
SerLib.Library

Garry Glendown

Version 3.0 Feb. 16th, 1991

Abstract

The Amiga shared library ‘SerLib.Li-
brary’ allows easy access to the serial
device by doing the device-specific ac-
cesses itself and providing an interface
for the programmer that is easy to use.

Preface 2

Preface

Today there are many people out in the world programming this nice machine,
and many succeed. But even of those who do succeed in writing programs
that keep the rules, probably everybody has problems with a couple pieces of
the system software. There have been many good approaches to solve those
problems, and there are quite a few good pieces of code you can use.

But until today, there hasn’t been any help for people that want easy access
to the serial port. So what do they do ? They take a language that includes
that easy access, and program their (mostly fine) ideas in it. But as many use
the thing called “GFA Basic” and “GFA Basic Compiler”, it tends to go from
bad to worse. Instead of having maybe 5 little bugs in their program, they
get those 5 little bugs plus approximately 10 big ones and a lot of unwanted
“features” that the compiler generates.

Some of the biggest deficiencies of GFA-programs are:
– no access using baud rates larger than 19200 Baud (HST-Modems can go up
to 38400 Baud)

– carrier detect via accessing the hardware (which breaks when using multiple
serial ports or internal modems)

– current versions of the interpreter and compiler are incompatible to OS 2.0
and Amiga 3000/3000T

Though the first two problems can be fixed by a simple workaround, only few
people know about it. But what should be done ? The best thing would be to
allow easy access to the serial.device, so that people can use their C-Compiler
again.

As a result of my work, here’s “serlib.library”, a library that includes all
routines needed for easy serial.device-access.

Garry Glendown, Bad Hersfeld, Feb. 16th, 91

Table of Contents 3

Table of Contents
1. Installing . 4
2. Using other languages . 6
3. The library functions . 7

3.1. AbortIOSer . 8
3.2. ChangeData . 9
3.3. CheckCD . 10
3.4. CheckIOSer . 11
3.5. ClearSer . 12
3.6. CloseSerial . 13
3.7. GetStatus . 14
3.8. OpenSerial . 15
3.9. ReadSer . 17
3.10. RecvSer . 18
3.11. SendSer . 19
3.12. SerBuffer . 20
3.13. WaitSer . 21
3.14. WriteSer . 22

4. Using serlib.library in programs . 23
5. Index . 24

1. Installing 4

1. Installing

The original SerLib.Library-Archive includes the following files:

File Function
Antrag.lzh An example program with some nice routines
LibSrcAztec.lzh Sources to create library stubs
LibSrcAztecL.lzh for Aztec C
makefile Makefile to compile mini.c and sert.c

mini A minimal terminal-program
mini.c with source
OberonSerLib.lzh Oberon linker lib and examples
serlib.autodocs Autdocs-file of serlib.library’s functions
serlib.doc The doc-file in pure ASCII
serlib.dvi This document as TEX DVI-file
serlib.fd FD-file for the library functions
serlib.h C-header-file.
serlib.i Same, for assembler
serlib.library The library
SerLib.Readme Short information file
serlibbase.h Internal definitions file for the library
serlibbase.i Same, assembler format
serlib_lvos.asm Library-offsets for assembler
serlib_SAS.lib Linker-stubs for SAS C 5.10a
sert Test-program for the library
sert.c including source

In order to install the library and additional files, copy the file “ser-
lib.library” to your LIBS:-directory. Users of MANX’ Aztec C will have
to create the Library-Stubs from the sources included in the two .lzh-Files.
(I don’t use Aztec anymore, and didn’t want to re-install it on my HD, sorry).
Anyway, it shouldn’t be a problem.

If you use Lattice/SAS C, you have to decide if you want to use pragmas to
call the library functions, or want to use the .lib-File. If you use pragmas, you
can forget about “serlib_SAS.lib” (created with V5.10a). Now, copy the .h-
and .i-Files to your include-directory. Copy the rest of the files to any place
you wish. That’s it already.

