
Stable Implementation
Agreements for Open
Systems
Interconnection Protocols:
Part 20 - Manufacturing
Message Specification
(MMS)
Output from the September 1993 NIST Workshop
for Implementors of OSI
SIG Chair: Rick Igou, Martin Marietta Energy Systems
SIG Editor: Neal Laurance, Ford

PART 20 - MMS September 1993 (Stable)
Foreword

This part of the Stable Implementation Agreements was prepared by the Manufacturing
Message Specification (MMS) Special Interest Group (MMSSIG) of the Open Systems
Environment Implementors' Workshop (OIW). See Procedures Manual for Workshop charter.

Text in this part has been approved by the Plenary of the above-mentioned Workshop. No
significant technical change has occurred in this part since it was previously presented.

Future changes and additions to this version of these Implementor Agreements will be
published as change pages. Deleted and replaced text will be shown as strikeout. New and
replacement text will be shown as shaded.

PART 20 - MMS September 1993 (Stable)
Table of Contents

Part 20 - Manufacturing Message Specification (MMS) 1

0 Introduction 1

1 Scope 1

2 Field of Application 1
2.1 General 1
2.2 Phase 1 agreements 1

3 Normative References 2

4 Definitions 3

5 Corrigenda and addenda 3

6 Status 3

7 General agreements 3
7.1 Max supported PDU size 3
7.2 FileName 4

8 Service-specific agreements 4
8.1 Environment and general management 4

8.1.1 Initiate 4
8.1.1.1 Negotiation of MMS abstract syntaxes 4
8.1.1.2 Max serv outstanding 4
8.1.1.3 Local detail calling 5
8.1.1.4 Local detail called 5
8.1.1.5 Rules of Extensibility 5

8.2 VMD support 6
8.2.1 Get Capability List service 6

8.3 Domain management 6
8.3.1 List of capabilities 6
8.3.2 Initiate Download Sequence service 6
8.3.3 Download Segment service 6
8.3.4 Terminate Download Sequence service 6
8.3.5 Initiate Upload Sequence service 7
8.3.6 Upload Segment service 7
8.3.7 Get Domain Attributes service 7

8.4 Program Invocation management 7
8.4.1 Start service 7
8.4.2 Stop service 7
8.4.3 Resume service 7
8.4.4 Reset service 7

8.5 Variable access 8
8.5.1 Scattered access 8
8.5.2 Floating point 8
8.5.3 Unsigned Data 8
8.5.4 Order of variable specifications 8

PART 20 - MMS September 1993 (Stable)
8.5.5 Parameter CBBs 8
8.5.6 Named Variable Scope 9
8.5.7 Address Types 9

8.6 Semaphore management 9
8.7 Operator communication 9
8.8 Event management 9
8.9 Journal management 9

Annex A (normative)

Backwards compatibility agreements 10
A.1 Introduction 10
A.2 Backwards compatibility agreements for calling MMS implementations 11
A.3 Backwards compatibility agreements for called MMS implementations 11
A.4 General backwards compatibility agreements 12

A.4.1 VMD logical status 12

Annex B (normative)

DIS 9506 Modifications Required for Backwards Compatibility 13
B.1 Introduction 13
B.2 References 13
B.3 General 13

B.3.1 Implementation base 13
B.3.2 Rules of extensibility 13

B.4 Modifications to the protocol definitions 13
B.4.1 Page 39, Section 7.5.2 of DIS 9506-2 13
B.4.2 Page 49, Section 7.6.4, DIS 9506-2 14
B.4.3 Page 95, Section 12.2.1 of DIS 9506-2 14
B.4.4 Page 96, Section 12.3.1 of DIS 9506-2 14
B.4.5 Page 98, Section 12.4.2 of DIS 9506-2 15
B.4.6 Page 138, Section 15.14 of DIS 9506-2 15
B.4.7 Page 166, Section 17.10 of DIS 9506-2 15

B.5 Behavioral requirements 16
B.5.1 Filenames 16
B.5.2 Identify service 16
B.5.3 Initiate service 16
B.5.3.1 Minimum segment size 16
B.5.3.2 Maximum segment size 16
B.5.4 Abstract syntax name 17
B.5.5 Application context name 17
B.5.6 Minor version number 17

B.6 Parameter CBB subset 17
B.7 Service subset 18

Annex C (normative)

Basic functional tests 19
C.1 Introduction 19

C.1.1 Test steps 20
C.1.2 Connections 21
C.1.3 Test suites 21
C.1.4 General conventions 21

PART 20 - MMS September 1993 (Stable)
C.1.4.1 <LOCAL> 21
C.1.4.2 <sPICS:XXX>,<cPICS:XXX> 22
C.1.4.3 <sPIXIT:XXX>,<cPIXIT:XXX> 22
C.1.4.4 <TMP:XXX> 22
C.1.4.5 <ID> 22
C.1.5 PICS/PIXIT 22
C.1.5.1 General PICS 22
C.1.5.2 Server PICS 23
C.1.5.3 Client PICS 26
C.1.5.4 Addressing information 29
C.1.5.5 Server PIXIT 30
C.1.5.5.1 Named variable table 30
C.1.5.5.2 Addressed variable table 31
C.1.5.5.3 Domain table 32
C.1.5.5.4 Program Invocation table 33
C.1.5.6 PICS/PIXIT Pro-forma 34

C.2 Basic functional tests 41
C.2.1 Environment and general management test cases 41
C.2.1.1 EGM_INIT_01 41
C.2.1.2 EGM_CONC_01 42
C.2.1.3 EGM_ABRT_01 43
C.2.2 VMD support test cases 43
C.2.2.1 VMD_STAT_01 44
C.2.2.2 VMD_STAT_02 45
C.2.2.3 VMD_USTA_01 45
C.2.2.4 VMD_GNAM_01 46
C.2.2.5 VMD_IDEN_01 48
C.2.2.6 Rename test cases 49
C.2.2.7 VMD_GCAP_01 49
C.2.3 Domain management test cases 50
C.2.3.1 DOM_UPLD_01 50
C.2.3.2 DOM_DNLD_01 52
C.2.3.3 DOM_DELE_01 54
C.2.3.4 DOM_GETA_01 54
C.2.4 Program Invocation test cases 55
C.2.4.1 PIM_CREA_01 55
C.2.4.2 PIM_DELE_01 56
C.2.4.3 PIM_STRT_01 57
C.2.4.4 PIM_STOP_01 58
C.2.4.5 PIM_RESM_01 59
C.2.4.6 PIM_REST_01 59
C.2.4.7 PIM_GPIA_01 60
C.2.5 Variable access test cases 61
C.2.5.1 VAR_READ_01 61
C.2.5.2 VAR_READ_02 62
C.2.5.3 VAR_READ_03 63
C.2.5.4 VAR_WRIT_01 64
C.2.5.5 VAR_WRIT_02 65
C.2.5.6 VAR_WRIT_03 66
C.2.5.7 VAR_RMWV_01 67
C.2.5.8 VAR_RMWV_02 69
C.2.5.9 VAR_RMWV_03 71
C.2.5.10 VAR_IRPT_01 73

PART 20 - MMS September 1993 (Stable)
C.2.5.11 VAR_IRPT_02 74
C.2.5.12 VAR_IRPT_03 75
C.2.5.13 VAR_GVAA_01 75
C.2.5.14 VAR_GVAA_02 76
C.2.5.15 VAR_GVAA_03 77
C.2.6 Semaphore management test cases 78
C.2.7 Operator communication test cases 78
C.2.8 Event management test cases 78
C.2.9 Journal management test cases 78

C.3 Basic functional test script language 78
C.4 References 78

PART 20 - MMS September 1993 (Stable)
List of Tables

Table 1 - Phase 1 Services 2
Table 2 - MMS Service Subset 18

Part 20 - Manufacturing Message Specification (MMS)

0 Introduction
This section defines Implementors Agreements based on Manufacturing Message
Specification (MMS), as defined in ISO/IEC 9506. ISO/IEC 9506 has two parts. Part 1 defines
the Virtual Manufacturing Device (VMD), its subordinate abstract objects, and the services
on these objects. Part 2 defines the protocol. Future parts may define companion standards.

