
Appendix1: VisualWorks 2.5 versus Smalltalk-80

VisualWorks 2.5 Smalltalk-80

Assignment :=

Global Variables Start with Caps Does not care

DeepCopy Removed Present

Fractions asRational asFraction

FileName protocol fileNamed: named:

Differences found throughout the lecture note’s examples

 Classes removed from VisualWorks 2.5
 Button
 DebuggerController
 DebuggerTextView
 DialogCompositController
 DialogController
 DialogView
 FixedThumbScrollbar
 FractionalWidgetView
 HandlerController
 ListController
 ListView
 SelectionSetInListController
 SelectionInListView
 TextItemView
 TextItemEditor
 TextController
 TextView
 PopUpMenu
 WidgetSpecification

Appendix2: VisualWorks rules and Smalltalk Syntax
 Capitalization rules

 Upper Case
 Class names
 Class variables and global variables

 Lower Case
 Method names
 Temp variables, instance variables, class instance variables, method arguments

 Use embedded capital letters, not underscores
 Reserved words

 nil
 true
 false
 self
 super
 thisContext

 Operators
 :=

 called ‘gets’ operator, used for assignment
 ^

 called ‘returns’ operator, used to return a value
 Example

name: aSymbol
name := aSymbol.
^name.

 Literals

 use VisualWorks syntax chapter for reference here
 Numbers
 Characters
 Strings
 Symbols
 Arrays of literals
 Byte Arrays (notice the use of brackets)

 Comments
 “Comment”
 periods allowed within double quotes

Appendix 3: A List of Methods for the System Classes

Magnitude:
Creation:
Operations:

< aMagnitude
less than operator returns boolean

<= aMagnitude
less than or equal operator returns boolean

> aMagnitude
greater than operator returns boolean

>= aMagnitude
greater than or equal operator returns boolean

between: min and: max
returns True if object’s magnitude is between min and max

min: aMagnitude
returns the lesser of the object and aMagnitude

max: aMagnitude
returns the greater of the object and aMagnitude

Magnitude->Date:
Creation:

today
instance representing the current date

fromDays: dayCount
instance representing the date dayCount days from 01/01/1901

newDay: day month: monthName year: yearInteger
instance representing day number of days into monthName in yearInteger

newDay: dayCount year: yearInteger
instance representing dayCount days into yearInteger

Operations:
dayOfWeek: dayName

returns index of dayName in the week, #Sunday = 0
nameOfDay: dayIndex

returns Symbol representing the day whose index is dayIndex
indexOfMonth: monthName

returns index of monthName in the year, #January = 0
nameOfMonth: monthIndex

returns Symbol representing the month whose index is monthIndex
daysInMonth: monthName forYear: yearInteger

returns Integer representing the number of days in monthName for year
yearInteger

daysInYear: yearInteger
returns Integer representing the thumber of days in yearInteger

leapYear: yearInteger
returns 1 if yearInteger is a leap year, 0 otherwise

dateAndTimeNow
returns Array whose first element is current date, and whose second element is
the current time

addDays: dayCount
returns Date that is dayCount days after object

subtractDays: dayCount
returns Date that is dayCount days before object

subtractDate: aDate
asSeconds

returns number of seconds between a time on 01/01/1901 and the same time in
the receiver’s day

Magnitude->Time:
Creation:

now
instance representing the current time

fromSeconds: secondCount
instance representing the time of secondCount after midnight

Operations:
millisecondClockValue

returns number of milliseconds since the millisecond clock was reset or rolled
over

millisecondsToRun: timedBlock
returns number of milliseconds timedBlock takes to execute

timeWords
returns the number of seconds since 01/01/1901 (GMT) in 4 element byte array

totalSeconds
returns total number of seconds since 01/01/1901, correcting the time zone and
daylight savings

dateAndTimeNow
returns Array whose first element is current date, and whose second element is
the current time

addTime: timeAmount
returns Time that is timeAmount days after receiver

subtractTime: timeAmount
returns Date that is timeAmount before receiver

asSeconds
returns number of seconds since midnight that receiver represents

Magnitude->Character:
Creation:

value: anInteger
instance of Character which is the ASCII representation of anInteger

digitValue: anInteger
instance of Character which is the character representation of a munber of radix
35- $0 returns 0, $A returns 10, $Z returns 35

Operations:
asciiValue

returns Integer of ascii character
digitValue

returns Integer representing numerical radix
isAlphaNumeric

true if receiver is letter or digit
isDigit

true if receiver is digit
isLetter

true if receiver is letter
isLowercase

true if receiver is lowercase
isUppercase

true if receiver is uppercase
isSeparator

true if receiver is space, tab, cr, line feed, or form feed
isVowel

true if receiver is a,e,i,o,u

Magnitude->Number:
Creation:
Operations:

+ aNumber
returns sum of receiver and aNumber

- aNumber
returns difference of reciever and aNumber

* aNumber
returns result of mulitplying receiver by aNumber

/ aNumber
returns result of dividing receiver by aNumber. If result is not a whole number,
then an instance of Fraction is returned

// aNumber
returns Integer result of division truncated toward negative infinity

\\ aNumber
returns Integer representing receiver modulus aNumber

abs
returns Number representing absolute value of receiver

negated
returns Number representing additive reciprocal

quo: aNumber
returns quotient of receiver divided by aNumber

rem: aNumber
returns remainder of receiver divided by aNumber

reciprocal
returns multiplicative reciprocal (1/reciever)

exp
returns e raised to the power of receiver

ln
returns natual log of receiver

log: aNumber
returns log base aNumber of receiver

floorLog: radix
returns floor of log base radix of reciever

raisedTo: aNumber
returns result of raising receiver to aNumber

raisedToInteger: anInteger
returns result of raising receiver to anInteger, where anInteger must be an
Integer

sqrt
returns square root of receiver

squared
returns receiver raised to the second power

even
true if receiver is even

odd
true if receiver is odd

negative
true if receiver is <= 0

positive
true if receiver is >= 0

strictlyPositive
true if receiver > 0

sign
returns 1 if receiver > 0, 0 if receiver == 0. –1 if receiver < 0

ceiling
returns result of rounding towards positive infinity

floor
returns result of rounding towards negative infinity

truncated
returns result of rounding towards zero

truncateTo: aNumber
returns result of truncating to multiple of aNumber

rounded
returns result of rounding receiver

roundedTo: aNumber
returns result of rounding receiver to neastest multiple of aNumber

degreesToRadians
returns Float of radian representation of receiver. Assumes receiver is in degrees

radiansToDegrees
returns Float in degrees of conversion of receiver. Assumes receiver is in radians

sin
returns Float of sin(receiver) in radians

cos
returns Float of cos(receiver) in radians

tan
returns Float of tan(receiver) in radians

arcSin
returns Float of arcSin(receiver) in radians

arcCos
returns Float of arcCos(receiver) in radians

arcTan
returns Float of arcTan(receiver) in radians

coerce: aNumber
casts receiver as same type as aNumber

generality
returns the number respresenting the ordering of the receiver in the generality
heirarchy

retry: aSymbol coercing: aNumber
an arithmetic operation aSymbol could not be performed, so the operation is
retried casting the receiver or argument to aNumber (picking the lowest order of
generality)

Magnitude->Number->Integer:
Creation:
Operations:

factorial
returns Integer representing the factorial of the receiver

gcd: anInteger
returns Integer representing the Greatest Common Denominator of the receiver
and anInteger

lcm: anInteger
returns Integer representing the Lowest Common Multiple of the receiver and
anInteger

allMask: anInteger
treat anInteger as a bit mask. Returns True if all 1’s in anInteger are 1 in the
receiver

anyMask: anInteger
treat anInteger as a bit mask. Returns True if any on the 1’s in anInteger are 1 in
the receiver

noMask: anInteger

treat an Integer as a bit mask. Returns True if none of the 1’s in anInteger are 1
in the receiver

bitAnd: anInteger
returns Integer representing a boolean AND operation between anInteger and the
receiver

bitOr: anInteger
returns Integer representing a boolean OR operation between anInteger and the
receiver

bitXor: anInteger
returns Integer representing a boolean XOR (eXclusive OR) operation between
anInteger and the receiver

bitAt: anIndex
returns the bit (0 or 1) at anIndex

bitInvert
returns an Integer which is the complement of the receiver

highBit
returns an Integer representing the index of the highest order bit

bitShift: anInteger
returns an Integer whose value (in two’s-complement) is the receiver’s value
shifted anInteger number of bits. Negative shifts are to the right.

