
Lecture 13: VisualWorks
Note: The lectures on VisualWorks were taken from
http://www.cs.clemson.edu/~lab428/VW/VWCover.html. Only minor modifications have been made.

Starting VisualWorks
To start VisualWorks from the command line of a Unix system, use the command
/usr/local/visual/vw image.im
To start VisualWorks with an image other than the default, use the command
vw image-file
Enter the appropriate command to start VisualWorks on your system. You should see two windows, the
VisualWorks Launcher and the Workspace.

VisualWorks Launcher
The VisualWorks Launcher is the main window in VisualWorks. It is used primarily to access the various
tools and resources available. A Launcher window is shown below.

Workspace
A Workspace is used primarily to test pieces of Smalltalk code. A Workspace window is shown below.

Using the Mouse and the Pop-Up Menus
General familiarity with windowing systems is assumed in this tutorial. Mouse button operations refer to
the left ([Select]) mouse button unless otherwise specified.
There are two types of pop-up menus associated with each window in VisualWorks. There is the [Window]
menu which is accessed by clicking the right mouse button in the window. The [Window] menu is used for
closing, moving, and resizing the current window. The second pop-up menu is the [Operate] menu which is
accessed by clicking the middle mouse button in the window. There may be more than one [Operate] menu
per window, in which case an area will be specified in which to click the middle mouse button. To select an
item from either the [Operate] or [Window] menus the mouse button used to obtain access the menu must
be used.
Note: The following conventions are used for one-button and two-button mice:
Two-button mouse
The left button is the [Select] button. The right button is the [Operate] button. The [Window] menu is
obtained by using the Control key and right ([Operate]) button together.
One-button mouse

1

http://www.cs.clemson.edu/~lab428/VW/VWCover.html

The button alone is the [Select] button. The [Operate] menu is accessed using the Option key and the button
together. The [Window] menu is accessed using the Command key and the button together.
In windows that have a menu bar, pulldown menus are accessed by clicking on the word associated with
the menu. For example, click on File located on the Launcher's menu bar to obtain the File pulldown menu.
Pulldown menu selections will be specified by the menu name followed by an arrow(-) and the menu item.
For example, the File-Settings option from the VisualWorks Launcher refers to the Settings option from
the File pulldown menu. Many pulldown menu options also have a shortcut button on the tool bar, which
will be refer to with its associated icon. For example, the Canvas Tool may be obtained by using either the

Tools-New Canvas menu option or by the shortcut button .

Setting up VisualWorks
To insure access to Smalltalk source code and VisualWorks On-line Documentation, the proper paths must
be set using the Settings window. Open the Settings window by selecting the File-Settings options from the
VisualWorks launcher. You should see the window depicted below. Make sure that the correct the path for
the VisualWorks source code is displayed (visual_path/image/visual.sou). If you need to correct the path,
correct as necessary and click Accept. (Note: No changes should be needed at Clemson.)

Select the help settings by clicking on the Help tab of the Settings notebook pages (not on the Help button
for the Settings window). You should see the following window. Make sure that the path for the online
documentation is correct. Click Accept after making any necessary changes.

2

Now close the Settings window by selecting close from the Settings [Operate] menu.

Online Documentation
Another useful tool in VisualWorks is the online documentation. The online documentation can be
accessed from the VisualWorks Launcher via the Help-Open Online Documentation option or the

shortcut button . Shown below is the Online Documentation window that lists three manuals that may
be used as further references. These three manuals include the following:

Database Cookbook - Gives information on how to connect to a database.
Database Quick Start Guides - Gives information on how to create models for database applications.
VisualWorks Cookbook - Gives in-depth information on Smalltalk and various windows and widgets.

3

For example, suppose you needed information on how to construct a Smalltalk message. Select the
VisualWorks CookBook by clicking on the book title with the mouse button. Now, select Chapter 1:
Smalltalk Basics, and then select Constructing a Message. Information on your topic is now displayed in
the Online Documentation window. Close the Online Documentation window.