MMS, as described in ISO/IEC 9506, is based on the following ISO documents: ACSE Service
and Protocol (ISO 8649, ISO 8650), Presentation Service and Protocol (ISO 8822, ISO 8823),
ASN.1 Abstract Syntax Notation and Basic Encoding Rules (ISO 8824, ISO 8825), and Session
Service and Protocol (ISO 8326, ISO 8327). These services and protocols are defined
architecturally in the OSI Reference Model (ISO 7498). These agreements provide detailed
guidance for the implementor, and eliminate ambiguities in interpretations.

An A-Profile based on MMS and these agreements can be used over any T-Profile (see ISO TR
10000) specifying the OSI connection-mode transport service, or the transport profiles used
in support of MAP (Manufacturing Automation Protocol), TOP (Technical and Office Protocols),
or US GOSIP.

Scope

Field of Application

General
Work on implementation agreements will proceed in phases based upon grouping of services
and/or contexts. Implementations are not constrained from implementing services or
contexts not addressed by the current set of stable agreements. Future phases of work may
affect such implementations.

Phase 1 agreements
These agreements will be based on a subset of MMS services and protocol listed in table 1
and defined in ISO/IEC 9506-1 and ISO/IEC 9506-2.

Table 1 - Phase 1 Services
┌──┐

│ Initiate │
│ Conclude │
│ Reject │
│ Abort │
│ │

│ Status │
│ GetNameList │

│ Identify │

│ UnsolicitedStatus │
│ GetCapabilityList │

│ │
│ InitiateDownloadSequence │
│ DownloadSegment │

│ TerminateDownloadSequence │
│ InitiateUploadSequence │
│ UploadSegment │

│ TerminateUploadSequence │
│ DeleteDomain │

│ GetDomainAttributes │
│ │

│ Read │
│ Write │

│ InformationReport │
│ GetVariableAccessAttributes │

│ │
│ Input │
│ Output │

│ │
│ CreateProgramInvocation │
│ DeleteProgramInvocation │

│ Start │
│ Stop │

│ Resume │
│ Reset │
│ Kill │

│ GetProgramInvocationAttributes │
└──┘

Normative References
[1] ISO/IEC 9506-1: 1990 - Industrial automation systems - Manufacturing Message

Specification Part 1: Service definition

[2] ISO/IEC 9506-2: 1990 - Industrial automation systems - Manufacturing Message
Specification Part 2: Protocol specification

[3] ISO/IEC 9506-1:1993 - Industrial automation systems - Manufacturing Message
Specification: Technical Corrigenda 1

Definitions
The definitions given in ISO/IEC 9506-1 are applicable to this document.

In addition the following definitions are used in this document:

MMS Implementation a term used to describe a system which conforms to ISO/IEC
9506, acting either as client or server, when it is unnecessary to
distinguish between the MMS-user and the MMS-provider.

MMSpdu Any valid value of the MMSpdu abstract data type as defined in Clause 7 of
ISO/IEC 9506-2, except for the initiate-RequestPDU, initiate-ResponsePDU,
and initiate-ErrorPDU choices, encoded in the negotiated transfer syntax.

Corrigenda and addenda
(Refer to Working Agreements.)

Status
(Refer to Working Agreements.)

General agreements

Max supported PDU size
The max_mms_pdu_size is defined as the maximum number of octets in an MMSpdu
encoded using the negotiated transfer syntax. This size shall apply to all MMSpdu's with the
exception of the initiate-Request PDU, initiate-Response PDU, and initiate-Error PDU. The
max_mms_pdu_size shall be negotiated during connection initiation using the Local Detail
Calling and Local Detail Called parameters of the MMS initiate service.

The negotiated max_mms_pdu_size shall be applied as follows:

 Any received MMSpdu whose length is less than or equal to the negotiated
max_mms_pdu_size shall be properly parsed and processed.

 An MMS implementation should not send an MMSpdu whose size exceeds the
negotiated max_mms_pdu_size. If an MMS implementation sends an MMSpdu that
exceeds the negotiated max_mms_pdu_size, then it shall be prepared to receive a
reject pdu. Should an MMS implementation receive an MMSpdu that exceeds the
negotiated max_mms_pdu_size, it shall either reject the MMSpdu or accept the
MMSpdu as if no size violation had occurred and perform the expected processing.

 If an MMS implementation is unable to send a service response because the
response would exceed the max_mms_pdu_size, then it shall return a Service
response (-) with an error class of SERVICE and an error code of OTHER.

 When rejecting an MMSpdu because it exceeds the negotiated max_mms_pdu_size,
an MMS implementation shall use a Reject PDU Type of PDU-ERROR and a Reject
Code of INVALID-PDU in the resulting reject pdu.

FileName
Restrictions for the use of the type FileName in the MMS Abstract Syntax are specified in
section 9.1 of part 9 of these agreements.

Service-specific agreements

Environment and general management

Initiate

Negotiation of MMS abstract syntaxes

On the A-ASSOCIATE response, the MMS responder shall not accept more than one
presentation context derived from an MMS abstract syntax. For this agreement, the term
"MMS abstract syntax" shall represent an abstract syntax from the set containing the
abstract syntax defined in clause 19 of ISO/IEC 9506-2 and abstract syntaxes defined by
MMS companion standards.

NOTE - There are technical problems with describing operation in multiple MMS abstract
syntaxes over a single association. These problems have been identified as of 9/90, and form
the basis of the prior agreement.

Max serv outstanding

An MMS Implementation which intends to conform only with the Client Conformance
Requirements for Requester CBBs shall:

 propose one or greater for the value of the Proposed Max Serv Outstanding Called
parameter in the Initiate service when initiating the application association (calling);

 offer one or greater for the value of the Negotiated Max Serv Outstanding Calling
parameter in the Initiate service when receiving the application association initiation
(called).

An MMS Implementation which intends to conform to one or more Server Conformance
Requirements for Responder CBBs shall:

 propose one or greater for the value of the Proposed Max Serv Outstanding Calling
parameter in the Initiate service when initiating the application association (calling);

 offer one or greater for the value of the Negotiated Max Serv Outstanding Called
parameter in the Initiate service when receiving the application association initiation
(called).

Local detail calling

The local detail calling parameter in the initiate request primitive shall specify the
max_mms_pdu_size guaranteed to be supported by the calling MMS implementation. If the
local detail calling parameter is absent from the request primitive, then the calling MMS
implementation guarantees support for an unlimited max_mms_pdu_size.

If present in the request or indication primitives, the local detail calling parameter shall not
be less than 64; however, it is recommended that at least 512 octets be supported.

Local detail called

The local detail called parameter in the initiate response shall specify the negotiated
max_mms_pdu_size for the application association.

If the local detail calling parameter was omitted in the indication primitive, then the local
detail called parameter:

 may be omitted from the response, indicating that the calling MMS implementation
and the called MMS implementation are prepared to support an unbounded
max_mms_pdu_size;

 may be specified in the response, indicating a requirement to support the specified
value for max_mms_pdu_size.

If the local detail calling parameter was included in the request, then this parameter shall be
present in the response and its value shall be less than or equal to the value of the local
detail calling parameter of the request.

If present in the response, the local detail called parameter shall not be less than 64;
however, it is recommended that at least 512 octets be supported.

Rules of Extensibility

Any additional valid tagged ASN.1 values received as sequence elements in the parameters
of the Initiate-RequestPDU, the Initiate-ResponsePDU, or the Initiate-ErrorPDU shall be
ignored for upward compatibility purposes.

Implementations shall be capable of parsing up to 128 bits in the services supported field of
either the Initiate-RequestPDU or the Initiate-ResponsePDU. Implementations shall be
capable of parsing up to 32 bits in the parameter CBB field of either the Initiate-Request-PDU
or the Initiate-ResponsePDU. In both cases, the behaviour of the implementation shall be no
different than if the PDU received had not contained additional bits.

PART 20 - MMS September 1993 (Stable)

VMD support

Get Capability List service
Only one capability shall be described in each VisibleString of the SEQUENCE OF.

Domain management

List of capabilities
Only one capability shall be described in each Visible String of the SEQUENCE OF.

The order of the strings within the List of Capabilities may have significance to the server
implementation, and the order shall be preserved.

