
1

Lecture 7: The Object Class
 The Object class is the main class from which all other classes are derived.
 Any and every kind of object in Smalltalk can respond to the messages defined by the Object

class
 All methods of the Object class are inherited to overridden
 Functionality of an object

 Determined by its class
 Two ways to test functionality

 Comparing object to a class or superclass to test membership or composition
 receiver isKindOf: aClass

 tests if the receiver is a member of the hierarchy of aClass
 anInteger isKindOf: Integer returns true

 receiver isMemberOf: aClass
 tests if the receiver is of the same class
 anInteger isMemberOf: Magnitude returns false

 receiver respondsTo: aSymbol
 tests if the receiver knows how to answer aSymbol
 anInteger respondsTo: #sin returns true
 anInteger respondsTo: #at: returns false

 Querying the object for its class
 receiver class
 #(1 2 3) class returns Array

 Comparison of objects
 Comparison and equivalence are very similar, but should not be confused

 == is used to test if the receiver and argument are the same object
 #(a b c) class == Array returns true
 #(a b c) == #(a b c) copy returns false

 = is used to test if the receiver and argument represent the same component
 #(a b c) class = Array returns true
 #(a b c) = #(a b c) copy returns true

 Other comparison operations
 receiver ~= anObject

 Not equal
 receiver ~~ anObject

 Not Equivalent
 receiver hash

 hash provides a nice way of telling objects apart, too much trust should not
be placed in comparing objects of the same class, as hash is often trivialized
(as in the example below, Array uses size has the hash function).

 Ex:
a := 3.147 hash. 132
b := 3.14 hash. 287
c := #(1 2 3) 3
d: = #(3 4 5) 3

 receiver hashMappedBy: map
 Copying objects

 deepCopy has been removed since VisualWorks 1.0
 Two methods for copying:

 copy returns another instance just like the receiver. Usually copy is simply a shallow
copy, but some classes override it.
 Does not copy the objects that the instance variables contain, but ciopies the

“pointer” to the objects.

2

 shallowCopy returns a copy of the receiver which shares the receiver’s instance
variables. This allows two objects to share one set of instance variables.

 deepCopy must be implemented in the rare cases in which it is needed
 How should this be done? Create new instances of the member objects, then

assign them to the new object.
 Example, shallow copies of arrays.:

| array1 array2 object1 object2 object3|
object1 := #('A').
object2 := #('B').
object3 := #('C').
array1 := Array with: object1 with: object2 with: object3.
array2 := array1 copy.
(array1 at: 1) at: 1 put: 'D'.
array1 inspect.
array2 inspect.

 Accessing indexed variables
 at: index returns the object at index

 #(a b c) at: 2 returns ‘b’

3

 at: index put: anObject puts anObject at index of the receiver
 returns anObject
 #(a b c) at: 4 put: #d returns ‘d’

 basicAt: index is the same as at: index but cannot be overridden
 basicAt: index put: anObject – Same as above
 size returns the number of index in the receiver

 #(a b c d) size returns 4
 basicSize same as size, but cannot be overriden
 readFromString: aString creates an object based on the contents of aString
 Yourself returns the receiver

4

Lecture 8: Messages & Methods
 Messages are what is passed between objects
 Methods are what is defined in a class to act on an instance of the class
 Message Expressions

 Receiver-object message-selector arguments
 Unary

 Receiver message-selector
 Parsed left to right
 Ex: Time now.
 Ex: 8 squared.

 Binary
 Receiver message argument
 Parsed left to right

 Ex: 1 + 2 * 3. (Note: returns 9)
 Parenthesis do the expected

 Ex: 1 + (2 * 3). (returns 7)
 Keyword

 Receiver message arguments
 Ex:

aString = ‘ABC’.
aString at: 3 put: $D. (Note: returns ‘D’, aString equals #(ABD))

 Important to note that ‘ABC’ at: 3 put: $D returns $D
 aString is the object
 at is the keyword message-selector
 3 is the argument

 ‘C’ is the object
 put is the keyword message-selector
 $D is the argument ($D is a literal)

