402 INTRODUCTION MFT changes for Berkeley UNIX 81

2% MFT uses a few features of the local Pascal compiler that may need to be changed in other installations:

1) Case statements have a default.
2) Input-output routines may need to be adapted for use with a particular character set and/or for printing
messages on the user’s terminal.

These features are also present in the Pascal version of TEX, where they are used in a similar (but more
complex) way. System-dependent portions of MFT can be identified by looking at the entries for ‘system
dependencies’ in the index below.

The “banner line” defined here should be changed whenever MFT is modified.

define banner = “This_ is MFT,_ C Version 2.0

3* The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.
The MF input comes from files mf-file, change_file, and style_file; the TEX output goes to file tez_file.

If it is necessary to abort the job because of a fatal error, the program calls the ‘jump_out’ procedure,
which goes to the label end_of MFT.

(Compiler directives 4*)
program MFT,
const (Constants in the outer block 8)
type (Types in the outer block 12)
var (Globals in the outer block 9)
(Error handling procedures 29)
(scan_args procedure 115%)
procedure initialize;
var (Local variables for initialization 14)
begin (Set initial values 10)
end;

4% The Pascal compiler used to develop this system has “compiler directives” that can appear in comments
whose first character is a dollar sign. In our case these directives tell the compiler to detect things that are
out of range.

(Compiler directives 4*) =

This code is used in section 3*.

811 MFT changes for Berkeley UNIX THE CHARACTER SET 403

13¥ The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, especially in a program for font design; so the present specification
of MFT has been written under the assumption that the Pascal compiler and run-time system permit the
use of text files with more than 64 distinguishable characters. More precisely, we assume that the character
set contains at least the letters and symbols associated with ASCII codes 40 through “176. If additional
characters are present, MFT can be configured to work with them too.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = ASCII_code {the data type of characters in text files }
define first_text_-char =0 {ordinal number of the smallest element of text_char }
define last_text_char = 255 {ordinal number of the largest element of text_char }

(Types in the outer block 12) +=
text_file = packed file of text_char;

17¥ The ASCII code is “standard” only to a certain extent, since many computer installations have found
it advantageous to have ready access to more than 94 printing characters. If MFT is being used on a garden-
variety Pascal for which only standard ASCII codes will appear in the input and output files, it doesn’t
really matter what codes are specified in xzchr[0 .. “87], but the safest policy is to blank everything out by
using the code shown below.

However, other settings of zchr will make MFT more friendly on computers that have an extended character
set, so that users can type things like ‘¢’ instead of ‘<>’, and so that MFT can echo the page breaks found
in its input. People with extended character sets can assign codes arbitrarily, giving an zchr equivalent to
whatever characters the users of MFT are allowed to have in their input files. Appropriate changes to MFT’s
char_class table should then be made. (Unlike TEX, each installation of METAFONT has a fixed assignment
of category codes, called the char_class.) Such changes make portability of programs more difficult, so they
should be introduced cautiously if at all.

(Set initial values 10) +=
for i < 1to 37 do zchrli] < chr(i);
for i < 177 to 377 do wxchr[i] < chr(i);

404 INPUT AND OUTPUT MFT changes for Berkeley UNIX 819

20* Terminal output is done by writing on file term_out, which is assumed to consist of characters of type
text_char:

define term_out = stdout

define print (#) = write (term_out,#) {‘print’ means write on the terminal }
define print_In(#) = write_In(term_out,#) {‘print’ and then start new line }
define new_line = write_ln(term_out) {start new line on the terminal }

define print_nl(#) = { print information starting on a new line }
begin new_line; print (#);
end

21¥ Different systems have different ways of specifying that the output on a certain file will appear on the
user’s terminal.

(Set initial values 10) +=
{ nothing need be done }

22¥ The update_terminal procedure is called when we want to make sure that everything we have output
to the terminal so far has actually left the computer’s internal buffers and been sent.

define update_terminal = flush(term_out) {empty the terminal output buffer }

24% The following code opens the input files. This is called after scan_args has set the file name variables
appropriately.
procedure open_input; {prepare to read inputs }
begin if test_read_access(mf-filename, MF_INPUT-PATH) then reset(mf.file, mf_file_name)
else begin print_pascal_string (mf-file_name); print(~: Metafont source file mnot, found’); werit(1l);
end;
reset (change_file, change_file_name);
if test_read_access (style_file_name, TEX_INPUT_-PATH) then reset(style_file, style_file_name)
else begin print_pascal_string (style_file_name); print(~:_ Style file not found"); uexit(1);
end;
end;

26* The following code opens tex_file. The scan_args procedure is used to set up tex_file_name as required.

