. Fields with zero-length
are not displayed regardless of the message you specify for them

Data Type
String

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

LeftMargin, RightMargin Properties, StatusBar Control

Description
Set or retrieve the left of right-margin for the StatusBar control.

Usage
[form!]StatusBar1.LeftMargin [= setting%]
[form!]StatusBar1.RightMargin [= setting%]

Remarks
The LeftMargin property specifies how much room to leave before displaying the first
text-field, the RightMargin property specifies the space to reserve after the last text-field.
The Left- and Right margin are always expressed in pixels, regardless of the ScaleMode
of the StatusBar's parent.

Data Type
Integer

ForeColor Property Array, StatusBar Control
see also example

Description
Sets or retrieves the field text-color of one of the text-fields of the StatusBar control.

Usage
[form!]StatusBar1.ForeColor(I) [= color&]

Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.    Each
property has the following ranges of settings:

Range of settings Description
Normal RGB colors Colors by using the RGB or QBColor functions in code.
System default colors Colors specified with system color constants from

CONSTANT.TXT, a Visual Basic file that specifies system
defaults.    The Windows environment substitutes the
user's choices as specified in the user's Control Panel
settings.

For the StatusBar control the default settings at design time are:
ForeColor(I) set to the WINDOW_TEXT system color as specified in CONSTANT.TXT.

Setting the ForeColor property does not affect messages already displayed to avoid
flickering if you want to display a new message in a different color. To force the current
message to be redisplayed in the new color set the RedrawField property to the number
of the field to redisplay.
The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of
a number in this range equals 0; the lower three bytes, from least to most significant
byte, determine the amount of red, green, and blue, respectively.    The red, green, and
blue components are each represented by a number between 0 and 255 (&HFF).    If the
high byte is not 0, Visual Basic uses the system colors, as defined in the user's Control
Panel and enumerated in CONSTANT.TXT.
To display text in the Windows environment, the text-colors must be solid.    If the text-
colors you've selected are not displayed, the selected color may be dithered that is,
comprised of up to three different-colored pixels.    If you choose a dithered color for the
text, the nearest solid color will be substituted.

Data Type
Long

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

FieldWidth Property Array, StatusBar Control
see also example

Description
Set or retrieves the field width of one of the text-fields of the StatusBar control.

Usage
[form!]StatusBar1.FieldWidth(I) [= setting%]

Remarks
The FieldWidth of a field is always expressed in pixels. A field that has a field-width of
zero is not displayed, nor is it's SpaceAfter property used in calculating the relative
distances between the text-fields.

Data Type
Integer

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

Alignment Property Array, StatusBar Control
see also example

Description
Specifies the alignment for a text-field of the StatusBar control.

Usage
[form!]StatusBar1.Alignment(I) = Alignment%

Remarks
The StatusBar can align each text-field in three ways. The Alignment property array takes
one of the following values to specify the alignment of a text-field.

Value Short name Description
0 LEFT (Default) Aligns the text at the left-edge of the text-

field.
1 RIGHT Aligns the text at the right-edge of the text-field.
2 CENTER Centers the text in the text-field.
The index in the Alignment property array is the same index in the Message property
array.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

FieldType Property Array, StatusBar Control
see also example

Description
Sets or retrieves the field-type for the text-field with the same index.

Usage
[form!]StatusBar1.FieldType(I) [= FieldType%]

Remarks
The StatusBar supports five different field-types. The FieldType property array takes one
of the following values to specify the type of a text-field.

Value Short name Description
0 FIELD_NORMAL (Default) The text-field displays the programmer

defined text.
1 FIELD_CAPSLOCK Displays the current status of the CapsLock key. If the

CapsLock key is toggled on, the text from the property
CapsLockOffText is displayed, otherwise the
CapsLockOnText is displayed.

2 FIELD_NUMLOCK Displays the current status of the NumLock key.
3 FIELD_SCROLLOCK Displays the current status of the ScrollLock key.
4 FIELD_TIME Displays a digital 24-hour clock
The index in the FieldType property array is the same index in the Message and
FieldWidth property arrays.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

ExpandField Property, StatusBar Control
see also example

Description
The ExpandField property specifies which field is stretched to the size of the StatusBar
control.