 Parentheses change order
 Precedence always left to right
 Separated by periods, unless temp variable declaration or comment

 Method Lookup
 A method and a message-selector must be exactly the same, or no method will be

found by the method lookup
 The methods defined for the receiver’s class first
 If no match, the superclass is searched
 Path continues through Object unless a method is found.
 self refers to receiver, lookup starts within the class of the reciever
 super refers to receiver, lookup starts in superclass of receiver

5

 Example
 What is the order of initialization? (v1, v2, v3, v4, v5, v6)
 Why? (initialize()’s look to superclass, then return to call their own initialize

because they are implemented as super initialize)

6

Lecture 9: Variables and Return values
 A variable is a reference to any kind of object
 Method arguments

 Accessibility: private
 Scope: statements within the method
 Extent: life of the method
 Declaration: define with method name on first line of method (name: aString)
 Assignment: Assigned by sender of the message (aNode name: ‘Node2’)
 Accessing : Directly by name
 Ex: anInteger raisedToInteger: 4.

 To understand this, it is easiest to look at literals and constants used as method
arguments. The argument 4 is only visible to the object and the method- it cannot be
accessed outside of the method. This coincides with the life of the variable, as it dies
after the method call.

 Temp variables
 Accessibility: private
 Scope: statements within the method
 Extent: life of the method
 Declaration: use vertical bars
 Assignment: use ‘gets’ operator
 Accessing : Directly by name
 Example:

cubeWithInteger
| x |

x = self raisedToInteger: 3.

 x is created in the method using the vertical bars, and is released once the method is
finished.

 Instance variables
 Accessibility: private
 Scope: Instance methods of the defining class & subclasses
 Extent: life of the instance
 Declaration: define on the instance side of the class template

Object subclass #Node
InstanceVariableNames: ‘name nextNode’
ClassVariableName: ‘’
PoolDictionaries:’’
Category: ‘’

 Assignment: write a method that sets the value
 Accessing : write a method that gets the value

 Can be either named or keyed
 If keyed, then they can be accessed through ordinary at:put: messages

 Class instance variables
 Accessibility: private
 Scope: Class methods of the defining class & subclasses
 Extent: life of the defining class
 Declaration: define on the class side of the class template

Account class
InstanceVaraibleNames: ‘interestRate’

 Assignment: write a class initialize method in the defining class and all of its
subclasses

 Accessing : Write a class method that returns the value

7

 Class Variables
 Accessibility: shared
 Scope: Instance and class methods of the defining class & subclasses
 Extent: life of the defining class
 Declaration: define on the instance side of the class template
 Assignment: write a class initialize method
 Accessing : Write a class method that returns the value
 Always begin with uppercase

 Global Variables
 Accessibility: shared
 Scope: all objects, all methods
 Extent: while in Smalltalk dictionary
 Declaration: with assignment
 Assignment: with declaration

Smalltalk at: #MyTranscript put: TextCollector new.
 Accessing : Directly by name
 Don’t use, unless absolutely necessary. Bloated images, anti-OO code, incorrect

code are the consequences.
 Return Values

 Method always returns an object
 Default return value is self.
 Use ^ to explicitly return a different object
 Can use both implicit and explicit returns in a method (i.e. in a conditional)

8

Lecture 10: Blocks and Branching
 Blocks

 Contains a deferred sequence of expressions
 Used in many of the control structures
 Instance of BlockClosure
 Returns the result of the last expression (similar to lisp)

 Ex: [3+4. 5*5. 20-10] returns a Home Context with value of 10.
 [3+4. 5*5, 20-10] value returns 10.