(Set initial values 10) +=
scan-args; rewrite(tez_file, tex_file_name);

§28 MFT changes for Berkeley UNIX INPUT AND OUTPUT 405

28% The input_in procedure brings the next line of input from the specified file into the buffer array and
returns the value true, unless the file has already been entirely read, in which case it returns false. The
conventions of TEX are followed; i.e., ASCII_code numbers representing the next line of the file are input
into buffer[0], buffer[1], ..., buffer[limit — 1]; trailing blanks are ignored; and the global variable limit is set
to the length of the line. The value of limit must be strictly less than buf_size.

function input_ln(var f : text_file): boolean; {inputs a line or returns false }
var final_limit: 0 .. buf_size; { limit without trailing blanks }
begin limit < 0; final_-limit < 0;
if eof (f) then input_ln + false
else begin while —eoln(f) do
begin buffer[limit] < zord[getc(f)]; incr(limit);
if buffer[limit — 1] # "" then final_limit < limit;
if limit = buf_size then
begin while —eoln(f) do wvgetc(f);
decr (limit); {keep buffer[buf_size] empty }
if final_limit > limit then final_-limit < limit;
print_nl(~ ' Input line too long"); loc < 0; error;
end;
end;
read_In(f); limit < final_limit; input_ln + true;
end;
end;

406 REPORTING ERRORS TO THE USER MFT changes for Berkeley UNIX §29

31* The jump_out procedure cleans up, prints appropriate messages, and exits back to the operating
system.
define fatal_error(#) =
begin new_line; print(#); error; mark_fatal; jump_out;
end
{ Error handling procedures 29) +=
procedure jump_out;
begifihere files should be closed if the operating system requires it }
(Print the job history 113);
new_line;
if (history # spotless) A (history # harmless-message) then wezit(1)
else uezit(0);
end;

834 MFT changes for Berkeley UNIX THE MAIN PROGRAM 407

112¥ The main program. Let’s put it all together now: MFT starts and ends here.
begin initialize; {beginning of the main program }
print_in(banner); {print a “banner line” }
(Store all the primitives 65);
(Store all the translations 73);
(Initialize the input system 44);
do_the_translation; (Check that all changes have been read 49);
(Print the job history 113);
new_line;
if (history # spotless) A (history # harmless-message) then wezit(1)
else uezit(0);
end.

408 SYSTEM-DEPENDENT CHANGES MFT changes for Berkeley UNIX 8114

114* System-dependent changes.

The user calls MFT with arguments on the command line. These are either file names or flags (beginning
with ‘=’). The following globals are for communicating the user’s desires to the rest of the program. The
various file_name variables contain strings with the full names of those files, as UNIX knows them.

The flags that affect MFT are -c and -s, whose statuses is kept in no_change and no_style, respectively.

(Globals in the outer block 9) +=

mf-file_name, change_file_name, style_file_name, tex_file_name: packed array [1 .. FILENAMESIZE] of
char;

no_change, no_style: boolean;

8115 MFT changes for Berkeley UNIX SYSTEM-DEPENDENT CHANGES 409

115*¥ The scan_args procedure looks at the command line arguments and sets the file_name variables
accordingly.

At least one file name must be present as the first argument: the mf file. It may have an extension, or it
may omit it to get ~.mf ~ added. If there is only one file name, the output file name is formed by replacing
the mf file name extension by “.tex”. Thus, the command line mf foo implies the use of the METAFONT
input file foo.mf and the output file foo.tex. If this style of command line, with only one argument is used,
the default style file, plain.mft, will be used to provide basic formatting.

An argument beginning with a hyphen is a flag. Any letters following the minus sign may cause global
flag variables to be set. Currently, a ¢ means that there is a change file, and an s means that there is a style
file. The auxiliary files must of course appear in the same order as the flags. For example, the flag -sc must
be followed by the name of the style_file first, and then the name of the change_file.