Initiate Download Sequence service
The List of Capability parameter shall follow the limitations of 8.3.1.

The syntax and semantics of the capabilities shall be defined by the Server in the PICS. Any
deviation from the defined syntax and semantics shall be grounds for the Server to return a
service error with Error Class = RESOURCE and Error Code = CAPABILITY-UNKNOWN.

Download Segment service
A client that receives a Download Segment indication after issuing a Download Segment
Result(+) with the MoreFollows parameter equal to FALSE or after issuing a Download
Segment Result(-) shall issue either a service error, specifying an Error Class = SERVICE and
an Error Code = PRIMITIVES-OUT-OF-SEQUENCE, or an Abort request.

Terminate Download Sequence service
If a client receives a Terminate Download Sequence indication in which the Discard
parameter is absent and the client has not issued a Download Segment response with the
More Follows parameter = FALSE for that Domain, it shall behave as if it had received a
Terminate Download Sequence indication with the Discard parameter present with error
class = VMD-STATE and error code = DOMAIN-TRANSFER-PROBLEM. It is then up to the client
application to determine the true state of the Domain and take any recovery action.

Initiate Upload Sequence service
The List of Capability parameter shall follow the limitations of 8.3.1.

PART 20 - MMS September 1993 (Stable)

Upload Segment service
A server that receives an Upload Segment indication for an Upload State Machine for which
it has issued an Upload Segment Result(-) or an Upload Segment Result(+) with the
MoreFollows parameter equal to FALSE, shall issue either a service error, specifying an Error
Class = SERVICE and an Error Code = PRIMITIVES-OUT-OF-SEQUENCE, or an Abort request.

Get Domain Attributes service
The List of Capability parameter shall follow the limitations of 8.3.1.

Program Invocation management

Start service
A ProgramInvocationState of non-existent shall be returned in a Result(-) when a request to
Start a non-existent Program Invocation is received.

Stop service
A ProgramInvocationState of non-existent shall be returned in a Result(-) when a request to
Stop a non-existent Program Invocation is received.

Resume service
A ProgramInvocationState of non-existent shall be returned in a Result(-) when a request to
Resume a non-existent Program Invocation is received.

Reset service
A ProgramInvocationState of non-existent shall be returned in a Result(-) when a request to
Reset a non-existent Program Invocation is received.

Variable access

Scattered access
It is strongly recommended that for services which use variable access, a Variable List Name
or List of Variable be used instead of Scattered Access.

No implementations shall be required to propose or accept the VSCA Parameter CBB.

PART 20 - MMS September 1993 (Stable)

Floating point
It is strongly recommended for services which use floating point types or values, that the
choice of floating-point in the Data and TypeSpecification productions be used instead of the
real choice.

No implementations shall be required to propose or accept the REAL parameter CBB.

Any implementation which supports data of the MMS Floating Point Type, shall be capable of
supporting a size parameter of format width 32 and exponent width 8.

Unsigned Data
Upon receipt of an MMSpdu containing a negative value for either an unsigned choice or a
bcd choice in the Data production, an implementation shall treat this occurrence as a
protocol error.

Order of variable specifications
The order of variable specifications that appear in lists shall not constrain the temporal order
of the access to indivicual variables by the V-Put and V-Get functions in the server.

Parameter CBBs
Each server implementation that claims support for the Read, Write or InformationReport
service shall be capable of supporting either the VNAM or VADR parameter CBB.

Each client implementation that claims support for the Read, Write or InformationReport
service shall be capable of supporting the VNAM and VADR parameter CBBs.

Named Variable Scope
Each server implementation that claims support for the VNAM parameter CBB shall be
capable of supporting either VMD-Specific or Domain-Specific named variables.

Each client implementation that claims support for the VNAM parameter CBB shall be
capable of supporting both VMD-Specific and Domain-Specific named variables.

Address Types
Each server implementation that claims support for the VADR parameter CBB shall be
capable of supporting either the Symbolic-Address or Numeric-Address choice.

Each client implementation that claims support for the VADR parameter CBB shall be

PART 20 - MMS September 1993 (Stable)
capable of supporting both the Symbolic-Address and Numeric-Address choices.

Semaphore management
Semaphore services are not considered in Phase 1.

Operator communication
No Operator Communication agreements have been identified to date.

Event management
Event Management services are not considered in Phase 1.

Journal management
Journal Management services are not considered in Phase 1.

PART 20 - MMS September 1993 (Stable)

Annex (normative)

Backwards compatibility agreements

Introduction
There is an installed base of real DIS 9506 based implementations. Providing support for
application connectivity to both DIS and IS is desired as a migration strategy. These
implementation agreements will allow IS based implementations to interoperate with DIS
based implementations as described in ANNEX B. To achieve this backwards compatibility,
the IS implementation shall support all of the agreements in this section.

It was found that the Abstract Syntax name object identifiers of both DIS and IS were
identical. Therefore, the use of zero as the version number allows differentiation between an
IS and a DIS based implementation. Since the abstract syntax name object identifier of any
companion standard is different from that used by the DIS implementations, DIS
implementations cannot interoperate with IS based implementations in a companion
standard context.

NOTES

 The value of zero is a valid value for this parameter in the DIS and not in the IS.

 There are three types of implementations when considering MMS backwards compatibility.

IMP-1: An implementation based on DIS 9506 as described in Annex B;

IMP-2: An implementation based on IS 9506 with no backwards compatibility
agreements applied;

IMP-3: An implementation based on IS 9506 which includes the backwards
compatibility agreements of this annex. Such an implementation can
dynamically negotiate to interoperate with an IMP-1, an IMP-2, or an IMP-3
implementation.

Since the value of the minor version number is zero for DIS-based implementations, and is
one or greater for implementations of ISO/IEC 9506, this value can be used to differentiate
between IMP-1 and IMP-2. An IMP-3 system can interoperate with either of these systems. If
an IMP-3 is the Calling system, it will offer a value of one (or greater) for the proposed
version number. An IMP-1 system will respond with a value of the negotiated version number
of zero, using the negotiation procedure defined in ISO/IEC 9506. The IMP-3 system will
accept this response. If the IMP-3 system is the Called system and has received an Initiate
request with a value of zero for the proposed version number (from an IMP-1 system), it will
respond with a value of zero for the negotiated version number. By following this procedure,
an IMP-3 can interoperate with an IMP-2 or with another IMP-3 viewed as an IMP-2. After
association context establishment, an IMP-3 system shall behave as either an IMP-1 or an
IMP-2 system as appropriate on that particular association. The remainder of this section
describes additional agreements which change an IMP-2 implementation into an IMP-3
implementation.

PART 20 - MMS September 1993 (Stable)

Backwards compatibility agreements for calling MMS
implementations

A calling MMS implementation shall be capable of receiving and supporting a
negotiatedVersionNumber parameter in the Initiate Service confirm of zero.

A calling MMS implementation which has received a negotiatedVersionNumber parameter in
the Initiate Service confirm of zero shall support the modifications described in .

A calling MMS implementation shall be capable of receiving an Application Context Name
parameter value appropriate to an IMP-1 or IMP-2 in the A-Associate confirm.

A calling MMS implementation which has received a negotiatedVersionNumber of zero shall
be capable of receiving and supporting an Initiate Response which has been encoded
according to the modifications described in Appendix B, specifically the capability of
receiving and supporting a negotiatedParameterCBB containing exactly 7 bits.

If a calling MMS implementation receives an Initiate confirm primitive with a
negotiatedVersionNumber parameter equal to zero, the calling MMS implementation shall
support the VLIS conformance building block if the implementation claims support for any
service which contains one or more parameters which indicate the VLIS CBB in its service
definition.

Backwards compatibility agreements for called MMS
implementations

A called MMS implementation shall be capable of receiving and supporting a
proposedVersionNumber parameter in the Initiate Service indication of zero.

A called MMS implementation which has received a proposedVersionNumber parameter in
the Initiate Service indication of zero shall support the modifications in .

A called MMS implementation shall be capable of receiving an Application Context Name
parameter appropriate to an IMP-1 or IMP-2 in the A-Associate indication.

A called MMS implementation shall be capable of receiving and supporting an Initiate
Request which has been encoded according to the modifications described in Appendix B,
specifically the capability of receiving and supporting a proposedParameterCBB containing
exactly 7 bits.

