Index de l'aide

WINFONC

- <u>Introduction</u>
- <u>Utilisation des menus</u>
- <u>Barre d'outils</u>
- <u>Calcul formel</u>
- <u>Graphes</u>
- <u>Comment faire ?</u>

Introduction

L'interface de Winfonc est constituée d'une fenêtre principale :

La fenêtre de Winfonc

Cette fenêtre comporte plusieurs composants :

- la barre d'outils, elle constitue un raccourci vers les menus
- le bouton d'agrandissement, contenu dans la barre d'outils, permet d'obtenir un affichage carré, visualisant ainsi tout le graphe
- le bouton d'arrêt des calculs, lui aussi dans la barre d'outils, permet d'interrompre le calcul en cours

la ligne de statut indique plusieurs informations utiles :

- la position de la souris en 2D; cette information est remplacée par la quantité de mémoire disponible lorsque l'affichage est en 3D
- le type des graphes affichés : 2D ou 3D
- la ligne d'état qui fournit des renseignements sur l'opération en cours

Voir aussi

<u>Utilisation des menus</u> <u>Barre d'outils</u>

Calcul formel avec Winfonc

Winfonc possède de modestes capacités de calcul algébrique qui peuvent avoir leur utilité:

dérivation formelle	complète	
résolution algébrique d'équations	complète	
intégration formelle	limitée	

Ainsi Winfonc ne prétend pas se substituer à de grand noms comme *Derive, Mathematica*, ou *Maple* mais permet, en complément de la représentation graphique, de manipuler des expressions.

Voir aussi:

syntaxe des expressions algébriques

Dérivation formelle

On veut retrouver la formule de dérivation sous l'intégrale (sous toutes les hypothèses de régularité nécessaires): 0

$$\frac{\mathbf{q}}{\mathbf{1}x} \int_{(-)}^{\mathbf{p}^{b}(x)} ((-(-)) ((-(-))) ((-(-))) ((-(-))) ((-)$$

Commençons par définir une fonction annexe:

$$g(x) = \int_{a \in X}^{a \in X} f(x) dt$$

par Calcul | Fonctions | Nouvelle puis g(x)=integrale(a(x),b(x),f(x,t),t)

Vérifions la manoeuvre par Visualiser (g):

Nous allons maintenant dériver g:

quittons la gestion des fonctions par Fermer puis Calcul | Dériver (g)

le résultat s'affiche enfin: La dérivée est b(x) $-f(x,t)\left]dt + f(x,b(x))\left(\frac{\partial}{\partial x}b(x)\right) - f(x,a(x))\left(\frac{\partial}{\partial x}a(x)\right)\right]$ a(x)

Tout ceci est bien beau mais il existe un cas où Winfonc peut vous fournir des résultats erronés: celui des fonctions définies de manière conditionnelle.

On utilise souvent ces fonctions pour prolonger par continuité des fonctions en des points

singuliers.

Prenons par exemple la fonction suivante:

()

$$f x = \begin{cases} 1, si \ x=0 \\ \frac{e}{x}, sinon \end{cases}$$

qui se définit par $f(x)=si(x=0,1,(e^x-1)/x)$ Cette fonction est continue en 0:

$$f_x = \frac{1 + x - 1 + o_x}{x} = 1 + o_1^{-1}$$

Demandons à Winfonc de la dériver:

On aurait donc f'(0)=0 ... suspect ! f est continue en 0 et, de plus, on trouve de même

donc f(0) = 1/2 et non pas 0.

Cette erreur provient du fait que Winfonc a dérivé 1 pour trouver la dérivée en 0, ce qui absolument faux car $\{0\}$ est un singleton et pas un voisinage de 0.

En résumé, pour obtenir des résultats corrects, ne tenez compte d'une dérivée que si elle a pu être calculée sur un **voisinage** : la condition (1er paramètre de **si**) doit définir deux voisinages et non un singleton.

Résolution d'équations

Admettons que l'on veuille résoudre en *x* le trinôme suivant:

 $a x^{2} + b x + c = 0$

Introduisons l'équation grâce à **Calcul** | **Résoudre** puis $a*x^2+b*x+c$ (le '=0' est facultatif). Indiquons maintenant que l'on veut résoudre en *x* en choisissant *x* parmi les variables a, b, c et x. On obtient comme résultat:

Cherchons maintenant les zéros de la fonction suivante:

() () 2

$$f x = a x + b$$
 Arcsin $x - 2 x + 1$

grâce à Calcul | Résoudre puis $(a*x+b)*arcsin(x^2-2*x+1)$ et en sélectionnant x comme indéterminée.

```
On obtient:
```

Solution:

$$x = -\frac{b}{a} \lor x = 1 \lor x = 1$$

On constate que x=1 est solution double.

