
CyberCron

CyberCron ii

COLLABORATORS

TITLE :

CyberCron

ACTION NAME DATE SIGNATURE

WRITTEN BY January 5, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

CyberCron iii

Contents

1 CyberCron 1

1.1 CyberCron documentation . 1

1.2 Legal Mumbo Jumbo . 1

1.3 Supplied Files . 2

1.4 What is a cron? . 2

1.5 Why another cron for the Amiga? . 3

1.6 Starting CyberCron . 4

1.7 The »CronTab« command line argument . 4

1.8 The »LogFile« command line argument . 5

1.9 The »SendMail« command line argument . 5

1.10 The »DefStack« command line argument . 6

1.11 The »DefPri« command line argument . 6

1.12 The »CronPri« command line argument . 7

1.13 The »PortName« command line argument . 7

1.14 Creating a crontab file . 7

1.15 The »:NAME« event line option . 10

1.16 The input redirection event line option . 10

1.17 The output redirection event line option . 10

1.18 The error redirection event line option . 10

1.19 The »:MAILUSER« event line option . 11

1.20 The »:EXECONCE« event line option . 11

1.21 The »:OBEYQUEUE« event line option . 11

1.22 The »:NOLOG« event line option . 12

1.23 The »:REXX« event line option . 12

1.24 The »:STACK« event line option . 13

1.25 The »:PRI« event line option . 13

1.26 The »:CUSTOMSH« event line option . 13

1.27 The »:SYSSH« event line option . 14

1.28 CyberCron as an ARexx Function Host . 14

1.29 The »SHUTDOWN« ARexx command . 15

CyberCron iv

1.30 The »VERSION« ARexx command . 16

1.31 The »SUSPEND« ARexx command . 16

1.32 The »RESUME« ARexx command . 16

1.33 The »NEW_EVENT_FILE« ARexx command . 17

1.34 The »CLOSE_EVENT_FILE« ARexx command . 17

1.35 The »NEW_LOG_FILE« ARexx command . 17

1.36 The »CLOSE_LOG_FILE« ARexx command . 18

1.37 The »SHOW_STATUS« ARexx command . 18

1.38 The »PURGE_REXX_EVENTS« ARexx command . 19

1.39 The »ADD_EVENT« ARexx command . 19

1.40 The »DELETE_REXX_EVENT« ARexx command . 19

1.41 The »DELETE_EVENT« ARexx command . 20

1.42 The »LIST_EVENTS« ARexx command . 20

1.43 The »SHOW_EVENT« ARexx command . 20

1.44 The »SET_QUEUE_MAX« ARexx command . 21

1.45 The »GET_QUEUE_MAX« ARexx command . 21

1.46 The »EVENT_NEXT_EXEC« ARexx command . 22

1.47 The »NEXT_EVENT_TO_EXEC« ARexx command . 22

1.48 The »EXPAND_SSSC« ARexx command . 23

1.49 The »SSSC_TO_ASCII« ARexx command . 24

1.50 How job queues work in CyberCron . 25

1.51 The internal naming scheme used by CyberCron . 25

1.52 How to make CyberCron speak your language . 26

1.53 The history of CyberCron . 27

1.54 Changes in version 1.2 of CyberCron . 27

1.55 Changes in version 1.3 of CyberCron . 28

1.56 Changes in version 1.4 of CyberCron . 28

1.57 Changes in version 1.5 of CyberCron . 30

1.58 Credits . 31

1.59 Contacting the author . 32

1.60 The use of »OPTIONS RESULTS« in an ARexx script . 32

1.61 What file notification does under Workbench 2.04 or greater . 33

1.62 NazCron . 33

1.63 The »at« command . 33

1.64 The »Batch« command . 34

1.65 The Commodore PIPE: device . 34

1.66 AMIGA User Interface Style Guide . 34

1.67 System Creation . 35

CyberCron 1 / 35

Chapter 1

CyberCron

1.1 CyberCron documentation

CyberCron

Copyright © 1992 by Christopher A. Wichura
All rights reserved.

Legal Mumbo Jumbo

Supplied Files

What is a cron?

Why another cron for the Amiga?

Starting CyberCron

Creating a crontab file

CyberCron as an ARexx Function Host

How job queues work in CyberCron

The internal naming scheme used by CyberCron

How to make CyberCron speak your language

The revision history of CyberCron

Credits

Contacting the author

1.2 Legal Mumbo Jumbo

CyberCron is not in the public domain. All source files, along with the

CyberCron 2 / 35

resulting executable, are copyright by C. Wichura. You may not sell
CyberCron. The only allowed charge that may be placed on CyberCron is for
media and/or mailing costs.

CyberCron may be freely redistributed via BBSs, InterNet/Usenet, and disk
libraries such as Fred Fish’s, as long as the archive is not modified.
Disk magazines and services that charge extra for file transfers may not
distribute CyberCron.

In using CyberCron, you accept the responsibility for any damage or loss of
productivity/money that may occur through or during its use. C. Wichura
is not and cannot be held accountable.

1.3 Supplied Files

All source to CyberCron is included in the Source/* directory. ←↩
Please do

not redistribute changes you make. Instead, send them to me for inclusion
in the master distribution.

The s directory contains a sample crontab file. This is the one I am
currently using on my system. It contains a number of comments that give
some helpful hints on how to use some of the more advanced features of
CyberCron.

In RexxScripts is CCShow.rexx, based on the NCShow.rexx script that came with

NazCron
. It will call
LIST_EVENTS
and if there are active events, it will

loop through the list calling
SHOW_EVENT
to display each one.

Also in the rexx directory you will find the files at.rexx and batch.rexx.
These are the files Loren Rittle sent me that implement the UNIX

at
and
batch
commands using CyberCron. They have since

been updated by Graham Walter to be much more complete.

The Catalogs directory is where
translation catalogs
for languages that

CyberCron has been converted to are found. If you are running under
Workbench 2.1 and would like to use CyberCron in your language, copy the
appropriate file into your LOCALE:Catalogs/<language> directory.

1.4 What is a cron?

CyberCron 3 / 35

A cron is a program that runs in the background (i.e., requires no ←↩
user

intervention) and executes commands at specific times, as defined in a

crontab file
. It allows the automation of jobs that one runs regularily.

