
IFF-ANIM-Format

...

IFF-ANIM-Format ii

COLLABORATORS

TITLE :

IFF-ANIM-Format

ACTION NAME DATE SIGNATURE

WRITTEN BY ... April 12, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

IFF-ANIM-Format iii

Contents

1 IFF-ANIM-Format 1

1.1 main . 1

1.2 authors . 2

1.3 introduction . 3

1.4 overview . 3

1.5 recording . 5

1.6 xor . 5

1.7 longdelta . 6

1.8 shortdelta . 6

1.9 generaldelta . 6

1.10 bytevertical . 7

1.11 playing . 7

1.12 chunkformats . 8

1.13 anhd . 8

1.14 dlta . 9

1.15 method23 . 10

1.16 method4 . 10

1.17 method5 . 12

1.18 anim6 . 12

1.19 anim6_introduction . 13

1.20 anim6_additions . 13

1.21 anim6_playing . 14

1.22 anim7 . 15

1.23 anim7_chunksequence . 15

1.24 anim7_chunkformats . 16

1.25 anim7_anhd . 16

1.26 anim7_dlta . 17

1.27 anim8 . 18

1.28 anim8_chunksequence . 18

1.29 anim8_chunkformats . 19

IFF-ANIM-Format iv

1.30 anim8_anhd . 19

1.31 anim8_dlta . 20

1.32 animsound . 21

1.33 animsound_chunksequence . 21

1.34 animsound_chunkformats . 22

1.35 animsound_sxhd . 22

1.36 animsound_sbdy . 23

IFF-ANIM-Format 1 / 24

Chapter 1

IFF-ANIM-Format

1.1 main

A N I M
An IFF Format For CEL Animations

Revision date: June 1997

Authors of this Document

Introduction

ANIM Format Overview

Recording ANIMs

XOR mode

Long Delta mode

Short Delta mode

General Delta mode

Byte Vertical Compression

Playing ANIMs

Chunk Formats

ANHD-Chunk

DLTA-Chunk

DLTA Format for methods 2 & 3

DLTA Format for method 4

IFF-ANIM-Format 2 / 24

DLTA Format for method 5

Appendix for Anim6 Formats

Introduction

OpCode 6 Additions to OpCode 5

Playing OpCode 6 ANIMs

Appendix for Anim7 Formats

Chunk Sequence

Chunk Formats

ANHD-Chunk

DLTA-Chunk

Appendix for Anim8 Formats

Chunk Sequence

Chunk Formats

ANHD-Chunk

DLTA-Chunk

Appendix for Anims with Sound

Chunk Sequence

Chunk Formats

SXHD-Chunk

SBDY-Chunk

1.2 authors

A N I M - An IFF Format For CEL Animations
--

prepared by:
SPARTA Inc.
23041 de la Carlota
Laguna Hills, Calif 92653
(714) 768-8161
contact: Gary Bonham

also by:

IFF-ANIM-Format 3 / 24

Aegis Development Co.
2115 Pico Blvd.
Santa Monica, Calif 90405
213) 392-9972

Anim6 Appendix (august 91) by
Cryogenic Software
13045 SouthEast Stark St
Suite 144
Portland, OR 97233-1557
Contact: William J. Coldwell

Anim7 Appendix (july 92) by:
Wolfgang Hofer
A-2722 Winzendorf
Wr. Neustaedterstr. 140

Anim8 Appendix (january 92) by:
Joe Porkka

Anim-with-Sound-Appendix (june 1997) by:
Virtual Worlds Productions
Michael Pfeiffer

This document was assembled, edited and converted in AmigaGuide-Format by
Michael Pfeiffer using differend sources.

1.3 introduction

Introduction

The ANIM IFF format was developed at Sparta originally for the production
of animated video sequences on the Amiga computer. The intent was to be
able to store, and play back, sequences of frames and to minimize both
the storage space on disk (through compression) and playback time (through
efficient de-compression algorithms). It was desired to maintain maximum
compatibility with existing IFF formats and to be able to display the
initial frame as a normal still IFF picture.

Several compression schemes have been introduced in the ANIM format. Most
of these are strictly of historical interest as the only one currently
being placed in new code is the vertical run length encoded byte encoding
developed by Jim Kent.

1.4 overview

ANIM Format Overview

IFF-ANIM-Format 4 / 24

The general philosophy of ANIMs is to present the initial frame as a normal,
run-length-encoded, IFF picture. Subsequent frames are then described by
listing only their differences from a previous frame. Normally, the
"previous" frame is two frames back as that is the frame remaining in the
hidden screen buffer when double-buffering is used. To better understand
this, suppose one has two screens, called A and B, and the ability to
instantly switch the display from one to the other. The normal playback
mode is to load the initial frame into A and duplicate it into B. Then
frame A is displayed on the screen. Then the differences for frame 2 are
used to alter screen B and it is displayed. Then the differences for frame
3 are used to alter screen A and it is displayed, and so on. Note that
frame 2 is stored as differences from frame 1, but all other frames are
stored as differences from two frames back.

