
Changes & Enhancements not in the Book

Fido/FidoNet version 12R
7 November, 1989

Fido Software, Box 77731, San Francisco CA 94107
voice: 415-764-1688 data: 415-764-1629

New Commands

You will need to run the program "12R.EXE" to upgrade your
COMMANDS.INI file before you can upgrade to Fido/FidoNet version
12R. It will add the new commands in the proper place plus add
other version-identifying information. (It is safe to run the
program more than once, and you can peek with your editor to see
what it has done -- it's not a secret!)

Replying and Quoting

A new major feature has been added to Fido; "message quoting"
when entering or replying to messages. The feature consists of a
new Message Section command, a new command in the message editor,
and enhancements to two existing message editor commands.

It works like this: while you are reading messages, you may find
one that you want to reply to that has a number of points within
it you want to address in your reply. Instead of taking notes,
with the new W)rite-Buffer command (below) simply take a snapshot
of the message. At any time before you disconnect, you can enter
a new message, and read that snapshot into your message, where
you can delete any parts that you don't want, which has been made
a lot easier with the message editor enhancements.

Be warned: it is very easy to overuse message quoting, and
generate huge and hard to read messages. A little goes a long
way.

The edit buffer is a disk file named MSG.BUF; if the command line
switch /I is used, the filename is modified in the same way as
the log files.

New Message Section Command

A new command has been added to the Message Section: W)rite¡
Buffer. It saves a copy of the message you just read into the
newly-coined "edit buffer". There is only one buffer, so only the
most recent use of the W)rite-Buffer command is remembered. The
contents of the Edit Buffer is cleared when a new caller
connects; it is not preserved from one caller to the next.

The end result of this is that when replying to a message, you
can include the original author's message as reference. The
R)ead-Buffer command lets you "quote" each line with a ">"
character to make quoted lines stand out.

For callers privilege 4 and above, the W)rite-Buffer command
asks:

File to write to [CR=Buffer]:

Allowing you to save messages in a file you specify instead of
the default buffer file. In this case, subsequent writes are
appended to the file, letting you collect messages about a
certain subject into a file.

Message Editor Enhancements

New command added: R)ead-Buffer. This reads the contents of the
Edit Buffer into your message, as if you had typed it manually.
It asks two questions:

Prefix each line with ">"? (y,N):
Force word-wrap on paragraphs? (y,N):

The first option lets you make the words of another person you
are quoting stand out. The second is unfortunate, and is meant to
help you compensate for messages generated by programs that do
not properly support standard "word wrap" file format. First try
it without it; if paragraphs look terrible (ie. a series of long
lines followed by a short line, over and over) then delete the
lines and try again with "force word-wrap" YES.

Because R)ead-Buffer reads in the entire edit buffer, you will
need to delete the lines you don't want; see the D)elete-Line
enhancement, below.

If you are privilege 4 or higher, R)ead-Buffer asks you an
additional question:

File to read from [CR=Buffer]:

It will accept any valid pathname. The file better be a text
file. Many uses come to mind -- canned answers for common
questions, etc.

Besides the R)ead-Buffer command addition, two very old commands
in the message editor have been radically improved.

D)elete-Line, which lets you delete a line from your message, now
accepts a "range" of line numbers, with which you can delete many
lines at once. Previously, if you wanted to delete (for example)
lines 5 through 16, you had to enter "D 5" 12 times; now you can
do it with a single "D 5-16" command.

I)nsert-Line was limited to inserting a single line in your
existing text, too limited to be of much use. I)nsert-Line is now
a true text-insert command; starting at the line number you
specify, text is entered until you enter a blank line, as in
normal text entry. Lines below your insertion point are "moved
down" to make room for the inserted text.

New Change Sub-command

A new command has been added to the C)hange command menu;
G)raphics. It is meant to allow the sysop to install an
additional set of .BBS text files (WELCOME2,BBS, etc) that

contain graphic or other information, that can be chosen by each
caller.

Alas, this feature isn't used yet -- hence the default privilege
of 7 -- because I thought it out poorly and had to yank it at the
last minute. Profuse apologies! I promise I will make it up to
you soon!

New Main Section Command

T)riggers are manual controls over event execution. You can
assign triggers to events defined in EVENTS.INI; you can put the
same trigger on any number of events. Events without triggers are
always on, just as they are in previous versions.

There are 8 triggers, which can have one of three possible
settings: OFF, which means what it says; the trigger and any
events that use it are disabled. ON allows that event to run when
it's time comes. ONCE does also what it sounds like; after the
event runs successfully, the trigger is turned OFF. This allows
you to setup an event to run one time only, without having to
remember to turn the event OFF after running it.

Triggers are placed on events when you define them in EVENTS.INI:

All 9:00 360 FidoNet M T=4

This event has trigger #4; that trigger must be ON or ONCE for
that event to run when the time becomes 9:00AM. An example would
be a special FidoNet event that sends mail to any system in the
nodelist directly, for high priority mail, which you would enable
with a trigger set to ONCE.

The T)riggers command lists events for you to help you see what
you are doing.

Multi-Line Fido Installations

Once again, multi-line operation has been improved. There is now
a way to run different modems on each of the different systems;
See the new FIDO.INI option, system-path. Thanks go to Ken
Ganshirt for this one.