For example, many maintenance tasks can be handled by a cron event.
Incremental system backups to a streaming tape could be started at a time
when one is generally away from the machine every day or every week, for
example. Or you might have a cron entry run a script that logs onto BIX,
CompuServe, or wherever and downloads all your mail and unread messages
automatically during the night when rates are lower.

A cron can also be used as a means of reminding yourself to do things. You
might add an event that runs an alarm clock program in the morning to wake
you up, for example. Or you might have it throw a requester up telling you
to go to bed when it is getting late. The possibilities are endless.

1.5 Why another cron for the Amiga?

There have been several crons for the Amiga already. These ←↩
include

AmiCron, dcron, TPTCron and
NazCron
, to name a few. So what’s the

need for yet another cron?

CyberCron was written to take advantage of the new features of Workbench
2.04 (or greater), and thus has many advanced options that previous crons
don’t. It’s this new functionality that makes switching over to CyberCron
worthwhile.

CyberCron uses the new System() call in dos.library to launch events. This
call is far superior to the Execute() call of Workbench 1.3 days which the
other crons use. Through the use of the System() call, CyberCron can
support options such as the stack size or priority to launch specific
events at.

CyberCron also understands ARexx. It can start events as ARexx commands
and/or scripts. It also has an ARexx port which can accept a number of

ARexx commands
to control it while running.

CyberCron supports
localization
. If you are running it on a machine with

locale.library and have a translation catalog for your local language,
CyberCron’s messages will appear in your language instead of English.

Finally, CyberCron also uses
file notification

CyberCron 4 / 35

to determine when the
crontab file has been changed. This eliminates the performance hit that
previous Amiga crons have suffered from due to the fact that they had to
check the crontab file for updates once a minute.

1.6 Starting CyberCron

You can start CyberCron from either the CLI or Workbench.

When CyberCron is started from the Workbench, it trys to clone a copy of
the Workbench’s CLI structure. What this means is that the command path
that existed at the time LoadWB was run will be propagated on to commands
CyberCron launches.

CyberCron understands the following arguments:

[
CRONTAB
<filespec>] [
LOGFILE
<filespec>]

[
DEFSTACK
<Default Stack>] [
DEFPRI
<Default Priority>]

[
SENDMAIL
<"{command} {from switch} %s {name switch} *"%s*"">]

[
CRONPRI
<Cron’s Priority>] [
PORTNAME
<ARexx Portname>]

All arguments are optional. If not specified, CyberCron will use an
appropriate default. See the specific options’ documentation for more
information.

To use these options from a Workbench icon, simply make each tooltype be in
the form of <option>=<setting>. For example, if you wanted to specify a
logfile of T:CronLog, you would have a tooltype that looked like

LOGFILE=T:CronLog

1.7 The »CronTab« command line argument

This specifies the
crontab file
that CyberCron will try and read. If not

CyberCron 5 / 35

specified, s:CronTab will be used as the default.

The crontab file may also be changed while CyberCron is running by using
the

NEW_EVENT_FILE
ARexx command.

TEMPLATE
CRONTAB/K

EXAMPLE
CronTab cron:ctab

1.8 The »LogFile« command line argument

This indicates where CyberCron is to log activities. If no ←↩
filespec is

given, logging will be turned off.

The logfile may also be changed while CyberCron is running by using the

NEW_LOG_FILE
ARexx command.

TEMPLATE
LOGFILE/K

EXAMPLE
LogFile T:CronLog

1.9 The »SendMail« command line argument

CyberCron supports sending the output of a command it has launched ←↩
to a

user via e-mail. For this to work, however, it needs to know how to send
mail on the local system. This command tells CyberCron how to do this.

If the sendmail option is not specified then entries which try to direct
their output to e-mail will not be able to. File

output redirection
will

be honored instead.

The argument for this command should be in the form of

"<sendmail command> <from switch> %s <realname switch> *"%s*""

For example, for AmigaUUCP’s sendmail one would use

"UUCP:c/SendMail -f %s -R *"%s*""

CyberCron 6 / 35

For CyberCron to be able to send mail, the sendmail command must read the
mail message from its standard input. This is because CyberCron sets up a
pipe to redirect output into sendmail. This also means that you must have

PIPE:
mounted before mail can be sent.

The sendmail command must also expect the To: and Subject: fields to be in
its input instead of on the command line, and must generate the Message-ID:
field itself.

AmigaUUCP’s SendMail command meets all the above criteria.

TEMPLATE
SENDMAIL/K

EXAMPLE
SendMail "UUCP:c/SendMail -f %s -R *"%s*""

1.10 The »DefStack« command line argument

This is the default stack size to launch executables with. Values less
than 2048 will be rejected.

This argument is ignored when launching ARexx events.

If not specified, the stack size that CyberCron was started with will be
used as the default.

TEMPLATE
DEFSTACK/K/N

EXAMPLE
DefStack 25000

1.11 The »DefPri« command line argument

This specifies the default priority to launch executables at.

This option is ignored by ARexx events.

If not specified, this option defaults to zero.

TEMPLATE
DEFPRI/K/N

EXAMPLE
DefPri -1

CyberCron 7 / 35

1.12 The »CronPri« command line argument

This is the priority that CyberCron should run at.

If not specified, this option defaults to no change. I.e., CyberCron will
remain that the priority it was started at.

ToolPri is accepted as an alias for CronPri. This is for conformity with
the

Style Guide
.

TEMPLATE
TOOLPRI=CRONPRI/K/N

EXAMPLE
CronPri 4

1.13 The »PortName« command line argument

This option specifies the ARexx portname that CyberCron will use.

If not specified, CyberCron defaults to a portname of CYBERCRON.

CyberCron will not let you start it multiple times with the same port name.
It does, however, support the use of concurrent CyberCron tasks which each
have their own portname.

Using this option, one could have multiple crontab files. One might also
choose to have one CyberCron task that handles their

crontab file
while

a second is used as a server for script commands such as the
at
command.