Usage
[form!]StatusBar1.ExpandField [= setting%]

Remarks
The effect of the ExpandField property is that all other field are positioned first and that
after that the remaining space is filled by the text-field specified by the ExpandField
property (starting at the correct position of course). If you don't want a text-field to be
stretched, set the ExpandField property to a text-field with FieldWidth set to zero. The
FieldWidth property for the text-field that the ExpandField points to, will be regarded as
the minimum width for that text-field. If the StatusBar control isn't wide enough to
display all fields, the fields will extent off the StatusBar control.
If you don't want any field stretched to the full size of your window, set the value of the
ExpandField property to -1.

Data Type
Integer

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

CapsLockOffText, CapsLockOnText, NumLockOffText,
NumLockOnText, ScrollLockOffText, ScrollLockOnText Properties,
StatusBar Control
see also

Description
Specify the text to show for a text-field of type 2 (Caps-lock), 3 (Num-lock) or 4 (Scroll-
lock).

Usage
[form!]StatusBar1.KeyOnText [= setting$]
[form!]StatusBar1.KeyOffText [= setting$]

Remarks
The KeyOnText is shown when the specified key is toggled on, KeyOffText is shown when
the key is toggled off. You can specify the type of a text-field by setting the FieldType
property.

Data Type
String

The example shows you a how these properties are used. To use this example create a
form with one StatusBar control and paste the code into the Declarations section of your
form.

Events
The StatusBar control supports the following events:
Click DragDrop DragOver Toggle

Methods
The StatusBar control supports the following methods:
Drag Move Refresh ZOrder

Properties
All the properties that apply to the Status Bar control are listed in the following table. All
properties that are marked with an asterisk (*) are only available at run-time.
Align Alignment * AutoToggle CapsLock *
CapsLockOffText CapsLockOnText ClockFormat Enabled
ExpandField FieldType * FieldWidth * FloodColor
FloodField FloodInvertText FloodPercent Font3D
FontBold FontItalic FontName FontSize
FontStrikethru FontUnderline ForeColor * Height
hWnd Index Left LeftMargin
Message * Name NumLock * NumLockOffText
NumLockOnText Parent RedrawField * RightMargin
ScrollLock * ScrollLockOffText ScrollLockOnText SpaceAfter *
Tag Top Visible Width
Note the Alignment, CapsLock, FieldType, FieldWidth, ForeColor, NumLock, RedrawField and
ScrollLock properties are only available at run-time. Name is the default property for the
StatusBar control.

The StatusBar Custom Control
Properties Methods Events

Description
The Microsoft Visual Basic programming system for Windows comes with a large set of
3D controls. Unfortunately, a 3D status-bar, as used in almost every MS-Windows
application is lacking. Therefore the the Status Bar Custom Control was designed. This
control allows you to create a very versatile status bar for all your applications.

File Name
TOOLBARS.VBX

Object Type
StatusBar

Toolbox Icon

Remarks
The StatusBar allows an application to display a status-bar at the bottom of a form. The
statusbar has 20 fully configurable text-fields. Also, the statusbar provides standard
fields like the Num-lock, Caps-lock and Scroll-lock toggles and a little clock. The
StatusBar control can also be used as a progress indicator.

Usage
To use the StatusBar, perform the following steps:

1. Add the toolbar custom control to your project. The StatusBar and the ButtonBar
icons will appear in the Visual Basic tool-palette.

2. In the Form_Load event procedure for the form, set the FieldWidth and FieldType
properties for the number of fields you want to display.

3. Specify a Message for each field with FieldType 0.

4. Eventually add code to respond to a Click on a certain field in the StatusBar.   

Distribution Note    When you create and distribute applications that use the StatusBar
control, you should install the file TOOLBARS.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory.