It was never mentioned before, but Fido/FidoNet does file locking
on CALLER.SYS, the caller file -- and does up to ten retries to

open it successfully. So you never have to worry about losing
caller data.

For two-line Fidos, under DoubleDOS, DESQview, etc, you can now
run both "sides" completely from within one "FIDO" subdirectory.
Events and areas can be assigned to only one "task", by a new
option in AREAS.INI and EVENTS.INI, to allow controlling which
side executes what event, and additionally have message and file
areas unique to a task.

Each systems task ID is the nnnn/I command line option; referring

to the manual, the /I number is the "task ID" that makes each
side unique, and makes Fido create unique logfiles, and handle
message areas slightly differently.

For example, you have a two line Fido running, with sides
numbered 1 and 2 (1/I and 2/I). The two systems are identical to
the user, and you want to have only one side run FidoNet mail.
The following example would do just that:

quick rush all 2:00 60 FidoNet A ID=1
all 0:00 1440 Page

The first event is assigned to side 1 only; under no
circumstances will side 2 ever execute that event. The second
event, a Page event, is shared; it has no ID number and therefore
is common to both.

You should limit FidoNet events to only one side, when sharing a
netmail area; all other event types can be shared without a
problem.

Message and file areas can be assigned to each side in an
identical manner. The other side will not be able to access the
other sides areas. Areas without an ID= statement are shared by
both sides.

msgarea= msg D="Messages" O=FidoNet ID=1
filearea= inbound U=outbound D="Files" O=FidoNet ID=2

Options in AREAS.INI

Please note that previously, Fido let you specify options by the
first character only; "O=F" was equivelant to "O=FidoNet", and so
on. I hope you weren't too cheap with your typing -- as Fido now
requires at least the first two characters now. This wasn't an
arbitrary decision just to torment you -- the addition of the
"O=Private" -- as opposed to the existing "O=Public" -- made this
necessary. Sorry! SET-FIDO will inform you of your previous
stinginess if necessary.

O=Private

All messages entered in this area will be marked (PRIVATE). This
helps those who run BBSs that may have marginal message contents;
snoopy types simply cannot see anything, so you don't have to
worry about getting caught.

O=Shared

Indicates to Fido that this message area is shared with another
Fido or other program that can generate .MSG files in this
directory -- this is meant to be used on multi-line Fido
installations, to prevent message file contention. (It is
actually file-locking, done at the right level for a change.) It
causes Fido to recount messages whenever it needs to generate a
new message file.

O=Anon

When a new message is created, it is marked From: Anon.

O=Public

Makes Fido not ask Private? (y,N); all messages are public.

New keywords in FIDO.INI

system-path <pathname>

Use this to define the pathname that Fido/FidoNet uses to locate
the following files: CALLER.SYS, *.LOG, *.NDL, ROUTE.*,
NODES.BBS. Normally Fido looks for these files in the default
directory.

When running more than one Fido/FidoNet with a multitasker
utility, you can now install each Fido/FidoNet in it's own
subdirectory, but share critical files like the caller file, etc.

rings <1 - 255>

Fido/FidoNet normally answers the phone (well, modem...) on the
first ring; this lets you change it to something else.

directory
key
aka
system
sysop
point
log
flag

These are DCM (Dutchie's Conference Mailer) keywords;
Fido/FidoNet ignores them. DCM ignores Fido/FidoNet's keywords
-- so you can use FIDO.INI to specify both Fido/FidoNet and DCM's
installation, saving all that clutter and extra editing.

dot <1 - 32767>
alt-dot <1 - 32767>

These two define your Point address. The default is zero (no
point address). Please see the section on POINTS below for
details.

help-path <pathname>
bbs-path <pathname>
node-path <pathname>

IMPORTANT NOTE: There may be a change in the way Fido/FidoNet
uses the help-path and bbs-path pathnames -- they may become
"obsolete" to allow a decent implementation of the G)raphics
command. The change will be no worse than simply using another
keyword. It will be easy, and worth it.

These control from where Fido will access system files. help¡
path is where Fido will get all .HLP files. bbs-path is where
Fido will look for all text .BBS files; quotes, WELCOMEs,
BULLETIN.1 - BULLETIN.99, etc. Certain .BBS files remain are
exempt: NODELIST.BBS, NODES.BBS, ROUTE.BBS, TIMELOG.BBS and of
course all the FILES.BBS'. node-path is where Fido and FidoNet
and the MAKELIST program will look for all of the NODELIST.*
files.

SET-FIDO will not create these subdirectories for you; you must
create them manually and copy the files into them. This is not
necessary; it only allows you to keep a less cluttered FIDO
directory.

zm-rx-type <number> ;DEFAULT: 0
zm-tx-type <number> ;DEFAULT: 0
zm-tx-start <number> ;DEFAULT: 1024

Please refer to the "ZMODEM" section in this errata sheet.

keep-nmp <YES,no>
wazoo <YES,no>
multi-tsync <YES,no>
fsc001 <yes,NO>
fsc011 <yes,NO>
system-name "Your System Name"
session-password <password>

Please refer to the "FIDONET" section in this errata sheet. The

default settings, if any, are shown above in CAPS -- unless you
have a PARTICULAR REASON do not change the settings of these
commands. They are for testing and protocol verification only.

multi-tasker <number> ;DEFAULT: 0

An option to inform Fido of any "multitasker" program you might
be using. Fido will run fine with any multitasker, even one not
listed here; this is an option to potentially improve
performance. You should see a slight performance increase.
Replace <number> with one of the following: 0:Plain MSDOS;
1:DoubleDOS; 2:DESQview. Others may be defined later. (Please
refer to the manual about the "nnnn/I" command line switch when
running more than one Fido.)

external-login-A <number 3 - 255>
external-login-B <number 3 - 255>
external-login-C <number 3 - 255>
external-login-J <number 3 - 255>

This is part of a special option to allow Fido to run other login
programs such as the uucp-to-FidoNet gateways software such as
"UFGATE". (The unix uucp-to-FidoNet gateway software -- ask Tim
Pozar at 1:125/555 for details.)