If you should have a modem attached to your computer, just start ‘sert’ or
‘mini’. The first is a small test-program that asks for some modem-help (AT$,
at least it does on my HST...), the second is a minimal terminal-program that
lets you input a line, sends the line to the modem, prints the modems answer,
etc. Nothing great, just a test program.

1. Installing 5

Take a look at the archive ‘antrag.lzh’, it includes an example program using
the the library. This program also has some nice routines built in for string
handling. Please note that handling has changed from the first release version
due to additional routines for asynchronous transfers. In order to add these
functions, programs using the function WaitSer() will most likely break using
version 3.0. Sorry... (take a look at the source of Antrag to see how to fix it,
just a minor workaround...)

As I released a couple different versions and revisions in a rather short time
(between Feb. 6th and Feb. 16th), here’s some comments on those versions:
Version 1.0 not released to the public, just a few testers.
Version 1.1 first release version, no known bugs; only had synchronous transfer.
Version 2.0 new version with asynchronous support. Due to large changes and

too little testing time, this version had some terrible bugs.
Version 2.1 most of the bigger bugs removed. Has some troubles when

Wait()ing.
Version 2.2 removed the WaitSer()-bug, ORed in wrong direction. This was

hoped to be the ‘final’ version.
Version 3.0 as I still have some strange behavior with the WaitSer()- Function,

some more testing revealed a MOVEM, that did too much and restored
an old value in D0 ... removed, hopefully this is the final version...
(until some new ideas come around the corner...)

The next version will probably include easy access to XPR-libraries, plus some
functions still missing now (any wishes ?). Also, I plan to add an extra chapter
with some examples on how to use the library...

2. Using other languages 6

2. Using other languages

Additionally to the original implementation, which includes code for calling
SerLib.Library from either C or Assembler, I’ve included some code from Frank
Schummertz, that demonstrates the usage of the library from Oberon. The
archive ‘OberonSerLib.lzh’ includes the files as I received them from Frank.

To use any of SerLib.Libraries routines, just link the file ‘serlib.objs’ to the
other objects. Check the example program for some hints on how to use the
library from Oberon. There shouldn’t be any problems, though.

3. The library functions 7

3. The library functions

Following are the document pages of the library’s functions, as are found in the
autodocs-file.

For Online-help, please take apart the autodoc-file supplied in the archive.

3.1. AbortIOSer 8

3.1. AbortIOSer

NAME

AbortIOSer – abort a previous SendSer() or RecvSer()

SYNOPSIS

AbortIOSer(serlibdata
A0

, which
D0:16

);

AbortIOSer(struct SerLibdata *, ULONG);

FUNCTION

AbortIOSer will perform an AbortIO() on a previous SendSer()- or
RecvSer()-Command.

By setting the appropriate bit in ‘which’, either the SendSer() or Recv-
Ser() is aborted.

INPUTS

serlibdata – Pointer returned by OpenSerial
which – Either ‘ABORT_SEND’ or ‘ABORT_RECV’

RESULT

None

SEE ALSO

OpenSerial(), SendSer(), RecvSer()

3.2. ChangeData 9

3.2. ChangeData

NAME

ChangeData – change the serial setup

SYNOPSIS

ChangeData(serlibdata
A0

, baud
D0

, bpc
D1:16

, stop
D2:16

, serFlags
D3:16

);

ChangeData(struct SerLibData *, ULONG, UWORD, UWORD,
UWORD);

FUNCTION

Changes the setup of the serial port.

INPUTS

serlibdata – Pointer returned by OpenSerial()

baud – the baud rate at which the port will be operated.
bpc – Bits per character (normally ‘8’).
stop – number of stop-bits (normally ‘1’, may be ‘0’ through ‘2’)
serFlags – Flags for the device. Entered directly in io_SerFlags

of the IOExtSer-structure. See ‘devices/serial.h’ for
values to enter.

RESULT

None

NOTES

No sanity-check of the values given to ChangeDate. So you can use a
baud rate of 27182 Baud, 20 Bits per character and 42 stop bits. There’s
no telling how serial.device will react to such a change-request...