System Browser
A System Browser is a useful tool for viewing Smalltalk classes, protocols, and methods. Not only does a
Browser provide useful ways to view system and user classes, it also has many features that help the user to
quickly and easily develop classes, protocols, and methods.
To open a System Browser, select Browse-All Classes from the VisualWorks Launcher or use the shortcut

button . Notice that a System Browser is divided into four columns across the top half of the window,
and the bottom half contains a text area. These are important areas to learn. The columns (left-to-right) are
the Category View, the Class View, the Protocol View, and the Method View. The text area that comprises
the bottom half of the window is the Code View. These five different views will be referred to frequently in
the development portion of this tutorial.
For example, select the category "Magnitude-General" and the classes associated with that category appear
in the Class View. Select the Date class, and the protocols associated with that class are displayed in the
Protocol View. Finally, select the accessing protocol and the methods associated with that protocol are
displayed in the Method View. The System Browser should now look like the window shown below.

4

Notice that the Code View currently contains only a template for the code of a method. Select any method
and you will see its code in the Code View. Close the System Browser by selecting close from the System
Browser [Window] menu.

Filing In and Filing Out Components
To save categories, classes, or even methods you can write ("file out") these components to a file and then
remove them from your image. Later you can read ("file in") these components into your image.

Filing In
We will illustrate how to "file in" components by adding an application, Calculator Example, to our image.
The CalculatorExample class is in the category UIExamples-General, and it is stored in the file
visual_path/tutorial/basic/calc.st. First note that the category UIExamples-General is not currently in the
image by scrolling through the categories in the Category View of a System Browser. Open a File List from

the Tools-File List option or the shortcut button of the VisualWorks Launcher. Enter
/opt/local/visual/tutorial/basic/* in the first input field, which is called the Pattern View, and Return. (Note:
This is for the visual_path at Clemson.) Select /opt/local/visual/tutorial/basic/calc.st from the file list,
which is called the Names View. The File List should look like the following window.

5

Select file in from the Names View [Operate] menu. Verify that the category UIExamples-General is now
in the image by using the System Browser. Close the File List.

Filing Out
You can file out a category, class, or even single methods. For example to file out a category, select (with a
mouse click) a category from the System Browser (so that the category is highlighted). Select file out as...
from the Category View [Operate] menu, enter the file name to which you wish to file the category out, and
click OK. A category, class, or method that is filed out can later (for example, in another VisualWorks
session) be filed in as illustrated in the previous section.

Starting an Application
Once you have developed an application you will want to execute it. To start a completed application, open

a Resource Finder using Browse-Resources from the VisualWorks Launcher or the shortcut button .
Select View-User Classes from the Resource Finder menu. Select the class you would like to start. To start
the Calculator Example that we previously filed in, select the CalculatorExample class and the
windowSpec resource as depicted below. (Note that the windowSpec resource is automatically selected
because it is the only resource for the CalculatorExample class.) Select Start from the Resource Finder and
the Calculator Example will start. When you have finished using the Calculator, close the application by
selecting close from the Calculator [Window] menu. Close the Resource Finder.

6

A class may have one or more "resources", which are user interfaces. To start an application, we select its
class and the appropriate resource for the initial window of the application.

Saving Your Work
Doing a "Save" in VisualWorks is a complete save. It actually saves an image of all of the current classes
(system and user), active windows, etc. This is a nice feature if it becomes necessary to stop in the middle
of your work. Unfortunately, saving your image has drawbacks. An image on a Solaris platform will take
up approximately 4 megabytes of disk space. To save an image, select File-Save As from the VisualWorks
Launcher. A dialog box will appear. Enter the name for your image file and click OK. VisualWorks will
save the file in the current directory unless a different path is specified. The file will be have the
extension .im.
VisualWorks automatically creates a .cha file in the directory from which VisualWorks is started, and
VisualWorks periodically records the changes made to the initial image in the .cha file. The .cha files can
be useful for change management, and they can sometimes be used for error recovery (e.g., if you
mistakenly delete some work that you need or fail to file out some work that you wished to save), but you
may wish to delete the .cha files until you use VisualWorks in a large project.

7

Lecture 14: More on the Basic VisualWorks Environment
The purpose of this Lecture is to provide a further introduction to the basic VisualWorks
environment for the support of Smalltalk.

Workspaces
The Transcript
Editing in VisualWorks Windows
Using a Browser
Adding a New Method
Adding New Classes or Methods from External Files
Changing Existing Methods
Adding a New Class
Saving Code into a File

VisualWorks includes many tools that facilitate the development of Smalltalk programs. These tools were
introduced in Chapter 2, and this chapter provides further illustrations of the uses of the tools for
implementing Smalltalk programs. The use of VisualWorks for developing GUI applications will be
illustrated in Chapters 4-6.

