202 INTRODUCTION GF to PK changes C g1

1¥ Introduction. This program reads a GF file and packs it into a PK file. PK files are significantly
smaller than GF files, and they are much easier to interpret. This program is meant to be the bridge between
METAFONT and DVI drivers that read PX files. Here are some statistics comparing typical input and output
file sizes:

Font Resolution GF size PK size Reduction factor
cmrl0 300 13200 5484 42%
cmrl0 360 15342 6496 42%
cmrl0 432 18120 7808 43%
cmrl0 511 21020 9440 45%
cmrl0 622 24880 11492 46%
cmrl0 746 29464 13912 47%
cminch 300 48764 22076 45%

It is hoped that the simplicity and small size of the PX files will make them widely accepted.

The PK format was designed and implemented by Tomas Rokicki during the summer of 1985. This program
borrows a few routines from GFtoPXL by Arthur Samuel.

The banner string defined here should be changed whenever GFtoPK gets modified. The preamble_comment
macro (near the end of the program) should be changed too.

define banner = “This_is GFtoPK, C Version; 2.3 {printed when the program starts }

4% The binary input comes from gf.file, and the output font is written on pk_file. All text output is written
on Pascal’s standard output file. The term print is used instead of write when this program writes on output,
so that all such output could easily be redirected if desired. Since the terminal output is really not very
interesting, it is produced only when the -v command line flag is presented.

define term_out = stdout {standard output }
define print(#) =
if verbose then write(term_out, #)
define print_ln(#) =
if verbose then write_ln(term_out,#)
program GFtoPK;
const (Constants in the outer block 6)
type (Types in the outer block 9)
var (Globals in the outer block 11)
procedure initialize; { this procedure gets things started properly }
var i: integer; {loop index for initializations }
begin set_paths(GF_FILE_PATH_BIT);
(Set initial values 12);
end;

5% This module is deleted, because it is only useful for a non-local goto, which we can’t use in C.

8% If the GF file is badly malformed, the whole process must be aborted; GFtoPK will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump_out
has been introduced. This procedure, which simply transfers control to the label final_end at the end of the
program, contains the only non-local goto statement in GFtoPX.

define abort (#) =
begin verbose < true; print_ln(#); uexit(1);
end

define bad_gf (#) = abort(Bad, GF file: ", #, ! ")

89 GF to PK changes C INPUT AND OUTPUT FOR BINARY FILES 203

37¥ Input and output for binary files. We have seen that a GF file is a sequence of 8-bit bytes. The
bytes appear physically in what is called a ‘packed file of 0 .. 255’ in Pascal lingo. The PK file is also a
sequence of 8-bit bytes.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files, even though most of the program in this section of GFtoPK is
written in standard Pascal.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.

(Types in the outer block 9) +=
eight_bits = 0 .. 255; { unsigned one-byte quantity }
byte_file = packed file of eight_bits; { files that contain binary data }
UNIX_file.name = packed array [l .. FILENAMESIZE] of char;

38* The program deals with two binary file variables: gf file is the input file that we are translating into
PX format, to be written on pk_file.

{ Globals in the outer block 11) +=

gf-file: byte_file; {the stuff we are GFtoPKing }

pk_file: byte_file; {the stuff we have GFtoPKed }

verbose: boolean; { chatter about the conversion? }

pk_arg: integer; { where we may be looking for the name of the pk_file }
gf-name: UNIX_file_name;

204 INPUT AND OUTPUT FOR BINARY FILES GF to PK changes C 839

39¥% In C, we use the external test_read_access procedure, which also does path searching based on the
user’s environment or the default path. In the course of this routine we also check the command line for the
-v flag, and make other checks to see that it is worth running this program at all.

define usage = abort(Usage: gftopk, [-v] <gf file> [pk,file].")