ANIM is an IFF FORM and its basic format is as follows (this assumes the
reader has a basic understanding of IFF format files):

FORM ANIM
. FORM ILBM first frame
. . BMHD normal type IFF data
. . ANHD optional animation header chunk for timing of

1st frame.
. . CMAP
. . BODY
. FORM ILBM frame 2
. . ANHD animation header chunk
. . DLTA delta mode data
. FORM ILBM frame 3
. . ANHD
. . DLTA

The initial FORM ILBM can contain all the normal ILBM chunks, such as CRNG,
etc. The BODY will normally be a standard run-length-encoded data chunk
(but may be any other legal compression mode as indicated by the BMHD). If
desired, an ANHD chunk can appear here to provide timing data for the first
frame. If it is here, the operation field should be =0.

The subsequent FORMs ILBM contain an ANHD, instead of a BMHD, which dupli-
cates some of BMHD and has additional parameters pertaining to the animation
frame. The DLTA chunk contains the data for the delta compression modes. If
the older XOR compression mode is used, then a BODY chunk will be here. In
addition, other chunks may be placed in each of these as deemed necessary
(and as code is placed in player programs to utilize them). A good example
would be CMAP chunks to alter the color palette. A basic assumption in ANIMs
is that the size of the bitmap, and the display mode (e.g. HAM) will not
change through the animation. Take care when playing an ANIM that if a CMAP
occurs with a frame, then the change must be applied to both buffers.

Note that the DLTA chunks are not interleaved bitmap representations, thus
the use of the ILBM form is inappropriate for these frames. However, this
inconsistency was not noted until there were a number of commercial products
either released or close to release which generated/played this format.
Therefore, this is probably an inconsistency which will have to stay with us.

IFF-ANIM-Format 5 / 24

1.5 recording

Recording ANIMs

To record an ANIM will require three bitmaps - one for creation of the next
frame, and two more for a "history" of the previous two frames for performing
the compression calculations (e.g. the delta mode calculations).

There are five frame-to-frame compression methods currently defined. The
first three are mainly for historical interest. The product Aegis VideoScape
3D utilizes the third method in version 1.0, but switched to method 5 on 2.0.
This is the only instance known of a commercial product generating ANIMs of
any of the first three methods. The fourth method is a general short or long
word compression scheme which has several options including whether the
compression is horizontal or vertical, and whether or not it is XOR format.
This offers a choice to the user for the optimization of file size and/or
playback speed. The fifth method is the byte vertical run length encoding
as designed by Jim Kent. Do not confuse this with Jim’s RIFF file format
which is different than ANIM. Here we utilized his compression/decompression
routines within the ANIM file structure.

The following pages give a general outline of each of the methods of
compression currently included in this spec:

XOR mode

Long Delta mode

Short Delta mode

General Delta mode

Byte Vertical Compression

1.6 xor

XOR mode

This mode is the original and is included here for historical interest. In
general, the delta modes are far superior. The creation of XOR mode is quite
simple. One simply performs an exclusive-or (XOR) between all corresponding
bytes of the new frame and two frames back. This results in a new bitmap
with 0 bits wherever the two frames were identical, and 1 bits where they
are different. Then this new bitmap is saved using run-length-encoding. A
major obstacle of this mode is in the time consumed in performing the XOR
upon reconstructing the image.

IFF-ANIM-Format 6 / 24

1.7 longdelta

Long Delta mode

This mode stores the actual new frame long-words which are different, along
with the offset in the bitmap. The exact format is shown and discussed

below.
Each plane is handled separately, with no data being saved if no ←↩

changes
take place in a given plane. Strings of 2 or more long-words in a row which
change can be run together so offsets do not have to be saved for each one.

Constructing this data chunk usually consists of having a buffer to hold
the data, and calculating the data as one compares the new frame, long-word
by long-word, with two frames back.

1.8 shortdelta

Short Delta mode

This mode is identical to the Long Delta mode except that short-words are
saved instead of long-words. In most instances, this mode results in a
smaller DLTA chunk. The Long Delta mode is mainly of interest in improving
the playback speed when used on a 32-bit 68020 Turbo Amiga.

1.9 generaldelta

General Delta mode

The above two delta compression modes were hastily put together. This mode
was an attempt to provide a well-thought-out delta compression scheme.
Options provide for both short and long word compression, either vertical
or horizontal compression, XOR mode (which permits reverse playback), etc.
About the time this was being finalized, the fifth mode, below, was developed
by Jim Kent. In practice the short-vertical-run-length-encoded deltas in
this mode play back faster than the fifth mode (which is in essence a
byte-vertical-run-length-encoded delta mode) but does not compress as well -
especially for very noisy data such as digitized images. In most cases,
playback speed not being terrifically slower, the better compression
(sometimes 2x) is preferable due to limited storage media in most machines.

Details on this method are contained
below.