 Ex: [‘Visual’,’Works’] value returns ‘VisualWorks’ (comma is binary method)
 Syntax

[:arg1 :arg2 … :arg255 | |temp vars| executable expressions]
 A block can contain:

 0 to 255 arguments
 temp variables
 executable expressions

 Block with no arguments: sequence of actions takes place every time value message
is received by the block

 Block with arguments: action takes place every time block receives messages value,
value: value, etc.

 block variables scope is only within defining block
 NOTE: temp variables inside declared blocks have not been successfully tested with

Smalltalk Express or GNU Smalltalk.
 Examples

 [:x :y | x + y / 2] value: 10 value: 20 (returns 15)
 [|x| x := Date today. x day] value (returns the day to today’s Date)

 [Date today day] value returns same value & is more succinct
 [:y | |x| x := y *2. x * x] value: 5 (returns 100)
 #(5 10 15) collect: [:x | x squared] (returns #(25 100 255)

 sends 1 argument 3 times and collects the results into an array
 Class Boolean

 Classes True and False are subclasses of Boolean
 Logical operators can be used for testing

 The ‘and’ operator: &
 The ‘or’ operator: |
 The negation operator: not

 not is a unary operator
 The equivalence operator: eqv
 The exclusive or operator: xor

 The Boolean classes are used in branching
 and: and or: methods used with alternative blocks returns values of alternative blocks
 ifTrue: and ifFalse are used with blocks to provide if-then support

 can be used together in either order, or separately
 Branching (Control Structures)

 Boolean classes True and False understand keyword messages:
 ifTrue:
 Ex: (result: anArray = #(‘a’ ‘b’ ‘c’))

| anArray |
anArray := #(‘a’ ‘b’ ‘d’).
(anArray at: 3) asString > ‘c’

ifTrue: [anArray at: 3 put ‘c’].

 ifFalse:
 ifTrue: ifFalse:
 Ex: (result: upperArray = #(‘A’ ‘B’ ‘D’))

9

| anArray upperArray |
anArray := #(‘a’ ‘B’ ‘d’).
upperArray := Array new.
upperArray := anArray collect:

[:aString | aString asUpperCase = aString
ifTrue: [aString]
ifFalse: [aString asUpperCase]].

 ifFalse: ifTrue:
 These messages demand zero argument blocks as their arguments

 Ex:
abs

^self < 0
ifTrue: [0 – self]
ifFalse: [self]

 What happens here?
 self is compared to 0
 corresponding block is executed
 (-self) or self is returned depending on which block was executed

 Repetition
 timesRepeat: message

 Ex: 5 timesRepeat [Transcript show: ‘This is a test’; cr]
 to: message (similar to for loop)

 Ex: 1 to: 15 by: 3 do: [:item | Transcript show: item printString;
cr]

 Conditional Iteration
 Blocks can be used as arguments in messages and can be receiver objects
 whileTrue: and whileFalse: messages

 get sent to blocks. ifTrue: and ifFalse: get sent to Boolean
 Ex (receiver):

Initialize: myArray
| index |
index := 1.
[index <= myArray size]

whileTrue:
[myArray at: index put: 0.
index := index + 1]

 Ex (argument):

Initialize: myArray
| index |
index := 1.
[myArray at: index put: 0.

index := index + 1.
index <= myArray size] whileTrue;

10

Lecture 11: Reporting Errors and Debugging techniques
 Error Handling

 Smalltalk’s interpreter handles all errors
 An error is reported by an object sending the interpreter the message

doesNotUnderstand: aMessage
 There are some common error messages supported in the Object class, but

implementation is dependant on the system
 doesNotUnderstand: aMessage

 Lets look at an example of trying to use a method that an object of the class
SmallInteger cannot understand.

| anInteger |
anInteger := 0.
self doesNotUnderstand: (anInteger do:[]).

11

 error: aString uses aString in the report the user sees

self error: 'an Error occurred'.

 primitiveFailed reports that a method implementing a system primitive failed
 shouldNotImplement reports that the superclass says a method should be

implemented in the subclasses, the subclasses do not handle it correctly.
 This method is utilized throughout the collection classes. If we look at the Array

class, we’ll see this method is used inside the add: method.
 Arrays are statically sized collections, and the add: method is used to grow

the size of collections.

12

 subclassResponsibility reports that a subclass should have implemented the
method
 This method is used extensively in abstract classes. This method allows all

objects in the hierarchy to implement a method differently, while reporting an
error if the method was not defined.
 Example: Class Auto defines a method drive, but only calls the

subclassResponsibility method. We define a subclass Truck, but do not
define the method drive. If we then define a Truck object and call the drive
method, then Smalltalk will try to pass the drive message up the tree until a
parent class knows how to implement it- in this case displaying a
subclassResponsibility error message.