Vérifions graphiquement pour *a*=*b*=2:

mais où est passée la solution x = -1 (qui correspond à ax+b)? En fait elle n'a jamais existé (dans \mathbb{R}) car au v(-1), f(x) n'a pas une valeur réelle mais complexe, elle ne peut donc apparaître sur le graphe.

Soit à calculer l'intégrale suivante:

$$\int_{a}^{a} \frac{\int_{a}^{a} \frac{(x-x)}{2} dx}{dx}$$

Commençons par définir une fonction f:

$$\int_{x}^{()} \int_{x}^{x} \int_{u \ln u}^{x} du$$

avec Calcul | Fonctions | Nouvelle puis f(x)=integrale(a,x,u*ln(u),u) et enfin Fermer.

Effectuons maintenant le changement de variable

$$u = \sqrt{t}$$

avec Calcul | Changement de variable puis spécifier comme valeur de u sqrt(t)

Revenons dans **Calcul** | **Fonctions** pour vérifier l'effet de la manipulation avec **Visualiser** (en sélectionnant f):

Fonction

$$f(x) = \int_{a}^{x} \sqrt{t} \frac{\ln(t)}{2} d\sqrt{t}$$

Achevons le calcul avec **Simplifier** (f) puis à nouveau **Visualiser** (f):

Fonction

$$f(\mathbf{x}) = -\left(\frac{1}{4}\mathbf{x}^2 - \frac{1}{4}a^2 - \frac{1}{2}\mathbf{x}^2\ln(\mathbf{x}) + \frac{1}{2}a^2\ln(a)\right)$$

Le résultat est bien correct.

Remarques:

• même sur cet exemple simple où il suffisait d'intégrer par parties, Winfonc n'a pu simplifier lui-même f(x), il a fallu lui indiquer le changement de variable à faire.

- par lui-même, Winfonc sait intégrer
 - les polynômes
 - les fonctions usuelles
 - plus généralement toute combinaison du type

u'. f'0u

où f est une fonction usuelle (sin, cos, tan, sh, ch, th, exp, ln, sqrt ...)

Syntaxe des expressions algébriques

L'écriture des expressions algébrique sous Winfonc est soumise à des règles relativement strictes pour éviter toute ambiguité:

le symbole multiplié * ne peut être omis les parenthèses sont obligatoires autour des arguments des fonctions certaines parenthèses sont indispensables pour lever des ambiguités le symbole ² représente *exactement* l'expression ^2

Par exemple,

a multiplié par le sinus de b s'écrira a*sin(b)

$$\frac{1}{1 + \frac{1}{1 + a}}$$

s'écrira 1/(1+1/(1+a)) et pas 1/1+1/1+a

Winfonc dispose d'un certain nombre de fonctions prédéfinies:

les fonctions usuelles sin cos tan sh ch th sqrt exp ln abs Arcsin Arccos Arctan argsh argch argth int des fonctions évoluées

integrale si

Utilisation des fonctions usuelles

Ces fonctions n'admettent qu'un paramètre (réel ou complexe) leur signification est la suivante:

fonction	signification
sin	sinus
cos	cosinus
tan	tan gente:
sh	sinus hyperbolique: partie impaire de exp
ch	() $x - x$ sh $x = \frac{e - e}{2}$ cosinus hyperbolique:
th	() $x = -x$ ch $x = -\frac{e + e}{2}$ tangente hyperbolique: () $y = -\frac{h(x)}{2}$
	cn x

sqrt	racine carrée
exp	exponentielle
ln	logarithme népérien
	fonction réciproque de exp
log	logarithme décimal:
-	() $()$
	$\log x = \frac{1}{\ln 10}$
abs	valeur absolue pour les réels
	module pour les complexes
Arcsin	arc-sinus
	renvoie la mesure principale de l'angle dont
	on donne le sinus
Arccos	arc-cosinus
Arctan	arc-tangente
argsh	argument du sinus hyperbolique
C	fonction réciproque de sh
argch	argument du cosinus hyperbolique
argth	argument de la tangente hyperbolique
C	fonction réciproque de th
int	partie entière
	1

la syntaxe des fonctions usuelles est nom de la fonction (argument de la fonction)

exemple: sin(tan(x))-tan(sin(x))ln(1+abs(x))

Utilisation de la fonction *integrale*

Cette fonction permet de calculer des intégrales définies. La syntaxe est la suivante integrale(borne inférieure, borne supérieure, expression, expression d'intégration)