SEE ALSO

OpenSerial(), devices/serial.h

3.3. CheckCD 10

3.3. CheckCD

NAME

CheckCD – check if the modem has a Carrier detected

SYNOPSIS

carrier
D0

= CheckCD(serlibdata
A0

)

ULONG CheckCD(struct SerLibData *);

FUNCTION

Checks if a carrier is detected.

INPUTS

serlibdata – pointer returned by OpenSerial()

RESULT

carrier – 0 if no carrier, 1 if carrier is detected

NOTES

If you need both carrier detect and number of bytes, a call to GetSta-

tus() and checking in the SerStatus-structure will be faster as both
SerBuffer() and CheckCD() call GetStatus() internally.

SEE ALSO

OpenSerial(), GetStatus(), serlib.h, devices/serial.h

3.4. CheckIOSer 11

3.4. CheckIOSer

NAME

CheckIOSer – check if a previous RecvSer is finished

SYNOPSIS

return
D0

= CheckIOSer(serlibdata
A0

);

BOOL CheckIOSer(struct SerLibdata *);

FUNCTION

CheckIOSer will perform a CheckIO() on a previous RecvSer()-
Command.

INPUTS

serlibdata – pointer returned by OpenSerial

RESULT

return – Return-value of CheckIO()-call.

SEE ALSO

OpenSerial(), SendSer(), RecvSer(), AbortIOSer()

3.5. ClearSer 12

3.5. ClearSer

NAME

ClearSer – Clear the serial buffer

SYNOPSIS

ClearSer(serlibdata
A0

)

ClearSer(struct SerLibData *);

FUNCTION

ClearSer empties out the serial receive buffer by doing a CMD_CLEAR.

INPUTS

serlibdata – Pointer returned by OpenSerial()

RESULT

None

SEE ALSO

OpenSerial()

3.6. CloseSerial 13

3.6. CloseSerial

NAME

CloseSerial – Close the serial.device

SYNOPSIS

CloseSerial(serlibdata
A0

)

CloseSerial(struct SerLibData *);

FUNCTION

After being finished, use this to close the device and free all memory
allocated.

INPUTS

serlibdata – Pointer returned by OpenSerial.

RESULT

None

NOTES

No sanity check, better not get the idea to give this one a Null- pointer!
If the SerLibData-structure should be trashed, it could lead to minor
problems, too!

SEE ALSO

OpenSerial(), serlib.h

3.7. GetStatus 14

3.7. GetStatus

NAME

GetStatus – get the Status data from the serial port

SYNOPSIS

GetStatus(serlibdata
A0

, serstatus
A1

)

GetStatus(struct SerLibData *, struct SerStatus *);

FUNCTION

Gets the status data from the serial port. Additionally, the number of
bytes in the system’s serial buffer are also returned in the SerStatus-
structure.

INPUTS

serlibdata – pointer returned by OpenSerial()

serstatus – address of a SerStatus-structure

RESULT

serstatus – filled structure

NOTES

As usual, no sanity check.

SEE ALSO

OpenSerial(), serlib.h, devices/serial.h

3.8. OpenSerial 15

3.8. OpenSerial

NAME

OpenSerial – Open the serial device for access through serlib.library

SYNOPSIS

serlibdata
D0

= OpenSerial(device
A0

, unit
D0:16

, baud
D1:16

, bpc
D2:16

, stop
D3:16

, serFlags
D4:16

)

struct SerLibData *OpenSerial(STRPTR, UWORD, ULONG,
UWORD, UWORD, UWORD);

FUNCTION

This routine attempts to open the serial.device for usage with ser-
lib.library.

INPUTS

device – the device to be opened. Normally “serial.device”.
Change when using internal modems or multiple line se-
rial cards.

unit – the unit to open. Normally ‘0’, other when using a mul-
tiple line serial card.

baud – the baud rate at which the port will be opened.
bpc – Bits per character (normally ‘8’).
stop – number of stop-bits (normally ‘1’, may be ‘0’ through ‘2’)
serFlags – Flags for opening the device. Entered directly in

io_SerFlags of the IOExtSer-structure. See ‘devi-
ces/serial.h’ for values to enter.