Copyright Notice
The Toolbar Custom Controls Version 1.1 are Copyright ©

SheAr software, Enschede, the Netherlands

The Toolbar Custom Controls, Version 1.1

Description
The Microsoft Visual Basic programming system for Windows comes with a large set of
3D controls. Unfortunately, a 3D status-bar and a 3D tool-bar, as used in almost every
MS-Windows application are lacking. Therefore, the Toolbar custom controls
(TOOLBARS.VBX) were developed. This VBX contains two custom controls: the Status Bar
Custom Control and the Button Bar custom control. These control allows you to create
very versatile status- and buttonbars for all your applications.

File Name
TOOLBARS.VBX

Object Types
StatusBar, ButtonBar

Toolbox Icons

StatusBar control

ButtonBar control

Remarks
The StatusBar allows an application to display a status-bar at the bottom of a form. The
statusbar has 20 fully configurable text-fields. Also, the statusbar provides standard
fields like the Num-lock, Caps-lock and Scroll-lock toggles and a little clock. The
StatusBar control can also be used as a progress indicator.
The ButtonBar allows an application to display a button-bat at the top of a form. The
button-bar has 20 fully configurable buttons. The only thing you have to do is specify the
bitmap for the up-position of each button. The ButtonBar control than calculates the
different bitmaps for the down and the two disabled states (up and down) of the button.
It is also possible to connect the button-bar to the status-bar and specify messages for
each button to be shown when the button is selected.

Distribution Note    When you create and distribute applications that use one of the
ToolBar controls, you should install the file TOOLBARS.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory.

See also
ButtonGroup Property Array
ButtonState Property Array
ButtonType Property Array

See also
ButtonMessage Property Array
hWndStatusBar Property
StatusBar Custom Control

See also
ButtonMessage Property Array
StatusField Property
StatusBar Custom Control

See also
ButtonEnabled Property Array
ButtonState Property Array
Picture Property Array

See also
ButtonEnabled Property Array
ButtonState Property Array
PictureDisabled Property Array

See also
ButtonGroup Property Array
ButtonState Property Array
ButtonType Property Array

See also
Picture Property Array

See also
hWndStatusBar Property
StatusField Property
StatusBar Custom Control

See also
ButtonState Property Array
ButtonType Property Array
GroupAllowAllUp Property Array

See also
ButtonGroup Property Array
ButtonType Property Array
GroupAllowAllUp Property Array

See also
ButtonGroup Property Array
ButtonState Property Array
GroupAllowAllUp Property Array

See also
Picture Property Array
PictureDisabled Property Array

' Usage with the StatusBar Control, ButtonBar Control

Sub Form_Load ()
Dim I As Integer

Const BUTTON_2STATE = 1

WindowState = 2
ButtonBar1.Align = 1
ButtonBar1.Height = 400
StatusBar1.Align = 2
StatusBar1.Height = 400

' Specify the pictures for the first four buttons
ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar3\tbl-up.bmp")
ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar3\tbc-up.bmp")
ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar3\tbr-up.bmp")
ButtonBar1.Picture(3)=LoadPicture("c:\vb\bitmaps\toolbar3\tbd-up.bmp")

' Make all buttons members of group 0
ButtonBar1.ButtonGroup(0) = 0
ButtonBar1.ButtonGroup(1) = 0
ButtonBar1.ButtonGroup(2) = 0
ButtonBar1.ButtonGroup(3) = 0
' Allow all buttons in the group to be up.
ButtonBar1.GroupAllowAllUp(0) = True

' Set all buttons to type 1 (2-state button)
For I = 0 To 3

ButtonBar1.ButtonType(I) = BUTTON_2STATE
Next I

' Specify messages to display in the statusbar
ButtonBar1.ButtonMessage(0) = "Set a left align tab"
ButtonBar1.ButtonMessage(1) = "Set a centered tab"
ButtonBar1.ButtonMessage(2) = "Set a right align tab"
ButtonBar1.ButtonMessage(3) = "Set a decimal tab"

' Specify the statusbar and the field to display the messages
ButtonBar1.hWndStatusBar = StatusBar1.hWnd
ButtonBar1.StatusField = 0