If a called MMS implementation receives an Initiate indication primitive with a
proposedVersionNumber parameter equal to zero, the called MMS implementation shall
support the VLIS conformance building block if the implementation claims support for any
service which contains one or more parameters which indicate the VLIS CBB in its service
definition.

General backwards compatibility agreements

PART 20 - MMS September 1993 (Stable)

VMD logical status
If the current VMD State is SUPPORT-SERVICES-ALLOWED and the association minor version
number is zero, then the vmdLogicalStatus parameter shall have a value of STATE-CHANGES-
ALLOWED in a Status response or in an unsolicitedStatus request.

PART 20 - MMS September 1993 (Stable)

Annex (normative)

DIS 9506 Modifications Required for Backwards
Compatibility

Introduction
This annex is an integral part of this part. It documents the modifications to DIS 9506
required to describe implementations for which the agreements of this part provide
backwards compatibility. This annex as applied to DIS 9506 is referred to as Version 0.

References
[1] MMS/1 Manufacturing Message Specification - ISO DIS 9506 - Service Definition,

December 1987

[2] MMS/2 Manufacturing Message Specification - ISO DIS 9506 - Protocol Specification,
December 1987

[3] NBS OSI Implementors Workshop Agreements - December 1987

General

Implementation base
Version 0 is based upon Reference [3] in as it applies to MMS.

Rules of extensibility
The following sentence is appended to the last paragraph in section 8.2.1.1.5.2 Proposed
Parameter CBB and the last paragraph in section 8.2.1.2.5.2 Negotiated Parameter CBB of
DIS 9506-1.

"Any additional bits shall be ignored."

Modifications to the protocol definitions

Page 39, Section 7.5.2 of DIS 9506-2
╔══
╗

PART 20 - MMS September 1993 (Stable)
║ CHANGE ║
╟──
╢
║ reportEventEnrollmentStatus [60] IMPLICIT ║
║ ReportEventEnrollmentStatus-Request, ║
╠══
╣
║ TO ║
╟──
╢
║ reportEventEnrollmentStatus [60] ReportEventEnrollmentStatus-Request, ║
╚══
╝

Page 49, Section 7.6.4, DIS 9506-2
╔══
╗
║ CHANGE ║
╟──
╢
║ ApplicationReference ::= SEQUENCE { ║
║ ap-title ISO-8650-ACSE-1.AP-title OPTIONAL, ║
║ ap-invocation-id ISO-86 50-ACSE-1.AP-invocation-id OPTIONAL, ║
║ ae-qualifier ISO-8650-ACSE-1.AE-qualifier OPTIONAL, ║
║ ae-invocation-id ISO-8650-ACSE-1.AE-invocation-id OPTIONAL } ║
╠══
╣
║ TO ║
╟──
╢
║ ApplicationReference ::= SEQUENCE { ║
║ ap-title [0] OBJECT IDENTIFIER OPTIONAL, ║
║ ap-invocation-id [1] INTEGER OPTIONAL, ║
║ ae-qualifier [2] INTEGER OPTIONAL, ║
║ ae-invocation-id [3] INTEGER OPTIONAL } ║
╚══
╝

Page 95, Section 12.2.1 of DIS 9506-2
╔══
╗
║ CHANGE ║
╟──
╢
║ structure [2] IMPLICIT SEQUENCE OF SEQUENCE { ║
╠══
╣
║ TO ║

PART 20 - MMS September 1993 (Stable)
╟──
╢
║ structure [2] IMPLICIT SEQUENCE { ║
╚══
╝

Page 96, Section 12.3.1 of DIS 9506-2
╔══
╗
║ CHANGE ║
╟──
╢
║ named [4] IMPLICIT SEQUENCE { ║
╠══
╣
║ TO ║
╟──
╢
║ named [5] IMPLICIT SEQUENCE { ║
╚══
╝

Page 98, Section 12.4.2 of DIS 9506-2
╔══
╗
║ CHANGE ║
╟──
╢
║ generalized-time [10] IMPLICIT GeneralizedTime, ║
╠══
╣
║ TO ║
╟──
╢
║ generalized-time [11] IMPLICIT GeneralizedTime, ║
╚══
╝

Page 138, Section 15.14 of DIS 9506-2
╔══
╗
║ CHANGE ║
╟──
╢
║ additionalDetail [9] IMPLICIT EE-Additional-Detail OPTIONAL ║
╠══

PART 20 - MMS September 1993 (Stable)
╣
║ TO ║
╟──
╢
║ additionalDetail [9] EE-Additional-Detail OPTIONAL ║
╚══
╝

Page 166, Section 17.10 of DIS 9506-2
╔══
╗
║ CHANGE the transfer syntax object identifier value from ║
╟──
╢
║ { iso asn1(1) basic-encoding(1) } ║
╠══
╣
║ TO ║
╟──
╢
║ { joint-iso-ccitt asn1(1) basic-encoding(1) } ║
╚══
╝

Behavioral requirements

Filenames
File Names are specified in accordance with the NBS Implementors' agreements for FTAM
Reference [3] in .

Identify service
In the Identify service, the vendor, model and revision fields may be of any length, but only
the first 64, 16, and 16 octets respectively are treated as significant.

Initiate service
An MMS Client will:

 propose 1 or greater for the value of the Proposed Max Serv Outstanding Called
parameter in the Initiate service when initiating the application association (calling);

 offer 1 or greater for the value of the Negotiated Max Serv Outstanding Calling
parameter in the Initiate service when receiving the application association initiation
(called).

PART 20 - MMS September 1993 (Stable)

An MMS Server will:

 propose 1 or greater for the value of the Proposed Max Serv Outstanding Calling
parameter in the Initiate service when initiating the application association (calling);

 offer 1 or greater for the value of the Negotiated Max Serv Outstanding Called
parameter in the Initiate service when receiving the application association initiation
(called).

Minimum segment size

MMS implementations are able to parse and process 512 octets of MMSpdu as they are
encoded in ASN.1 basic encoding rules.

Maximum segment size

The Max Segment Size is defined as the maximum number of octets in an MMSpdu encoded
using the negotiated transfer syntax. This size will apply to all MMSpdu's with the exception
of the initiate-Request PDU, initiate-Response PDU, and the initiate-Error PDU. The max
segment size will be negotiated during connection initiation using the Proposed Max
Segment Size and Negotiated Max Segment Size parameters of the MMS initiate service.

The Max Segment Size will be applied as follows:

 Any received MMSpdu which is less than or equal to the Max Segment Size will be
properly parsed and processed;

 An MMS implementation will not send an MMSpdu whose size exceeds the Max
Segment Size.

Abstract syntax name
The ASN.1 object identifier value for the abstract syntax name will be the same as specified
on page 166, section 17.10 of DIS 9506-2.

Application context name
The ASN.1 object identifier value for the application context name will be the same as
specified on page 166, section 17.11 of DIS 9506-2.

An MMS implementation ignores the Application Context Name in the A-Associate indication
and the A-Associate confirm.

Minor version number
The Minor Version Number is zero.

PART 20 - MMS September 1993 (Stable)

Parameter CBB subset
The following subset of MMS Parameter CBBs were considered during preparation of this
annex:

 STR1;

 NEST;

 VADR;

 VNAM.

Service subset
The following subset of MMS services were considered during preparation of this annex.
Table 2 - MMS Service Subset

Initiate
Conclude
Cancel
Status
GetNameList
Identify
UnsolicitedStatus
GetCapabilityList
InitiateDownloadSequence
DownloadSegment
TerminateDownloadSequence
InitiateUploadSequence
UploadSegment
TerminateUploadSequence
RequestDomainDownload
RequestDomainUpload
LoadDomainContent
StoreDomainContent
DeleteDomain
GetDomainAttributes
Read
Write
InformationReport
GetVariableAccessAttributes
Input

PART 20 - MMS September 1993 (Stable)

Output
TakeControl
RelinquishControl
ReportSemaphoreStatus
ReportPoolSemaphoreStatus
ReportSemaphoreEntryStatus
CreateProgramInvocation
DeleteProgramInvocation
Start
Stop
Resume
Reset
Kill
GetProgramInvocationAttributes
ObtainFile
GetEventConditionAttributes
ReportEventConditionStatus
GetAlarmSummary
ReadJournal
WriteJournal
InitializeJournal
CreateJournal
DeleteJournal
ReportJournalStatus

PART 20 - MMS September 1993 (Stable)

Annex (normative)

Basic functional tests

Introduction
This document defines a set of basic functional test steps which can be used as building
blocks in developing various abstract test specification for basic functional tests,
interoperability tests, conformance tests, and performance tests. This document also defines
a set of basic functional tests based on these tests steps.