RESULT

serlibdata – pointer to the SerLibData-structure containing the pa-
ramteres for working with the port. This pointer will be
needed for every function call to serlib.library.

NOTES

No sanity-check of the values given to OpenSerial. So you can use a baud
rate of 27182 Baud, 20 Bits per character and 42 stop bits. There’s no
telling how serial.device will react to such an open-request...

3.8. OpenSerial 16

BUGS

Currently, the baud rate itself isn’t set, as the OpenDevice-call doesn’t
set it. Some later release will probably correct this. Until then, use the
ChangeData routine to actually set the baud rate needed.

SEE ALSO

CloseSerial(), serlib.h, serlibbase.h, devices/serial.h

3.9. ReadSer 17

3.9. ReadSer

NAME

ReadSer – read bytes from the serial port

SYNOPSIS

number
D0

= ReadSer(serlibdata
A0

, buffer
A1

, max
D0

)

ULONG ReadSer(struct SerLibdata *, STRPTR, ULONG);

FUNCTION

Upon calling, ReadSer first checks how many bytes there are still left to
be read. If 0, it will return right away. Otherwise, ReadSer will send a
CMD_READ to the serial device with IO_SIZE set to the number of bytes
unread (or ‘max’ if max is smaller) If you get a return value that is equal
to ‘max’, you should process the data received and then go back and get
the rest.

INPUTS

serlibdata – pointer returned by OpenSerial
buffer – pointer to a block of memory to be filled with data from

the serial port
max – size of the buffer. A maximum of ‘max’ bytes will be read.

RESULT

len – number of bytes read from the port.

NOTES

You might get in trouble if you set ‘max’ to zero..

SEE ALSO

OpenSerial()

3.10. RecvSer 18

3.10. RecvSer

NAME

RecvSer – read bytes from the serial port

SYNOPSIS

RecvSer(serlibdata
A0

, buffer
A1

, num
D0

)

RecvSer(struct SerLibdata *, STRPTR, ULONG);

FUNCTION

RecvSer will initiate a SendIO-call to the serial port, trying to receive
num bytes.

INPUTS

serlibdata – pointer returned by OpenSerial
buffer – pointer to a block of memory to be filled with data from

the serial port
max – size of the buffer. ‘num’ bytes will be read if the IORequest

isn’t aborted.

RESULT

None

NOTES

You might get in trouble if you set ‘max’ to zero..

SEE ALSO

OpenSerial(), ReadSer()

3.11. SendSer 19

3.11. SendSer

NAME

SendSer – Send a string to the serial port without waiting

SYNOPSIS

SendSer(serlibdata
A0

, buffer
A1

, len
D0

)

SendSer(struct SerLibData *, STRPTR, ULONG);

FUNCTION

SendSer takes a buffer pointer and sends the specified number of by-
tes to the serial port using the SendIO function, so it doesn’t wait for
completion of the command.

INPUTS

serlibdata – Pointer returned by OpenSerial()

buffer – Pointer to a memory block containing the data for the
serial port

len – number of bytes to be sent

RESULT

None

NOTES

No sanity check, as usual.

SEE ALSO

OpenSerial(), WriteSer()

3.12. SerBuffer 20

3.12. SerBuffer

NAME

SerBuffer – get the number of bytes still in the buffer

SYNOPSIS

result
D0

= SerBuffer(serlibdata
A0

)

ULONG SerBuffer(struct SerLibData *)

FUNCTION

Returns the number of bytes still in the system’s serial buffer.

INPUTS

serlibdata – pointer returned by OpenSerial()

RESULT

result – number of bytes in the buffer

NOTES

If you need both number of bytes and the carrier detect, a call to Get-

Status() and checking in the SerStatus-structure will be faster as both
SerBuffer() and CheckCD() call GetStatus() internally.

BUGS

Would be hard for this one to have any.

SEE ALSO

OpenSerial(), GetStatus(), serlib.h

3.13. WaitSer 21

3.13. WaitSer

NAME

WaitSer – wait for data from the serial port

SYNOPSIS

signal
D0

= WaitSer(serlibdata
A0

, mask
D0

)

ULONG WaitSer(struct SerLibData *, ULONG);

FUNCTION

Waits for a signal bit set. Waits for the one of the serial port, plus the
ones you specify (timer, break, etc.).