IFF-ANIM-Format 7 / 24

1.10 bytevertical

Byte Vertical Compression

This method does not offer the many options that method 4 offers, but is
very successful at producing decent compression even for very noisy data
such as digitized images. The method was devised by Jim Kent and is
utilized in his RIFF file format which is different than the ANIM format.
The description of this method in this document is taken from Jim’s
writings. Further, he has released both compression and decompression code
to public domain.

1.11 playing

Playing ANIMs

Playback of ANIMs will usually require two buffers, as mentioned above, and
double-buffering between them. The frame data from the ANIM file is used to
modify the hidden frame to the next frame to be shown. When using the XOR
mode, the usual run-length-decoding routine can be easily modified to do the
exclusive-or operation required. Note that runs of zero bytes, which will be
very common, can be ignored, as an exclusive or of any byte value to a byte
of zero will not alter the original byte value.

The general procedure, for all compression techniques, is to first decode
the initial ILBM picture into the hidden buffer and doublebuffer it into
view. Then this picture is copied to the other (now hidden) buffer. At this
point each frame is displayed with the same procedure. The next frame is
formed in the hidden buffer by applying the DLTA data (or the XOR data from
the BODY chunk in the case of the first XOR method) and the new frame is
double-buffered into view. This process continues to the end of the file.

A master colormap should be kept for the entire ANIM which would be
initially set from the CMAP chunk in the initial ILBM. This colormap should
be used for each frame. If a CMAP chunk appears in one of the frames, then
this master colormap is updated and the new colormap applies to all frames
until the occurrance of another CMAP chunk.

Looping ANIMs may be constructed by simply making the last two frames
identical to the first two. Since the first two frames are special cases
(the first being a normal ILBM and the second being a delta from the first)
one can continually loop the anim by repeating from frame three. In this
case the delta for creating frame three will modify the next to the last
frame which is in the hidden buffer (which is identical to the first frame),
and the delta for creating frame four will modify the last frame which is
identical to the second frame.

Multi-File ANIMs are also supported so long as the first two frames of a
subsequent file are identical to the last two frames of the preceeding file.
Upon reading subsequent files, the ILBMs for the first two frames are simply
ignored, and the remaining frames are simply appended to the preceeding

IFF-ANIM-Format 8 / 24

frames. This permits splitting ANIMs across multiple floppies and also
permits playing each section independently and/or editing it independent of
the rest of the ANIM.

Timing of ANIM playback is easily achieved using the vertical blank interrupt
of the Amiga. There is an example of setting up such a timer in the ROM
Kernel Manual. Be sure to remember the timer value when a frame is flipped
up, so the next frame can be flipped up relative to that time. This will make
the playback independent of how long it takes to decompress a frame (so long
as there is enough time between frames to accomplish this decompression).

1.12 chunkformats

Chunk Formats

ANHD-Chunk

DLTA-Chunk

DLTA Format for methods 2 & 3

DLTA Format for method 4

DLTA Format for method 5

1.13 anhd

ANHD Chunk

The ANHD chunk consists of the following data structure:

UBYTE operation The compression method:
=0 set directly (normal ILBM BODY),
=1 XOR ILBM mode,
=2 Long Delta mode,
=3 Short Delta mode,
=4 Generalized short/long Delta mode,
=5 Byte Vertical Delta mode Double-buffered
=6 Byte Vertical Delta mode, Quad-buffered
=7 short/long Vertical Delta mode
=8 short/long Vertical Delta mode
=74 (ascii ’J’) reserved for Eric Graham’s

compression technique (details to be
released later).

UBYTE mask (XOR mode only - plane mask where each bit is set =1
if there is data and =0 if not.)

IFF-ANIM-Format 9 / 24

UWORD w,h (XOR mode only - width and height of the area
represented by the BODY to eliminate unnecessary un-
changed data)

WORD x,y (XOR mode only - position of rectangular area
represented by the BODY)

ULONG abstime (currently unused - timing for a frame relative to the
time the first frame was displayed - in jiffies
(1/60 sec))

ULONG reltime (timing for frame relative to time previous frame was
displayed - in jiffies (1/60 sec))

UBYTE interleave (used in
ANIM6 method
- indicates how may frames back

this data is to modify. =0 defaults to indicate two
frames back (for double buffering). =n indicates n
frames back. The main intent here is to allow values
of =1 for special applications where frame data would
modify the immediately previous frame)

UBYTE pad0 Pad byte, not used at present.
ULONG bits 32 option bits used by options=4 and 5. At present

only 6 are identified, but the rest are set =0 so they
can be used to implement future ideas. These are defined
for option 4 only at this point. It is recommended that
all bits be set =0 for option 5 and that any bit
settings used in the future (such as for XOR mode) be
compatible with the option 4 bit settings. Player code
should check undefined bits in options 4 and 5 to assure
they are zero.

The six bits for current use are:

bit # set =0 set =1
===
0 short data long data
1 set XOR
2 separate info one info list

for each plane for all planes
3 not RLC RLC (run length coded)
4 horizontal vertical
5 short info offsets long info offsets

UBYTE pad[16] This is a pad for future use for future compression
modes.