MMS provides a total of 86 messaging services which are oriented toward the support of
factory floor devices. Examples of MMS services include reading a named variable from a
remote data acquisition system, requesting status from a remote device and loading
programs into programmable devices. Many of the services interact with one another in
complicated ways. The complexity of the protocols makes exhaustive testing impractical on
both technical and economic grounds. Further, there is no guarantee that a system which
has passed a set of basic functional tests will interoperate with other systems. Rather,
passing the tests provides a level of confidence that the system will likely interoperate with
other systems and should behave in a consistent manner in representative instances of
communications.

The basic functional tests described in this document, do not constitute a complete
specification for a test implementation. The tests are intended to be used like building
blocks in developing test implementations for a variety of specific purposes. Performance
testing, stress testing and acceptance testing are a few instances of the testing variations
which may be supported.

The basic functional tests are intended to be used as building blocks for the development of
tests which verify the behavior of devices in a manner which can be directly related to their
use on factory floors. Several requirements have been placed on the basic functional tests to
promote this capability.

The following are the requirements used in the development of the BFT's:

 The basic functional tests are designed to be highly modular;

 The basic functional tests are designed to permit both "tester-to-vendor" and
"vendor-to-vendor" architectures;

 The basic functional tests are designed to be implemented without requiring any
modification to a vendors product;

 The basic functional tests are designed to allow "geographical independence". In
other words, remote testing is allowed;

 The basic functional tests strive to be stated in "pass/fail" terms to make test
documentation easier;

PART 20 - MMS September 1993 (Stable)
 The basic functional tests are designed to test both clients and servers;

 The basic functional tests are designed to be automated, although this is not
required.

Test steps
Each test step is defined by a combination of six attributes - its name, purpose, inputs, initial
conditions, sequence and pass condition.

The naming convention used to uniquely generate a test name is as follows. The test name
is made up of three components. The first component identifies the service group. The
second component identifies the service. The third component identifies the test step
number.

Values for the first component are:

EGM - Environment and General Management Services;
VMD - Virtual Manufacturing Device Support Services;
DOM - Domain Management Services;
PIM - Program Invocation Management Services;
VAR - Variable Access Services;
SEM - Semaphore Management Services;
OPR - Operator Communications Services;
EVM - Event Management Services;
JOU - Journal Management Services;
OBF - File Access Service;
FIL - File Management Services;

The second component is always a sequence of four upper case letters. An example would
be the name for the status service under the VMD group - STAT. The values for the second
component for each service group are listed under the sections for that group.

The third component is used to distinguish between test steps where the first two name
components are the same. It is always a two digit decimal number.

As an example, the complete name for the first test step for the status service would be
VMD_STAT_01.

The purpose briefly describes the capability being tested.

The inputs specify necessary information which must be provided in order to run the test. It
is not specified how this information is provided because that depends on the service being
tested as well as the implementation of a given instance of the test. Typical sources of test
input information would be the vendor Protocol Implementation Conformance Statement
(PICS), the vendor Protocol Implementation Extra Information Statement (PIXIT) and
information supplied by a test operator.

The initial conditions state conditions under which the test may be run. Typical conditions
would include the requirement that a connection be established, that parameter and service
support appropriate for the test be successfully negotiated and any other conditions that are

PART 20 - MMS September 1993 (Stable)
unique to the service being tested.

The sequence defines the sequence and form of messages that will appear "on the wire"
when the test is executed. The purpose of defining the test sequence from the point of view
of a third party observing the message transaction is that the same test case can support
testing an MMS client or server or both.

The pass condition states the criteria for determining whether or not a test has been
successfully passed. The pass condition that the messages exchanged "on the wire" parse
as described under the sequence section is always in effect and is not explicitly stated. It is
intended that the pass condition be pass/fail based on parsing of the messages exchanged
for a test which has been executed. A test which is not run because it is not applicable is
reported as the pass condition "not applicable." A test which is not run because the initial
conditions cannot be satisfied is reported as the pass condition "could not run".

Connections
The ability to establish a connection is basic to the operation of all of the MMS basic
functional tests. (The test for initiate itself is the exception.) If the connection requirements
as stated in the test initial conditions cannot be provided, the test fails.

In most cases, a single connection can be used to run one or more test cases if the required
connection parameters for each test are supported. There is no requirement that a new
connection be made in order to run each test case. Some services create state machines
and other objects associated with the VMD. In these cases, there may be a dependency on
connection state between tests. These dependencies are described in the test
documentation.

Test suites
Test suites based on groupings of the basic functional tests may be developed to satisfy the
testing of various device types. The actual test suite shall be based on the services
supported, the parameter CBB's supported and local implementation values described in the
device PICS.

The tests are designed such that pass conditions can be determined from the point of view
of the requesting or responding MMS-user. This allows the same basic functional tests to be
used to form a test suite for either a client or a server.

General conventions
This document describes the basic functional test steps with a notation which is similar to
ASN.1. Several extensions are employed which are introduced and terminated by "<" and
">" respectively.

<LOCAL>

When used in the sequence sections of this document, the symbol <LOCAL> indicates a

PART 20 - MMS September 1993 (Stable)
parameter value which is determined by a local action of the sending system.

<sPICS:XXX>,<cPICS:XXX>

When used in the sequence and pass conditions sections of this document, the symbols
<sPICS:XXX> and <cPICS:XXX> indicate parameter values which are determined by a
vendor PICS document for the server and client respectively. The PICS, for the purpose of
basic functional testing, is assumed to be in a structured machine readable form, and values
in the PICS are accessed in a manner similar to structures in the language "C". An example
would be the symbol <PICS:VendorName> which references the vendor name field in the
PICS document.

<sPIXIT:XXX>,<cPIXIT:XXX>

When used in the sequence and pass condition sections of this document, the symbols
<sPIXIT:XXX> and <cPIXIT:XXX> indicate parameter values which are determined by vendor
PIXIT documents for the server and client respectively. The PIXIT, for the purpose of basic
functional testing, is assumed to be in a structured machine readable form, and values in
the PIXIT are accessed in a manner similar to structures in the language "C".

<TMP:XXX>

Values of certain PDU parameters will often need to be saved or accumulated in order to
evaluate the pass criteria for the test. Sometimes they will also be needed to parse the
messages. The text in the sequence sections of this document will clearly state which
parameters have to be used for this purpose. An example of a temporary variable is the
visibleString <TMP:vendorName> used in VMD_IDENT_01 to save the contents of the
vendorName field in the identify service response for evaluating the pass criteria for the
identify test.

<ID>

In general, the exact values of InvokeId's are of no interest in performing or analyzing the
tests. Any problems associated with the use of InvokeId's are assumed to be caught by
conformance testing. In the sequence section of this document, InvokeId's are simply
referred to by the symbol <ID>. They are used in parsing to match a request with a
response.

PICS/PIXIT
This section is intended to represent a machine-readable PICS/PIXIT pro-forma. The format
and notations used for each section will be explained in each section.

General PICS

These are general information that apply to both Client and Server. The appropriate

PART 20 - MMS September 1993 (Stable)
information for the IUT should be inserted where the blanks are shown.