TEMPLATE
PORTNAME/K

EXAMPLE
PortName CyberCronAtServer

1.14 Creating a crontab file

Lines in this file must be blank, a comment, or an event. ←↩
Comments are

denoted by lines that start with a "#" symbol. Events take the form of

min hour day month dow command <command’s args, if any>

CyberCron 8 / 35

in their simplest form. Each of min, hour, day, month and dow (day of the
week) are specifications for what range of values this command is to be run
at. A * indicates any value is acceptable. Numeric digits specify
specific values and can be seperated by a , (seperates distinct entries) or
a - (used to indicate a range of entries). For example,

* * * * * Date

would run the command date every minute of every hour of every day of every
month regardless of the day of the week.

0 * * * * Date

is similar, but only runs the date command on the zeroth minute of each
hour.

1,5-10,25 * * * * Date

would run the date command on minutes 1, 5, 6, 7, 8, 9, 10 and 25 of each
hour.

Months range from 1 (January) to 12 (December). The day of the week ranges
from 0 (Sunday) to 6 (Saturday).

CyberCron also supports a number of extensions to the traditional event
format. These may occur anywhere in the event, and are:

:NAME
<name>

<
<filespec>

>
<filespec>

2>
<filespec>

:MAILUSER
<user name>

:EXECONCE

:OBEYQUEUE
<queue name>

:NOLOG

:REXX

:STACK
<bytes>

:PRI
<priority>

CyberCron 9 / 35

:CUSTOMSH
<shell name>

:SYSSH
Please note that these above options are parsed with the dos. ←↩

library
ReadArgs() command. Because of this, those options which take a variable
must have whitespace between the option’s keyword and its assignment. This
generally isn’t a problem, except that most people I know are used to
specifying redirection as

>
ram:foo

while the proper method for CyberCron would be

>
ram:foo

The other implication of using ReadArgs() is that quotes will be stripped
out, as will extra spaces. To retain spaces, you must inclose the element
they proceed or follow with quotes. For example, one might use

date
>
"Ram:Two Spaces"

To retain quotes, you will have to quote the argument as you would for
spaces, but escape a quote character withing the quoted string. For
example.

"This has a *" quote in it"

There is one aditional special case that needs to be observed when creating
an event. If the command you are running is actually a script _and_ it
contains a space in it’s filename, you must explicitly call the AmigaDOS
Execute command for it to work. For example, you’d have to use

execute "foo bar script"

instead of

"foo bar script"

(those people with WShell who want to execute an ARexx script from a WShell
context would use WShell’s Rexx command instead of Execute.)

This is due to a problem that the AmigaDOS shell has executing script’s
whose command name has been quoted. This only applies to scripts which
have spaces in their name, so very few people should be affected by this
limitation.

CyberCron 10 / 35

1.15 The »:NAME« event line option

Specifies the formal name the event will be known under when ←↩
CyberCron is

accessed via its
ARexx port
.

You may use the same name multiple time. However, this is not recommened.

TEMPLATE
:NAME/K

EXAMPLE
:Name WakeMeUp

1.16 The input redirection event line option

This specifies where input is to be redirected from.

TEMPLATE
</K

EXAMPLE
< "CON:0/0/300/100/Gimme some input"

1.17 The output redirection event line option

Specifies where output is to be redirected to.

If >> is used instead of >, the filespec will be appended to instead of
overwritten.

TEMPLATE
>/K or >>/K

EXAMPLES
> RAM:job.out
>> RAM:job.logfile

1.18 The error redirection event line option

Specifies where standard error is to be redirected to.

If 2>> is used instead of 2>, the filespec will be appended to instead of
overwritten.

Note that this is currently ignored by the event launcher per a discussion

CyberCron 11 / 35

I had with Randell Jesup. Standard error support wasn’t really finished
for 2.0, and that makes it difficult to support this at this time.

TEMPLATE
2>/K or 2>>/K

EXAMPLES
2> RAM:job.err
2>> RAM:job.errlog

1.19 The »:MAILUSER« event line option

Specifies a user to send mail to with the output of the command ←↩
being run.

If the
SENDMAIL
command line option was not specified, this will be ignored

when the event is started, and any
output redirection
specified will be

used, instead.

The username may be any e-mail address, so mail can be sent to both local
and remote systems. If your sendmail supports it, you could even specify
an alias and have it send mail to multiple people.

TEMPLATE
:MAILUSER/K

EXAMPLE
:MailUser root

1.20 The »:EXECONCE« event line option

After the event has been started, remove it from the event list.

TEMPLATE
:EXECONCE/S

EXAMPLE
:ExecOnce

1.21 The »:OBEYQUEUE« event line option

Select a specific queue to schedule the event under. See the ←↩
section on

queues
for more information.

CyberCron 12 / 35

Using this,
:EXECONCE
,
:MAILUSER
and some ARexx macros, one could simulate

the
at
and

batch
commands under UNIX. (See Loren’s

at
stuff for an

example of how.)

TEMPLATE
:OBEYQUEUE/K

EXAMPLE
:ObeyQueue c

1.22 The »:NOLOG« event line option

If you specified a
logfile
then every time an event is started or ends a

message gets sent to the log file. This turns off logging for the specific
event. Handy for things one runs many, many times, in keeping the size of
your logfile from exploding.

TEMPLATE
:NOLOG/S

EXAMPLE
:NoLog

1.23 The »:REXX« event line option

Start this command using ARexx rather than trying to run it as a system
call. If the first character of the command is "‘" then it will be started
as an ARexx string rather than a command.

TEMPLATE
:REXX/S

EXAMPLE
:Rexx

CyberCron 13 / 35

1.24 The »:STACK« event line option

The stacksize to use when launching the event.

This option is ignored for ARexx events.

If the value specified is less than 2048, or this option is omitted, then
the

default stack size
will be used instead.

TEMPLATE
:STACK/K/N

EXAMPLE
:Stack 50000

1.25 The »:PRI« event line option

The priority to launch the event at.

This option is ignored for ARexx events.

If this option is omitted then the
default priority
will be used.

TEMPLATE
:PRI/K/N

EXAMPLE
:PRI -5

1.26 The »:CUSTOMSH« event line option

Use a specific custom shell when launching the event. See your "Using the
System Software" manual for more information on custom shells.

This option is ignored by ARexx events.

TEMPLATE
:CUSTOMSH/K

EXAMPLES
:CustomSH WShell
:CustomSH BootShell

CyberCron 14 / 35

1.27 The »:SYSSH« event line option

If no custom shell is specified, CyberCron will try and launch the command
using the specified User Shell. If you do not want the User Shell to be
used for a specific event, specifying this flag will cause CyberCron to use
the system shell.