Workspaces
If you do not currently have VisualWorks started, you should start it now. VisualWorks initially displays a
Launcher and a Workspace. The Launcher contains control widgets for various VisualWorks facilities, as
discussed in Chapter 2, and it also includes a Transcript window in the lower part of the window. We will
illustrate some of the facilities of VisualWorks using the Workspace for Smalltalk and the Transcript for
displaying results. You should resize these windows if needed so that they are large enough for several
lines of text.
You can type segments of Smalltalk code into a workspace (or most any other VisualWorks window, for
that matter) and execute it. For example, type

5 + 9
in the workspace. (You should move the cursor down to a new line with the mouse select button and/or the
arrow and return keys first.) Now highlight 5 + 9 by dragging the mouse [Select] across the text. From the
[Operate] (middle button) menu, note that you can do it or print it. Selecting do it will cause the code to be
executed, and selecting print it will cause the code to be executed and the result printed immediately
following the code. Select print it and your workspace should look something like

(Selecting do it here will have no visible effect, because evaluating 5 + 9 does not have any external effect
(side effect).) Note that the result printed is highlighted, so it can easily be deleted by pressing the
Backspace key.

8

Testing code in this way is useful for code development in Smalltalk and also for debugging. Remember
that you can highlight Smalltalk code in most any window and execute it or print its result in this manner.
Multiple statements, separated by periods in the usual way, can be executed with a single do it (or print it).

The Transcript
The transcript window in the lower part of the Launcher is associated with the Smalltalk global variable
"Transcript". Transcript is an instance of the class TextCollector that allows text to be displayed in the
transcript window. Strings can be displayed in the transcript window by sending a show: message with a
string argument to Transcript. For example,

Transcript show: 'Hello'. Transcript cr
will, when executed, display "Hello" in the transcript beginning at the current Transcript cursor position.
The message cr will then instruct the Transcript to begin a new line. (Before executing this to try it,
position the Transcript cursor at the beginning of a new line below the initial messages that are already
there.) Note that it is easier to use cascading here:

Transcript show: 'Hello'; cr
Displaying values of classes other than String can usually be done fairly easily by using the printString
message to generate a string representation of a value. For example, try executing the code

Transcript show: (5 + 9) printString; cr

Editing in VisualWorks Windows
Editing in a VisualWorks window is done by using procedures that are fairly standard for screen-based
editors. Text that is typed is inserted at the cursor position. Replacement of text can be done by selecting
the text (by dragging the mouse across it, or double-clicking to select a word, etc.), and then using the
Backspace key to delete it or just typing its replacement to replace it. Cursor movement can be done using
the arrow keys or by selecting the new cursor position with the mouse.
The scroll bars at the right side of a window can be used to scroll up and down, and a scroll bar at the
bottom can be used to scroll left and right. Windows can be moved or resized in standard ways with the
mouse at any time.

Using a Browser
A browser can be used to inspect the definition, comments, and code for all catagories, classes, and
methods in the current image, both those that are provided in the initial image (i.e., the "built-in" classes
and methods) and those that are added by the VisualWorks user. We will illustrate some of the uses of a
browser in this section.
Open a browser from the Launcher with a Browse-All Classes selection or by using the shortcut button

. The classes are listed by category in the top left sub-window (the Category View). Select
"Collections-Unordered" and the classes in this category will be listed in the next sub-window (the Class
View). Select "Dictionary" and the protocols for the methods in class Dictionary will be shown in the next
sub-window (the Protocol View). Select "accessing" from the Protocol View and the methods for this
protocol will be listed in the rightmost sub-window at the top (the Method View). Finally, select "at:put:" in
the Method View, and the code for the at:put: method is displayed in the bottom window (the Code View).
Your browser window should now look like this:

9

It is sometimes difficult to locate a specific class using the approach that was just discussed. Any existing
class can be found quickly by using the find class... selection from the [Operate] menu in the Category
View (top left window of the browser). Select the find class... option and a dialog box will appear. Type
the name of the class in this box (you can just type the name -- it will replace the highlighted text in the
class name box), and then either press Return or select OK. Try this by typing String as the class name.
Your browser should then look something like

10

We can obtain a browser organized by class hierarchy for a given class by using the spawn hierarchy
menu selection in the Class View. Try this with class String selected, and you should get a new Hierarchy
Browser that looks something like

The indented listing in the Class View of a Hierarchy Browser (there is no Category View in a Hierarchy
Browser) indicates the superclass-subclass hierarchy for the class on which a hierarchy browser was
spawned (String in this case). For example, we can see here that String is a subclass of CharacterArray,
which is a subclass of ArrayedCollection, etc. Also, String has subclasses ByteEncodedString, GapString,
and Symbol.