VendorName ____________________

ModelName ____________________

Revision ____________________

Server PICS

The following section defines text which should be listed if a given service is supported by
the IUT as a Server, and omitted if the service is not supported. Support of a service is
defined in ISO/IEC 9506. The list of acceptable values are constructed by taking the letter
"s" and concatenating the service name.

sInitiate

sConclude

sAbort

sStatus

sUnsolicitedStatus

sGetNameList

sIdentify

sGetCapabilityList

sDomainUpload

sDomainDownload

sDomainDelete

sGetDomainAttributes

sCreateProgramInvocation

sDeleteProgramInvocation

sStart

sStop

sResume

sReset

PART 20 - MMS September 1993 (Stable)
sGetProgramInvocationAttributes

sRead

sWrite

sInformationReport

sGetVariableAccessAttributes

The next section of the Server PICS consists of text which represents parameter CBB
support. A CBB is listed if it is supported by the IUT as a Server, and omitted if the CBB is
not supported. Support of a CBB is defined in ISO/IEC 9506. The list of acceptable values
are constructed by taking the letter "s" and concatenating the CBB name.

sVADR

sVNAM

sVLIS

sSTR1

sSTR2

The next PICS information which needs to be specified is the acceptable range of the
parameter CBB NEST. The two values that need to be specified are:

sNESTmin the minimum nesting level allowed to be proposed by the Client such that
an MMS context is allowed to be established.

sNESTmax the maximum nesting level that can ever be returned in the initiate-
ResponsePDU.

An example of specification is: sNESTmin=1.

Similarly, maximum services outstanding calling and called need to be specified in the PICS.
The values to be defined are:

sMaximumServicesOutstandingCallingMin the minimum value that can be
proposed by the Client such that an MMS context is allowed to be
established.

sMaximumServicesOutstandingCallingMax the maximum value that can ever
be returned in the initiate-ResponsePDU.

sMaximumServicesOutstandingCalledMin the minimum value that can be
proposed by the Client such that an MMS context is allowed to be
established.

sMaximumServicesOutstandingCalledMax the maximum value that can ever
be returned in the initiate-ResponsePDU.

PART 20 - MMS September 1993 (Stable)

Next the range of local detail calling and called must be specified. The OIW stable
agreements specify that these values are used to negotiate maximum size of an MMSpdu.
The values which must be specified are:

sInitiateLocalDetailMinthe minimum value that can ever be returned in the initiate-
ResponsePDU.

sInitiateLocalDetailMax the maximum value that can ever be returned in the
initiate-ResponsePDU.

Next to be defined is the list of abstract syntaxes supported by the Server. Definition will be
via ASN.1 value notation format.

sListOfAbstractSyntaxes ::= SEQUENCE OF OBJECT IDENTIFIER

Load data format will be specified via ASN.1 value notation.

sLoadDataFormat ::= SEQUENCE {
octet-string NULL OPTIONAL,
external SEQUENCE OF OBJECT IDENTIFIER OPTIONAL
}

The next section of the Server PICS consists of text which represents the type of address
format supported. This section is only to be supplied if sVADR is specified in the parameter
CBB portion of the Server PICS. An address format is listed if it is supported by the IUT as a
Server, and omitted if it is not supported. Support is defined in ISO/IEC 9506. The list of
acceptable values are constructed by taking the letter "s" and concatenating the address
type name.

sSymbolicAddress

sNumericAddress

sUnconstrainedAddress

The next section of the Server PICS consists of text which represents the primitive data
types supported. A data type is listed if it is supported by the IUT as a Server, and omitted if
it is not supported. Support is defined in ISO/IEC 9506. The list of acceptable values are
constructed by taking the letter "s" and concatenating the address type name.

sboolean

sbit-string

sinteger

sunsigned

sfloating-point

sreal

PART 20 - MMS September 1993 (Stable)

soctet-string

svisible-string

sgeneralized-time

sbinary-time

sbcd

sbooleanArray

sobjId

Client PICS

The following section defines text which should be listed if a given service is supported by
the IUT as a Client, and omitted if the service is not supported. Support of a service is
defined in ISO/IEC 9506. The list of acceptable values are constructed by taking the letter
"c" and concatenating the service name.

cInitiate

cConclude

cAbort

cStatus

cUnsolicitedStatus

cGetNameList

cIdentify

cGetCapabilityList

cDomainUpload

cDomainDownload

cDomainDelete

cGetDomainAttributes

cCreateProgramInvocation

cDeleteProgramInvocation

cStart

PART 20 - MMS September 1993 (Stable)
cStop

cResume

cReset

cGetProgramInvocationAttributes

cRead

cWrite

cInformationReport

cGetVariableAccessAttributes

The next section of the Client PICS consists of text which represents parameter CBB support.
A CBB is listed if it is supported by the IUT as a Client, and omitted if the CBB is not
supported. Support of a CBB is defined in ISO/IEC 9506. The list of acceptable values are
constructed by taking the letter "c" and concatenating the CBB name.

cVADR

cVNAM

cVLIS

cSTR1

cSTR2

The next PICS information which needs to be specified is the acceptable range of the
parameter CBB NEST. The two values that need to be specified are:

cNESTmax the maximum nesting level which will be proposed by the Client in the initiate-
RequestPDU.

cNESTmin the minimum nesting level that can be returned in the initiate-ResponsePDU
without causing the loss of the MMS context.

An example of specification is: cNESTmin=1.

Similarly, maximum services outstanding calling and called need to be specified in the PICS.
The values to be defined are:

cMaximumServicesOutstandingCallingMax the maximum value that will be
proposed by the Client in the initiate-RequestPDU.

cMaximumServicesOutstandingCallingMin the minimum value that can be
returned in the initiate-ResponsePDU without causing the loss of the MMS context.

cMaximumServicesOutstandingCalledMax the maximum value that will be

PART 20 - MMS September 1993 (Stable)
proposed by the Client in the initiate-RequestPDU.

cMaximumServicesOutstandingCalledMin the minimum value that can be
returned in the initiate-ResponsePDU without causing the loss of the MMS context.

Next the range of local detail calling and called must be specified. The OIW stable
agreements specify that these values are used to negotiate maximum size of an MMSpdu.
The values which must be specified are:

cInitiateLocalDetailMax the maximum value that will be proposed in the initiate-
RequestPDU.

cInitiateLocalDetailMin the minimum value that can ever be returned in the initiate-
ResponsePDU without causing the loss of the MMS context.

Next to be defined is the list of abstract syntaxes supported by the Client. Definition will be
via ASN.1 value notation format.

cListOfAbstractSyntaxes ::= SEQUENCE OF OBJECT IDENTIFIER

Load data format will be specified via ASN.1 value notation.

cLoadDataFormat ::= SEQUENCE {
octet-string NULL OPTIONAL,
external SEQUENCE OF OBJECT IDENTIFIER OPTIONAL
}

The next section of the Client PICS consists of text which represents the type of address
format supported. This section is only to be supplied if cVADR is specified in the parameter
CBB portion of the Client PICS. An address format is listed if it is supported by the IUT as a
Client, and omitted if it is not supported. Support is defined in ISO/IEC 9506. The list of
acceptable values are constructed by taking the letter "c" and concatenating the address
type name.

cSymbolicAddress

cNumericAddress

cUnconstrainedAddress

The next section of the Client PICS consists of text which represents the primitive data types
supported. A data type is listed if it is supported by the IUT as a Client, and omitted if it is
not supported. Support is defined in ISO/IEC 9506. The list of acceptable values are
constructed by taking the letter "c" and concatenating the address type name.

cboolean

cbit-string

cinteger

cunsigned

PART 20 - MMS September 1993 (Stable)

cfloating-point

creal

coctet-string

cvisible-string

cgeneralized-time

cbinary-time

cbcd

cbooleanArray

cobjId

Addressing information

This is general information that is needed by both Client and Server.