' Set a few properties of the statusbar control
StatusBar1.FieldWidth(0) = 100
StatusBar1.Message(0) = "Static message for field 0"

End Sub

' Click Example, ButtonBar Control

Sub Form_Load ()
Const BUTTON_NORMAL = 0
Const BUTTON_2STATE = 1

 WindowState = 2
 ButtonBar1.Align = 1
 ButtonBar1.Height = 400

 ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar\lft-up.bmp")
 ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar\rt-up.bmp")
 ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar\cnt-up.bmp")
 ButtonBar1.PictureDisabled(0)=LoadPicture("c:\vb\bitmaps\toolbar\lft-
dis.bmp")
 ButtonBar1.PictureDisabled(1)=LoadPicture("c:\vb\bitmaps\toolbar\rt-
dis.bmp")
 ButtonBar1.PictureDisabled(2)=LoadPicture("c:\vb\bitmaps\toolbar\cnt-
dis.bmp")
 ButtonBar1.ButtonType(0) = BUTTON_2STATE
 ButtonBar1.ButtonType(1) = BUTTON_2STATE
 ButtonBar1.ButtonType(2) = BUTTON_2STATE
 ButtonBar1.ButtonGroup(0) = 0
 ButtonBar1.ButtonGroup(1) = 0
 ButtonBar1.ButtonGroup(2) = 0

 ButtonBar1.ButtonEnabled(1)=False

 ButtonBar1.ButtonState(0) = True
 ButtonBar1.GroupAllowAllUp(0) = False
End Sub

Sub ButtonBar1_Click(Button As Integer, Group As Integer, State As Integer)
Label1.Alignment = Button
Select Case Button

Case 0: Label1.Caption = "Text is now left-aligned"
Case 1: 'Should never get here since the centered button is

disabled.
 Label1.Caption = "Text is now right-aligned"

Case 2: Label1.Caption = "Text is now centered"
End Select

End Sub

' ButtonBar Initialize Example, ButtonBar Control

Sub Form_Load ()
Dim I As Integer
Const BUTTON_NORMAL = 0
Const BUTTON_2STATE = 1

Const RAISED = 0
Const DEPRESSED = -1

' Align the button to the top of the window
' and set the height
ButtonBar1.Align = 1
ButtonBar1.Height = 400

' Set the first four button-pictures.
ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar3\tbl-up.bmp")
ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar3\tbc-up.bmp")
ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar3\tbr-up.bmp")
ButtonBar1.Picture(3)=LoadPicture("c:\vb\bitmaps\toolbar3\tbd-up.bmp")
' Specify five pixels room after button #3
ButtonBar1.SpaceAfter(3) = 5
' Make the first four buttons a member of group 0
ButtonBar1.ButtonGroup(0) = 0
ButtonBar1.ButtonGroup(1) = 0
ButtonBar1.ButtonGroup(2) = 0
ButtonBar1.ButtonGroup(3) = 0
' Specify that in group 0, all buttons may be raised
ButtonBar1.GroupAllowAllUp(0) = True

' Create four extra buttons
ButtonBar1.Picture(4)=LoadPicture("c:\vb\bitmaps\toolbar3\lft-up.bmp")
ButtonBar1.Picture(5)=LoadPicture("c:\vb\bitmaps\toolbar3\cnt-up.bmp")
ButtonBar1.Picture(6)=LoadPicture("c:\vb\bitmaps\toolbar3\rt-up.bmp")
ButtonBar1.Picture(7)=LoadPicture("c:\vb\bitmaps\toolbar3\jst-up.bmp")
' Leave 5 pixels space after button #7
ButtonBar1.SpaceAfter(7) = 5
' Make the second four buttons a member of group 1
ButtonBar1.ButtonGroup(4) = 1
ButtonBar1.ButtonGroup(5) = 1
ButtonBar1.ButtonGroup(6) = 1
ButtonBar1.ButtonGroup(7) = 1
' Specify that at least one button of the group must be depressed
ButtonBar1.GroupAllowAllUp(1) = False