procedure open_gf-file; { prepares to read packed bytes in gf_file }
var j: integer;
begin verbose <« false; pk_arg < 3;
if (argc < 2)V (argc > 4) then usage;
argu (1, gf-name);
if gf-name[l] = zchr["-"] then
begin if gf-name|[2] = zchr["v"] then
begin verbose < true; argv(2, gf-name); incr(pk-arg)
end
else usage;
end;
print_In(banner);
if test_read_access(gf-name, GFFILEPATH) then
begin reset (gf-file, gf-name)
end
else begin print_pascal_string (gf-name); abort(”: GF_file not,found. ");
end;
gf-loc < 0;
end;
procedure open_pk_file; { prepares to write packed bytes in pk_file }
var j, k: integer; pk_name: UNIX_file_name;
begin if argc = pk_arg then argv(argc — 1, pk_name)
else begin j <+ FILENAMESIZE; k + 1;
while (j > 1) A (gf-name[j] # xzchr["/"]) do
decr(j);
if gf-name[j] = zchr["/"] then incr(j); {to avoid picking up the / }
print (zchr["["]); print(zchr[","]);
while (j < FILENAMESIZE) N\ (—=(gf-name|[j] = zchr["."]) V (gf-name[j] = zchr["y"])) do
begin pk_name[k] < gf-namel[j]; print(zchr[zord[gf-namel[j]]]); incr(j); incr (k)
end;
while (j < FILENAMESIZE) A —=(gf-name[j] = zchr["g"]) do
begin if gf-name[j] = zchr[","] then abort(No, gf ~"Lin suffix!”);
pk_name[k] < gf-namel[j]; print(zchr[zord|[gf-namelj]]]); incr(k); incr(j)

end;
print (zchr[zord [gf-name[j]]]); incr(j); print(zchr|zord|gf-name[j]]]); print(zchr["u"]);
print (zchr["="]); print(zchr[">"]); print(zchr["L"]); pk-namelk] < xzchr["p"]; incr(k);

pk_name[k] zchr["k"]; incr(k); pk-namelk] < zchr[","];
for j < 1 to k do print (zchr|[zord [pk-name[j]]]);
print_In(zchr["1"])
end;

rewrite (pk_file, pk_name); pk_-loc < 0; pk_open + true

end;

844 GF to PK changes C INPUT AND OUTPUT FOR BINARY FILES

44%* Output is handled through putbyte which is supplied by web2c.
define pk_byte(#) =
begin putbyte (#, pk_file); incr(pk_loc)
end
procedure pk_halfword (a : integer);
begin if a < 0 then a < a + 65536;
putbyte (a div 256, pk_file); putbyte (a mod 256, pk_file); pk_loc + pk_loc + 2;
end;
procedure pk_three_bytes(a : integer);
begin putbyte (a div 65536 mod 256, pk_file); putbyte(a div 256 mod 256, pk_file);
putbyte (a mod 256, pk_file); pk_loc < pk_loc + 3;
end;
procedure pk_word (a : integer);
var b: integer;
begin if a < 0 then
begin a < a + 10000000000 ; a < a + 10000000000 ; b < 128 4+ a div 16777216;
end
else b + a div 16777216;
putbyte (b, pk_file); putbyte(a div 65536 mod 256, pk_file); putbyte(a div 256 mod 256, pk_file);
putbyte (a mod 256, pk_file); pk_loc < pk_loc + 4;
end;
procedure pk_nyb(a : integer);
begin if bit_weight = 16 then
begin output_byte < a x 16; bit_weight < 1;
end
else begin pk_byte (output_byte + a); bit_weight + 16;
end;
end;

205

46* Finally we come to the routines that are used for random access of the gf_file. To correctly find and
read the postamble of the file, we need two routines, one to find the length of the gf_file, and one to position

the gf_file. We assume that the first byte of the file is numbered zero.

Such routines are, of course, highly system dependent. They are implemented here in terms of two
assumed system routines called set_pos and cur_pos. The call set_pos(f,n) moves to item n in file f, unless
n is negative or larger than the total number of items in f; in the latter case, set_pos(f,n) moves to the end
of file f. The call cur_pos(f) gives the total number of items in f, if eof (f) is true; we use cur_pos only in

such a situation.
define find_gf_length = gf_-len < gf-length

function gf_length: integer;
begin checked_fseck (gf-file,0,2); gf-length <+ ftell(gf-file);
end;
procedure move_to_byte(n : integer);
begin checked_fseck (gf-file,n,0);
end;

206 READING THE GENERIC FONT FILE GF to PK changes C 848

51* Reading the generic font file. There are two major procedures in this program that do all of the
work. The first is convert_gf file, which interprets the GF commands and puts row counts into the row array.
The second, which we only anticipate at the moment, actually packs the row counts into nybbles and writes
them to the packed file.