INPUTS

serlibdata – Pointer returned by OpenSerial()

mask – mask of signals waited for

RESULT

signal – set of signals that were active

NOTES

This function has changed slightly from release 1.1. It doesn’t do a
dummy-Read to the serial port any more, so in order to use it, add an
extra ‘RecvSer()’ before calling WaitSer().

3.14. WriteSer 22

3.14. WriteSer

NAME

WriteSer – Send a string to the serial port

SYNOPSIS

WriteSer(serlibdata
A0

, buffer
A1

, len
D0

)

WriteSer(struct SerLibData *, STRPTR, ULONG);

FUNCTION

WriteSer takes a buffer pointer and send the specified number of bytes
to the serial port.

INPUTS

serlibdata – Pointer returned by OpenSerial()

buffer – Pointer to a memory block containing the data for the
serial port

len – number of bytes to be sent

RESULT

None

NOTES

No sanity check, as usual.

SEE ALSO

OpenSerial()

4. Using serlib.library in programs 23

4. Using serlib.library in programs

SerLib.Library is Shareware. You may copy it on non-profit-basis as you
wish. Anyway, I do not consider the german PD-‘Distributors’ working on
‘non-profit’ basis (how can you make a living when working on non-profit ba-
sis?), so before selling SerLib on any disks, german dealers have to get written
permission from me.

After using SerLib.Library for a while, you have to register by sending me
the shareware fee of DM 20.– / US$ 15. This will get you a free copy of the
next version (including other programs finished at that time). (Places other
than Germany or the USA please add another DM/$ 5.– for additional shipping
costs).

When using SerLib.Library in a PD or Shareware-program, include both the
library and the file ‘SerLibLibrary.Readme’ with the program. Anyway, if
you do, I would appreciate a copy of the program (either via email or on disk).
Additionially, you have to register as I presume you find SerLib.Library very
useful!

Commercial programs using it need a special registration. Contact me for
further details.

Remember, supporting shareware authors helps to keep up the standards of
free and affordable software!

If you have problems or bug reports, need help or just want to send me the
shareware fee, use one of the addresses below:

from any country:
Garry Glendown
Güldene Kammer 35
W-6430 Bad Hersfeld
Germany

from the US & Canada:
Garry Glendown
Box R
APO NY 09141

Telephone: 06621-77923 (HST/V32bis), give me a yell for voice call...

eMail may be sent to any of the following addresses:
..cbmvax!cbmger!inside!garry
Garry@DGIHRZ01.BITNET
Garry@fulmin.zer.sub.org
Garry@INSIDER.zer
Garry Glendown @ 2:243/43.999 (Fido)

5. Index 24

5. Index

38400 Baud: 2.
AbortIOSer: 8.
Antrag.lzh: 4.
antrag.lzh: 5.
Assembler: 6.
asynchronous transfers: 5.
autodocs: 7.
Aztec C: 4.
C: 6.
carrier detect: 2.
ChangeData: 9.
CheckCD: 10.
CheckIOSer: 11.
ClearSer: 12.
CloseSerial: 13.
compiler: 2.
files: 4.
Frank Schummertz: 6.
Garry Glendown: 23.
german dealers: 23.
GetStatus: 14.
GFA Basic: 2.
handling: 5.
hardware: 2.
HST: 2, 4.
install: 4.
internal modems: 2.
Lattice/SAS C: 4.

library functions: 7.
Library-Stubs: 4.
MANX: 4.
mini: 4.
modem: 4.
multiple serial ports: 2.
Oberon: 6.
OpenSerial: 15.
pragmas: 4.
ReadSer: 17.
RecvSer: 18.
register: 23.
revisions: 5.
rules: 2.
SendIO: 18, 19.
SendSer: 19.
SerBuffer: 20.
serial port: 2.
sert: 4.
Shareware: 23.
shareware fee: 23.
string handling: 5.
system software: 2.
versions: 5.
WaitSer: 21.
workaround: 2.
WriteSer: 22.