' Make three extra buttons
ButtonBar1.Picture(8)=LoadPicture("c:\vb\bitmaps\toolbar3\bld-up.bmp")
ButtonBar1.Picture(9)=LoadPicture("c:\vb\bitmaps\toolbar3\itl-up.bmp")
ButtonBar1.Picture(10)=LoadPicture("c:\vb\bitmaps\toolbar3\ulin-up.bmp")

' Leave 5 pixels room after button 10

ButtonBar1.SpaceAfter(10) = 5

' Mark buttons 0-10 as 2-state buttons
For I = 0 To 10

ButtonBar1.ButtonType(I) = BUTTON_2STATE
Next I

' Press button 4 down
ButtonBar1.ButtonState(4) = True

' Create the last button
ButtonBar1.Picture(11)=LoadPicture("c:\vb\bitmaps\toolbar3\hlp-up.bmp")
End Sub

Click Event, ButtonBar Control
see also example

Description
Occurs when the user presses and then releases the left-mouse button over a button of
the ButtonBar control. You can not trigger the Click event for the ButtonBar event in
code.

Syntax
Sub ButtonBar1_Click (Index As Integer, Button As Integer, Group As Integer, State
As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array.    The Button
argument specifies the number of the button-field that was clicked on. You can use this
number to take some action whenever the user clicks on a button. The Group argument
specifies the group the clicked button is a member of. If the Group argument is -1, the
button is not a member of a group. The State argument specifies the state of the button.
This argument is always True (-1) if the ButtonType of the button is 0 (BUTTON_NORMAL).
If the ButtonType of the clicked button is 1 (BUTTON_2STATE) then the State argument
specifies whether the button is up (State = False) or down (State = True).
The example shows you a possible way to react to the Click event. To use this example
create a form with one ButtonBar control and a Label control. Then, paste the code into
the Declarations section of your form.

OutlineChildren Property, ButtonBar Control

Description
Apllies a 3D look to controls placed on the ButtonBar.

Usage
[form!]ButtonBar1.OutlineChildren [= setting%]

Remarks
The ButtonBar can automatically give all the controls you place on it a 3D look by
drawing a raised or inset outline. The OutlineChildren property takes one of the following
values to specify the way the ButtonBar applies the 3D effect.

Value Short name Description
0 NONE (Default) Does not draw an outline around children.
1 RAISED Displays a raised border around each control placed on

the ButtonBar.
2 INSET Displays an inset border around each controls placed

on the ButtonBar.
The 3D effect is useful when you want to put more than just buttons on the ButtonBar
(like a font-selection combo-box). These control can appear raised or inset just by setting
the OutlineChildren property.
The OutlineChildren property only has effect on controls that have a window-handle.
Therefore, graphical controls (like labels) do not receive an outline.

Warning
Since the ButtonBar has to keep track of all children placed on it and their position, the
maximum number of windowed child controls (that is; controls with a window-handle) on
the ButtonBar is limited to 20.

Data Type
Integer (Enumerated)

StatusField Property, ButtonBar Control
see also example

Description
Specifies the text-field of the status-bar that is to display the messages specified for the
buttons.

Usage
[form!]ButtonBar1.StatusField [= setting%]

Remarks
The StatusField property sets or retrieves the text-field of the status-bar that is to display
the messages you specify in the ButtonMessage property array. If the text-field has a
FieldWidth of zero, the messages are not displayed.
The messages are displayed in the statusbar specified by the hWndStatusBar property.

Data Type
Integer

The example shows a Form_Load that initializes some buttons with messages on a
ButtonBar control. To use this example create a form with one ButtonBar and one
StatusBar control and paste the code into the Declarations section of your form.

hWndStatusBar Property, ButtonBar Control
see also example

Description
Specifies the window handle of the status-bar that is to display the messages specified
for the buttons.

Usage
[form!]ButtonBar1.hWndStatusBar [= [form!].StatusBar1.hWnd]

Remarks
The hWndStatusBar property sets or retrieves the window handle for the status-bar that
is to display the messages you specify in the ButtonMessage property array. The window-
handle is checked to see if it is really the window handle of a statusbar control. If it isn't,
a runtime error is generated.
The messages are displayed in the statusbar in the text-field specified by the StatusField
property. This property defaults to 0.