Ainsi

integrale(a,b,f(t),t**)** signifie

f t dt

Utilisation de la fonction si

Cette fonction permet de définir des expressions conditionnelles. La syntaxe est la suivante: si(condition, expression VRAI, expression FAUX)

ce qui peut se lire ainsi:

si condition est vraie, renvoyer expression VRAI sinon renvoyer expression FAUX Ainsi

f(x)=si(x<0,-x,x) signifie

$$f = x , si x < 0$$

ce qui pourrait être pris pour définition de la valeur absolue

Tracés graphiques avec Winfonc

Winfonc vous permet de représenter plusieurs types de graphes

graphes plans:

- graphes fonctionnels y=f(x)
- courbes paramétrées (x;y)=f(t)
- courbes en polaires $r=f(\theta)$
- courbes implicites f(x,y)=0
- tracés en densité de f(x,y)

tracés dans l'espace:

- surfaces fonctionnelles z=f(x,y)
- surfaces paramétrées (x;y;z)=f(u,v)

Tracés dans le plan

Réglage du repère

Accessible par **Graphes** | **Repère**. Par défaut, le repère est toujours orthonormé. Si le votre ne l'est pas, n'oubliez pas de désactiver la case ' Orthonormé '.

Graphes fonctionnels

Accessibles par Graphes | y=f(x) depuis le menu principal. Introduisez ensuite la fonction à tracer.

Exemples:

Graphes en polaires

Accessibles par **Graphes** | **en polaires** . Introduisez ensuite l'expression du rayon en fonction de l'angle polaire.

Vous pouvez régler le domaine de variation de l'angle par Graphes | Domaines

Exemples:

Courbes paramétrées

Accessibles par Graphes | paramétrique . Entrez ensuite x en fonction de t puis y en fonction

de t. Pour régler le domaine de variation de t, utilisez Graphes | Domaines.

Exemples

Courbes définies par une équation implicite

Accessibles par **Graphes** | **implicite** . Entrez ensuite une équation en x et y. Si cette équation peut être résolue, soit en y, soit en x, Winfonc utilisera la résolution pour effectuer le tracé, sinon un tracé approché sera fait.

Exemples:

Tracés dans l'espace

Graphes fonctionnels

Accessibles par Graphes | surface. Entrez ensuite une expression en x et y.

Exemples:

 $\begin{array}{c} \textit{paraboloïde hyperbolique} \\ x^2\text{-}y^2 \end{array}$

 $\cos(\operatorname{sqrt}(x^2+y^2))$

Surfaces paramétrées

Accessibles par **Graphes** | **surface paramétrée**. Entrez ensuite trois expressions en u et v pour les coordonnées. Les domaines sont modifiables par **Graphes** | **Domaines**.

Exemples:

COMMENT FAIRE ?

Utiliser les lettres grecques

Il suffit de taper leur nom en toutes lettres:

nom	résultat	nom	résultat
	CI.		A
alpha	Q Q	Alpha	A D
beta	þ	Beta	
gamma	<i>y</i>	Gamma	1
delta	0	Delta	
epsilon	ε	Epsilon	E •
phi	φ	Phi	Φ
varphi	φ		_
iota	L	lota	
kappa	к	Карра	K
lambda	λ	Lambda	Λ
mu	μ	Mu	Μ
nu	ν	Nu	Ν
omicron	0	Omicron	0
pi	π	Pi	П
varpi	ω		
theta	θ	Theta	Θ
vartheta	9		
rho	ρ	Rho	Р
sigma	σ	Sigma	Σ
varsigma	ς	eigina	
tau	τ	Тац	Т
unsilon	υ	Insilon	Υ
omega	ω	Omega	Ω
vi	2	Yi	Ξ
	- าไห		_ Ψ
	4 6	r Si Zoto	7
	ب د		Z X
CIII	~	CIII	2 x
Aleph	х	Nabla	∇

Ecrire une suite et non pas

Il suffit de faire terminer le nom de la suite par le signe souligné '_' Ainsi le symbole de Kronecker se définit:

$$delta_{k,l} = \begin{cases} k, l \\ k, l \\ k, l \end{cases} = \begin{cases} 1, si \ k - l \\ 0, sinon \end{cases}$$

Attention: ne pas oublier que le nom de la fonction n'est alors pas delta mais delta_

Obtenir des fichiers plus petits lors de la sauvegarde

Il suffit d'utiliser la commande Fichier | Enregistrer formules qui n'envoie dans le fichier que les équations des surfaces et pas les surfaces elles-mêmes. Le calcul est donc différé : il s'effectuera à chaque chargement du fichier.