1.14 dlta

DLTA Chunk

This chunk is the basic data chunk used to hold delta compression data. The
format of the data will be dependent upon the exact compression format
selected.

IFF-ANIM-Format 10 / 24

DLTA Format for methods 2 & 3

DLTA Format for method 4

DLTA Format for method 5

1.15 method23

Format for methods 2 & 3

This chunk is a basic data chunk used to hold the delta compression data. The
minimum size of this chunk is 32 bytes as the first 8 long-words are byte
pointers into the chunk for the data for each of up to 8 bitplanes. The
pointer for the plane data starting immediately following these 8 pointers
will have a value of 32 as the data starts in the 33-rd byte of the chunk
(index value of 32 due to zero-base indexing).

The data for a given plane consists of groups of data words. In Long Delta
mode, these groups consist of both short and long words - short words for
offsets and numbers, and long words for the actual data. In Short Delta
mode, the groups are identical except data words are also shorts so all data
is short words. Each group consists of a starting word which is an offset.
If the offset is positive then it indicates the increment in long or short
words (whichever is appropriate) through the bitplane. In other words, if
you were reconstructing the plane, you would start a pointer (to shorts or
longs depending on the mode) to point to the first word of the bitplane.
Then the offset would be added to it and the following data word would be
placed at that position. Then the next offset would be added to the pointer
and the following data word would be placed at that position. And so on...
The data terminates with an offset equal to 0xFFFF.

A second interpretation is given if the offset is negative. In that case,
the absolute value is the offset+2. Then the following short-word indicates
the number of data words that follow. Following that is the indicated number
of contiguous data words (longs or shorts depending on mode) which are to be
placed in contiguous locations of the bitplane.

If there are no changed words in a given plane, then the pointer in the first
32 bytes of the chunk is =0.

1.16 method4

Format for method 4

The DLTA chunk is modified slightly to have 16 long pointers at the start.
The first 8 are as before - pointers to the start of the data for each of

IFF-ANIM-Format 11 / 24

the bitplanes (up to a max of 8 planes). The next 8 are pointers to the
start of the offset/numbers data list. If there is only one list of
offset/numbers for all planes, then the pointer to that list is repeated in
all positions so the playback code need not even be aware of it. In fact,
one could get fancy and have some bitplanes share lists while others have
different lists, or no lists (the problems in these schemes lie in the
generation, not in the playback).

The best way to show the use of this format is in a sample playback routine.

SetDLTAshort(bm,deltaword)
struct BitMap *bm;
WORD *deltaword;
{

int i;
LONG *deltadata;
WORD *ptr,*planeptr;
register int s,size,nw;
register WORD *data,*dest;

deltadata = (LONG *)deltaword;
nw = bm->BytesPerRow >>1;

for (i=0;i<bm->Depth;i++) {
planeptr = (WORD *)(bm->Planes[i]);
data = deltaword + deltadata[i];
ptr = deltaword + deltadata[i+8];
while (*ptr != 0xFFFF) {

dest = planeptr + *ptr++;
size = *ptr++;
if (size < 0) {

for (s=size;s<0;s++) {

*dest = *data;
dest += nw;

}
data++;

}
else {

for (s=0;s<size;s++) {

*dest = *data++;
dest += nw;

}
}

}
}
return(0);

}

The above routine is for short word vertical compression with run length
compression. The most efficient way to support the various options is to
replicate this routine and make alterations for, say, long word or XOR. The
variable nw indicates the number of words to skip to go down the vertical
column. This one routine could easily handle horizontal compression by
simply setting nw=1. For ultimate playback speed, the core, at least, of
this routine should be coded in assembly language.

IFF-ANIM-Format 12 / 24

1.17 method5

Format for method 5

In this method the same 16 pointers are used as in option 4. The first 8
are pointers to the data for up to 8 planes. The second set of 8 are not
used but were retained for several reasons. First to be somewhat compatible
with code for option 4 (although this has not proven to be of any benefit)
and second, to allow extending the format for more bitplanes (code has
been written for up to 12 planes).

Compression/decompression is performed on a plane-by-plane basis. For each
plane, compression can be handled by the skip.c code (provided Public Domain
by Jim Kent) and decompression can be handled by unvscomp.asm (also provided
Public Domain by Jim Kent).

Compression/decompression is performed on a plane-by-plane basis. The
following description of the method is taken directly from Jim Kent’s code
with minor re-wording. Please refer to Jim’s code (skip.c and unvscomp.asm)
for more details:

Each column of the bitplane is compressed separately. A 320x200 bitplane
would have 40 columns of 200 bytes each. Each column starts with an
op-count followed by a number of ops. If the op-count is zero, that’s ok,
it just means there’s no change in this column from the last frame. The
ops are of three classes, and followed by a varying amount of data
depending on which class:

1. Skip ops - this is a byte with the hi bit clear that says how many
rows to move the "dest" pointer forward, ie to skip. It is non-zero.