Data Type
Integer

The example shows a Form_Load that initializes some buttons with messages on a
ButtonBar control. To use this example create a form with one ButtonBar and one
StatusBar control and paste the code into the Declarations section of your form.

PictureDisabled Property Array, ButtonBar Control
see also example

Description
Defines the picture to use for showing a disabled button on the ButtonBar.

Usage
[form!]ButtonBar1.PictureDisabled(I) [= picture]

The Picture property settings are:

Setting Description
(none) (Default) No picture.
(bitmap) You can set this property using the LoadPicture function

on a bitmap.

Remarks
If you don't like the default look of the disabled pictures (all black pixels transformed to
gray), you can set the PictureDisabled property to another bitmap that has a different
disabled look. Like the Picture property array, the picture is assumed to be a bitmap that
is already formatted as a button.
When the PictureDisabled property of the button is set, the ButtonBar uses this picture to
calculate the pictures for the disabled up and down states of the button.
The ButtonBar control makes some assumptions about the format of the picture you
specify for the PictureDisabled property in order to be able to create the different
pictures needed for the other states of the button. All pictures in the TOOLBAR3 directory
that come with Visual Basic have a correct layout. You can use or modify these pictures
as needed.
The following table specifies the operations that the ButtonBar will perform on a bitmap
for the different ButtonStates and ButtonEnabled properties of the button:

ButtonState ButtonEnabled Description
UP (0) True Value from the Picture property unchanged.
UP False Value from the PictureDisabled property unchanged.
DOWN (-1) True Value from the Picture property shifted one pixel

to the right and below. The dark-gray bevel is removed
and the white bevel is replaced with a dark gray bevel.

DOWN False Value from the PictureDisabled property modified
shifted on pixel to the right and below, just like with the
ButtonEnabled property set to True.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

Hint Since you have to set a picture for each button, you can use the ButtonBar control

perfectly in conjunction with the PictureClip control that comes with Visual Basic. The
easiest way to do this is to create a large bitmap that contains two rows of bitmaps; one
with the normal button pictures and the other one with the disabled pictures. This allows
you to load all the bitmaps needed for the ButtonBar in a single for-loop.

Picture Property Array, ButtonBar Control
see also example

Description
Defines the picture to use for showing a button on the ButtonBar.

Usage
[form!]ButtonBar1.Picture(I) [= picture]

The Picture property settings are:

Setting Description
(none) (Default) No picture.
(bitmap) You can set this property using the LoadPicture function

on a bitmap.

Remarks
The Picture property array is the most important property for the ButtonBar. It specifies
the picture to be used for a button on the ButtonBar. The picture is assumed to be a
bitmap that is already formatted as a button.
If there is no picture in the PictureDisabled property array for the button, the ButtonBar
uses this picture to calculate the pictures for the down and disabled states of the button.
The ButtonBar control makes some assumptions about the format of the picture you
specify for the Picture property in order to be able to create the different pictures needed
for the other states of the button. All pictures in the TOOLBAR3 directory that come with
Visual Basic have a correct layout. You can use or modify these pictures as needed.
The following table specifies the operations that the ButtonBar will perform on a bitmap
for the different ButtonStates and ButtonEnabled properties of the button if there is no
picture specified for the disabled state:

ButtonState ButtonEnabled Description
UP (0) True Value from the Picture property unchanged.
UP False Value from the Picture property with all black pixels

transformed to dark-gray.
DOWN (-1) True Value from the Picture property shifted one pixel

to the right and below. The dark-gray bevel is removed
and the white bevel is replaced with a dark gray bevel.

DOWN False Value from the Picture property modified as with the
ButtonEnabled property set to True, but with all black
pixels transformed to dark-gray.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

Hint Since you have to set a picture for each button, you can use the ButtonBar control

perfectly in conjunction with the PictureClip control that comes with Visual Basic. The
easiest way to do this is to create a large bitmap that contains two rows of bitmaps; one
with the normal button pictures and the other one with the disabled pictures. This allows
you to load all the bitmaps needed for the ButtonBar in a single for-loop.