(Packing procedures 62);
procedure convert_gf-file;
var i,j, k: integer; { general purpose indices }
gf-com: integer; {current gf command }
(Locals to convert_gf-file 58*)
begin open_gf_file;
if gf-byte # pre then bad_gf ("First_byte,is not preamble’);
if gf-byte # gf-id_byte then bad_gf ("Identification byte_ is,incorrect”);
(Find and interpret postamble 60);
move_to_byte (2); open_pk_file; (Write preamble 81);
repeat gf com < gf-byte; do_the_rows < false;
case gf-com of
boc, bocl : (Interpret character 54);
(Specials and no-op cases 53);

post: ; {we will actually do the work for this one later }
othercases bad_gf (“Unexpected,,”, gf-com : 1, " command, between characters”)
endcases;

until gf-com = post;
(Write postamble 84);
end;

52¥% We need a few easy macros to expand some case statements:

define four_cases(#) = #,#+ 1, #+ 2 #+3

define sizteen_cases(#) = four_cases (#), four_cases (# + 4), four_cases (# + 8), four_cases (# + 12)

define sizty_four_cases(#) = sizteen_cases (#), sizteen_cases (# + 16), sizteen_cases (# + 32),
sizteen_cases (# + 48)

define thirty_seven_cases(#) = sizteen_cases (#), sizteen_cases (# + 16), four_cases (# + 32), # + 36

define new_row-64 = new_row-0 + 64

define new_row_-128 = new_-row-64 + 64

857 GF to PK changes C READING THE GENERIC FONT FILE 207

57*% Now we have the procedure that decodes the various commands and puts counts into the row array.
This would be a trivial procedure, except for the paint_0 command. Because the paint_0 command exists,
it is possible to have a sequence like paint 42, paint_0, paint 38, paint_0, paint_0, paint_0, paint 33, skip_0.
This would be an entirely empty row, but if we left the zeros in the row array, it would be difficult to
recognize the row as empty.

This type of situation probably would never occur in practice, but it is defined by the GF format, so we
must be able to handle it. The extra code is really quite simple, just difficult to understand; and it does not
cut down the speed appreciably. Our goal is this: to collapse sequences like paint 42, paint_0, paint 32 to a
single count of 74, and to insure that the last count of a row is a black count rather than a white count. A
buffer variable extra, and two state flags, on and state, enable us to accomplish this.

The on variable is essentially the paint_switch described in the GF description. If it is true, then we are
currently painting black pixels. The extra variable holds a count that is about to be placed into the row
array. We hold it in this array until we get a paint command of the opposite color that is greater than 0. If
we get a paint_0 command, then the state flag is turned on, indicating that the next count we receive can
be added to the extra variable as it is the same color.

(Convert character to packed form 57+) =
begin bad < false; row_ptr < 2; on < false; extra < 0; state < true;
repeat gf-com < gf-byte;
case gf_com of
(Cases for paint commands 59);
four_cases (skip0): begin i + 0;
for j < 1 to gf-com — skip0 do i < i * 256 + gf-byte;
if on = state then put_in_rows(extra);
for j < 0to i do put_in_rows(end_of-row);
on < false; extra < 0; state < true;
end;
sixty_four_cases (new_row-0): do_the_rows < true;
sixty_four_cases (new_row_64): do_the_rows < true;
thirty_seven_cases (new_row_128): do_the_rows < true;
(Specials and no_op cases 53);
eoc: begin if on = state then put_in_rows(extra);
if (row_ptr > 2) A (row[row_ptr — 1] # end-of-row) then put_in_rows(end_of-row);
put_in_rows (end_of-char);
if bad then abort(Ran out of_ internal memory, for row counts!");
pack_and_send_character; status|gf-ch-mod_256] < sent;
if pk_loc # pred_pk_loc then abort(Internal error while writing character!");
end;
othercases bad_gf (“Unexpected,,”, gf-com : 1, " ,character in character definition’);
endcases;
if do_the_rows then
begin do_the_rows < false;
if on = state then put_in_rows(extra);
put_in_rows (end_of-row); on + true; extra < gf-com — new_row-0; state + false;
end;
until gf com = eoc;
end

This code is used in section 54.