It enables a program or a person to login normally, but run
another program instead of Fido. There can be up to 10 "external¡
logins" at one time. When properly installed, a caller that
successfully passes the name and password section of the Fido

login exits Fido/FidoNet and runs a separate program, such as
UFGATE. (It is up to the system operator to install the necessary
programs and batch files to cause this to happen.)

You install this by first creating a batch file that runs your
specified program via the DOS ERRORLEVEL convention. Then in
FIDO.INI, you specify the external-login-A ERRORLEVEL to match
("A" can be any letter through "J"). This tells Fido that when a
caller logs in with External-Login A, to exit to DOS with this
ERRORLEVEL.

Next, for each program or person you wish to invoke the special
login procedure, you assign a special attribute to an otherwise
normal caller in the Fido caller file, "CALLER.SYS". This is done
by setting the ADDRESS FIELD in the caller record to the exact
string below:

external-login A

Letters "A" through "J" identify which of the External-login
definitions are used. The name and password fields are set
normally. The address field is all the separates special logins
from normal callers.

dial-prefix "string"

The string is prepended to the phone number from the nodelist
files before dialing. A space is added between the prefix and the
phone number. Suggestions: put "P" for pulse or private PBX
access in there, instead of in NODELIST.BBS with XlatList and
save a bunch of disk space and hassle.

NUMBER PREFIX RESULT
297-9145 (none) ATDT2979145
297-9145 P.. ATDTP..2979145
642-1034 $DIAL $DIAL 6421034
$dial_642-1034 (none) $DIAL 6421034
$dial_642-1034 P.. P..$DIAL 6421034

Fido can execute script files instead of just dialing phone
numbers. The script language is exactly the same as in FidoTerm,
a shareware telecomm program available from the Fido Software
BBS, except that the screen and console oriented commands have no
effect or display on the screen.

A bucks character "$" in a phone number invokes the script
processor. The text following the "$" is the script filename and
arguments, and anything before the "$" is ignored. (That lets you
mass-process phone numbers, using XlatList or
"dial-prefix" in FIDO.INI without interfering.)

Arguments to script files must has spaces separating them; the
usual "_" as defined for the nodelist file format is fine.

show-seen-by <yes,no> ;DEF.: YES

This affects only users of echo-mail programs CONFMAIL and the
like; if set to "NO", Fido suppresses the verbose "SEEN-BY" list

of nodes.

quick-login <yes,no> ;DEFAULT: NO

If "YES", the Q)uick-Login command at the local console logs in
the first caller in the caller list (presumably the system
operator). Very handy for local maintenance. Leave disabled if
many people have physical access to the system.

modem-type 0 ;no modem
modem-type 2 ;Direct connection
modem-type 8 ;POPCOM 2400
modem-type 13 ;Multitech 224e
modem-type 12 ;see below
modem-type 21 ;Hayes V-series no ASB
modem-type 22 ;ditto, locked 9600
modem-type 23 ;ditto, locked 19,200

modem-type 24 ;USR HST, locked 38,400
modem-type 25 ;USR Courier 2400,

;Hardware Handshake

modem-type 0 prevents Fido/FidoNet from using the modem at all.
In other words, Fido is usable only from the local console.

modem-type 2 is for direct-connect installations. When the CD
line goes true, Fido assumes the online and connected state, at
the baud rate set by maxbaud <number> in FIDO.INI. DTR is used to
disconnect. You must use the new script facility to accomplish
dialing. No modem initialization is done.

modem-type 8 is for the Prentice POPCOM 2400 baud modem.

modem-type 12 had a bug in version 12K; it issued USR Courier¡
specific commands, and many "generic" 2400 baud modems failed.
This has been repaired; see modem type 25.

modem-type (14, 16, 17) have additional initialization commands:
AT&H1&R2.

Zmodem file transfer protocol

This is a fully compatible, standard Zmodem implementation, with
a few fancy features added. You can adjust Zmodems behavior with
the two controls in FIDO.INI (details follow), because Zmodem can
potentially accept data faster than your computer can handle. The
default settings are quite conservative, and should work on all
machines.

The block size used depends on the baud rate the connection is
at, according to this table (see also zm-tx-start).

Block Size Baud Rate
1024 over 2400
512 2400
256 1200 & below

Upon two consecutive errors on the same block, the block size is
halved; minimum block size is 64 bytes. Upon twenty consecutive
blocks with no errors and no line noise junk characters, block
size is doubled; maximum block size is 1024 bytes.

Keep in mind the whole point of having high speed modems and
protocols is so that you can run as fast as your machine allows;
a modem capable of 1500 characters per second doesn't make your
computer any faster, all it guarantees is that it won't hold you
back anymore.