2. Uniq ops - this is a byte with the hi bit set. The hi bit is masked
down and the remainder is a count of the number of bytes of data to
copy literally. It’s of course followed by the data to copy.

3. Same ops - this is a 0 byte followed by a count byte, followed by a
byte value to repeat count times.

Do bear in mind that the data is compressed vertically rather than hori-
zontally, so to get to the next byte in the destination we add the number
of bytes per row instead of one!

1.18 anim6

Appendix for Anim6 Formats (by William J Coldwell)
--

Introduction

OpCode 6 Additions to OpCode 5

Playing OpCode 6 ANIMs
Prepared by:

Cryogenic Software
13045 SouthEast Stark St

IFF-ANIM-Format 13 / 24

Suite 144
Portland, OR 97233-1557
Contact: William J. Coldwell

Voice: (503) 254-8147 (11a-4p PDT/PST)
Data: (503) 257-4823 (EMail to SYSOP)
Portal: Cryogenic
UUCP: uunet!m2xenix!percy!cryo!billc
Internet: billc@cryo.rain.com

1.19 anim6_introduction

Introduction

In 1989, we added support into one of our commercial products to support
the Haitex X-Specs glasses. This documentation will not go into a detailed
description of this product. Contact Haitex for more information concerning
the hardware:

Haitex Resources, Inc.
Post Office Box 20609
Charleston, SC 29413

Voice: (803) 881-7518
Fax: (803) 881-7522

Contact: Shawn Glisson

We found that there was not a supported way to display stereo animations
using the current IFF ANIM OpCode 5 specification.

Cryogenic supported OpCode 6 as an internal format in our commercial
programs (see below) and provided Public Domain players. It is our
intention at this time, to release this format to other developers wishing
to support stereo animations using this OpCode.

When we first started this project, the current Amiga machines had a 512K
of CHIP RAM maximum. This caused some memory problems with some of the
higher resolution stereo animations, since the Quad Buffers were in CHIP RAM
for our players. It was our intention to attempt to do some memory magic to
require only two of the four bitmaps to be in CHIP RAM at one time. It was
our feeling that this would have caused the animations to slow down, due to
data swapping that may or may not have needed to be done. By the end of 1989,
all development had stopped on OpCode 6. This left all buffers in CHIP, and
the format has remained the same since then.

1.20 anim6_additions

OpCode 6 Additions to OpCode 5

IFF-ANIM-Format 14 / 24

The format is exactly the same as
OpCode 5
5 but is QUAD buffered

instead of DOUBLE buffered. This allows the player to show 2 screens at one
time for the X-Specs Glasses. Each picture MUST be viewed for 1/60th of a
second, therefore to see a 3-D Picture the viewer can only play ANIMs at 30
frames per second (2 pictures = 1 frame).

The IFF file is stored exactly the same except that instead of having each
DLTA (delta) modify bitmap two frames back, it modifies the bitmap four
frames back.

Example:

| |
| BMHD |
DLTA (1)

DLTA (2)
DLTA (3)

DLTA (4)
DLTA (5)

DLTA (6)

.

.

.

DLTA (x)

1.21 anim6_playing

Playing OpCode 6 ANIMs

Four bitmaps are allocated. Bitmaps 1 and 3 are the left views, and bitmaps
2 and 4 are the right.

The First bitmap is gets its image from the bitmap in the file (BMHD). The
Second bitmap is a copy of the first with DLTA (1) performed on it. The
Third Bitmap is a copy of the first with DLTA (2) performed on it. The
Fourth Bitmap is a copy of the first with DLTA (3) performed on it.

We now have the first two 3-D Pictures: One in bitmaps 1 and 2 and the other
in bitmaps 3 and 4

IFF-ANIM-Format 15 / 24

DLTA (6) is used to create the third left view from bitmap 1.
DLTA (7) is used to create the third right view from bitmap 2.

DLTA (8) is used to create the forth left view from bitmap 3.
DLTA (9) is used to create the forth right view from bitmap 4.

NOTE: This technique requires 4 Loop frames at the end to perform looping.

1.22 anim7

Appendix for Anim7 Formats (by Wolfgang Hofer)
--

Anim method 7 is designed for maximum playback speed and acceptable packing
rates (packing usually not as good as method 5, but more efficient than
methodes 1 -- 4)

Chunk Sequence

Chunk Formats

ANHD-Chunk

DLTA-Chunk
Method 7 is not in the IFF specification today but supported by ←↩

the Public
Domain Programs AAP/AAC.

1.23 anim7_chunksequence

Chunk Sequence

Method 7 Anims should use the same Chunk Sequence as methods 1..5.
Alternativley the first frame may have a DLTA chunk instead of the BODY
chunk. In that case the DLTA is the difference to a ’black frame’. A player
has to clear all bitplanes of the first bitmap to zero, and then call his
DLTA unpack routines for this frame.