This option is ignored by ARexx events.

TEMPLATE
:SYSSH/S

EXAMPLE
:SysSH

1.28 CyberCron as an ARexx Function Host

CyberCron’s default ARexx port name is CYBERCRON. However, this ←↩
can be

changed with the
PORTNAME
command line option.

CyberCron supports the following ARexx commands:

SHUTDOWN

VERSION

SUSPEND

RESUME

NEW_EVENT_FILE
<filespec>

CLOSE_EVENT_FILE

NEW_LOG_FILE
<filespec>

CLOSE_LOG_FILE

SHOW_STATUS

PURGE_REXX_EVENTS

ADD_EVENT
<event>

DELETE_REXX_EVENT
<event name>

CyberCron 15 / 35

DELETE_EVENT
<event name>

LIST_EVENTS

SHOW_EVENT
<event name>

SET_QUEUE_MAX
<queue name> <max jobs executable at a time>

GET_QUEUE_MAX
<queue name>

EVENT_NEXT_EXEC
<event name>

NEXT_EVENT_TO_EXEC

EXPAND_SSSC
<seconds since

system creation
>

SSSC_TO_ASCII
<seconds since

system creation
>

1.29 The »SHUTDOWN« ARexx command

Causes CyberCron to quit. Can also be accomplished by sending a ←↩
break

signal to CyberCron.

Once SHUTDOWN is started, CyberCron will not accept any more ARexx
commands.

It may take a while for CyberCron to actually quit, however, because it
must wait for any currently running events to terminate.

QUIT is accepted as a synonym of SHUTDOWN to provide comformity with the

Style Guide
.

TEMPLATE
QUIT=SHUTDOWN

EXAMPLES
Shutdown
Quit

CyberCron 16 / 35

1.30 The »VERSION« ARexx command

Returns the version, revision and date of CyberCron in the form

<version>.<revision> (<day>.<month>.<year>)

This is returned in the RESULT string, so you must issue an
OPTIONS RESULTS
command before you can use this command.

TEMPLATE
VERSION

EXAMPLE

options results
address

CYBERCRON
Version

say result

1.31 The »SUSPEND« ARexx command

Stop processing events.
File notifcation
on the

crontab file
remains active, however, so changes will be processed normally.

TEMPLATE
SUSPEND

EXAMPLE
Suspend

1.32 The »RESUME« ARexx command

Resume processing of events after a
SUSPEND
has been issued.

TEMPLATE
RESUME

EXAMPLE
Resume

CyberCron 17 / 35

1.33 The »NEW_EVENT_FILE« ARexx command

Change the
crontab file
to <filespec>. This checks to make sure the file

actually exists before making the change. However, parse errors will not
be noticed until the current crontab has been purged and CyberCron actually
starts reading the new file.

If something goes wrong (crontab file not found or its name is too long)
which doesn’t cause the previous crontab file to have been purged yet then
this will return RC_WARN (5).

If a fatal error occurs (couldn’t restart
notification
on the new file)

and the previous crontab has been purged, but the new one not read in, this
will return RC_ERROR (10).

TEMPLATE
NEW_EVENT_FILE FILESPEC/A

EXAMPLE
New_Event_File S:CronTab2

1.34 The »CLOSE_EVENT_FILE« ARexx command

Free all entries from the
CronTab
. Processing of entries added by the

ARexx
ADD_EVENT
command will still continue. Use

NEW_EVENT_FILE
to read a

crontab file
again, if you so desire.

TEMPLATE
CLOSE_EVENT_FILE

EXAMPLE
Close_Event_File

1.35 The »NEW_LOG_FILE« ARexx command

Changes the
logfile
to <filespec>.

CyberCron 18 / 35

If an error occurs (the new name is too long, for example) then RC_WARN (5)
will be returned and the old logfile, if specified, will remain active.

TEMPLATE
NEW_LOG_FILE FILESPEC/A

EXAMPLE
New_Log_File T:CronLog

1.36 The »CLOSE_LOG_FILE« ARexx command

Turns off logging. You can re-enable logging with the
NEW_LOG_FILE
command, if you so desire.

TEMPLATE
CLOSE_LOG_FILE

EXAMPLE
Close_Log_File

1.37 The »SHOW_STATUS« ARexx command

Returns a couple bits of information about CyberCron’s status. ←↩
This is in

the form of

<activity>

<crontab filespec>

<logfile filespec>
where <activity> is either ACTIVE or SUSPENDED.

TEMPLATE
SHOW_STATUS

EXAMPLE

options results
address

CYBERCRON
Show_Status

say result

CyberCron 19 / 35

1.38 The »PURGE_REXX_EVENTS« ARexx command

All events added with the ARexx
ADD_EVENT
command will be purged.

Processing of entries from the
crontab file
will continue normally.

TEMPLATE
PURGE_REXX_EVENTS

EXAMPLE
Purge_Rexx_Events

1.39 The »ADD_EVENT« ARexx command

Adds an event to CyberCron’s active list. Use the same format as ←↩
if you

were specifying an event in a
crontab file
. Comments are not allowed.

If an error occurs in parsing the event, RC_ERROR (10) will be returned.

TEMPLATE
ADD_EVENT EVENT/A

EXAMPLE
ADD_EVENT ’0 8 * * 1-5 Echo "Go to work!"

>
CON:0/0/200/50/Hey!/CLOSE/WAIT’

1.40 The »DELETE_REXX_EVENT« ARexx command

Deletes the specified event, but only if it is was added with the ←↩
ARexx

ADD_EVENT
command.

If the event was not found, RC_ERROR (10) will be returned.

TEMPLATE
DELETE_REXX_EVENT

EVENT_NAME/A
EXAMPLE

Delete_Rexx_Event ’the event’

CyberCron 20 / 35

1.41 The »DELETE_EVENT« ARexx command

Same as
DELETE_REXX_EVENT
, but can be used to delete any event, even those

read from the
crontab file
.

If the event was not found, RC_ERROR (10) will be returned.