ServerDeviceConnectionData

sAE-Title=

sPSAP=

sSSAP=

sTSAP=

sNSAP=

sMAC=

sLSAP=

ClientDeviceConnectionData

cAE-Title=

cPSAP=

cSSAP=

cTSAP=

cNSAP=

PART 20 - MMS September 1993 (Stable)
cMAC=

cLSAP=

Server PIXIT

Named variable table

The list of supported named variables is defined via the following ASN.1 definitions. ASN.1
value notation shall be used for the actual definitions.

namedVariableTable ::= SEQUENCE OF NamedVariableTableEntry

NamedVariableTableEntry ::= SEQUENCE {
 index [0] INTEGER,
 name [1] ObjectName,
 typeSpec [2] TypeSpecification,
 data [3] Data OPTIONAL,-- Field is only present if a specific

-- data value is required for variable write tests.
-- If not present, it is assumed that any data value

-- consistent with the type specification is adequate.
 access [4] VisibleString -- R, W, V
 address [5] Address OPTIONAL, -- present if PUBLIC

-- not present otherwise
 predefined [6] BOOLEAN,
 mmsDeletable [7] BOOLEAN
}

Examples of the definitions follow.

namedVariableTableEntry {
index 0,
name {vmd-specific "PART_COUNT"},
typeSpec {integer '32'},
data {integer '14'},
access "RWV",
address {symbolicAddress "$N0:00"},
predefined FALSE,
mmsDeletable TRUE
}

namedVariableTableEntry {
index 1,
name {Domain-specific {DomainID 'DOM1', itemID 'TEMP'}},
typeSpec {unsigned '16'},
data {integer '1600'},
access "R",
address {symbolicAddress "R125"},
predefined TRUE,
mmsDeletable FALSE
}

PART 20 - MMS September 1993 (Stable)

namedVariableTableEntry {
index 2,
name {vmd-specific "ARRAY"},
typeSpec {array {packed TRUE,
 numberOfElements '100',
 elementType {integer '16'}
 }},

-- data not present
access "W",
address {unconstrainedAddress 0x12345678},
predefined TRUE,
mmsDeletable FALSE
}

Addressed variable table

The list of supported addressed variables is defined via the following ASN.1 definitions.
ASN.1 value notation shall be used for the actual definitions.

 AddressVariableTable ::= SEQUENCE OF AddressVariableTableEntry

AddressVariableTableEntry ::= SEQUENCE {
 index [0] INTEGER,
 address [1] Address,
 typeSpec [2] TypeSpecification,
 data [3] Data OPTIONAL,-- Field is only present if a

-- specific data value
-- is required for variable write tests. If not
-- present, it is assumed that any data value
-- consistent with the type specification is adequate.

 access [4] VisibleString, -- R, W, V
 kindOfVariable [5] VisibleString -- Unnamed, SINGLE
}

An example of the definitions follows.

addressVariableTableEntry {
index 0,
address {symbolicAddress "$A0:10"},
typeSpec {octet-string '256'},

-- data not present
access "RW",
kindOfVariable "Unnamed"
}

Domain table

The list of supported Domains is defined via the following ASN.1 definitions. ASN.1 value
notation shall be used for the actual definitions.

PART 20 - MMS September 1993 (Stable)
DomainTable ::= SEQUENCE OF DomainTableEntry

DomainTableEntry ::= SEQUENCE {
 index [0] INTEGER,
 domainName [1] Identifier,
 listOfCapabilities [2] SEQUENCE OF VisibleString OPTIONAL,
 sharable [3] BOOLEAN,
 deletable [4] BOOLEAN,
 predefined [5] BOOLEAN,
 loadDataFormat CHOICE {

formatOctetString [6] NULL,
externalAbstractSyntax [7] SEQUENCE OF OBJECT IDENTIFIER
}

}

Examples of the definitions follow.

DomainTableEntry {
index 0,
domainName "Domain1",
listOfCapabilities {"capstring1","capstring2","capstring3"},
sharable TRUE,
deletable FALSE,
predefined TRUE,
loadDataFormat formatOctetString
}

DomainTableEntry {
index 1,
domainName "Domain2",
sharable TRUE,
deletable TRUE,
predefined FALSE,
loadDataFormat externalAbstractSyntax { { 1 0 9999 1992 1 3 } }
}

DomainTableEntry {
index 2,
domainName "Domain3",
listOfCapabilities {"overdraft","memprotect","phyIO"},
sharable FALSE,
deletable TRUE,
predefined TRUE,
loadDataFormat formatOctetString
}

DomainTableEntry {
index 3,
domainName "spc-gage",
listOfCapabilities {"feedback",
 "wkl-fmt",
 "offline-config",
 "multidev"

PART 20 - MMS September 1993 (Stable)
 },
sharable FALSE,
deletable TRUE,
predefined TRUE,
loadDataFormat externalAbstractSyntax { { 1 0 9999 1992 1 3 } }
}

Program Invocation table

The list of supported Program Invocations is defined via the following ASN.1 definitions.
ASN.1 value notation shall be used for the actual definitions.

ProgramInvocationTable ::= SEQUENCE OF ProgramInvocationTableEntry

ProgramInvocationTableEntry ::= SEQUENCE {
 index [0] INTEGER,
 pIname [1] Identifier,
 listOfDomains [2] SEQUENCE OF Identifier,
 reusable [3] BOOLEAN,
 monitor [4] BOOLEAN,
 deletable [5] BOOLEAN,
 predefined [6] BOOLEAN
 executionArgument CHOICE {

stringArgument [7] VisibleString,
externalAbstractSyntax [8] SEQUENCE OF OBJECT IDENTIFIER,
} OPTIONAL

}

Examples of the definitions follow.

programInvocationTableEntry {
index 0,
pIname "Part-A",
listOfDomains {"Domain1","Domain2","Domain3"},
reusable TRUE,
monitor FALSE,
deletable TRUE,
predefined FALSE,
executionArgument {stringArgument "TheParameter"}
}

programInvocationTableEntry {
index 1,
pIname "Part-B",
listOfDomains {"spc-gage"}
reusable TRUE,
monitor FALSE,
deletable TRUE,
predefined TRUE
}

programInvocationTableEntry {

PART 20 - MMS September 1993 (Stable)
index 2,
pIname "Part-C",
listOfDomains {"Domain2"},
reusable FALSE,
monitor FALSE,
deletable FALSE,
predefined FALSE,
executionArgument externalAbstractSyntax { { 1 0 9999 1992 1 4 } }
}

PICS/PIXIT Pro-forma

The following is a form that is actually filled out for an IUT.

VendorName ____________________

ModelName ____________________

Revision ____________________

List of Server services:

PART 20 - MMS September 1993 (Stable)

List of Server parameterCBBs:

sNESTmin= sNESTmax=

sMaximumServicesOutstandingCallingMin=
sMaximumServicesOutstandingCallingMax=
sMaximumServicesOutstandingCalledMin=
sMaximumServicesOutstandingCalledMax=

sInitiateLocalDetailMin=
sInitiateLocalDetailMax=

List of Server Abstract Syntaxes

sLoadDataFormat ::=

List of Server Address formats:

PART 20 - MMS September 1993 (Stable)

List of Server data types:

List of Client services:

PART 20 - MMS September 1993 (Stable)

List of Client parameterCBBs:

cNESTmin= cNESTmax=

cMaximumServicesOutstandingCallingMin=
cMaximumServicesOutstandingCallingMax=
cMaximumServicesOutstandingCalledMin=
cMaximumServicesOutstandingCalledMax=

cInitiateLocalDetailMin=
cInitiateLocalDetailMax=

List of Client Abstract Syntaxes

cLoadDataFormat ::=

List of Client Address formats:

PART 20 - MMS September 1993 (Stable)

List of Client data types:

sAE-Title=
sPSAP=
sSSAP=
sTSAP=
sNSAP=
sMAC=
sLSAP=

cAE-Title=
cPSAP=
cSSAP=
cTSAP=
cNSAP=
cMAC=
cLSAP=

Named Variable Table:

Addressed Variable Table:

Domain Table:

Program Invocation Table:

PART 20 - MMS September 1993 (Stable)

Basic functional tests

Environment and general management test cases

EGM_INIT_01

Name: EGM_INIT_01

Purpose: Tests the ability to properly establish the MMS environment.

Inputs: Initiate parameters from the PICS

Initial Conditions: None

Sequence:

1.a The calling system sends:

 Initiate-RequestPDU {
 localDetailCalling <LOCAL>,
 proposedMaxServOutstandingCalling <LOCAL>,
 proposedMaxServOutstandingCalled <LOCAL>,
 proposedDataStructureNestingLevel <LOCAL>,
 initRequestDetail{
 proposedVersionNumber 1,
 proposedParameterCBB <LOCAL>,
 servicesSupportedCalling <LOCAL>
 }
 }

1.b The called system sends:

 Initiate-ResponsePDU {
 localDetailCalled <LOCAL>,
 negotiatedMaxServOutstandingCalling <LOCAL>,
 negotiatedMaxServOutstandingCalled <LOCAL>,
 negotiatedDataStructureNestingLevel <LOCAL>,
 initResponseDetail{
 negotiatedVersionNumber 1,
 negotiatedParameterCBB <LOCAL>,
 servicesSupportedCalled <LOCAL>
 }
 }

PART 20 - MMS September 1993 (Stable)
Pass Condition:

1. The values for localDetailCalling, proposedMaxServOutstandingCalling,
proposedMaxServOutstandingCalled, proposedDataStructureNestingLevel,
negotiatedParameterCBB and servicesSupportedCalling shall all be within the range
specified in the requester PICS.