Random
Creation:

:= Random new
instance representation of a random number generator

next
instance of a random rumber. The receiver must be a random number generator,
which has previously been started

Operations:

Collection
Creation:

#(Object1, Object2, Object3, Object4)
instance representing an array containing up to 4 objects passed as arguments

new
instance representing an empty collection

new:
instance representing a collection

with: anObject
instance representing a collection containing anObject

with: firstObject with: secondObject
instance representing a collection containing firstObject and secondObject

Operations:
add: newObject

adds newObject to the receiver and returns newObject
addAll: aCollection

adds aCollection to the receiver and returns aCollection
remove: oldObject

removes oldObject from the receiver and returns oldObject unless there is no
object oldObject (reports an error).

remove: oldObject ifAbsent: anExceptionBlock
removes oldObject from the receiver, unless it does not exist, in which case
anExceptionBlock is executed. Returns oldObject or result of anExceptionBlock

removeAll: aCollection

removes all elements of aCollection from the receiver and returns aCollection,
unless not all elements of aCollection were present in the receiver, in which case
an error is reported.

includes: anObject
returns True if anObject is an element of the receiver

isEmpty
returns True if the receiver has no elements

occurrencesOf: anObject
returns an Integer representing the number of occurrences of anObject in the
receiver

do: aBlock
evaluate aBlock for every element of the receiver

select: aBlock
evaluates aBlock for every element of the receiver. Returns a new Collection
containing all elements of the receiver for which aBlock evaluated to true

reject: aBlock
evaluates aBlock for every element of the reciever. Returns a new Collection
containing all elements for which aBlock evaluated to false

collect: aBlock
evaluates aBlock for every element of the receiver. Returns a new Collection
containing the results of every evaluation of aBlock.

detect: aBlock
evaluates aBlock for every element of the receiver. Returns the object which is
the first element in the receiver for which aBlock evaluated to true. If no object
evaluated to true, an error is reported.

detect: aBlock ifNone: exceptionBlock
evaluates aBlock for every element of the receiver. Returns the object which is
the first element in the receiver for which aBlock evaluated to true. If no object
evaluated to true, exceptionBlock is evaluated.

inject: thisValue into: binaryBlock
Evaluates binaryBlock for each element of the receiver, initializing a local
variable to thisValue. Returns final value of the block. BinaryBlock has two
arguments.

asBag
Returns a Bag with the elements from the receiver

asSet
Returns a Set with the elements from the receiver

asOrderedCollection
Returns an OrderedCollection with the elements from the reciever

asSortedCollection
Returns a SortedCollection with the elements from the receiver, sorted to each
element is less than or eaqual to its successor

asSortedCollection: aBlock
Returns a SortedCollection with the elements from the receiver, sorted
according to the arguemnt aBlock

Collection->Bag
Creation:
Operations:

add: newObject withOccureneces: anInteger
Adds anInteger number of occurrences of newObject to the receiver, and returns
newObject

Collection->Set
Creation:
Operations:

Collection->Set->Dictionary and Collection->Set->IdentityDictionary
Creation:
Operations:

at: key ifAbsent: aBlock
Returns the value named by key. If the key is not present in the dictionary,
returns evaluation of aBlock

associationAt: key
Returns the association named by key. If key is not present, an error is reported

associationAt: key ifAbsent: aBlock
Returns the association named by key. If key is not present, returns the
evaluation of aBlock.

keyAtValue: value
Returns the name found first for value, or nil if value is not present

keyAtValue: value ifAbsent: exceptionBlock
Returns the name found first for value, or the evaluation of exceptionBlock if
value is not found

keys
Returns Set representing all of the receiver’s keys

values
Returns Set containing all of the receiver’s values

includesAssociation: anAssociation
Returns true if anAssociation is included in the receiver

includesKey: key
Returns true if key is included in the receiver

removeAssociation: anAssociation
Removes anAssociation from the receiver. Returns anAssociation

removeKey: key
Removes key and associated value from the receiver. Returns value associated
with key if key is included in the receiver, otherwise an error is reported

removeKey: key ifAbsent: aBlock
Removes key and associated value from the receiver. Returns value associated
with the key if key is included in the receiver, otherwise returns the evaluation
of aBlock

associationsDo: aBlock
Evaluate aBlock for each of the receiver’s associations

keysDo: aBlock
Evaluate aBlock for each of the receiver’s keys

Collection->SequenceableCollection
Creation:
Operations:

atAll: aCollection put: anObject
Associate each element of aCollection with anObject.

atAllPut: anObject
Put anObject as every one of the receiver’s elements

first
Returns the first element of the receiver

last
Returns the last element of the receiver

indexOf: anElement
Returns an Integer representing the index of anElement in the receiver, 0 if not
present

indexOf: anElement ifAbsent: exceptionBlock
Returns an Integer representing the index of anElement in the receiver, or the
evaluation of exceptionBlock if anElement is not in the receiver

indexOfSubCollection: aSubCollection startingAt: anIndex
If the elements of aSubCollection appear in order in the receiver, returns the
index of the first element of aSubCollection in the receiver, otherwise returns 0

indexOfSubCollection: aSubCollection: startingAt: anIndex ifAbsent: exceptionBlock
Returns the index of the first element of aSubCollection in the receiver if the
elements of aSubCollection appear in order, otherwise returns the evaluation of
aBlock

replaceFrom: start to: stop with: replacementCollection
Associates every element of the receiver from start to stop with the elements of
replacementCollection and returns the receiver. The size of
replacementCollection must equal start + stop + 1.