(scan_args procedure 115*%) =
procedure scan_args;
var dot_pos, slash_pos,i,a: integer; {indices }
which_file_next: char; fname: array [1 .. FILENAMESIZE] of char; {temporary argument holder }
found-mf , found_change, found_style: boolean; { true when those file names have been seen }
begin { get style file path from the environment variable TEXINPUTS }
set_paths (MF_INPUT-PATH_BIT + TEX_INPUT-PATH_BIT); found-mf + false;
(Set up null change file 119*);
found_change < true; { default to no change file }
(Set up plain style file 120*);
found_style + true; {default to plain style file }
for a + 1to argc — 1 do
begin argv(a, fname); { put argument number « into frname }
if fname[l] # -~ then
begin if —found_mf then (Get mf_file_name from fname, and set up tex_file_name 116*)
else if —found_change then
begin if which_file_next # “s” then
begin (Get change_file_name from fname 117*);
which_file_next < “s~
end
else (Get style_file_name from fname 118*)
end
else if —found_style then
begin if which_file_next = “s~ then
begin (Get style_file_name from fname 118*);
which_file_next < "¢~
end;
end
else (Print usage error message and quit 122*);
end
else (Handle flag argument in fname 121*);
end;
if —found_mf then (Print usage error message and quit 122*);
end;

This code is used in section 3*.

410 SYSTEM-DEPENDENT CHANGES MFT changes for Berkeley UNIX 8116

116¥* Use all of fname for the mf_file_name if there is a ~. ~ in it, otherwise add ~.mf ~. The TgX file name
comes from adding things after the dot. The argv procedure will not put more than FILENAMESIZE — 5
characters into fname, and this leaves enough room in the file_name variables to add the extensions. We
declared fname to be of size FILENAMESIZE instead of FILENAMESIZE — 5 because the latter implies
FILENAMESIZE must be a numeric constant—and we don’t want to repeat the value from site.h just to
save five bytes of memory.

The end of a file name is marked with a “|,”, the convention assumed by the reset and rewrite procedures.

(Get mf_file_name from fname, and set up tex_file_name 116*) =
begin dot_pos < —1; slash_pos < —1; i + 1;
while (fnamel[i] # “u°) A (i < FILENAMESIZE — 5) do
begin mf_file_nameli] < fnameli];
if fname[i] = ~. then dot_pos + i;
if fnameli] = “/° then slash_pos + i;
incr(i);
end;
if (dot_pos = —1)|(dot_pos < slash_pos) then
begin dot_pos < i; mf-file_name[dot_pos] < ~."; mf-file_name|[dot_pos + 1] + "m";
mf-file_name[dot_pos + 2] «+ “£°; mf file_name[dot_pos + 3] + "L;
end;
for i < 1 to dot_pos do
begin tez_file_name[i| < mf-file_name|il;
end;
tez_file_name[dot_pos + 1] < “t~; tex_file_name[dot_pos + 2] < “e~; tex_file_name[dot_pos + 3] + "x~;
tex_file_name[dot_pos + 4] + ~,"; which_file_next + “z”7; found-mf < true;
end
This code is used in section 115%*.

117¥ Use all of fname for the change_file_name if there is a ~. ~ in it, otherwise add ~.ch".
(Get change_file_name from fname 117+) =
begin dot_pos < —1; slash_pos < —1; i + 1;
while (fnameli] # ") A (i < FILENAMESIZE —5) do
begin change_file_namel[i| + fnameli];

if fnameli] = ~.~ then dot_pos < i;
if fnameli] = “/° then slash_pos + i;
iner (i);
end;
if (dot_pos = —1)|(dot_pos < slash_pos) then
begin dot_pos < i; change_file_name|[dot_pos] < ~.~; change_file_name|dot_pos + 1] < “c~;
change_file_name[dot_pos + 2] + "h~; change_file_name[dot_pos + 3] < "";
end;
which_file_next < “z~; found_change < true;
end

This code is used in section 115%*.

8118 MFT changes for Berkeley UNIX SYSTEM-DEPENDENT CHANGES 411

118* Use all of fname for the style_file_name if there is a ~.~ in it; otherwise, add ~.mft".