Now that a few months has gone by since ZMODEM was fist installed
in Fido/FidoNet, I can offer more concrete advice.

Full streaming works in nearly all circumstances. The
near-worst-case design is a 4.77MHz PC clone with an 80mS (slow!)
hard disk, DOS 3.3, and an extremely fast modem, such as a US
Robotics Dual Standard, locked at 38,400 baud. Even this
combination is capable of doing 11,500 baud under good
conditions. There is no need for even "AT" type hardware for high
performance. (At least for file transfer speed alone.)

If you use a multitasker such as DoubleDOS, DESQview, Multilink,
etc., and you experience high data error rates or lost data, then
under these conditions please DO NOT USE Zmodem Receive full
streaming. (See zm-rx-type.)

Zmodem Controls

The receive controls affect only how your Fido/FidoNet or FT
program receives files; if someone else calls in to download
files, Zmodem will go as fast as their Zmodem tells Fido or FT to
go. (They may have done something like this on their end as
well.)

REC'V: FULL STREAMING

FidoTerm: ZRXTYPE 0 or 0/D
Fido: zm-rx-type 0

When receiving, tells the sending program that it can accept data
at maximum possible data rate, ie. full streaming. This is meant
for machines that can accept data at "high speed", whatever that
means to you.

REC'V: FULLY ACK'ED

FidoTerm: ZRXTYPE 1 or 1/D
Fido: zm-rx-type 1

When receiving files, every block will be acknowledged. (For
sending, Fido/FT will do whatever the receiver says.) This is
extremely conservative, and probably only needs to be used in
extreme circumstances, such as under a heavily loaded
multitasker.

TRANSMIT: VARIABLE WINDOW

FidoTerm: ZTXTYPE 1 - 64/U
Fido: zm-tx-type 1 - 64

The preferred method of defining a sliding window. When sending
files, and the receiver says it can accept full streaming Fido/FT

will send data in full streaming mode, as long as it receives
acknowledges from the receiver every so many [blocks]. The
receiver sends occasional acknowledges, and the sender checks for
them, without pausing the data flow. If the sender doesn't see an
acknowledge it will stop and wait for one.

At 2400 baud and below, this has all the speed of full streaming,
with improved error recovery. The slight penalty is the reverse
channel does get used, which could slow some high-speed modems
down.

Since the window size is stated in blocks, the size of the window
depends on the baud rate and error rate; if many errors occur,
Zmodem shrinks the block size, and hence the window shrinks too;
if the error rate is exceptionally good, the block size increases
as Zmodem increases block size. Higher baud rates start with
larger blocks.

window size = [blocks] * block size

Try starting with [blocks] at 6, which works out to be a 1.5K
byte window at 300 and 1200 baud, 3K at 2400, and 6K at 9600 and
beyond.

HINT: Don't look at the Senders modem activity lights when
adjusting window size; look only at the Receivers lights. The
senders activity can be misleading; for example, the US Robotics
HST has a 32K byte internal buffer, so Zmodem fills it quickly
then sits and waits for window synchronization; don't let this
fool you into thinking you could make it faster, you can't. Data
can only flow out of the modem into the phone line as fast as it
goes, all that increasing the window size will do is make error
recovery slower.

TRANSMIT: FIXED SIZE WINDOW

FidoTerm: ZTXTYPE 1024 - 65536
FidoTerm: 1024 - 65536/U
Fido: zm-tx-type 1024 - 65536

This is the second method of defining a sliding window. It works
the same as the previous method, except the size of the window is
fixed, and specified in Kbytes. An 8K window is an 8K window,
whether it contains 8 1024 byte blocks or 32 256 byte blocks.

TRANSMIT: START BLOCK SIZE

Fido: zm-tx-start 64 - 1024

Normally Fido determines the data block size by baud rate and
what the receiver can handle. On extremely bad phone lines, it
may take too many errors to get the block size down to one that
works; above 2400, where the block size starts at 1024 bytes, it

will take 16 errors (block size halved every four errors, four
times) to get the 64 byte packet that may work best.

This option lets you specify the largest block size to start the
transfer with. Try 128 or 64 if you have many errors due to phone
line noise; if the connection is good, then after every 20 blocks
the block size will double, and performance improve. 20 blocks
doesn't take very long when the blocks are 64 bytes each!

This controls only the starting block size; the block size can
still increase in the normal manner if there are no errors, as
outlines in the beginning of this section.

Please make sure that you use only the following values: 64, 128,
256, 512, 1024.

Miscellaneous Additions

New system files: NODELIST.ZDX and NODELIST.NDX Fido can access
any system listed in the nodelist with an average worst-case of
four small disk reads -- performance with 10,000 nodes is much
faster than most previous versions with only 500 nodes.

MAKELIST creates these, and Fido and all of the supplied tools
use them. It is an additional index, and contains all the HOSTS
and REGIONS and ZONES in the system. The existing NODELIST.IDX
file has not changed in format nor use; external programs that
use it are not affected.

WELCOME3.BBS, WELCOME4.BBS and WELCOME5.BBS are displayed right
after the point where it now displays WELCOME2.BBS.

Incompletely uploaded or received files (carrier loss, Control-X
abort, timeout, etc) no longer clutter the directories; Fido
kills 'em.

New option at the More[c,Y,n] prompt: C == Continuous, ie.
suspend the "more" function until the next prompt for input.