11

A Hierarchy Browser can help us to find a given method for a class more easily than is generally possible
with a standard System Browser. For example, suppose that we wanted to find the method size for class
String. (This method returns the size of a string.) We begin with a Hierarchy Browser on String and note
that there is no size method in the accessing protocol (nor any other protocol). Selecting the superclass,
CharacterArray, we see that there is also no size method in this class. Continuing up the inheritance
hierarchy to ArrayedCollection, we find a size method here. So String instances inherit the size method
from ArrayedCollection.
You can close the Hierarchy Browser using the [Window] close selection.

Adding a New Method
In this section we illustrate how a new method can be added to those in the current image. We will add a
method "mod10" to the Integer class that will return the value of an Integer modulo 10. That is, for an
Integer n,

n mod10
will have the value n rem: 10.
Select the Magnitude-Numbers category, the Integer class, and the arithmetic protocol in the System
Browser. The arithmetic methods will be listed in the Method View, and a template for a method will be
shown in the Code View. We will modify the template to produce the code for our new method.
First, select the first line of text ("message selector and argument names") in the Code View and replace it
by the name of our new method (mod10). Then modify the documentation comment to indicate the
function performed by the method. Finally, replace the temporary variable declaration and statements part
by the code for our mod10 method:

^ self rem: 10
Your System Browser should now look something like

Select accept from the [Operate] menu in the Code View and the method will be compiled and added to the
system. It will appear in the methods list of the Method View.
Test the mod10 method by executing (do it) some statements such as

12

Transcript show: (27 mod10) printString; cr
(This should cause 7 to be displayed in the Transcript.)

Adding New Classes or Methods From External Files
Classes, methods, or other code can be entered into the VisualWorks system by using the file in selection
from various [Operate] menus. A file that is filed in must be in an external file format, which uses
exclamation points to delimit class definitions, protocols, and methods. (This is the same format as is used
for top-level input to GNU Smalltalk.)
We will illustrate the use of file in by implementing methods print and printNl (which are similar to
methods of the same names in GNU Smalltalk) to make it easier for us to display results in the Transcript.
The method "print" will cause its receiver to display its printString in the Transcript without a newline (cr)
and "printNl" will cause its receiver to display its printString followed by a newline.
Create a file named "print.st" in the directory from which you started VisualWorks, and put the following
text in the file:

!Object methodsFor: 'printing'!

print
"Display the object in the transcript window;

 leave the cursor at the end of the object's print string."

(self isMemberOf: ByteString)
ifTrue: [Transcript show: self]
ifFalse: [Transcript show: self printString]!

printNl
"Display the object in the transcript window, and start a new

line"

self print.
Transcript cr ! !

This code implements print and printNl as methods for class Object. Thus all classes will inherit them. (The
test for a string in method print is done because the printString for a String inserts apostrophes around the
String value. You can see this by executing code such as

Transcript show: 'Hello' ; cr; show: 'Hello' printString; cr
in a workspace, which will display

Hello
'Hello'
in the Transcript.)
The easiest way to file in an external file is to use a File List, as was illustrated in Chapter 2. Open a File

List from the Tools-File List option in the Launcher or by using the shortcut button . In the first input
field (the Pattern View) enter * and then Return, so that all the files in the local directory will be listed.
Select the file print.st from the Names View, and the contents of the file that you created will appear in the
bottom (File Edit) window. (Note: You can also use the File Edit window to create and edit files. Editing
options are included in the File Edit [Operate] menu.)
Load the methods that are defined in the file print.st into VisualWorks by selecting file in from the Names
View [Operate] menu. As the file is compiled, messages will be displayed in the Transcript indicating what
is happening. If an error (syntactic or semantic) occurs, then the file in terminates. You can correct the error
by editing the file in the File Edit window, saving it using the save option in the File Edit [Operate] menu,
and filing it in again.
After successfully filing in print.st, you can test it by executing code such as

13

VWChapter2.html#8.1

'Hello' printNl
and

(5 + 6) printNl
Your Launcher and Workspace should now look something like

Close the File List using the close selection in the [Window] menu.
Important Note: It is important to explicitly close each File List, rather than just exiting VisualWorks. On
some systems, exiting VisualWorks without closing a File List will leave the File List running in a
compute-bound mode, so that it will use every available cycle of cpu time even after the user has logged
off.