<u>Utiliser Winfonc en liaison avec d'autres applications</u>

Utilisation des menus

 Winfonc - (Sans Nom)
 _ []] ×

 Eichier Edition Calcul Graphes Utilités Aide

 • menu Fichier

- menu <u>Edition</u>
- menu <u>Calcul</u>
- menu <u>Graphes</u>
- menu <u>Utilités</u>

menu Fichier

Nouveau: prépare Winfonc pour l'édition d'un nouveau document.

Ouvrir: charge depuis le disque un document existant.

Enregistrer: sauvegarde les graphes, les fonctions et les constantes sur le disque sans changer le nom du document en cours.

Enregistrer sous: idem mais change le nom du document avant de l'enregistrer.

Enregistrer formules: sauvegarde uniquement les formules (seules les équations des surfaces sont sauvées). Ceci permet des fichiers beaucoup plus petits: le calcul est différé au moment du chargement.

Configurer l'imprimante: permet de changer d'imprimante, d'orientation de papier...

Imprimer: imprime la partie du document affichée à l'écran (2D ou 3D)

Quitter: ferme Winfonc

menu Edition

Mise à zéro: idem Fichier Nouveau

Copier: envoie l'affichage dans le presse-papier

Copier formule: envoie une expression mathématique (donc soumise au règles de syntaxe usuelles) dans le presse-papiers.

Copier fonction: envoie l'expression d'une fonction dans le presse-papiers

Voir aussi : Syntaxe des expressions

menu Calcul

Fonctions: permet de gérer les fonctions en mémoire

Constantes: permet de gérer les constantes en mémoire

Gérer les paramètres	×
Cette fenêtre vous permet de gérer les paramètres. Cliquez sur "Fermer" quand vous avez fini.	<u>N</u> ouveau <u>D</u> étruire <u>L</u> iste <u>Fermer</u>

Dériver: calcule la dérivée d'une fonction déjà définie.

Evaluer: calcule la valeur numérique d'une expression

Changement de variable: permet de faire un changement de variable dans une intégrale.

Résoudre: permet de résoudre une équation.

Voir aussi:

Calcul formel avec Winfonc

menu Graphes

y=f(x): trace un graphe fonctionnel IR IR

en polaires: trace une courbe en polaires définie par

paramétrique: trace une courbe définie par

implicite: trace l'ensemble des points (x;y) vérifiant une certaine relation

densité: trace une représentation en densité d'une fonction IR² IR *le noir représente les valeurs minimales, le blanc figure les valeurs maximales* suite Un+1=f(Un): représente la courbe y=f(x), la première bissectrice (y=x) et les termes successifs de

suite (x=n;y=Un): représente les termes successifs de en portant *n* en abscisse.

surface: trace un graphe fonctionnel IR2IRsurface paramétrée: trace une surface définie par

Repère: permet de changer le repère

Domaines: permet de changer les domaines de variations de q, t, u et v

Commenter: permet d'écrire du texte sur la page 2D

Tracer cercle: trace un cercle en 2D (utile pour les cercles asymptotes)

Tracer droite: trace une droite en 2D (utile pour les asymptotes)

Ecrire formule: permet d'écrire une expression mathématique sur la page 2D

Ecrire fonction: permet d'écrire l'expression d'une fonction sur la page 2D

Voir aussi:

Graphes

menu Utilités

Options: permet de régler la précision de l'intégration numérique, du tracé 2D, 3D ... *une complexité de 0 pour le tracé 3D donne des images "fils de fer" au lieu des facettes pleines.*

3D: permet de basculer de la page 2D au mode 3D et réciproquement.

Visualisation: régle le point de vue 3D

Eclairage: dispose les 3 lampes (rouge, verte et bleue) différemment. *un repère (xmin..xmax;ymin..ymax;zmin..zmax) est projeté sur (-1..1;-1..1;-1..1)*

Recontruire: permet de forcer la reconstruction (utile après un zoom)

Gérer les graphes: permet de travailler sur les graphes déjà définis.

Grand angle : zoom arrière en 2D.

Ligne de statut : affiche ou cache la ligne de statut.

Barre d'outils : affiche ou cache la barre d'outils.