FORM ANIM
. FORM ILBM first frame
. . BMHD normal type IFF data
. . ANHD optional animation header chunk for timing of

1st frame.
. . CMAP
. . BODY/DLTA full picture or difference to ’black frame’
. FORM ILBM frame 2

IFF-ANIM-Format 16 / 24

. . ANHD animation header chunk

. . DLTA delta mode data

. . [CMAP]

. FORM ILBM frame 3

. . ANHD

. . DLTA

. . [CMAP]

The initial FORM ILBM can contain all the normal ILBM chunks, such as CRNG,
etc. The BODY will normally be a standard run-length-encoded data chunk
(but may be any other legal compression mode as indicated by the BMHD). If
desired, an ANHD chunk can appear here to provide timing data for the first
frame. If it is here, the operation field should be =0.

If the initial FORM ILBM uses a DLTA chunk, the ANHD chunk must appear, and
the operation field must be set to the according anim method.

1.24 anim7_chunkformats

Chunk Formats

ANHD-Chunk

DLTA-Chunk

1.25 anim7_anhd

ANHD Chunk for method 7

The ANHD chunk consists of the following data structure:

UBYTE operation The compression method: =7 short/long Vertical Delta mode
UBYTE mask unused
UWORD w,h unused
WORD x,y unused
ULONG abstime unused
ULONG reltime (timing for frame relative to time previous frame was

displayed - in jiffies (1/60 sec))
UBYTE interleave =0 (

see ANHD description
)

UBYTE pad0 unused
ULONG bits 32 option bits used by methode=4 and 5, methode 7 uses

only bit #0

bit # set =0 set =1

IFF-ANIM-Format 17 / 24

===
0 short data long data

UBYTE pad[16] unused

1.26 anim7_dlta

DLTA Chunk Format for method 7

The DLTA Chunks of method7 consists of

- 8 pointers to opcode lists
- 8 pointers to data lists
- data lists (long/short)
- opcode lists (bytes)

In this method the DLTA Chunk begins with 16 pointers. The first 8
longwords are pointers to the opcode lists for up to 8 planes. The second
set of 8 longwords are pointers to the correspondig data lists. If there
are less than 8 Planes all unused pointers are set to zero.

Compression/decompression is performed on a plane-by-plane basis. The
following description of the method is similar to Jim Kent’s methode 5,
except that data is stored in a seperated datalist (long or short,
depending on bit#0 of the ANHD bits) and doesn’t follow immediate after the
opcode.

In methode 7 the bitplane is splitted into vertical columns. Each column
of the bitplane is compressed separately. A 320x200 bitplane would have
20 columns of 200 short datas each (or 10 columns of 200 long datas).
Each column starts with an op-count followed by a number of ops. If the
op-count is zero, that’s ok, it just means there’s no change in this
column from the last frame. The ops are of three classes. The ops refer
to a varying amount of data (to fetch from the corresponding datalist)
depending on which class:

1. Skip ops - this is a byte with the hi bit clear that says how many
rows to move the "dest" pointer forward, ie to skip. It is non-zero.
Skip ops have no corresponding data-items in the datalist.

2. Uniq ops - this is a byte with the hi bit set. The hi bit is masked
down and the remainder is a count of the number of data to copy
literally from the datalist to the "dest" pointer column. (Each
data item to the next destination row) Data items may be long or
short organized.

3. Same ops - this is a 0 byte followed by a count byte. The count
byte says how many rows of the current column are to be set to the
same data-item. the data-item (long or short) is fetched from the
datalist.

Do bear in mind that the data is compressed vertically rather than
horizontally, so to get to the next address in the destination we have
to add the number of bytes per row instead of 2 (or 4)!

IFF-ANIM-Format 18 / 24

1.27 anim8

Appendix for Anim8 Formats (by Joe Porkka)
--

Anim method 8 is designed for maximum playback speed and acceptable packing
rates (packing usually not as good as method 5, but more efficient than
methodes 1 -- 4). In addition, it is easier to convert existing Anim5 code
to support Anim8 than Anim7.

Chunk Sequence

Chunk Formats

ANHD-Chunk

DLTA-Chunk

1.28 anim8_chunksequence

Chunk Sequence:

Method 8 Anims should use the same Chunk Sequence as methods 1..5.
Alternativley the first frame may have a DLTA chunk instead of the BODY
chunk. In that case the DLTA is the difference to a ’black frame’. A player
has to clear all bitplanes of the first bitmap to zero, and then call his
DLTA unpack routines for this frame. The same rules about copying the first
frame into both frame buffers still applies in this case.

FORM ANIM
. FORM ILBM first frame
. . BMHD normal type IFF data
. . ANHD optional animation header chunk for timing of

1st frame.
. . CMAP
. . BODY/DLTA full picture or difference to ’black frame’
. FORM ILBM frame 2
. . ANHD animation header chunk
. . DLTA delta mode data
. . [CMAP]
. FORM ILBM frame 3
. . ANHD
. . DLTA
. . [CMAP]

The initial FORM ILBM can contain all the normal ILBM chunks, such as CRNG,

IFF-ANIM-Format 19 / 24

etc. The BODY will normally be a standard run-length-encoded data chunk (but
may be any other legal compression mode as indicated by the BMHD). If
desired, an ANHD chunk can appear here to provide timing data for the first
frame. If it is here, the operation field should be =0.