14

Changing Existing Methods
Any method (or class) that is in the system can be changed (or removed) in much the same way as new
code can be added. We will illustrate by changing the rem: method for Number to return a result that is 1
larger than the correct result.
Select the category Magnitude-Numbers, class Number, protocol arithmetic, and method rem: in the
System Browser. The code for method rem: should be in the Code View. Change the line of code by
appending "+ 1" to the end of the line:

^self - ((self quo: aNumber) * aNumber) + 1
Now before changing anything, set up a test in a workspace:

(27 rem: 5) printNl
and if you still have the mod10 method in your image a more interesting test is

(27 rem: 5) printNl. (27 mod10) printNl
Execute (do it) this code, and the correct answer(s) should be displayed in the Transcript:

2
7
Now replace the rem: method by choosing accept from the [Operate] menu in the Code View of the
System Browser. If there is no error indication, the new code for rem: has been compiled and entered into
the system. To see this, execute the above code again, which will now give:

3
8
Remove the "+ 1" that was previously inserted into the code for rem:, accept the revised code, and test
again to make sure that rem: now works properly.

Adding a New Class
In this section we illustrate how to add a new class using a System Browser. (This is the intended way in
which classes and methods are to be added.)
We will add a new class "Random2" as a subclass of existing class Random. An instance of class Random
returns random numbers in response to the message "next". To see how this works, instantiate a random
number by executing code such as

Smalltalk at: #R put: (Random new)
Now generate and display in the Transcript several random numbers by executing

(R next) printNl
several times. The result of R next is a random number (Float) between 0.0 and 1.0, so your Launcher and
Workspace should now look something like

15

(The random numbers in your Transcript will probably be different from those shown here.)
We will implement a new class, Random2 as a subclass of Random, where Random2 will also include a
method between:and: to return a random integer between two given integer values. (Note that we could just
as well have just added the between:and: method to class Random.)
In the system browser, select category Magnitude-Number with no class selection. There will then be a
class template in the Code View:

16

Edit the class definition template to define Random2 as a subclass of Random, with no instance variables
nor class variables:

17

Compile the new class definition by using accept from the [Operate] menu of the Code View.
Next we add the method between:and: in protocol accessing of class Random2. First, add the protocol
("accessing") by choosing add from the [Operate] menu of the Protocol View. (Class Random2 should be
selected in the Class View.) Type the new protocol name (accessing) into the dialog window and Return to
record the new protocol.
Now edit the Code View window to contain the code for between:and:,

between: n1 and: n2
"Return a random integer between n1 and n2 (inclusive)."

^ n1 + (self next * (n2 - n1 + 1)) truncated
and accept. The method name should appear in the Method View, and your System Browser should now
look something like

We have now added the new class and method. Test it by executing code such as

Smalltalk at: #R2 put: (Random2 new)
and then execute the following several times:

(R2 between: 4 and: 11) printNl
This should display several random integers between 4 and 11 in the Transcript.

Saving Code into a File
As was briefly discussed in the previous lecture, the entire current image can be saved at any time, and later
it can be used to restart VisualWorks from that saved state. However, an image is fairly large, and it is more
efficient to save small modifications as external code files that can later be filed in to retrieve previous
work.
To see how this works, we will save the Random2 class that was just added. From the System Browser with
the Random2 class selected, choose file out as... from the [Operate] menu in the Class View. A dialog
window should appear with the file name Random2.st highlighted. Change the file name if desired, then

18

select OK to file out the class. This file can later be filed in to reinstall the Random2 class, and this is left
as an exercise for the reader.

19

	Lecture 13: VisualWorks
	Starting VisualWorks
	VisualWorks Launcher
	Workspace
	Using the Mouse and the Pop-Up Menus
	Setting up VisualWorks
	Online Documentation
	System Browser
	Filing In and Filing Out Components
	Filing In
	Filing Out

	Starting an Application
	Saving Your Work

	Lecture 14: More on the Basic VisualWorks Environment
	Workspaces
	The Transcript
	Editing in VisualWorks Windows
	Using a Browser
	Adding a New Method
	Adding New Classes or Methods From External Files
	Changing Existing Methods
	Adding a New Class
	Saving Code into a File