GroupAllowAllUp Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the ability of buttons in a group to be all in the up-state.

Usage
[form!]ButtonBar1.GroupAllowAllUp(I) [= setting%]

Remarks
The GroupAllowAllUp property settings are:

Setting Description
True (Default) Allows all buttons in the group to be raised.
False At least one button in the group must be depressed.

The GroupAllowAllUp property specifies if the user can deselect all buttons in a group, or
that at least one button must be in the down position. Normally, when buttons are
selected in a group, there is always one button in the down state. Clicking this button will
leave it in the down position. When you specify True for the GroupAllowAllUp property,
the user can deselect all buttons, by clicking the button that is down.

Data Type
Integer (Boolean)

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

SpaceAfter Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the spacing between the buttons on a ButtonBar control.

Usage
[form!]ButtonBar1.SpaceAfter(I) [= setting%]

Remarks
The SpaceAfter property array allows you to define the spacing between the buttons in
the ButtonBar control. It specifies how much space (in pixels) to leave behind a button
before the next button is shown. The index in the SpaceAfter array is the same index as
in the Picture array. So, if you set SpaceAfter(0) to 4, you define a spacing of 4 pixels
after the first button. The default setting is 0 pixels, but you can set it to any value you
like.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

ButtonMessage Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the text to be displayed in one of the text-fields of a StatusBar control if
the button is selected.

Usage
[form!]ButtonBar1.ButtonMessage(I) [= message$]

Remarks
It is possible to make a connection between the StatusBar control and the ButtonBar
control, by filling in the StatusField and hWndStatusBar properties.
After that you can specify a message for each button you have defined, by filling in the
appropriate entry in the ButtonMessage property array. The message will be displayed in
the specified field of the StatusBar control whenever the button is selected and will be
removed from that field when the button is no longer selected.

Data Type
String

The example shows a Form_Load that initializes some buttons with messages on a
ButtonBar control. To use this example create a form with one ButtonBar and one
StatusBar control and paste the code into the Declarations section of your form.

ButtonGroup Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the group a button on the ButtonBar control is a member of.

Usage
[form!]ButtonBar1.ButtonGroup(I) [= setting%]

Remarks
You can group 2-state buttons in a group, by setting the ButtonGroup property of all the
buttons you want to group to the same number.
When buttons are selected into a group, they behave like toggles; when one of the
buttons in a group is depressed, all other buttons are raised. Once a button is depressed
it cannot be raised again by clicking on it a second time, unless you alter the
GroupAllowAllUp property for the group the button is a member of.
To remove a button from a group, set the ButtonGroup property of that button to -1.

Data Type
Integer

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control. To use this example create a form with one ButtonBar control and paste the code
into the Declarations section of your form.

LeftMargin Property, ButtonBar Control

Description
Set or retrieve the left-margin for the ButtonBar control.

Usage
[form!]StatusBar1.LeftMargin [= setting%]

Remarks
The LeftMargin property specifies how much room to leave before displaying the first
button
The left margin is always expressed in pixels, regardless of the ScaleMode of the
ButtonBar's parent.

Data Type
Integer

ButtonState Property Array, ButtonBar Control
see also example

Description
Specifies the state for a button of the ButtonBar control.

Usage
[form!]StatusBar1.ButtonState(I) = State%

Remarks
Each 2-state button on the ButtonBar can have the state RAISED (0) or DEPRESSED (-1).
The ButtonState property array takes one of the following values to specify the state of a
text-field.

Value Short name Description
0 RAISED (Default) The button is raised.
1 DEPRESSED The button is depressed.
It is not possible to change the state of a normal button (ButtonState = 0) on the
ButtonBar.    Using the ButtonState property allows the programmer to reset a 2-state
button to it's up-state even if the GroupAllowAllUp property of the group is set to False.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

ButtonType Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the button-type for the button with the same index.