NODELIST.SYS is not used anymore. MAKELIST.EXE used to generate
it, and FIDO.EXE read it. Fido now uses NODELIST.BBS directly.

embedded in .BBS text files such as WELCOME1.BBS, it performs
certain special functions (Page 26 in the manual). The following
were added:

Control-D Fido immediately displays a "More" pause prompt.

Control-X Suspends auto-line wrap until the next CR is found.
This allows embedding long ANSI sequences without word wrap
messing you up. (Remember mechanical typewriters? This is a
"margin release"!)

Control-Z Fido treats this as the end of the file.

MsgMgr.EXE options added: New keyword that can be used within

MsgMgr script files:

LOGFILE logfilename

Normally MsgMgr logs it's activity in FIDO.LOG, the standard Fido
log file. With this command, you can route log activity to any
file or pathname or device, or to eliminate it entirely, to the
device "NUL".

You can now specify the name of the script file that the message
manager is to use, instead of just the default "MSGMGR.INI". For
example, you could renumber/purge only your FidoNet area right
before mail time, and then use MsgMgr in the usual manner after
FidoNet.

MsgMgr will also now translate "LASTREAD" and "HW.DAT" files if
they exist in each message area.

--

FidoNet

Once again, the FidoNet portion of Fido/FidoNet has received a
major overhaul. At this point (12q) performance, simplicity, and
compatibility should be just about "all there".

With version 12Q comes a rather radical simplification of overall
FidoNet operation. Gone are all the confusing FidoNet event-type
options. Since there are people looking at this who haven't seen
a Fido/FidoNet since version 11, I'll sum up the changes here:

- True three-level addressing (v12)
- Continuous incoming mail (v12)
- Wazoo/Zmodem protocol (v12m)
- Usable continuous outgoing mail (v12m)
- File Requesting (v12m)
- True continuous outgoing mail (v12q)
- Incremental packeting (v12q)
- Basic point support
- Scheduled control of File Requests (v12q)

During this revision (12q), most if not all of the FidoNet-
program implementors were working towards making their program
adhere to the basic FSC001 protocol standard, and we all tested
against each others programs as well. Yes, you can even file-
attach to SEAdogs.

FidoNet, from the sysop's installation and operation point of
view, was kind of a jumble of complex options in EVENTS.INI and
less than satisfactory when trying to run continuous outgoing
mail -- ie. to have packets ready for pickup at any time. I think
it is safe to say that all of these problems have been fixed. You
no longer need to have a zillion events throughout the day, and

newly entered messages no longer sit around until one of those
zillion events comes by.

The FidoNet event types you specify in EVENTS.INI were completely
revamped. The previous method involved complex and obscure

options that confused even me -- it was poorly thought out. There
are now only three types of FidoNet event (described below).
There is what I think a good sample installation that should
cover most peoples needs described below. It should be easy to
install and understand.

FidoNet Events

There are three types of FidoNet events, each described below.

Normal FidoNet

ALL 2:00 60 FIDONET A

This is the old standby FidoNet event type. It runs until it's
time is up. Human callers are not allowed into Fido; it accepts
only FidoNet mail.

Rush FidoNet

RUSH 2:00 60 FIDONET A

Very similar to the previous "vanilla" FidoNet event, except that
when there is no more mail to send, ie. all the packets have been
delivered or the maximum number or tries has been reached, the
event terminates early.

RUSH FIDONET events are especially useful when combined with a
T)rigger; you can define an event to run all day long (0:00
1440), and use it to manually override normal scheduling.

Continuous FidoNet

CONT 2:00 60 FIDONET A

True continuous outgoing mail. This causes Fido/FidoNet to make
packets, and have them available for pickup or delivery at any
time, while allowing human callers to access Fido freely.

When there is no human caller occupying Fido, and there are
packets to deliver (according to route language files) FidoNet
will make calls once per dial-interval.

Other FidoNet systems can call in at any time (well, assuming
it's not in use), deliver FidoNet mail, and pick up packets

addressed to it.

If a human or a FidoNet mailer generates a message in the FidoNet
message area, FidoNet will immediately add it to an existing
packet or create a new one; and deliver the packet as per normal
FidoNet routing controls.

QUICK FidoNet Option: Obsolete

The QUICK option is no longer used -- though SET-FIDO will not
(for now) complain. All FidoNet events are now, by definition,

"QUICK". This means that you must run SET-FIDO if you change any
of your ROUTE.* files. Which was strongly reccommended anyways.
So now it's mandatory.

A Sample Installation

The following is a very good starting point for a full featured
Fido/FidoNet installation for a node in the amateur FidoNet
network. It is described in detail below:

RUSH 0:00 1440 FIDONET R T=1
2:00 60 FIDONET A

CONT 2:00 1380 FIDONET L

(Fido executes events by scanning the list of scheduled events
from top to bottom, and runs the first event it finds that is
runnable. The RUSH FIDONET event will only run (and therefore
override the events that follow) when Trigger 1 is turned on.)