(Get style_file_name from fname 118*) =

begin dot_pos < —1; slash_pos < —1; i + 1;

while (fnamel[i] # ") A (i < FILENAMESIZE — 5) do
begin style_file_nameli] < fnameli];
if fname[i] = ~. then dot_pos + i;
if fnamel[i] = */~ then slash_pos + i;
incr(i);
end;

if (dot_pos = —1)|(dot_pos < slash_pos) then
begin dot_pos + i; style_file_name[dot_pos] < ~.~; style_file_name[dot_pos + 1] + m~;
style_file_name[dot_pos + 2] < “£7; style_file_name[dot_pos + 3] + "t ~;
style_file_name[dot_pos + 4] + ~|,7;
end;

which_file_next < “z~; found_style < true;

end

This code is used in sections 115* and 115%*.

119%*

(Set up null change file 119*) =
begin change_file_name[l] < "/ ~; change_file_name[2] - “d"; change_file-name[3] + “e~;
change_file_name[4] < “v~; change_file_name[5] «+ ~/"; change_file_namel[6] < n~;
change_file_name[7] + "u”; change_file_name(8] +— "17; change_file_name[9] < "17;
change_file_name[10] + ",~;
end

This code is used in section 115%*.

120%*

(Set up plain style file 120*%) =

begin style_file_name[l] «+ "p~; style_file_name(2] < “17; style_file_name[3] + "a”;

style_file_name[4] < 17 style_file_name[5] < "n~; style_file_namel[6] < ~. "; style_file_namel[7] + m~;
style_file_name[8] < "£7; style_file_name[9] < "t ~; style_file_name[10] < ", 7;
end

This code is used in section 115%*.

412 SYSTEM-DEPENDENT CHANGES

121%*

(Handle flag argument in frname 121*) =
begin i < 2;
while (fnameli] # L") A (i < FILENAMESIZE —5) do
begin if fnameli] = "¢~ then
begin found_change < false;

if which_file_next # “s” then which_file_next <+ "¢~
end

else if fnamel[i]| = “s” then
begin found_style < false;

if which_file_next # "¢~ then which_file_next < “s~
end

else print_nl(Invalid, flag,,, xzchr[zord|[fnameli]]], .);
incr(i);
end;
end

This code is used in section 115%*.

122%*

(Print usage error message and quit 122*) =

end

This code is used in sections 115* and 115*.

MFT changes for Berkeley UNIX

begin print_In(Usage: mft file[.mf] [-cs],[changel.chl] [style[.mft]1]."); wexit(1);

§121

§123 MFT changes for Berkeley UNIX

123* Index.

INDEX 413

The following sections were changed by the change file: 2, 3, 4, 13, 17, 20, 21, 22, 24, 26, 28, 31, 112, 114, 115, 116, 117, 118,

119, 120, 121, 122, 123.

\!: O98.

\,: 106, 107.
\;: 101.

\?: 100.

\\: 106.

\ : 101.

\AM, etc: T73.
\frac: 105.

\input mftmac: 88.
\par: 108, 110.

\1: 100.
\2: 100.
\3: 100.
\4: 100.
\5: 100.
\6: 100.
\7: 99.

\8: 100.
\9: 108.
{F: 98.

abinary: 63, 70, 98, 101.

ampersand: 63, 70, 98, 102.

arge: 115%

argv: 115% 116*

as-is: 63, 65, 66, 70, 101.

ASCII code: 11.

ASCII code: 12, 13F 15, 27, 28F 36, 51, 72, 78,
80, 86, 91, 95.

b: 87.

backslash: 63, 65, 102.

banner: 2F¥ 112*

bbinary: 63, 65, 98, 100.

binary: 63, 66, 70, 98, 100.

bold: 63, 66, 71, 100.

boolean: 28%34, 37, 77, 87, 114F115*

break_out: 89, 90, 91.

buf size: 8, 27, 28% 29, 34, 36, 37, 38, 42, 55,
58, 96, 97.

buffer: 27, 28%29, 30, 37, 39, 41, 42, 43, 44, 46,
48, 49, 55, 58, 59, 61, 62, 64, 79, 80, 81, 82,
85, 96, 104, 105, 108.

byteemem: 50, 51, 52, 53, 58, 61, 62, 72, 93,
94, 106, 107.

byte_ptr: 52, 53, 54, 62, 72.

byte_start: 50, 51, 52, 53, 54, 55, 61, 62, 72,
93, 94, 106, 107.

c: 80.

carriage_return: 79, 85, 104, 108.