TEMPLATE
DELETE_EVENT

EVENT_NAME/A
EXAMPLE

Delete_Event ’the event’

1.42 The »LIST_EVENTS« ARexx command

Returns a list of all the current events CyberCron is tracking, ←↩
seperated

by spaces. Note that the events are listed using CyberCron’s internal

naming scheme
.

The result is returned in a result string, so you must use
OPTIONS RESULTS
before calling this command, or you will get an error.

If there are no events, then the string "<None>" is returned. If an error
occured, an empty string will be returned.

TEMPLATE
LIST_EVENTS

EXAMPLE

options results
address

CYBERCRON
List_Events

say result

1.43 The »SHOW_EVENT« ARexx command

Returns the full specification for the specified event, as it ←↩
would be

given in a
crontab file

CyberCron 21 / 35

, except that it will have the event’s
internal name
prepended.

Note that events may not look exactly the same as when they were added.
This is because CyberCron converts events into an internalized structure
and unconverts them when this command is called.

If the event was not found then an empty string will be returned.

You must specify
OPTIONS RESULTS
before using this command, or you will get

an error.

TEMPLATE
SHOW_EVENT

EVENT_NAME/A
EXAMPLE

options results
address

CYBERCRON
Show_Event ’the event’

say result

1.44 The »SET_QUEUE_MAX« ARexx command

Set’s the maximum number of jobs that may be run under the ←↩
specified queue

at any given time.

If an illegal queue name is specified, RC_ERROR (10) will be returned.

Setting the maximum to zero is legal, and will result in no jobs for the
specified queue being executed until such a time as the queue maximum is
raised to greater than zero again.

See the section on
queues
for more information.

TEMPLATE
SET_QUEUE_MAX QUEUE_NAME/A MAX_JOBS_EXECUTABLE_AT_A_TIME/N/A

EXAMPLE
Set_Queue_Max a 3

1.45 The »GET_QUEUE_MAX« ARexx command

CyberCron 22 / 35

Get the current maximum number of jobs that can be run under the ←↩
specified

queue at any given time.

If an illegal queue name is specified, -1 is returned.

See the section on
queues
for more information.

TEMPLATE
GET_QUEUE_MAX QUEUE_NAME/A

EXAMPLE
GET_QUEUE_MAX a

1.46 The »EVENT_NEXT_EXEC« ARexx command

Returns the next time at which the specified event will execute at ←↩
.

This is returned as the number of seconds since
system creation
.

If the event cannot be found, a null string will be returned.

CyberCron will look up to seven years into the future trying to find a time
that satisfies the requirements of the event’s timespec. This is to allow
for the effect of leap years.

If CyberCron cannot determine a time at which the event would next execute,
zero will be returned.

The result is returned in a result string, so you must use
OPTIONS RESULTS
before calling this command, or you will get an error.

TEMPLATE
EVENT_NEXT_EXEC

EVENT_NAME/A
EXAMPLE

Event_Next_Exec ’the event’

1.47 The »NEXT_EVENT_TO_EXEC« ARexx command

This will scan through the event list, looking for the event that ←↩
is due up

for execution next. It returns a string in the form of

CyberCron 23 / 35

<event name>
<SSSC>

The <SSSC> field is the seconds since
system creation
that the event will

execute at.

If no event is found then the string "<None>" will be returned.

The result is returned in a result string, so you must use
OPTIONS RESULTS
before calling this command, or you will get an error.

TEMPLATE
NEXT_EVENT_TO_EXEC

EXAMPLE

options results
address

CYBERCRON
Next_Event_To_Exec

nextevent = result
if (nextevent ~= ’<None>’) then

parse var nextevent event sssc .

1.48 The »EXPAND_SSSC« ARexx command

This command will take the number of seconds since
system creation
and

expand it into seperate fields for seconds, minutes, etc. The result is
returned in a string in the form of

<sec> <min> <hour> <day> <month> <year> <day of the week>

This is useful for scripts that want to make decisions based on the results
of

EVENT_NEXT_EXEC
or

NEXT_EVENT_TO_EXEC
.

The result is returned in a result string, so you must use
OPTIONS RESULTS
before calling this command, or you will get an error.

TEMPLATE
EXPAND_SSSC SECONDS_SINCE_

SYSTEM_CREATION
/A

CyberCron 24 / 35

EXAMPLE

options results
address

CYBERCRON

Next_Event_To_Exec
nextevent = result

if (nextevent ~= ’<None>’) then do
parse var nextevent event sssc .
Expand_SSSC sssc
parse var result sec min hour day month year dow .

end

1.49 The »SSSC_TO_ASCII« ARexx command

This command will take the number of seconds since
system creation
and

return a human readable ASCII date string.

This is useful for scripts that want to display the results of
EVENT_NEXT_EXEC
or
NEXT_EVENT_TO_EXEC
to the user.

The result is returned in a result string, so you must use
OPTIONS RESULTS
before calling this command, or you will get an error.

TEMPLATE
SSSC_TO_ASCII SECONDS_SINCE_

SYSTEM_CREATION
/A

EXAMPLE

options results
address

CYBERCRON

Next_Event_To_Exec
nextevent = result

if (nextevent ~= ’<None>’) then do
parse var nextevent event sssc .

Show_Event
event

eventDisp = result
if (eventDispl ~= ’’) then do

say ’->’ || eventDisp
SSSC_To_ASCII sssc
say ’ next execution at" result

CyberCron 25 / 35

end
end

1.50 How job queues work in CyberCron

CyberCron supports 26 job queues, named ’a’ through ’z’. Each ←↩
queue has a

maximum number of jobs associated with it. If an event has a queue
specified, not only must it be the appropriate time to run that event, but
the number of events currently running under that queue must be less than
the maximum allowed for the queue for the event to actually be executed.

Events that don’t specify an
:OBEYQUEUE
argument are run under the default

queue (not included in the 26 named queues that are user accessable), which
allows an unlimited number of jobs to be executed at the same time.

All job queues are initilized with their maximum number of events to
execute set to one. ARexx commands exist to

read
and

change
the maximum

number for specific queues.

Jobs that could not be started because the queue maximum would be exceeded
are marked as delayed. They will be run the next time the queue is
available, regardless of whether or not their time spec matches the current
time they are up for scheduling.