And here's a sample ROUTE.BBS file to go with this:

IF-SCHEDULE R ;manual override
SEND-ONLY
SEND-TO, NO-ROUTE MYZONE

IF-SCHEDULE A ;'ZoneMailHour'
SEND-TO ALL

IF-SCHEDULE L ;daytime mail --
SEND-ONLY, DIAL-TRIES 1
;generate packets for all
SEND-TO, NO-ROUTE MYZONE
;but call only my own net
HOLD ALL NOT MYNET

END-IF

The first event, RUSH FIDONET R, is controlled by Trigger 1, and
we'll assume usually turned OFF. (When OFF, the event is inert

and will not run.) When turned ON, FidoNet will repacket
according to the route file; in this example, it will make
packets for messages within our own zone (SEND-TO MYZONE),
without host routing (NO-ROUTE MYZONE), and dial otu to deliver
those packets as fast as possible (SEND-ONLY). It will stop when
(1) if there were no messages to deliver, (2) as soon as all
messages are delivered, or (3) the maximum number of tries is
reached.

The second event, FIDONET A, is the normal, mandatory, FidoNet
"ZMH". SEND-TO ALL simply means enable mailing to all nodes in
the nodelist (note that for inter-zone messages, the contents of
ROUTE.DEF (elsewhere...) will route messages to the proper
zonegate). This event will run until completion; in this example,
from 2:00AM til 3:00AM.

The third event, CONT FIDONET L, is the "background", continuous

FidoNet event. It will run whenever the previous two are not. It
will make packets according to the route language for tag L:
packets only to your zone (SEND-TO MYZONE), no default host
routing (NO-ROUTE MYZONE). FidoNet will make phone calls only to
nodes in your own net -- HOLD ALL NOT MYNET.

Assume now that it's in the afternoon, and CONT FIDONET L is
running. You are, for example, 1:125/0, the host for net 125.
1:161/12345 calls and delivers a packet with a message destined
for 1:125/7. If there were messages for 1:161/12345 it would be
on HOLD -- it is outside your net (HOLD ALL NOT MYNET) -- and it
could be picked up at this time.

After it disconnects, Fido unpackets the message. FidoNet then
discovers the new message for 1:125/7 -- it immediately creates a
new packet for 1:125/7, and since that is within your own net,
immediately calls it and delivers the packet. If '7 were busy,
then Fido would run and wait for a caller. While Fido remains
idle (no one calls in), every dial-interval FidoNet will run, and
attempt to deliver that packet to '7.

And further: assume a human caller connects now, with that packet
to '7 still undelivered, and goes into the FidoNet netmail area,
and enters some messages: another to 1:125/7, one to 1:161/12345,
and another to say 2:500/5. When the caller disconnects, FidoNet
will packet those messages: the first will go into the existing
packet for 1:125/7, the second to (say) a new packet for
1:161/12345, and the third will not be packeted at all -- you
said SEND-TO, NO-ROUTE MYZONE so it just sits.

With the packets then updated, FidoNet runs again. It calls '7,
connects, and delivers the packet. (The messages and packet can
then be deleted.) The packet for 1:161/12345 is not delivered,
since it is outside your net. FidoNet relinquishes control to
Fido, allowing human or FidoNet callers in.

Points

Fido/FidoNet now (12N) includes basic Point addressing support.
Later versions will provide complete "boss node" functions, so
that Fido/FidoNet will be able to perform any possible FidoNet
mailer function; zone gate, zone host, net/region host, ordinary
node, point boss, point node.

Fido/FidoNet properly handles all point-addressed messages; it
will scan for TOPT and FMPT Kludge lines, and incorporate them
into the message address display.

When reading existing messages, Fido locates the TOPT and FMPT
IFNA Kludge lines, like it always has for INTL lines, and
incorporates them into the displayed address. To the user or
sysop, there's nothing to even think about.

When entering a message, node address entry is as it always was,
but you can add ".<1 - 32767>" to the node number, or just the
dot followed by the point number, to send to points within your

own point network. For example: as 125/111, entering .33 would
address a message to 1:125/111.33, etc. Same syntax and behavior
as default net, etc.

When replying, Fido does the same as it does with nodes; the
message is To: the From: node, unless it is the same as "us" in
which case it reverses the addresses.

Internally, Fido generates TOPT and FMPT lines as the second and
third lines in the .MSG file; INTL still comes first. Fido will
locate any of these three lines as long as they occur within the
first 256 bytes of text following the message header.

Note that Fido will display point numbers only if the point
number is NOT zero. 1:125/111.555 will display that way; .0 will
display as 1:125/111 only.

Wazoo Protocol

Fido/FidoNet now supports two network protocols automatically.
One is "FidoNet", known in some circles as "FSC001", after the
filename of the standards document generated by Randy Bush. Fido
has supported this protocol since 1985.

The other, newer protocol is called "Wazoo", and was originally
implemented in Wynn Wagner's Opus program, and now it seems the
most popular program supporting Wazoo is "BinkleyTerm". Both also

do FSC001 style FidoNet. Wazoo operates in a similar manner, but
uses Zmodem for it's transfers and can support "file requests",
where the call originator can "download" files from the remote
computer without the intervention of an operator to do "file
attaches". (With appropriate controls, etc.)

There is no impact on existing Fido/FidoNet installations
regarding security, setup or installation, etc. The choice of
Wazoo vs. FidoNet is made automatically, though the system
operator can make changes. The defaults will work fine in all
cases.