Object subclass: #Auto
instanceVariableNames: 'speed '
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-General'!

!Auto methodsFor: 'creation'!

withSpeed: aSpeed

self subclassResponsibility! !

!Auto methodsFor: 'driving'!

accelerate

speed := speed + 1.!

decelerate

13

speed := speed + 1.!

drive

self subclassResponsibility! !

Auto subclass: #Truck
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-General'!

!Truck methodsFor: 'creation'!

withSpeed: aSpeed

speed := aSpeed.! !

| aTruck |
aTruck := (Truck new) withSpeed: 5.
aTruck drive.

 Message Handling
 Used to send messages to objects, usually only created when an error occurs
 perform: is the method called to pass messages, takes many different arguments,

or just aSymbol.
 A good example of this can be seen in the Goldberg book (page 245).

 Suppose we wish to write a simple calculator that checks to make sure each
operator is a valid operator.

14

Object subclass: Calculator
instanceVariableNames: 'result operand'
classVariableNames: ''
poolDictionaries: ''
category: 'Examples-General'!

!Calculator methodsFor: 'creation'!

new
^super new initialize

!Calculator methodsFor: 'accessing'!

result
^result

!Calculator methodsFor: 'calculating'!

apply: operator
(result respondsTo: operator)

ifFalse: [self error: ‘operation not understood’].
operand isNil

ifTrue: [result := result perform: operator]
ifFalse:

 [result := result perform: operator with: operand]

clear
operand isNil

ifTrue: [result := 0]
ifFalse: [operand := nil]

operand: aNumber
operand := aNumber

!Calculator methodsFor: 'private'!

initialize
result := 0

 The following code shows an example of how to use the class Calculator

| aCalculator |
aCalculator := Calculator new. “result = 0”
aCalculator operand: 3.
aCalculator apply: #+. “result = result + 3 3”
aCalculator apply: #squared. “result = 3 ^ 2 9”
aCalculator operand: 4.
aCalculator apply: #-. “result = result – 4 5”

 System Primitive Messages
 Messages in class Object used to support system implementation
 InstVarAt: anInteger and instVarAt: anInteger put: anObject are examples

which are used to retrieve and store instance variables.
 In general, these will not be used, but are important to how Smalltalk works.

 Class UndefinedObject
 the object nil represents a value for uninitialized variables
 nil also represents meaningless results
 Testing an object’s initialization is done through isNil and notNil messages

15

 Debugging
 Smalltalk has a small set of methods for error handling and are useful to debugging.

These messages are implemented by passing Signals.
 Whats a signal? A signal is an Exception passed to the VM. A signal will stop the

execution and show a window with a message and has several qualities, such as
whether or not the exception is proceedable. An example of this is the halt:
aString message, which raises a haltSignal with the context of the receiver and
the error message of aString.
 errorSignal
 messageNotUnderstoodSignal
 haltSignal
 subclassResponsibilitySignal

 confirm: similar to notify: method, brings up a window asking for confirmation, not
in all implementations . In VW 3.0 and above, the confirm: method belongs to class
Dialog.
 Ex: (Dialog confirm: ‘Quit ?’) ifTrue:[aBlock].

 halt
 halt shows the debug window, with ‘halt encountered’ or similar message as

the primary error. Useful for setting a breakpoint to check value of variables
 Ex: self halt.
 Ex: It is possible to stop other objects
Transcript halt.

 halt: aString implements halt, bringing up a window with the label from
aString

 halt: appears very similar to notify:, but with one difference. halt: allows
invariants related to multiple processes to be restored.
 How could I do this? When execution halts, use the workspace to restore the

values.
 hardHalt halts the execution without passing a signal.

 notify: aString: shows a message dialog window with aString as the label. This
method is not available in Smalltalk Express.
 Ex: self notify: ‘custom error message’.

 inspect displays a window showing the object and all of its variables
 Ex:

| anArray upperArray |
anArray := #(‘a’ ‘B’ ‘d’).
upperArray := Array new.
upperArray := anArray collect:

[:aString | aString asUpperCase = aString
ifTrue: [aString]

16

ifFalse: [aString asUpperCase]].
upperArray inspect.