Job queues were originally added to support writting ARexx scripts that
simulate the UNIX

at
and

batch
commands. However, I’ve tried to make

the interface flexible and useful in other areas. For example, queues can
be used to insure sequencing of events. Make sure that the queue you will
use has its maximum set to one (which is the default for all queues).
Specify when the first job is to run. Specify that the second job should
run one minute after the first job. If the first job is still running when
the second comes up for scheduling, the second job will be delayed.
CyberCron will check every minute after that to see if the first job has
completed and will run the second job when it is safe. Any number of jobs
could be sequenced together using a queue in this manner.

1.51 The internal naming scheme used by CyberCron

CyberCron 26 / 35

CyberCron’s
LIST_EVENTS
command will return event names in an internalized

format. These names are in the form of 0x???????? where ? indicates a hex
digit. This is done so that events that have no formal name can be
specified from ARexx. It also allows events to be specified unambigously,
which is useful if you have more than one event with the same formal name
and you wish to delete/show/etc a specific one. To prevent naming
conflicts, CyberCron will not let you specify a formal name that begins
with the characters 0x (or 0X, as the case of the "x" doesn’t matter).

When asking CyberCron to delete/show/etc an event, you can either use its
internal name, or, if it has a formal name, you may use that. Internal
names are cumbersome to use by hand, and are impractical to handle except by
using console snap or under the control of an ARexx script. Formal names
are much easier to deal with, which is why they are present. If you wanted
to add a quick test event, you might give it a formal name of TestEvent and
then use that to delete it instead of having to figure out it’s internal
name and then using it to delete the event.

1.52 How to make CyberCron speak your language

When running under Workbench 2.1, CyberCron has the ability to use ←↩
a

translation catalog which contains the text strings it uses in a different
language. These translation files are stored in the user’s
LOCALE:Catalogs/<language> directory. For example, the French string
catalog for CyberCron would be the file:

LOCALE:Catalogs/français/CyberCron.catalog

Please note that case is important for the filename portion of the above
filespec.

It is also possible to make a Catalogs sub-directory in the directory where
the CyberCron executable resides. This reduces the amount of clutter in
the user’s LOCALE: volume. If you placed the CyberCron executable in
SYS:WBStartup, then the corresponding location of the French catalog would
be:

SYS:WBStartup/Catalogs/français/CyberCron.catalog

If there isn’t a translation file for your language present in this
distribution (and there most likely won’t be as I don’t know any foreign
languages :->), you can make your own. To do this, you need to:

1) edit the dummy.ct file in the Source directory, translating
it as appropriate. you should be looking at the
Source/CyberCronStrings.cd file as you do this since it
contains many important notes about what the different
strings are used for.

2) run CatComp (a Commodore developer tool which I can’t include)

CyberCron 27 / 35

to make the actual catalog that CyberCron will use. For
example:

catcomp Source/CyberCronStrings.cd <language>.ct catalog
locale:Catalogs/<language>/CyberCron.catalog

(the above is all on one CLI line, of course)

If you don’t have access to CatComp then feel free to
e-mail
me your

translation (lha and uuencode it, though, or any special accent marks, etc,
will be lost) and I’ll run it through CatComp. I’d like any translation
files people come up with, anyway, so I can distribute them with future
versions of CyberCron. Also, if you feel that one of the currently
available translation files has something which could be translated in a
better way, feel free to mail me those changes as well.

1.53 The history of CyberCron

Version 1.0 -- Initial release

Version 1.1 -- Maintenance release the day after 1.0 was released.
Don’t remember what it fixed, though... :-)

Version 1.2

Version 1.3

Version 1.4

Version 1.5

1.54 Changes in version 1.2 of CyberCron

It has been pointed out to me that I forgot to specify the default ←↩
rexx

extension of ".rexx". Thus, scripts in the form of

foo.rexx

would not be started unless you actually stated
:REXX
foo.rexx instead of

being able to use
:REXX
foo alone.

Also added a semaphore lock in the GetJobNum()/FreeJobNum() routines to

CyberCron 28 / 35

prevent the job table from possibly being clobbered by EndSystemJob()
getting called at the same time CyberCron was trying to start another job.

1.55 Changes in version 1.3 of CyberCron

It has been requested that CyberCron become sensitive to small changes
backwards in time. This is usually caused by reloading the system clock
from the battery backed clock once a day (as the battery backed clock tends
to keep better time on some machines). Before running the event scan,
CyberCron will now check to see if time has gone backwards and will delay
event scans until it reaches the next minute that it would have actually
run a scan at if the time hadn’t shifted backwards. There is a 5 minute
threshhold limit, however, so if time goes backwards more than that (for
instance, daylight savings time changes state and you go back an hour) then
CyberCron assumes you know what you are doing and will use the new time
without delay.

I also switched the static declarations of struct RDArgs to
AllocDosObject()/FreeDosObject() pairs. This should help insure that
CyberCron will run on any future versions of the OS, even if it will be a
few eons before I actually would have had to worry about this... :-)

1.56 Changes in version 1.4 of CyberCron

Fixed handling of commands with a space in them. Previously, they ←↩
would be

indicated as not found. Now they will work correctly. Also modified the
log output a bit to indicate the command name portion of the command. The
command is quoted with »« characters.

When CyberCron is first started, it will now spit an "I’m alive" message
out to the logfile. Brian Vargyas wanted this so he could tell when his
BBS had rebooted by reading through the log.

CyberCron now checks to see if it is already running and will exit
gracefully if so. Added new

PORTNAME
option to startup arguments to allow

multiple CyberCrons to be run if needed by specifying different ARexx port
names for each.

Modified CCShow.rexx to accept one argument when started to be used as the
portname to address. This allows one to easly display the active jobs for
any CyberCron task running. If no portname is specified, CCShow defaults
to CYBERCRON, which is CyberCron’s

PORTNAME
default.

Aliased the
CRONPRI
startup option to TOOLPRI to try and be a bit more

CyberCron 29 / 35

comformant with the
Style Guide
. Similarily, QUIT is now recognized as a

synonym for the
SHUTDOWN
ARexx command.

Because CyberCron now officially supports multiple copies of itself
running, I have made it use a public locking mechanism for the

logfile
.

This way, one can have the same logfile for all instances of CyberCron and
not have to worry about it getting clobbered. The job number list is also
shared between concurrent CyberCrons as well.