There are FIDO.INI options that were added to control things.
Most of the options should be left as-is.

fsc011 <yes,no> ;default: NO
wazoo <yes,no> ;def.: YES
multi-tsync <yes,no> ;def.: YES
fsc001 <yes,no> ;default: NO

These are for special purposes only, mainly for verifying FidoNet
FSC001 protocol compatibility. Unfortunately in the real world
there are varying levels of compliance to FSC001; the default is
pretty "loose", for maximum compatibility. fsc011 yes lets
Fido/FidoNet accept so-called "DIETIFNA" protocol, which means it
can skip the slow MODEM7 filename; however SEAdog does not accept
TELINK blocks and file attaches will then fail. wazoo no forces
Fido to do only FSC001, ie. pre-12M compatibility. multi-tsync no
forces Fido back to 11W style single TSYNC character; there is

nearly no reason to do this. fsc001 yes makes FidoNet and it's
XMODEM protocol driver conform to letter-
of-the-law FSC001 specifications; alas, not many FidoNet
"compatible" systems will then work, including many Fido/FidoNet
programs!

system-name is an optional 60 character string that is the "name"
of your system. Fido transmits this name to the remote computer
during Wazoo sessions. session-password may be required for
connecting to some other Wazoo-based systems; please make
arrangements with the person requiring it.

File Requests

Fido now supports file request in either FSC001-type or Wazoo
FidoNet sessions. A file request is a file transfer originated by
the calling system, that requests one of more files by name; the
called system then transmits the requested files in that same
session.

The receiving system has full control over what it will and will

not allow to be requested; this is to prevent the obvious "file
request *.*" getting copyrighted programs, critical data files
(caller lists anyone?) and other problems.

There are shareware and free programs that will automatically
generate a file request, given only the desired filenames and the
node address to request from. What follows is the technical
description of how it works.

A file request consists of a file with a special name sent to the
receiving system, the one that will possibly honor the request.
The filename is:

XXXXYYYY.REQ

Where: XXXX is the receiving system's net number, in
four-digit hexadecimal, and YYYY the receiving system's four-digit net !
00010002.REQ; a request to 125/111 would be 007D006F.REQ.

Inside this file, one per line, are the file(s) to be requested.
Each line ends with a CR or CR/LF. Filenames can be any length,
and may not contain pathnames or drive letters. (Fido will ignore
them.) Filenames can include wildcards.

Generating File Requests

You can request files from within Fido; it is an option in the
message editor in the FidoNet message area. You can enter any
number of filenames, with wildcards, as will fit on the line.
Fido will automatically generate the awful .REQ file for you.

Controlling File Requests

The receiver has a file called "FILEREQ.INI", that is the list of
files that may be requestable from the system. Initially only two

sample files are requestable (see below), and the system operator
needs to add to this list all files that you wish to be
requestable remotely.

As provided by Fido Software, there are only two requestable files: "AB!
is "about", and "FILES", which is the list of files requestable
from your system. In the hobbyist FidoNet network, it is
traditional (and useful!) to have these two files requestable at
all times, so that other system operators can find out about your
BBS without having to manually call and ask.

You can also restrict File Requests to specific hours, with the
event type FILEREQUEST, in EVENTS.INI:

ALL 3:00 1380 FILEREQUEST

This allows file requests at any time except between 2:00 and

3:00AM, the Zone Mail Hour. A file request made while it is
disabled will send the contents of the file "NOFREQ.BBS" to the
requesting system as file XXXXYYYY.FRQ, where XXXXYYY is the
requesting node's address, as described under the .REQ file.
Presumably you'd list in NOFILEREQ.BBS the reasons the file
request was not honored.
The FILEREQ.INI File

This file is used to control how Fido/FidoNet handles file requests. It!
maintain, that contains the list of files and directories you
wish to have available for other systems to file-request with
their FidoNet type mailer.

You can also put comments into this file; comments are any line
that begins with a semicolon, like so:

;
;Lines beginning with a ";" are comments,
;and are ignored by Fido.
;

Comments do however slow down processing, so try to keep them
short.

All other lines in the file define requestable directories or
specific files. The most popular method is to make the contents
of a directory requestable. This is easy; simply list the
directories you wish to make available, one per line.

C:/LISTS
C:/FIDO/TEXTFILE
C:/SHAREWARE

And so on. It means that all files within each directory are
requestable. There is one odd side effect; if the filename you
request exists in more than one directory, Fido/FidoNet will send
you
every single one. Too bad. For example, "FILES.BBS". Fido will transmit!
that contain it. Too bad if that's not what you MEANT, that's
what you SAID.

Note also that "FILE" can contain wildcards; "*.*" for instance.
It will of course return every single requestable file stored in
your system. (Ugh.)

It is also useful to have "logical" file requests; for example,
you want to announce that requesting the file "NODELIST" will
always return the very latest nodelist file, no matter what it is
really named, without having to constantly rename the file:

NODELIST=LISTS/NODELIST.*

Whenever someone requests the filename "NODELIST", (the name to
the left of the "=" equals sign) Fido will send them your file
(after the "=" equals sign), that matches "LISTS/NODELIST.*".
This lets files be requested by their logical names, no matter
where they may reside on your disk. (For revenge, you can have a
file called "CALLER.SYS" that returned something nasty instead of the a!

You can use this in other ways: you could respond to a request
for "ALL-LISTS" with all the files you have, for example:

ALL-LISTS=LISTS/*.*

There can also be more than one entry with the same requestable
name. For example, if you wanted to have a "kit" of files for new
system operators requestable, you could convert the request for
"NEW-SYSOP" to send many files:

NEW-SYSOP=LIST/NODELIST
NEW-SYSOP=NEWNODE.TXT
NEW-SYSOP=/TEXT/COORD.LST
etc

Fido will search the entire FILEREQ.INI file, and send all files
that match all requests.