17

Lecture 12: Designing and implementing classes
 Steps to develop a specification

1. Decide what we want the program to do
2. Decide on the data structures
3. Decide on the operations we want to apply to these data structures

 The message protocol
 Class Protocol: A description of the protocol understood by a class
 Typically contains protocols for creating and initializing new instances of the class
 Instance Protocol: A description of the protocol understood by instances of a class
 Messages that may be sent to any instance of the class
 Steps to implementing a class

1. Deciding on a suitable representation for instances of the class.
2. Selecting and implementing efficient algorithms for the methods or operations
3. Deciding on class variable and instance variables

 Describing a class
 Class name: A name that can be used to reference the class
 Superclass name: name of the superclass
 Class variables: variables shared by all instances
 Instance variables: variables found in all instances
 Pool dictionaries: Names of lists of shared variables that are to be accessible to the

class and its instances. Can also be referenced by other unrelated classes
 Class methods: operations understood by the class
 Instance methods: operations that are understood by instances
 Example: A class for complex numbers

 Step 1: What do we want to be able to do?
 Specify real and complex parts
 Do simple operations of complex and real parts

 Step 2: What do we want to use?
 Specify real and complex parts

 Step 3: How are we going to use the data structures?
 Creating a complex number
 Accessing complex and real parts
 Adding and Multiplying Complex numbers

 The Class Description (for more detail refer to LaLonde pages 44-45)

Class Complex
Class name Complex
Superclass name Object
Instance variable names realPart imaginaryPart

Class methods

Instance creation

newWithReal: realValue andImaginary: imaginaryValue
“Returns an initialized instance”
| aComplex |
aComplex := Complex new.
aComplex realPart: realValue;

imaginaryPart: imaginaryValue.
^aComplex

accessing

realPart
“Returns the real component of the reciever”
^realPart

18

imaginaryPart
“Returns Imaginary part”
^imaginaryPart

operations

+ aComplex
“Returns the receiver + aComplex”
| realPartSum imaginaryPartSum |
realPartSum := realPart + aComplex realPart.
imaginaryPartSum := imaginaryPart + aComplex imaginaryPart.
^ Complex newWithReal: realPartSum andImaginary:

imaginaryPartSum.

* aComplex
“Returns the receiver * aComplex”
| realPartProduct imaginaryPartProduct |
realPartProduct := (realPart * aComplex realPart) –

(imaginaryPart * aComplex imaginaryPart).
ComplexPartProduct := (realPart * aComplex imaginaryPart) +

(imaginaryPart * aComplex realPart).
^ Complex newWithReal: realPartProduct andImaginary:

imaginaryPartProduct.

 The following code shows how to use this new class. The code computes the
magnitude of the complex number. After multiplying the number by its conjugate,
there is only a real part, so we just take the square root.

| aNumber |
aNumber := (Complex new) newWithReal: 1 andImaginary: 1.
aNumber := aNumber * (Complex new)

newWithReal: (aNumber realPart)
andImaginary: (0 – aNumber imaginaryPart).

(aNumber realPart) sqrt.

19

	Lecture 7: The Object Class
	Functionality of an object
	Comparison of objects
	Copying objects
	Accessing indexed variables

	Lecture 8: Messages & Methods
	Message Expressions
	Method Lookup

	Lecture 9: Variables and Return values
	Method arguments
	Temp variables
	Instance variables
	Class instance variables
	Class Variables
	Global Variables
	Return Values

	Lecture 10: Blocks and Branching
	Blocks
	Class Boolean
	Branching (Control Structures)

	Lecture 11: Reporting Errors and Debugging techniques
	Error Handling
	Message Handling
	Class UndefinedObject
	Debugging
	halt

	Lecture 12: Designing and implementing classes
	Steps to develop a specification
	The message protocol
	Steps to implementing a class
	Describing a class
	Class Complex
	Instance creation