Change file ended...: 40, 42, 48.

Change file entry did not match: 49.

change_buffer: 36, 37, 38, 41, 42, 46, 49.

change_changing: 35, 42, 44, 48.

change_file: 3¥ 23, 247F 30, 34, 36, 39, 40, 42,
48, 115%

change_file_name: 24F114F117¥ 119%*

change_limit: 36, 37, 38, 41, 42, 46, 49.

changing: 30, 34, 35, 36, 38, 42, 44, 45, 49.

char: 13F 114F 115*

char_class: 17¥78, 79, 80, 81, 105, 107.

character set dependencies: 17¥79.

check_change: 42, 46.

chr: 13¥ 15, 17F 18.

class: 80, 81.

colon: 63, 65, 100.

command: 63, 65, 66, 70, 71, 100.

comment: 63, 71, 97, 108.

confusion: 32.

continue: 5, 38, 39.

copy: 96, 99, 105, 107, 108, 109.

cur_tok: 64, 72, 73, 75, 76, 80, 81, 99, 100, 101,
102, 103, 105, 106, 107, 111.

cur_type: 75, 76, 80, 81, 97, 98, 101, 106, 107,
108, 110, 111.

d: 91.

decr: 6, 28% 87, 91.

digit_class: 78, 79, 81, 105.

do_nothing: 6, 81, 98.

do_the_translation: 97, 112%*

done: 5, 38, 39, 80, 81, 87, 97, 107.

dot_pos: 115F¥ 116F 117F 118*

double_back: 63, 65, 101.

eitght_bits: 50, 75, 87.

else: 7.

emit: 81, 82, 85.

empty-buffer: 77, 80, 85, 97, 111.

end: 7.

end_line_class: 78, 79, 81.

end_of-file: 63, 85, 97.

end-of-line: 63, 76, 81, 97, 98, 101, 110, 111.

end-of MFT: 3¥*

endcases: 7.

endit: 63, 65, 66, 71, 98, 100, 101.

eof : 28%

eoln: 28%*

err_print: 29, 35, 39, 40, 42, 43, 48, 49, 83, 84, 111.

error: 28F% 29, 31*F

error-message: 9, 113.

erit: 5, 6, 37, 38, 42, 80, 91, 97.

414 INDEX

f: 28F

false: 28%¥ 35, 36, 37, 42, 44, 47, 85, 87, 88, 91,
97, 98, 111, 115F 121*

fatal_error: 31F 32, 33.

fatal_message: 9, 113.

file_name: 114F 115F 116*

FILENAMESIZE: 114*115%116% 117 118%121*

final_limit: 28*

first_loc: 96.

first_text_char: 13} 18.

flush: 22¥

flush_buffer: 87, 88, 91, 92, 97.

fname: 115% 116 117+ 118% 121*

found: 5, 58, 60, 61, 80, 81.

found_change: 115¥ 117F 121*

found_mf: 115F 116*

found_style: 115F 118F 121%*

get_line: 34, 45, 85.

gelnext: 75, 77, 80, 97, 101, 104, 105, 106,
107, 111.

getc: 28%*

greater_or_equal: 63, 70, 102.

h: 56, 58.

harmless_message: 9, 31¥112%113.

hash: 52, 55, 57, 60.

hash_size: 8, 55, 56, 57, 58, 59.

history: 9, 10, 31F 112¥ 113.

Hmm... n of the preceding...: 43.

i 14, 58, 72.

id_first: 55, 58, 59, 61, 62, 64, 80, 81, 108, 109.

id_loc: 55, 58, 59, 61, 62, 65, 80.

idk: 50, 51, 63, 64, 80, 111.