The third method is for when you want to make single files in
arbitrary subdirectories available. For example, you might want
to make certain files in your "/FIDO" directory available, but
still maintain absolute security. Entering "FILENAME=FILENAME"
works, but is tedious and redundant. There is a short form for
when you just want to make a file requestable with it's original
name, and not necessarily provide multiple files, etc:

C:/LIST/NODELIST.099

A file request for the filename portion (here, "NODELIST.099")
causes your system to send that file, period. The pathname is
used locally, in your system only; it is not requestable nor
accessible. This shorthand lets you generate lists of files and
place them, as-is, into FILEREQ.INI.

Nodemaps

Fido/FidoNet saves nodemaps it creates for each FidoNet schedule
tag. (Nodemaps are what the Router produces by reading the
ROUTE.* routing language files, and applying them to the file
NODELIST.NMP.) There is one nodemap file (NODEMAP.tag) per

schedule tag, and each file is four bytes per node in the
nodelist -- or 24K per schedule you use for a 6,000 node
nodelist. FidoNet generates a nodemap the first time each event
runs -- after that changing FidoNet schedules is nearly
instantaneous. (You can disable this (why?!) with the FIDO.INI

command keep-nodemaps no.)

Routing Language Additions

Zone 1 ;current ZONE is 1
BEGIN

Zone 4 ZoneGate a:b/c ;change ZONE to 4,
END

;zone is now 1 again

BEGIN and END add block structure to the router commands that
change default behavior, mainly NET and ZONE. BEGIN saves the
current state, and END restores them. NET and ZONE changes within
a BEGIN/END group are local to that group; after the END, the
values of NET and ZONE are restored to what they were at the time
the BEGIN statement was executed. You can nest BEGIN and END up
to four levels deep.

The one-argument commands POLL, PICKUP, NO-ROUTE, ACCEPT-FROM,
HOLD, SEND-TO can be "stacked" together, for faster execution.
For example, if you do a lot of things like:

Send-To All, PickUp All

They can now be stacked onto one argument, as in:

Send-To, Pickup All

The advantage is that all of the stacked commands are executed at
once (when the "All" is read) instead of one at a time. "ALL"
makes the router apply the commands to all nodes in the nodelist;
stacking in this example is twice as fast.

ALIAS-AS <alias>, <nodes...>

A powerful new route language command ALIAS-AS: Similar to the
current ROUTE-TO command, you can force all messages routed to
the alias node, regardless of other routing or files attached.

For example, you exchange mail with a person who runs a node with
more than one alias address; for example 105/6, 105/0, 1/2 and
1/3 are all the same machine. You simply set (for example) 105/6
as the alias for the other nodes.

Please note that this is not another "route-to" command; while it
does a "route-to" as part of it's action, it is a new command
entirely. Route-to only does one level of indirection; alias-as
adds a second. Alias-as can be thought of as a kind of "route-to
route-to".

Route-to defines to what destination node a message goes to,

possibly (probably) not the one the message is addressed to.

Alias-as defines to whose packet those routed messages go into.

Route file processing

A new ROUTE file is introduced: ROUTE.DEF. Fido looks for and
processes ROUTE.DEF before looking for ROUTE.(tag) and/or
ROUTE.BBS. This lets you do routing controls in common with all
FidoNet events.

New keywords were added to the route language processor:

IF-SCHEDULE <tag>
END-IF

Ken G's suggestion roundly applauded by everyone else. Even I now
agree it is an excellent idea. It does what you think it does.
You now have an alternative to all those scroungy little
ROUTE.<tag> files; put them all into ROUTE.BBS (maybe keep
ROUTE.DEF, it partitions that nicely and doesn't slow things
down) for ease in maintenance.

If no IF-SCHEDULE statements are used, then FidoNet processes the
route list normally; all statements are read and processed.

IF-SCHEDULE A
schedule A statements ...

END-IF

If the currently executing schedule is "A", then the statements
between the IF...END are executed, otherwise they are ignored.

IF-SCHEDULE M
schedule M statements ...

IF-SCHEDULE B
schedule B statements ...

IF-SCHEDULE D
schedule D statements ...

END-IF

Not a big deal to figure out. Each IF-SCHEDULE ends the one
before it (if any). Processing is as you'd expect.

If you have commands to execute for all schedules (say, PICKUP
ALL) just place them before any IF-SCHEDULE statements.

zone x ZONEGATE node

This tells FidoNet to route all mail for Zone X to the specified
node; the supplied ROUTE.DEF file implements IFNA type zone
gating. There is no restriction on Fido's ZoneGate. For example,
in ROUTE.DEF:

;

;Do IFNA Kludge type Zone Gating
;
Zone 2 ZoneGate 1:1/2
Zone 3 ZoneGate 1:1/3

DIAL-TRIES n
CONNECT-TRIES n

Maximum number of times to dial each node. (Default is "dial-
tries" and "connect-tries", respectively, in FIDO.INI)

MYZONE

A modifier keyword, meaning All nodes in my own zone.

THISZONE

Another modifier keyword, meaning All nodes in the currently
specified zone.