Plein écran : provoque l'affichage du graphe courant en plein écran (appuyez sur [esc] pour revenir au mode normal).

idéal pour la rétroprojection

Barre d'outils

<u>? 🛃 🛛 🗠 🔤</u>	fi k 🚧 🐖 🗊 📜 🖓 🔍 🖸	۲
$\overline{7}$		
1 2 3 4 5 6	7 8 9 10 11 12 13 14 1	5 16
numéro	gignification	óquivalant
numero	signification	equivalent
1	aide	<u>Aide Index</u>
2	ouvrir fichier	Fichier Ouvrir
3	enregistrer fichier	Fichier Enregistrer
4	copier dans le presse-papiers	Edition Copier
5	imprimer la page affichée	Fichier Imprimer
6	quitter Winfonc	Fichier Quitter
7	gérer les fonctions	Calcul Fonctions
8	gérer les constantes	Calcul Constantes
9	gérer les graphes	<u> Utilités Gérer les graphes</u>
10	résoudre	Calcul Résoudre
11	bascule 2D/3D	Utilités 3D
12	changer le repère	Graphes Repère
13	point de vue 3D	Utilités Visualisation
14	grand angle 2D	Utilités Grand angle

Liaisons OLE avec d'autres logiciels

Le protocole OLE est un protocole qui permet l'insertion dans un document hôte d'une session de Winfonc, *tout en laissant la possibilité de la modifier*. La session sera sauvegardée avec le fichier hôte. Ainsi, si après intégration, on souhaite la modifier, il suffit en général de double-cliquer sur le graphe.

Procédures:

- <u>Installer le protocole OLE pour Winfonc</u>
- Créer une figure dans un document-hôte
- Insérer une figure modifiable dans un document-hôte à partir du Presse-papiers
- <u>Insérer le dessin (non modifiable) d'un graphe dans un document-hôte à partir du Presse-papiers</u>
- <u>Exemple d'intégration de figures dans Write</u>

Installer le protocole OLE pour Winfonc

Installation

Au démarrage de Winfonc, une boîte de dialogue s'affiche si Winfonc n'a pas encore été enregistré comme serveur OLE dans les données du système. Il suffit de cliquer sur OK pour que tous les logiciels reconnaissant OLE puissent intégrer dans leurs documents n'importe quelle session de Winfonc.

Désinstallation

Il est livré avec Windows un programme **REGEDIT.EXE** (l'éditeur de "registration") situé dans le répertoire **SYSTEM** de Windows (en général **C:\WINDOWS\SYSTEM**) qui permet de supprimer un serveur OLE: sélectionnez **Session Winfonc** et appuyez sur [Suppr] pour supprimer Winfonc comme serveur OLE (il n'est pas supprimé du disque).

Créer une figure dans un document-hôte

• Ceci est accessible en général dans le menu **Edition** par **Insérer objet...** (Dans WinWord 2.0, choisir **Insère** | **Objet...**)

• Puis, dans la boîte de dialogue présentant les types disponibles, sélectionner Session Winfonc.

- Winfonc est alors chargé et vous n'avez plus qu'à tracer ou charger un graphe.
- Lorsque vous avez terminé, quittez Winfonc et répondez **OUI** à la question "Voulez-vous mettre à jour ?". Vous revenez alors dans votre application où la figure a été insérée.

Insérer une figure modifiable dans un document-hôte (Presse-papiers)

• Vous avez une figure disponible dans le Presse-papiers

• En sélectionnant **Edition** | **Coller** (ou en appuyant [Shift]+[Inser]) dans l'application-hôte, la figure est collée dans votre document tout en restant modifiable.

Insérer le dessin d'une figure dans un document-hôte (Presse-papiers)

- Vous avez une figure disponible dans le Presse-papiers
- En sélectionnant Edition | Collage spécial dans l'application-hôte,
- puis en sélectionnant non pas *Objet Session Winfonc* mais *Image*, la figure est collée dans votre document en tant qu'image (non modifiable par Winfonc mais modifiable par MS-Draw).

Exemple d'intégration de figures dans Write

A partir du presse-papiers

- Chargez Winfonc
- Tracez ou chargez un graphe
- Copiez-la dans le Presse-papiers par Edition | Copier
- Quittez Winfonc
- Chargez Write

Intégration d'un graphe modifiable:

- Collez la figure par Edition | Coller
- vous pouvez modifier le graphe par un double-clic.

Intégration d'un graphe en tant qu'image

- Sélectionnez Edition | Collage spécial
- Choisissez comme format de collage Image au lieu d' Objet Session Winfonc
- Cliquez sur OK

Création d'une figure à partir de Write

- Sélectionnez Edition | Insérer objet
- Choisissez Session Winfonc
- Winfonc se charge... Tracez votre figure
- Dans Winfonc, faites Fichier | Quitter et répondez oui à la mise à jour.
- Write réapparaît avec la figure insérée.

Vous pouvez modifier la première et la troisième figure qui ont été collées en tant que sessions alors que la deuxième l'a été en tant qu'image.