Incomplete string...: &3.

incr: 6, 28%39, 40, 42, 46, 47, 48, 59, 61, 62, 72,
80, 81, 82, 87, 89, 104, 108, 116F¥117*118F121*

indentation: 63, 81, 97.

initialize: 3F 112%*

Input line too long: 28%*

input_command: 63, 66, 103.

input_has_ended: 34, 42, 44, 46, 85.

input_in: 28F39, 40, 42, 46, 47, 48.
integer: 34, 42, 75, 86, 96, 97, 115*
internal: 63, 68, 69, 97, 106.

Invalid character...: 84.
invalid_class: 78, 79, 81.

isolated_classes: 178, 81.
j: 87.
Jump_out: 3% 31*

k: 27 3_7) @7 Q; @) 8_73 ﬂ) %a 9_4) %a 9_7
Knuth, Donald Ervin: 1.
I 29, 58.

last_text_char: 13F 18.

MFT changes for Berkeley UNIX 8123

left_bracket_class: 178, 79.

length: 52, 60, 95, 106.

less_or_equal: 63, 70, 102.

letter_class: 78, 79.

limit: 28%30, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48,
49, 79, 82, 85, 104, 108, 109, 110.

line: 30, 34, 35, 39, 40, 42, 44, 46, 47, 48, 49.

Line had to be broken: 92.

line_length: 8, 86, 87, 89, 91.

lines_dont_match: 37, 42.

link: 50, 51, 52, 60.

loc: 28%30, 34, 39, 43, 44, 45, 48, 49, 80, 81, 82,
85, 96, 104, 105, 108, 109, 110.

lookup: 55, 58, 64, 80.

loop: 6.

mark_error:

mark_fatal: 9, 31*

mark_harmless: 9, 92.

maz_bytes: 8, 51, 53, 58, 62, 93, 94.

maz_class: T8.

max_-names: 8, b1, 52, 62.

MF file ended...: 42.

mf_file: 3F23, 24% 30, 34, 36, 42, 46, 49.

mf_file_name: 24F 114F 116*

MF_INPUT_PATH: 24%*

MF_INPUT_PATH_BIT: 115%

9, 29.

mft: 115%

MFT: 3¥*

mft_comment: 63, 71, 97, 98, 111.
mftmac: 1, 88.

min_action_type: 63, 98.
min_suffix: 63, 106, 107.
min_symbolic_token: 63, 111.

n: 42, 95.

name_pointer: 52, 53, 58, 72, 74, 93, 94, 95.
name_ptr: 52, 53, 54, 58, 60, 62, 72.
new_line: 20729, 30, 31792, 112*
nil: 6.

no_change: 114%*

no_style: 114%*

not_equal: 63, 70, 102.

not_found: 5.

numeric_token: 63, 81, 97, 106, 107.
Only symbolic tokens...: 111.
oot: 89.

ootl: 89.

oot2: 89.

oot3: 89.

oot4: 89.

oots: 89.

op: 63, 65, 67, 100.
open_input: 24F 44.

§123 MFT changes for Berkeley UNIX

ord: 15.

other_line: 34, 35, 44, 49.

othercases: 7.

others: 7.

out: 89, 93, 94, 95, 96, 98, 104, 105, 106,
107, 108, 110.

out_buf: 86, 87, 88, 89, 90, 91, 92, 108, 109.

out_line: 86, 87, 88, 92.

out-mac_and_-name: 95, 100, 103, 106.

out_name: 94, 95, 101, 106, 107.

out_ptr: 86, 87, 88, 89, 91, 92, 97, 108, 109.

out_str: 93, 94, 97, 98, 102, 106.

out2: 89, 98, 99, 101, 105, 106, 107, 108.

outd: 89.

out{: 89, 108, 110.

outh5: 89, 103, 104, 105.

overflow: 33, 62.

p: 58, 93, 94, 95.

pass_digits: 80, 81.

pass_fraction: 80, 81.

path_join: 63, 65, 100.

per_cent: 87.

percent_class: 78, 79.

period_class: 78, 79, 81.

plain: 115%

prev_tok: 75, 80, 106, 107.

prev_type: 75, 80, 100, 106, 107.

prime_the_change_buffer: 38, 44, 48.

print: 20F 24F 29, 30, 317 92.

print_ln: 20F 30, 92, 112F 122%*

print_nl: 20F 28% 92, 113, 121*

print_pascal_string: 24%

prl: 64, 65, 70, 71.