replaceFrom: start to: stop with: replacementCollection startingAt: repStart
Associates every element of the receiver from start to stop with the elements of
replacementCollection starting with index repStart in replacementCollection.
The receiver is returned

, aSequencableCollection
Returns the receiver concatenated with aSequencableCollection

copyFrom: start to: stop
Returns a subset of the receiver starting at index start and ending an index stop

copyReplaceAll: oldSubCollection with: newSubCollection
Returns a copy of the receiver with all occurrences of oldSubCollection replaced
with newSubCollection

copyWith: newElement
Returns a copy of the receiver with newElement added on to the end

copyWithout: oldElement
Returns a copy of the receiver without all occurrences of oldElement

findFirst: aBlock
Evaluates aBlock for every element of the receiver and returns the index of the
first element for which aBlock evaluates to true.

findLast: aBlock
Evaluates aBlock for each element of the receiver and returns the index of the
last element for which aBlock evaluates to true

reverseDo: aBlock
Evaluates aBlock for each element of the receiver, starting with the last element

with: aSequenceableCollection do: aBlock
Evaluates aBlock for each element of the receiver and each element of
aSequenceableCollection. The number of elements in aSequenceableCollection
must equal the number of elements in the receiver and aBlock must have two
arguements

Collection->SequenceableCollection->OrderedCollection
Creation:
Operations:

after: oldObject
Returns the element occurring after oldObject, or reports an error if oldObject is
not found or is the last element

before: oldObject
Returns the element occurring before oldObject, or reports an error if oldObject
is not found or is the first element

add: newObject after: oldObject
Inserts newObject after oldObject into the receiver and returns newObject unless
oldObject is not found, in which case an error is reported

add: newObject before: oldObject
Inserts newObject before oldObject into the receiver and returns newObject
unless oldObject is not found, in which case an error is reported

addAllFirst: anOrderedCollection

Adds each element of anOrderedCollection to the beginning of the receiver and
returns anOrderedCollection

addAllLast: anOrderedCollection
Adds each element of anOrderedCollection to the end of the receiver and returns
anOrderedCollection

addFirst: newObject
Adds newObject to the beginning of the receiver and returns newObject

addLast: newObject
Adds newObject to the end of the receiver and returns newObject

removeFirst
Removes the first object from the receiver and returns it, unless the receiver is
empty in which case an error is reported

removeLast
Removes the last object from the receiver and returns it, unless the receiver is
empty in which case an error is reported

Collection->SequenceableCollection->OrderedCollection->SortedCollection
Creation:

sortBlock: aBlock
Instance representing an empty SortedCollection using aBlock to sort its
elements

Operations:
sortBlock

Returns the block that is to be used to sort the elements of the receiver
sortBlock: aBlock

Make aBlock the block used to sort the elements of the receiver

Collection->SequenceableCollection->LinkedList
Creation:

nextLink: aLink
Instance of Link that references aLink

Operations:
nextLink

Returns the receiver’s reference
nextLink: aLink

Sets the receiver’s reference to be aLink
addFirst: aLink

Adds aLink to the beginning of the receiver’s list and returns aLink
addLast: aLink

Adds aLink to the end of the receiver’s list and returns aLink
removeFirst

Removes the first element from the receiver’s list and returns it. If the list is
empty an error is reported

removeLast
Removes the last element from the receiver’s list and returns it. If the list is
empty an error is reported

Collection->SequenceableCollection->Interval
Creation:

from: startInteger to: stopInteger
Instance starting with the number startInteger and ending with stopInteger,
incrementing by one

from: startInteger to: stopInteger by: stepInteger
Instance starting with the number startInteger and ending with stopInteger,
incrementing by stepInteger

Operations:

Collection->SequenceableCollection->ArrayedCollection
Creation:
Operations:

Collection->SequenceableCollection->ArrayedCollection->CharacterArray->String
Creation:
Operations:

< aString
Returns true if the receiver collates before aString. Case is ignored.

<= aString
Returns true if the receiver collates before aString, or is the same as aString.
Case is ignored.

> aString
Returns true if the receiver collates after aString. Case is ignored.