208 READING THE GENERIC FONT FILE GF to PK changes C 858

58% A few more locals used above and below:

(Locals to convert_gf-file 58*) =

do_the_rows: boolean;

on: boolean; {indicates whether we are white or black }

state: boolean; {a state variable—is the next count the same race as the one in the extra buffer? }
extra: integer; {where we pool our counts }

bad: boolean; {did we run out of space? }

See also section 61.

This code is used in section 51%*.

§62 GF to PK changes C CONVERTING THE COUNTS TO PACKED FORMAT 209

82¥ Of course, we need an array to hold the comment.

(Globals in the outer block 11) +=
comment: packed array [l .. comm_length + 1] of char;

83* (Set initial values 12) +=
vstrepy (comment + 1, preamble_comment);

86* Finally, the main program.
begin initialize; convert_gf-file; (Check for un-rasterized locaters 85);

print_in(gf-len : 1, " bytes packed to, ", pk_loc : 1, " bytes. ");
end.

210 INDEX GF to PK changes C 889

89*% Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

The following sections were changed by the change file: 1, 4, 5, 8, 37, 38, 39, 44, 46, 51, 52, 57, 58, 82, 83, 86, 89.

a: 42 ds: 18, 23.

abort: 8% 39% 57* dz: 16, 19, 32, 48, 60, 71, 72, 73, T4.
all 223’s: 60. dy: 16, 19, 32, 48, 60, 71, 72.

arge: 39% dyn_f: 28, 29, 30, 31, 32, 35, 36, 48, 62, 68,
argv: 39%F 69, 70, 71, 75.

ASCII code: 9, 11. eight_bits: 37F 42.

b: 42, 44%* else: 3.

b_comp_size: 68, 70. end: 3.

backpointers: 19. end_of char: 48, 50, 57763, 64, 66, 68, 75, 76.
bad: 56, 57F 58%* end_of_-row: 48, 50, 57¥63, 64, 66, 67.
Bad GF file: &% endcases: 3.

bad_gf: 8*42, 51% 54, 56, 57* 60. coc: 14, 16, 17, 18, 57*

banner: 1F 39* eof : 42, 46%*

bit_weight: 44F 45, 75. extra: 57F58%59, 63, 65, 66, 67.
black: 15, 16. false: 39%41, 51% 57%59, 67, T6.

boc: 14, 16, 17, 18, 19, 51* 54. FILENAMESIZE: 37* 39*

bocl: 16, 17, 51* final_end: 8%

boolean: 38F 40, 58% 70, 77. find_gf-length: 467 60.

buff: 64, 65, 67, 76, 80. First byte is not preamble: 51*
byte is not post: 60. first_.on: 68, 70, 71.

byte_file: 37F 38% first_text_char: 10, 13.

c: 42 flag: 32.

cc: 32. flag_byte: 70, 71, 72, 73, 74.

char: 10, 37F 82%* four_cases: 52F 53, 57*

char_loc: 16, 17, 19, 60. from_length: 81.

char_locO: 16, 17, 60. ftell: 46%F

check sum: 18. Fuchs, David Raymond: 20.
check_sum: 60, 81, 87. get_nyb: 30.

checked_fseek: 46* gf-byte: 42, 51F%53, 54, 57F59, 60, 81.
Chinese characters: 19. gf-ch: 54, 55, 60, 71, 72, 73, 74.

chr: 10, 11, 13. gf-ch-mod_256: 54, 55, 57¥71, 72, 73, 74.
comm_length: 81, 82% gf-com: 51F%53, 54, 57F 59, 60.
comment: 81, 82F 83* gf-file: 4% 38F39F40, 41, 42, 46F 47, 48.
comp_size: 68, 69, 71, 72, 73, 74, T1. GF_FILE.PATH.BIT: 4*
convert_gf-file: 51% 55, 86* gf-id_byte: 16, 51F 60.

count: 76, 77, 80. gf-len: 46F 47, 60, 86*

cs: 18, 23. gf-length: 46%*

cur_pos: 46%* gf-loc: 39F 40, 42.