Usage
[form!]ButtonBar1.ButtonType(I) [= ButtonType%]

Remarks
The ButtonBar supports two different button-types. The ButtonType property array takes
one of the following values to specify the type of a button.

Value Short name Description
0 BUTTON_NORMAL (Default) The button reacts like a normal command-

button.
1 BUTTON_2STATE The button is a 2-state button. After the first click, the

button remains depressed. After the second click the
button returns to it's normal state.    This behavior can
be different if the A 2-state button is member of a
group (by setting the ButtonGroup property). If the
button is part of a group, it is raised if another member
of the group is depressed.
If the GroupAllowAllUp property of the group the button
is a member of is set to False, the button remains
depressed if you click on it a second time.

The index in the ButtonType property array is the same index in the all the other button-
related property arrays (i.e. ButtonState, ButtonGroup, ButtonEnabled, Picture).

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control. To use this example create a form with one ButtonBar control and paste the code
into the Declarations section of your form.

ButtonEnabled Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the enabled-state for the button with the same index.

Usage
[form!]ButtonBar1.ButtonEnabled(I) [= setting%]

Remarks
The ButtonEnabled property settings are:

Setting Description
True (Default) Allows the button to respond to events.
False Prevents the object from responding to events.

This property allows buttons to be enabled or disabled at run time.    For example, you
can disable objects that don't apply to the current state of the application. When a
button is disabled, the picture, specified by the Picture property, will be changed so that
it looks disabled (all black pixels will be transformed to dark-gray) if no picture for the
disabled state is specified.

Data Type
Integer (Boolean)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control. To use this example create a form with one ButtonBar control and paste the code
into the Declarations section of your form.

Events
The ButtonBar control supports the following events:
Click DragDrop DragOver

Methods
The ButtonBar control supports the following methods:
Drag Move Refresh ZOrder

Properties
All the properties that apply to the ButtonBar control are listed in the following table. All
properties that are marked with an asterisk (*) are only available at run-time.
Align ButtonEnabled * ButtonGroup * ButtonMessage *
ButtonState * ButtonType * Enabled GroupAllowAllUp *

Height hWndStatusBar * Index Left
LeftMargin Name OutlineChildren Picture *
PictureDisabled * SpaceAfter * StatusField * Top
Visible Width
Note the ButtonEnabled, ButtonGroup, ButtonMessage, ButtonState, ButtonType,
GroupAllowAllUp, hWndStatusBar, Picture, PictureDisabled, SpaceAfter and StatusField
properties are only available at run-time. Name is the default property for the ButtonBar
control.

The ButtonBar Custom Control
Properties Methods Events

Description
The Microsoft Visual Basic programming system for Windows comes with a large set of
3D controls. Unfortunately, a 3D status-bar, as used in almost every MS-Windows
application is lacking. Therefore the ButtonBar Custom Control was designed. This control
allows you to create a very versatile button bar for all your applications.

File Name
TOOLBARS.VBX

Object Type
ButtonBar

Toolbox Icon

Remarks
The ButtonBar allows an application to display a button-bat at the top of a form. The
button-bar has 20 fully configurable buttons. To get the ButtonBar working, the only thing
you have to do is specify a bitmap for the up-position of each button. The ButtonBar
control automatically creates the different bitmaps for the down and the two disabled
states (up and down) of the button. It is also possible to connect the button-bar to the
status-bar and specify messages for each button to be shown when the button is
selected.

Usage
To use the ButtonBar, perform the following steps:

1. Add the Toolbars custom control to your project. The StatusBar and the ButtonBar
icons will appear in the Visual Basic tool-palette.

2. In the Form_Load event procedure for the form, set the Picture (and eventually the
PictureDisabled) and ButtonType properties for the number of buttons you want to
display.

3. Add code to respond to a Click on a certain button in the ButtonBar.   

Warning
The total number of ButtonBar controls on one system is limited to 20.

Distribution Note    When you create and distribute applications that use the ButtonBar
control, you should install the file TOOLBARS.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory.