>= aString
Returns true if the receiver collates after aString, or is the same as aString. Case
is ignored.

match: aString
Treats the receiver as a pattern containing #’s and *’s which are wild cards (#
represents one character, * represents a substring). Returns true if the reciever
matches aString. Case is ignored.

sameAs: aString
Returns true if the receiver collates exactly with aString. Case is ignored.

asLowercase
Returns a String representing the receiver in all lowercase

asUppercase
Returns a String representing the receiver in all uppercase

asSymbol
Returns a Symbol whose characters are the characters of the receiver

Collection->SequenceableCollection->ArrayedCollection->CharacterArray->Symbol
Creation:

intern: aString
Returns an instance of a Symbol whose characters are those of aString

internCharacter: aCharacter
Returns an instance of a Symbol which consists of aCharacter

Operations:

Collection->MappedCollection
Creation:
Operations:

Stream
Creation:
Operations:

next
Returns the next object accessible by the receiver

next: anInteger
Returns the next anInteger objects accessible by the receiver

nextMatchFor: anObject
Accesses the next object and returns true if it is equal to anObject

contents
Returns all of the objects in the collection accessed by the receiver.

nextPut: anObject

Stores anObject as the next object accessible by the receiver and returns
anObject

nextPutAll: aCollection
Store the elements in aCollection as the next objects accessible by the receiver
and returns aCollection. Advances the position reference to the new object.

next: anInteger put: anObject
Store anObject as the next anInteger number of objects accessible by the
receiver and returns anObject. Advances the position reference to the new
object.

atEnd
Returns true if the are no more objects accessible by the receiver

do: aBlock
Evaluate aBlock for each of the remaining objects accessible by the receiver

Stream->PositionableStream
Creation:

on: aCollection
Returns an instance which streams over aCollection

on: aCollection from: firstIndex to: lastIndex
Returns an instance which streams over a copy of a subcollection of aCollection
from firstIndex to lastIndex

Operations:
isEmpty

Returns true if the collection the receiver accesses has no elements
peek

Returns the next object in the collection but does not increment the position
reference

peekFor: anObject
Does a peek, if the next object is equal to anObject, then returns true and
increments the position reference, otherwise just returns false

upTo: anObject
Returns a collection of the elements starting with the next object accessed by the
receiver up to, but not including, anObject. If anObject is not an element of the
remainder of the collection, then the entire remaining collection is returned.

position
Returns the receiver’s current position reference

position: anInteger
Sets the receiver’s position to anInteger. If anInteger exceeds the bounds of the
collection, then an error is reported

reset
Sets the receiver’s position to the beginning of the collection

setToEnd
Sets the receiver’s position to the end of the collection

skip: anInteger
Sets the receiver’s position to the current position + anInteger

skipThrough: anObject
Sets the receiver’s position to be past ther next occurrence of anObject. Returns
true if anObject occurs in the collection

Stream->PositionableStream->ReadStream
Creation:
Operations:

Stream->PositionableStream->WriteStream
Creation:
Operations:

cr
Stores the carriage return as the next element of the receiver

crtab
Stores the carriage return and a single tab as the next elements of the receiver

crtab: anInteger
Stores a carriage return follwed by anInteger number of tabs as the next
elements of the receiver

space
Stores the space charater as the next element of the receiver

tab
Stores the tab character as the next element of the receiver

Stream->ExternalStream
Creation:
Operations:

nextNumber: n
Returns a SmallInteger or LargePositiveInteger representing the next n bytes of
the collection accessed by the receiver

nextNumber: n put: v
Stores v, which is a SmallInteger or LargePositiveInteger, as the next n bytes of
the collection accessed by the receiver

nextString
Returns a String consisting of the next elements of the collection accessed by the
receiver

nextStringPut: aString
Stores aString in the collection accessed by the receiver

padTo: bsize
Skips to the next boundary of bsize characters and returns the number of
characters skipped

padTo: bsize put: aCharacter
Skips to the next boundary of bsize characters, writing aCharacter to each
character skipped, and returns the number of charcters skipped

padToNextWord
Skip to the next word (even) boundary and returns the number of characters
skipped

padToNextWordPut: aCharacter
Skip to the next word (even) boundary, writing aCharacter to each character
skipped, and returns the number of characters skipped

skipWords: nWords
Advance position reference nWords

wordPosition
Returns the current position in words

wordPosition: wp
Sets the position reference in words to wp

	Appendix1: VisualWorks 2.5 versus Smalltalk-80
	VisualWorks 2.5
	Smalltalk-80
	Differences found throughout the lecture note’s examples
	Classes removed from VisualWorks 2.5

	Appendix2: VisualWorks rules and Smalltalk Syntax
	Capitalization rules
	Reserved words
	Operators
	Literals
	Comments

	Appendix 3: A List of Methods for the System Classes
	Magnitude:
	Collection
	Stream