d: 42. gf-name: 38F 39%F

d_print_ln: 2, 54, 63, 68. gf-signed_quad: 42, 53, 54, 60.
debugging: 2. GFFILEPATH: 39*

decr: 7, 30, 39% 60, 63, 69, 76, 81. GFtoPK: 4%

delm: 16. h_bit: 65, 67, 76, 80.

del.n: 16. h-mag: 60, 87.

deriv: 68, 69, 70. height: 31, 63, 68, 70, 71, 72, 73, 74.
design size: 18. hoff: 32, 34.

design_size: 60, 81, 87. hppp: 18, 23, 60, 61, 81.

dm: 16, 32. i 4% 30, 51* 62, 8T.

do_the_rows: 51F 57* 58* ID byte is wrong: 60.

889 GF to PK changes C INDEX 211

Identification byte incorrect: 51% pk_byte: 44F53, 72, 73, 74, 75, 76, 80, 81, 84.

incr: 7, 30, 39F 42, 44% 56, 63, 64, 66, 67, 68, pk_file: 4F 38} 39F 40, 41, 447 48, 60.
69, 75, 80, 81. pk_halfword: 44F 74.

initialize: 47F 86F pk_id: 24, 81.

integer: 4730, 38%F 39740, 42, 44745, 46% 47, 48, pk_loc: 39740, 44F¥57F72, 73, T4, 84, 86*
51¥55, 58%61, 62, 65, 70, 77, 78, 87. pk_name: 39%*

Internal error: 57% pk_no_op: 23, 24, 84.

J: 30, 39F 517 62. pk_nyb: 44F 75.

Japanese characters: 19. pk_open: 39F 40, 41.

jump_out: 8¥ pk_packed_-num: 30.

k: 51F 62. pk_post: 23, 24, 84.

Knuth, Donald Ervin: 29. pk_pre: 23, 24, 81.

last_text_char: 10, 13. pk_three_bytes: 44F 73, 4.

line_length: 6. pk_word: 44F 53, 72, 81.

located: 48, 60, 85. pk_xxxl: 23, 24, 53.

Locator...already found: 60. pk_yyy: 23, 24, 53.

maz_m: 16, 18, 48, 54, 55, 63. pl: 32.

maz-n: 16, 18, 48, 54, 55, 63. post: 14, 16, 17, 18, 20, 517 60.

maz_new_row: 17. post pointer is wrong: 60.

maz_row: 6, 48, 56. post_loc: 60, 61.

mazx_2: 75, 77. post_post: 16, 17, 18, 20, 60.

min-m: 16, 18, 48, 54, 55, 63. power: 78, 79, 80.

min_n: 16, 18, 48, 54, 55, 63. pre: 14, 16, 17, 51%*

missing raster information: 85. preamble_comment: 1F 81, 83*

move_to_byte: 46F 517 60. pred_pk_loc: 55, 57F 72, 73, 74.

new_row: 56. print: 4F 397F 81.

new_row_0: 16, 17, 52¥ 57* print_ln: 2, 47 8% 39¥60, 81, 85, 86*

new-row-1: 16. print_pascal_string: 39%

new_row_128: 52F 57* proofing: 19.

new-row-164: 16. put_count: 64, 67.

new_row_64: 52F 57* put_in_rows: 56, 5TF 59.

no character locator...: b54. put_ptr: 64, 65.

no_op: 16, 17, 19, 53. putbyte: 44%F

0dd aspect ratio: 60. q: 61.

on: b57F58F59, 70, 76, 80. r_count: 76, T7.

open_gf-file: 39F 51%F rii: 76, T7.

open_pk_file: 39F 51%* roon: 76, 77.

ord: 11. Ran out of memory: 57%

oriental characters: 19. read: 42.

othercases: 3. repeat_count: 30.

others: 3. repeat_flag: 64, 65, 66, 76, 80.

output: 4% reset: 39¥

output_byte: 44% 45, 75. rewrite: 39¥

p_bit: 76, 77, 80. Rokicki, Tomas Gerhard Paul: 1*

pack_and_send_character: 55, 57F 62, 65. round: 60.

paint: 56, 57F row: 6, 48, 51F 55, 56, 57F 63, 64, 65, 66, 67,

paint_switch: 15, 16, 57* 68, 69, 75, 76, 80.