pri0: 64, 65, 66, 67, 69, 70, 71.

pril: 64, 65, 66, 67, 68, 69, 70, 71.

pri2: 64, 66, 68, 69, 71.

prid: 64, 67, 68, 70, 71.

prilj: 64, 67, 68.

pri5: 64, 68.
pri6: 64, 68, 71.
pri7: 64, 70.

pr2: 64, 65, 66, 70, 71.

pr3: 64, 65, 66, 67, 69, 70, 71.
pr4: 64, 65, 66, 67, 69, 70, 71.
prd: 64, 65, 66, 67, 69, 70, 71.
pr6: 64, 65, 66, 67, 69, 70.
pr7: 64, 65, 66, 67, 69, 70, 71.
pr8: 64, 65, 66, 67, 69, 71.
pr9: 64, 66, 69, 70, 71.
pyth_sub: 63, 70, 98, 102.
read_ln: 28%

recomment: 63, 97, 110.

INDEX

reset: 24F 116¥

restart: 5, 45, 97, 98, 108, 109, 110, 111.
reswitch: 5, 97, 101, 106, 107, 110, 111.
return: 5, 6.

rewrite: 26¥ 116*
right_bracket_class: 78, 79.
right_paren_class: 78, 79.
scan_args: 247F 26F 115%*

semicolon: 63, 65, 101.

set_format: 63, 71, 97.

set_paths: 115%

sharp: 63, 71, 101, 106.
sixteen_bits: 50, 51, 55.

slash_pos: 115¥ 116¥ 117F 118*
Sorry, x capacity exceeded: 33.
space_class: 78, 79, 81.

special_tag: 63, 66, 97, 106, 107.
spotless: 9, 10, 31F 112F 113.

spri: 64.

spri0: 64.

spril: 64.

spri2: 64.

spri3: 64.

sprij: 64.

sprib: 64.

spri6: 64.

spri7: 64.

spr2: 64.

spr3: 64

spr4: 64.

spro: 64.

spr6: 64.

spr7: 64.

spr8: 64.

spr9: 64.

start_of-line: 77, 81, 85, 97, 98, 108, 111.
stdout: 20%*

string-class: 78, 79, 81.
string_-token: 63, 82, 97.

style_file: 3% 23, 24% 30, 34, 47, 115%*
style_file_name: 24F114* 118% 120%*
styling: 30, 34, 44, 45, 47.
switch: 80, 81, 83, 84.

415

system dependencies: 2¥3¥4F7, 13%16, 17F720F21%*

99% 24% 26% 28% 30, 79, 112% 113.
t: 94, 97.
tag: 63, 97, 106.
temp_line: 34, 35.
term_out: 20F 22%F
test_read_access: 24%
tex_file: 3% 25, 26} 87, 88.
tex_file_name: 26F 114F 116*

416 INDEX MFT changes for Berkeley UNIX 8123

TEX_INPUT_PATH: 24%

TEX_INPUT_PATH_BIT: 115%

text_char: 13} 15, 20%

text_file: 13F 23, 25, 28%*

This can’t happen: 32.

tr.amp: 73, 74, 102.

trge: 73, 74, 102.

trle: 73, 74, 102.

trone: 73, 74, 102.

trops: 73, 74, 102.

tr_quad: 73, 74, 97.

tr_sharp: 73, 74, 106.

tr_skip: 73, 74, 98.

translation: 72, 73, 94, 102.

true: 6, 28%34, 35, 37, 42, 44, 46, 49, 77, 85, 87,
91, 92, 97, 108, 111, 115%116F¥117F 118*

trl:. 72.

tr2: 712, 73.

tr3. 72.

try:. 72, 73.

tro: 12, 73.

ttrl: 72.

ttr2: 72.

ttr3: 72.

ttrf: 72.

ttry: 72.

type_name: 63, 70, 100.

uexit: 24% 31F 112F 122*

update_terminal: 22F 29.

user manual: 1.

verbatim: 63, 71, 97.

vgetc: 28%

Where is the match...: 39, 43, 48.

which_file_next: 115F116F117F118F121%

write: 207F 87, 88.

write_ln: 207F 87.

zchr: 15, 16, 17718, 30, 87, 92, 121*

xclause: 6.

zord: 15, 18, 28F 121*

§123 MFT changes for Berkeley UNIX NAMES OF THE SECTIONS 417

(Assign the default value to ilk[p] 63) Used in section 62.
(Branch on the class, scan the token; return directly if the token is special, or goto found if it needs to
be looked up 81 > Used in section 80.