If the initial FORM ILBM uses a DLTA chunk, the ANHD chunk must appear, and
the operation field must be set to the according anim method.

Each of the frames from frame 2 on up may use an anhd->operation of 0, 5 or
8. Note that only for the first frame in the file do you copy the image data
into two buffers, not every time you get an ANHD->operation==0.

1.29 anim8_chunkformats

Chunk Formats

ANHD-Chunk

DLTA-Chunk

1.30 anim8_anhd

ANHD Chunk for method 8

The ANHD chunk consists of the following data structure:

UBYTE operation The compression method: =8 short/long Vertical Delta mode
UBYTE mask unused
UWORD w,h unused
WORD x,y unused
ULONG abstime unused
ULONG reltime (timing for frame relative to time previous frame was

displayed - in jiffies (1/60 sec))
UBYTE interleave =0 (

see ANHD description
)

UBYTE pad0 unused
ULONG bits 32 option bits used by methode=4 and 5. methode 8 uses

only bit #0

bit # set =0 set =1
===
0 short data long data

UBYTE pad[16] unused

IFF-ANIM-Format 20 / 24

1.31 anim8_dlta

DLTA Chunk Format for method 8

The DLTA Chunks of method8 consists of

- 16 pointers, same as in method 5

In this method the DLTA Chunk begins with 16 pointers. The first 8 longwords
are pointers to the opcode lists for up to 8 planes. The second set of 8
longwords are unused. If there are less than 8 Planes all unused pointers are
set to zero.

Compression/decompression is performed on a plane-by-plane basis. The
following description of the method is similar to Jim Kent’s methode 5,
except that data is either in WORDs or LONGS, depending on bit 0 of the ANHD
bits:

In methode 8 the bitplane is split into vertical columns. Each column of
the bitplane is compressed separately. A 320x200 bitplane would have 20
columns of 200 short datas each (or 10 columns of 200 long datas).
Each column of the bitplane is compressed separately. A 320x200 bitplane
would have 20 (WORD) or 10 (LONG)columns of 200 bytes each. Each column
starts with an op-count followed by a number of ops. If the op-count is
zero, that’s ok, it just means there’s no change in this column from the
last frame. The ops are of three classes, and followed by a varying amount
of data depending on which class:

1. Skip ops - this is a word or long with the hi bit clear that says
how many rows to move the "dest" pointer forward, ie to skip. It is
non-zero. Note that the range of values is much larger for word and
long data, 0x7fff and 0x7fffffff.

2. Uniq ops - this is a word or long with the hi bit set. The hi bit
is masked down and the remainder is a count of the number of bytes
of data to copy literally. It’s of course followed by the data to
copy. Note that the range of values is much larger for word and long
data, 0x7fff and 0x7fffffff.

3. Same ops - this is a 0 word or long followed by a count word or
long, followed by a word or long value to repeat count times. Note
that the range of values is much larger for word and long data,
0xffff and 0xffffffff.

Do bear in mind that the data is compressed vertically rather than hori-
zontally, so to get to the next word or long in the destination we add the
number of bytes per row instead of one!

There is a slight complication in the case of long data. Normally an Amiga
BitMap is and even number of 16bit WORDs wide, so it is possible to have an
image which is not an even number or LONGs wide. For example, an image which
is 336 pixels wide is 42 bytes wide, 21 words wide, and 10.5 longs wide. In
the case that the data is not an even number of longs wide, and the data is
to be long compressed, then the last column of data is to be word compressed
instead. So, that 336 pixel wide image would be compress as 10 long columns
and 1 word column.

IFF-ANIM-Format 21 / 24

1.32 animsound

Appendix for Anims with Sound (by Michael Pfeiffer)

(I have to excuse my terrible english, but I hope you understand what I
mean - Michael)

Chunk Sequence

Chunk Formats

SXHD-Chunk

SBDY-Chunk
prepared by:

Virtual Worlds Productions
Michael Pfeiffer

The ANIM-Format is a wellknown fileformat for animations but it doesn´t
exists a standard for animation with sound.

The softwarepackage WaveTracer® (by VIRTUAL WORLDS Productions®) gives
users much possibilities to create good sounds, also in Dolby-Surround®.
The WaveTracer® together with the included CineTracer® makes it possible
to create sounds out of the datafiles of a raytracer. These sounds can
be injected into a ANIM-file. A player wich knows how (e.g. the
AnimFX®-Player, also by Virtual Worlds Productions) can play these anims
with sound.