paint_0: 16, 17, 57F 59. row_ptr: 55, 56, 57F63, 64, 66, 67.

paintl: 16, 17, 59. s_count: 76, 77.

paint2: 16. s_t: 76, T17.

paint3: 16. s_on: 76, 77.

pk_arg: ij" 39% Samuel, Arthur Lee: 1%

212 INDEX GF to PK changes C 889

scaled: 16, 18, 19, 23.
sent: 48, 57*
set_paths: 4%

set_pos: 46%F
sizteen_cases: 5H2¥

sizty_four_cases: 52F 57F 59.

skip: 56.

skip_0: 5T*

skip0: 16, 17, 57*
skip1: 16, 17.
skip2: 16.

skip3: 16.

state: 5T¥58F59, 64, 67, 70, 76, 80.
status: 48, 49, 54, 57¥ 60, 85.
stdout: 4%

system dependencies: 3, 810, 20, 37742, 46} 88.
term_out: 4%F

test_read_access: 39¥

text_char: 10, 11.

text_file: 10.

tfm: 32, 33, 36.

tfm_width: 48, 60, 71, 72, 73, 74.
thirty_seven_cases: 52F 57*

true: 8% 39% 56, 5T* 64, 67, T6.
uerit: 8%F

undefined_commands: 17.
Unexpected command: 517 60.
Unexpected end of file: 42.
UNIX_file_name: 37F 38F 39*
usage: 39%*

verbose: 4F 8F 38F 39*

virgin: 48, 49, 54, 60.

voff: 32, 34.

uppp: 18, 23, 60, 61, 81.
vstrepy: 83F

white: 16.
width: 31, 63, 66, 67, 68, 70, 71, 72, 73, 74, 76, 80.
write: 4%

write_ln: 4%F

z_offset: 63, 70, 71, 72, 73, 74.
zchr: 11, 12, 13, 397 81.

zord: 11, 13, 397 81.

zxel: 16, 17, 53.

rxr?2: 16.
rzxzd: 16.
zxxrs4: 16.

yoffset: 63, 70, 71, 72, 73, T4.
yyy: 16, 17, 19, 23, 53.

889 GF to PK changes C NAMES OF THE SECTIONS

Calculate dyn_f and packed size and write character 68) Used in section 62.
Cases for paint commands 59) Used in section 57*.

Check for un-rasterized locaters 85) Used in section 86*.
Constants in the outer block 6) Used in section 4*.

Convert character to packed form 57*) Used in section 54.
Convert row-list to glyph-list 64) Used in section 62.

Find and interpret postamble 60) Used in section 51*.

Globals in the outer block 11, 38*, 40, 45, 47, 48, 55, 78, 82*, 87) Used in section 4*.
Interpret character 54) Used in section 51*.

Locals to convert_gf-file 58* 61) Used in section 51*.

Locals to pack_and_send_character 65,70, 77) Used in section 62.
Packing procedures 62) Used in section 51*.

Process count for best dyn_f value 69) Used in section 68.
Reformat count list 67) Used in section 64.

Scan for bounding box 63) Used in section 62.

Send bit map 76) Used in section 68.

Send compressed format 75) Used in section 68.

Send one row by bits 80) Used in section 76.

Set initial values 12, 13, 41, 49, 79, 83*) Used in section 4*.

Skip over repeated rows 66) Used in section 64.

Specials and no_op cases 53) Used in sections 51*, 57*, and 60.
Types in the outer block 9, 10, 37*) Used in section 4*.

Write character preamble 71) Used in section 68.

Write long character preamble 72) Used in section 71.

Write one-byte short character preamble 73) Used in section 71.
Write postamble 84) Used in section 51*.

Write preamble 81) Used in section 51*.

Write two-byte short character preamble 74) Used in section 71.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

213

The GFtoPK processor

(Version 2.3, 29 July 1990)

Section
Introduction 1
The character set 9
Generic font file format 14
Packed file format 21
Input and output for binary files 37
Plan of attack 48
Reading the generic font file o1
Converting the counts to packed format 62
System-dependent changes 88
deX .o 89

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TgX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

Page
202
203
203
203
203
206
206
209
210
210