(Bring in a new line of input; return if the file has ended 85) Used in section 80.

(Cases that translate primitive tokens 100, 101, 102, 103) Used in section 97.

(Change the translation format of tokens, and goto restart or reswitch 111) Used in section 97.

(Check that all changes have been read 49) Used in section 112*.

(Compare name p with current token, goto found if equal 61) Used in section 60.

(Compiler directives 4*) Used in section 3*.

(Compute the hash code h 59) Used in section 58.

(Compute the name location p 60) Used in section 58.

(Constants in the outer block 8) Used in section 3*.

(Copy the rest of the current input line to the output, then goto restart 109) Used in section 97.

(Decry the invalid character and goto switch 84) Used in section 81.

(Decry the missing string delimiter and goto switch 83) Used in section 82.

(Do special actions at the start of a line 98) Used in section 97.

(Enter a new name into the table at position p 62) Used in section 58.

(Error handling procedures 29, 31*) Used in section 3*.

(Get a string token and return 82) Used in section 81.

(Get change_file_name from fname 117*) Used in section 115*.

(Get mf_file_name from fname, and set up tex_file_name 116*) Used in section 115*.

(Get style_file_name from fname 118*) Used in sections 115* and 115*.

(Globals in the outer block 9, 15, 23, 25, 27, 34, 36, 51, 53, 55, 72, 74, 75, 77, 78, 86, 114*) Used in section 3*.

(Handle flag argument in fname 121*) Used in section 115*.

(If the current line starts with @y, report any discrepancies and return 43) Used in section 42.

(Initialize the input system 44) Used in section 112*.

(Local variables for initialization 14, 56) Used in section 3*.

(Move buffer and limit to change_buffer and change_limit 41) Used in sections 38 and 42.

(Print error location based on input buffer 30) Used in section 29.

(Print the job history 113) Used in sections 31* and 112*.

(Print usage error message and quit 122*) Used in sections 115* and 115*.

(Print warning message, break the line, return 92) Used in section 91.

(Read from change_file and maybe turn off changing 48) Used in section 45.

(Read from mf_file and maybe turn on changing 46) Used in section 45.

(Read from style_file and maybe turn off styling 47) Used in section 45.

(Scan the file name and output it in typewriter type 104) Used in section 103.

(Set initial values 10, 16, 17*, 18, 21*, 26*, 54, 57, 76, 79, 88, 90) Used in section 3*.

(Set up null change file 119*) Used in section 115*.

(Set up plain style file 120%) Used in section 115*.

(Skip over comment lines in the change file; return if end of file 39) Used in section 38.

(Skip to the next nonblank line; return if end of file 40) Used in section 38.

(Store all the primitives 65, 66, 67, 68, 69, 70, 71) Used in section 112%*.

(Store all the translations 73) Used in section 112*.

(Translate a comment and goto restart, unless there’s a | ... | segment 108) Used in section 97.

(Translate a numeric token or a fraction 105) Used in section 97.

(Translate a string token 99) Used in section 97.

(Translate a subscript 107) Used in section 106.

(Translate a tag and possible subscript 106) Used in section 97.

(Types in the outer block 12, 13*, 50, 52) Used in section 3*.

(Wind up a line of translation and goto restart, or finish a | ... | segment and goto reswitch 110)
Used in section 97.

(scan_args procedure 115%) Used in section 3*.

The MFT processor

(Version 2.0, October 1989)

Section
Introduction e 1
The character set 11
Input and output 19
Reporting errors to the User i 29
Inserting the changes 34
Data structures 50
Initializing the primitive tokens 63
Inputting the next token 75
Low-level output routines 86
Translation 97
The main Programt e 112
System-dependent changes 114
Index .o 123

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

Page
402
403
404
406
407
407
407
407
407
407
407
408
413