Documentation redone as an AmigaGuide file. The hypertext nature of
AmigaGuide makes it a lot easier to navigate around the CyberCron
documentation and find information quickly.

Mike Sinz has provided me with wb2cli.o, a linker object that creates a CLI
structure for me when CyberCron is started from the Workbench. This allows
CyberCron to propagate the path that existed at LoadWB time to jobs it
starts.

Updated the ErrorMsg() function to throw up an EasyRequester when CyberCron
is started from the WorkBench. This was done because there is no StdErr to
write errors to in this case. Once CyberCron is up and fully running,
ErrorMsg() calls will not use a requester, however. At this point, only
things like "Crontab changed, re-reading" are sent to ErrorMsg(). Since
these are also sent to the Log() routine, the information isn’t lost and it
allows CyberCron to remain non-interactive.

Added
localization
support. Now I need to find people to translate the

string catalog to other languages for me... :-)

Enhanced the WBtoCLIargs() routine. Specifically, it now calls FindArg()
on each tooltype to decide if it should copy the tooltype over into the
argument string. This prevents ReadArgs() from seeing arguments it doesn’t
know about and generating a "wrong number of arguments" error. This was
done to make it possible to include tooltypes such as DONOTWAIT in
CyberCron’s .info file. This makes it easy to drop CyberCron in one’s
WBStartup drawer.

Modified the lmkfile to run source code through the indent filter. This
helps make the code look a bit nicer by cleaning up comments as well as
insuring that the proper indentation levels are in use.

By popular demand, removed the ANSI control sequences from the startup and
help messages.

Noticed the Amiga2Date() function in utility.library. Changed
GetSystemTime() to make use of it, saving 350+ bytes of code.

Found and squashed an Enforcer hit that would occur in DoMsg() when a
routine wanted to return a null string.

CyberCron 30 / 35

Added four new ARexx commands. Two,
EVENT_NEXT_EXEC
and

NEXT_EVENT_TO_EXEC
,

deal with determining the time at which an event will execute at. Both
return their results as the number of seconds since

system creation
.

To make dealing with this result easier, the
EXPAND_SSSC
and

SSSC_TO_ASCII
commands were added.

Updated CCShow.rexx to display the time each job is next scheduled to
execute at by using the new

EVENT_NEXT_EXEC
and

SSSC_TO_ASCII
Rexx commands.

If OwnDevUnit.library is present, CyberCron will now try and obtain a lock
on LOG-UPDATE.LOCK before trying to write to its logfile. This will
protect its log updates from AmigaUUCP’s trimfile executable. For this to
work properly, however, you must be using v2.1 or better of
OwnDevUnit.library.

In previous versions of CyberCron, if a
queue
was already executing the

maximum number of jobs it was set to and more jobs were due to be
scheduled, then only the first job would be delayed and the rest would be
skipped. Now all such jobs will be delayed.

Recompiled under SAS/C 6.0.

1.57 Changes in version 1.5 of CyberCron

Implemented some suggestions that Martin Taillefer sent me. ←↩
Specifically:

Fixed the documentation to refer to Workbench ?.? instead of
KickStart ?.?, which is the proper terminology.

Removed the OC_BuiltInLanguage tag from the OpenCatalog() call
since this is the default prodided by locale.library anyway.

Eliminated MySPrintf() and now use sprintf() from amiga.lib since
it’s smaller.

Removed some checks before freeing items in the cleanup code since
as of V37 things like CloseLibrary(), FreeVec(), etc, all let you

CyberCron 31 / 35

free things that weren’t previously allocated.

Modified the aborting of timer I/O so that the Disable()/Enable()
are no longer used.

Got the new version of CatComp. Fixed CyberCron to compile using it.
Reduces the size of the executable by about 300 bytes due to removal of
many unneeded reloc-32’s.

For
v1.4
, I made the routine that starts system jobs always enclose the

command name in quotes. It has been brought to my attention that this
breaks many scripts. As of v1.5, CyberCron no longer places quotes around
the command name indiscriminately. Quotes are now inserted only when the
command name actually has a space in it.

1.58 Credits

Don Nafis, author of
NazCron
, from which I pretty much stole the idea for

the initial ARexx command set recognized by CyberCron.

Thomas Rokicki for a little bit of magic in the GetSystemTime() routine.
(Although this is no longer used as of v1.4.)

Loren Rittle for, well, many things. He’s responsible for getting me to
add the stuff needed to support writing

at
and

batch
UNIX like commands

(though I hope to have done it in a means general and flexible enough that
others may be able to use the event options in their own, new ways) and
writing the at.rexx and batch.rexx scripts, despite the time presure he is
under right now. He also helped catch a number of bugs, offered little
suggestions about functionality here and there and then there’s always the
__emit() trick in MySPrintfSupp() (I nearly cried when I saw it in his
ls-4.5 code --- it never dawned on me to do anything so simple :->).

Mike Sinz for providing the wb2cli.o linker module. This actually makes
running CyberCron from the Workbench a useful thing to do.

Mike Koch for drawing the icon that I finally selected for CyberCron. I’d
also like to thank the other people who sent in icons, particularily Pang Sie
Piau, who sent me a couple rounds of icons as I made suggestions to him.
His icons have a much better Workbench 2.0 look to them, but in the end I
decided that Mike’s better denotes the idea of a cron.

Amish Dave for moral support and helping me clean up the documentation a
bit.

Martin Taillefer for sending me some comments that helped tweak the code

CyberCron 32 / 35

in various places to make CyberCron slightly smaller and more efficient.

Georg Sassen for tracking down the problem with scripts that v1.4
introduced. (See the

v1.5 changes
for how this was fixed.)

Sebastiano Vigna and Paolo Lenzi for the Italian translation catalog.

Xavier Drèze for the French translation catalog.

Thilo Stöferle for the German translation catalog.

Jesper Kehlet for the Danish translation catalog.

1.59 Contacting the author

If you happen to find a bug or have a suggestion for CyberCron, or just
want to say "hey, cool program", please contact me using one of the ways
listed below. Even if you wanna say "CyberCron sucks", let me know and be
sure to say why you feel this way so that I might be able to fix what you
think is wrong with the program.