1.33 animsound_chunksequence

Chunk Sequence

These method to include a sound into a existing anim is compatible to all
known IFF-ANIM-formats. Ignoring the differences between the formats, a
animfile with additional soundchunks could look like this:

FORM ANIM
. FORM ILBM first frame
. . BMHD
. . SXHD chunk with all necessairy definitions
. . SBDY soundbody with sampledata for the first frame
. . ANHD

. . CMAP

. . BODY/DLTA

. FORM ILBM frame 2

. . ANHD

IFF-ANIM-Format 22 / 24

. . SBDY sampledata for the second frame

. . DLTA

. FORM ILBM frame 3

. . ANHD

. . SBDY sampledata for the third frame

. . DLTA

* * *

. FORM ILBM last frame

. . ANHD

. . SBDY sampledata for the last frame

. . SBDY additional sampledata wich have to be played after
the last frame or while fading to an other screen

. . DLTA

1.34 animsound_chunkformats

Chunk Formats

SXHD-Chunk

SBDY-Chunk

1.35 animsound_sxhd

SXHD Chunk

This chunk includes all informations about the soundsample. It isn´t
compatible to the VHDR-chunk in the 8SVX format but its the same like in
HISX-soundformats of our product WaveTracer®. For more detailed
informations about these format, its usage and its soundmodes, see the
original WaveTracer®-Manual and the WaveTracer® Developers-Information.

BYTE SampleDepth depth of the Sample in unit Bits, most common is 8
but all others from 1 Bit up to 32 Bits are
(theoretical) possible

BYTE FixedVolume Amiga-typical unit for playback-volume, 0 is off and
64 is maximum

BYTE Length length of a SBDY-chunk of ONE frame. This length is
calculated for a constant playbackspeed. If speed
varies from frame to frame the length of the
SBDY-samplechunk also varies and this value is
invalid and/or set to 0

LONG PlayRate Amiga-typical unit for playback-speed; if you like to
use the duration of sampleplayback for the synchroni-
sation of the anim-playrate or if you use a soundcard,

IFF-ANIM-Format 23 / 24

you better should use "PlayFreq"
LONG CompressionMethod has to be =0 in anims everytime, because the

AnimPlayer became slower and Dolby-Surround®-
informations will be destroyed by all known
compressions

BYTE UsedChannels Flag for number and type of channels saved in the
SBDY-chunk:

1 - Channel left
2 - Channel right
4 - Channel center

Left and right together or center are supported this
time, but following channels are theoretical also
possible:

8 - Surroundchannel or surround left
16 - Surround right
32 - Subwoofer effectchannel

BYTE UsedMode says, wich soundmode has to be used:
1: Mode Mono (center-channel only)
2: Mode Stereo (channels left and right)

Following modes are also possible but not supported
yet:

3 - 3.0 3Channel
4 - 4.0 DTS®-Quadro
5 - 4.0 DolbySurround®
6 - 5.0 DTS® / AC-3®
7 - 5.1 DTS® / AC-3®

LONG PlayFreq play-/samplefrequency, spezifies the correct playspeed
WORD Private reserved

1.36 animsound_sbdy

SBDY Chunk

The samplechunk SBDY includes all sampledata wich have to be played back for
the actual frame. Every SBDY chunk includes only a small part of the whole
sample and every part fits to its frame. If you use the correct playback-
speed, you can use the sample-playbacktime for synchronising your anim-
playbackspeed.

The organisation of the SBDY chunk depends on the definitions in SXHD chunk.
The most important examples have following structure:

Sampledepth: 8 Bit
Mode: Mono

Sampledata are stored like in normal 8SVX-format, UBYTE by UBYTE and
only one channel.

Sampledepth: 8 Bit
Mode Stereo

Here Sampledata are also stored like in normal Stereo-8SVX-Format, first
all UBYTEs for the left channel and then all for the right channel.

IFF-ANIM-Format 24 / 24

NOTE! The last frame of a ANIM could have two SBDY chunks. The first one has
to be played like all others when the last frame is displayed. The second
Frame includes sampledata wich often have an other length. These sampledata
have to be played after the end of the animation (e.g. when the screen fades
to an other).

NOTE ALSO! In future there can be programs wich support ANIMs with sound. If
such a program merges two ANIMs with sound, it can happen, that a frame
in the middle of the complete animation owns two SBDY-Chunks. Then you have
to do following: Replay the second SBDY with your normal two channels (could
be Amiga®-channels A and B) and start immediately replaying the next frame
with its SBDY-Sounddata onto the other two channels (the Amiga®-channels
D and C). So you will get the perfect fading from one part of a animation
to the other (it should look and sound nearly like in good movies!).

	IFF-ANIM-Format
	main
	authors
	introduction
	overview
	recording
	xor
	longdelta
	shortdelta
	generaldelta
	bytevertical
	playing
	chunkformats
	anhd
	dlta
	method23
	method4
	method5
	anim6
	anim6_introduction
	anim6_additions
	anim6_playing
	anim7
	anim7_chunksequence
	anim7_chunkformats
	anim7_anhd
	anim7_dlta
	anim8
	anim8_chunksequence
	anim8_chunkformats
	anim8_anhd
	anim8_dlta
	animsound
	animsound_chunksequence
	animsound_chunkformats
	animsound_sxhd
	animsound_sbdy