These electronic forms are the most prefered means of contacting me. They
will get you a response pretty quick.

e-mail: caw@miroc.chi.il.us
BIX: caw

Snail Mail is pretty slow and I’m not known for being very good about
responding to it... :-)

Christopher A. Wichura
5450 East View Park
Chicago, Il. 60615
USA

You can also reach me by phone. However, please try to limit your calling
to evening hours (I’m in the central time zone). If I’m not home and you
leave a message, call back again anyway. Around here, one tends to get
maybe 5% of the messages left for them, if lucky... :-)

(312)/684-2941

1.60 The use of »OPTIONS RESULTS« in an ARexx script

ARexx requires that one use the OPTIONS RESULTS command before making any
calls that return a result string (as opposed to a result code/number).

CyberCron 33 / 35

1.61 What file notification does under Workbench 2.04 or greater

File notification is a new feature of Workbench 2.04. It allows a program
to ask the operating system to tell it when a file has been created,
changed or deleted.

By using file notification, it is no longer necessary for programs such as
crons to constantly check if a critical configuration file has been
updated. This results in a significant increase in system performance.

1.62 NazCron

NazCron is a cron for the Amiga that was written by Don Nafis. It ←↩
was

released as Shareware.

CyberCron has strong roots in NazCron, primarily in it’s
ARexx command set
.

Almost all its commands are the same as under NazCron. The new commands I
added to cover features in CyberCron that NazCron does not have are done in
a style very similar to the way NazCron handled things.

Please note that CyberCron is based on NazCron in spirit only. No code
from NazCron has been incorporated into CyberCron.

If you are someone still using Workbench 1.3 (god forbid!) and are looking
for a rather nice cron, you might consider trying to find a copy of
NazCron.

The last information I have on how to contact Don Nafis is from the NazCron
documentation, dated 1989. It is as follows:

Don Nafis
Nazlo Associates Ltd.
P.O. Box 1515
Laurel Springs, NJ 08021

(609) 228-8088 Voice

(609) 227-8278 BBS -
Viva! Amiga!

3/12/24 - 8/N/1 - 24 hours
130 Megabytes Online

Compuserve 70656, 133

1.63 The »at« command

The UNIX ’at’ command executes a command (or a sequence of commands) at a
specific time. For example, you can do something like

CyberCron 34 / 35

prompt>at next tuseday 8
echo "Tomorrow is your wife’s birthday. Did you get the present?"
EOF (the keystroke that indicates end of file, CTRL-\ on the Amiga)

and at 8am next tuesday the echo command would be run. One might think
that the output of this echo command would never be seen, right? Wrong.
’At’ allows one to specify where the output is to be redirected. If it is
not redirected then the system e-mails the output of the command to the
user who submitted the ’at’ job.

For a more complete description, consult the Unix man pages on the ’at’
command.

1.64 The »Batch« command

The UNIX ’batch’ command is actually a special case of the
at
command.

Instead of executing a job at a specific time, the batch command submits
the job for immediate execution.

Job queues
insure that only a few

’batch’ed jobs are actually running at one time, however.

’batch’ is intended for running jobs that require a lot of CPU time.

For more information, consult the Unix man pages on the ’batch’ command.

1.65 The Commodore PIPE: device

The Commodore supplied PIPE: device can be used to route the output of one
program into the input stream of another. This is done in a memory
efficient way which does not require large temporary files to be created.

For more information on the PIPE: device and how to mount it, see your
"Using the System Software" manual.

1.66 AMIGA User Interface Style Guide

The "Amiga User Interface Style Guide" is a reference manual Commodore has
written that has many useful suggestions on making Amiga applications more
similar. The idea is that it makes it easy for a user to use a new
application because many of the things they have learned from previous
applications will still be valid.

The style guide is published by Addison-Wesley Publishing Company, Inc.
It’s ISBN number is 0-201-57757-7.

CyberCron 35 / 35

1.67 System Creation

System creation on the Amiga is the zeroth minute of the zeroth hour on
January 1st, 1978.

	CyberCron
	CyberCron documentation
	Legal Mumbo Jumbo
	Supplied Files
	What is a cron?
	Why another cron for the Amiga?
	Starting CyberCron
	The CronTab command line argument
	The LogFile command line argument
	The SendMail command line argument
	The DefStack command line argument
	The DefPri command line argument
	The CronPri command line argument
	The PortName command line argument
	Creating a crontab file
	The :NAME event line option
	The input redirection event line option
	The output redirection event line option
	The error redirection event line option
	The :MAILUSER event line option
	The :EXECONCE event line option
	The :OBEYQUEUE event line option
	The :NOLOG event line option
	The :REXX event line option
	The :STACK event line option
	The :PRI event line option
	The :CUSTOMSH event line option
	The :SYSSH event line option
	CyberCron as an ARexx Function Host
	The SHUTDOWN ARexx command
	The VERSION ARexx command
	The SUSPEND ARexx command
	The RESUME ARexx command
	The NEW_EVENT_FILE ARexx command
	The CLOSE_EVENT_FILE ARexx command
	The NEW_LOG_FILE ARexx command
	The CLOSE_LOG_FILE ARexx command
	The SHOW_STATUS ARexx command
	The PURGE_REXX_EVENTS ARexx command
	The ADD_EVENT ARexx command
	The DELETE_REXX_EVENT ARexx command
	The DELETE_EVENT ARexx command
	The LIST_EVENTS ARexx command
	The SHOW_EVENT ARexx command
	The SET_QUEUE_MAX ARexx command
	The GET_QUEUE_MAX ARexx command
	The EVENT_NEXT_EXEC ARexx command
	The NEXT_EVENT_TO_EXEC ARexx command
	The EXPAND_SSSC ARexx command
	The SSSC_TO_ASCII ARexx command
	How job queues work in CyberCron
	The internal naming scheme used by CyberCron
	How to make CyberCron speak your language
	The history of CyberCron
	Changes in version 1.2 of CyberCron
	Changes in version 1.3 of CyberCron
	Changes in version 1.4 of CyberCron
	Changes in version 1.5 of CyberCron
	Credits
	Contacting the author
	The use of OPTIONS RESULTS in an ARexx script
	What file notification does under Workbench 2.04 or greater
	NazCron
	The at command
	The Batch command
	The Commodore PIPE: device
	AMIGA User Interface Style Guide
	System Creation