2. The values for localDetailCalled, negotiatedMaxServOutstandingCalling,
negotiatedMaxServOutstandingCalled, negotiatedDataStructureNestingLevel and
negotiatedParameterCBB shall be less than or equal to those proposed in 1.a and within the
range specified in the responder PICS.

3. The value returned for servicesSupportedCalled shall be within the range specified in
the responder PICS.

EGM_CONC_01

Name: EGM_CONC_01

Purpose: Tests the ability to properly conclude the MMS environment.

Inputs: None

Initial Conditions:

1. A connection is established.

2. The server supports the server role for the conclude service.

Sequence:

1.a The client sends:

 Conclude-RequestPDU

1.b The server sends:

 Conclude-ResponsePDU

Pass Condition:

1. The MMS environment is terminated.

2. The client and server successfully release the underlying acse association.

EGM_ABRT_01

Name: EGM_ABRT_01

Purpose: Tests the ability of the client to abort the MMS environment.

PART 20 - MMS September 1993 (Stable)

Inputs: None

Initial Conditions:

1. A connection is established.

Sequence:

1.a The MMS application sends an acse abort.

Pass Condition:

1. The MMS environment is terminated.

2. The underlying acse association is aborted.

VMD support test cases
The services included in this group are:

STAT - Status

USTA - Unsolicited Status

GNAM - Get Name List

IDEN - Identify

RNAM - Rename

GCAP - Get Capability List

VMD_STAT_01

Name: VMD_STAT_01

Purpose: Tests the status service with extended derivation set to FALSE.

Inputs: None.

Initial Conditions:

1. A connection is established.

2. The server supports the server role for the status service.

Sequence:

PART 20 - MMS September 1993 (Stable)
1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 status FALSE
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 status {
 vmdLogicalStatus <LOCAL>,
 vmdPhysicalStatus <LOCAL>,
 localDetail <LOCAL>
 -- Values of vmdLogicalStatus, vmdPhysicalStatus
 -- and localDetail are saved as <TMP:vmdLogicalStatus>,
 -- <TMP:vmdPhysicalStatus>. and <TMP:localDetail>.
 -- If localDetail is provided in part four
 -- of the server's PICS, it shall be sent
 -- as specified. If localDetail is not
 -- provided, it shall not be sent.
 }
 }

Pass Condition:

1. Values for <TMP:vmdLogicalStatus>, <TMP:vmdPhysicalStatus> and
<TMP:localDetail> shall be valid.

VMD_STAT_02

Name: VMD_STAT_02

Purpose: Tests the status service with extended derivation set to TRUE.

Inputs: If it is present, the optional procedure for evaluating status information will be
extracted from the server PIXIT.

Initial Conditions:

1. A connection shall be established.

2. The server supports the server role for the status service.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,

PART 20 - MMS September 1993 (Stable)
 status TRUE
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 status {
 vmdLogicalStatus<LOCAL>,
 vmdPhysicalStatus <LOCAL>,
 localDetail<LOCAL>
 -- Values of vmdLogicalStatus, vmdPhysicalStatus and
 -- localDetail are saved as <TMP:vmdLogicalStatus>,
 -- <TMP:vmdPhysicalStatus> and <TMP:localDetail>.
 -- If localDetail is provided in part four of the server's PICS, then
 -- it shall be sent as specified. If localDetail is not provided, then
 -- this parameter shall not be sent.
 }
 }

Pass Condition:

1. Values for <TMP:vmdLogicalStatus> and <TMP:vmdPhysicalStatus> shall be valid.

VMD_USTA_01

Name: VMD_USTA_01

Purpose: Tests normal reporting of the VMD unsolicited status.

Inputs: If it is present, the optional procedure for evaluating status information will be
extracted from the server PIXIT.

Initial Conditions:

1. A connection shall be established.

2. The server supports the server role for the unsolicitedStatus service.

Sequence:

1.a The server sends:

 unconfirmed-PDU {
 unsolicitedStatus {
 vmdLogicalStatus<LOCAL>,
 vmdPhysicalStatus <LOCAL>,
 localDetail<LOCAL>
 -- Values of vmdLogicalStatus, vmdPhysicalStatus and
 -- localDetail are saved as <TMP:vmdLogicalStatus>,
 -- <TMP:vmdPhysicalStatus> and <TMP:localDetail>.

PART 20 - MMS September 1993 (Stable)
 -- If localDetail is provided in part four of the server's PICS, then
 -- it shall be sent as specified. If localDetail is not provided, then
 -- this parameter shall not be sent.
 }
 }

Pass Condition:

1. Values for <TMP:vmdLogicalStatus> and <TMP:vmdPhysicalStatus> shall be valid.

VMD_GNAM_01

Name: VMD_GNAM_01

Purpose: Tests the retrieval of named variables existing in the VMD.

Inputs: A list of variable names expected to be returned. This includes any permanent
named variables, named variables created by local means and named variables created by
MMS services.

Initial Conditions:

1. A connection is established.

2. The server supports the server role for the getNameList service.

Sequence:

A temporary variable of type Identifier, <TMP:continueAfterName>, is initialized to be "".

A temporary variable of type SEQUENCE OF Identifier, <TMP:listOfIdentifier>, is initialized to
be {}.

1. The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 getNameList {
 extendedObjectClass objectClass namedVariable,
 objectScope vmdSpecific NULL
 }
 }

There shall be zero or more occurrences of subsequence two.

2.a The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 getNameList {
 listOfIdentifier <LOCAL>,

PART 20 - MMS September 1993 (Stable)
 -- Values of listOfIdentifier are concatenated with the
 -- contents of temporary variable <TMP:listOfIdentifier>.
 -- <TMP:continueAfterName> is set equal to the last element
 -- in the sequence of listOfIdentifier.
 moreFollows TRUE
 }
 }

2.b The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 getNameList {
 extendedObjectClass objectClass namedVariable,
 objectScope vmdSpecific NULL,
 continueAfter <TMP:continueAfterName>
 }
 }

3. The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 getNameList {
 listOfIdentifier <LOCAL>,
 -- Values of listOfIdentifier are concatenated with the
 -- contents of temporary variable <TMP:listOfIdentifier>.
 -- <TMP:continueAfterName> is set equal to the last element
 -- in the sequence of listOfIdentifier.
 moreFollows FALSE
 }
 }

Pass Condition:

1. The sequence of values contained in <TMP:listOfIdentifier> after parsing is complete
shall match the expected sequence of identifiers.

VMD_IDEN_01

Name: VMD_IDEN_01

Purpose: Tests the retrieval of identify information.

Inputs: No additional input information is required.

Initial Conditions:

1. A connection is established.

2. The server supports the server role for the identify service.

PART 20 - MMS September 1993 (Stable)
Sequence:

1. The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 identify NULL
 }

2. The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 identify {
 vendorName <sPICS:PartOne:vendorName>,
 modelName <sPICS:PartOne:modelName>,
 revision <sPICS:PartOne:revision>
 listOfAbstractSyntaxes <LOCAL>
 -- The listOfAbstractSyntaxes is saved as temporary variable
 -- <TMP:listOfAbstractSyntaxes>.
 }
 }

Pass Condition:

1. The content of <TMP:listOfAbstractSyntaxes> shall be the union of the lists of
abstract syntaxes from <sPICS:PartOne:CSAbstractSyntaxes>, <sPICS:PartFour:loadData>
and <sPICS:PartFour:executionArgument>.

Rename test cases

VMD_GCAP_01

Name: VMD_GCAP_01

Purpose: Tests the retrieval of vmd capabilities.

Inputs: The vmd capabilities are extracted from the server PICS.

Initial Conditions:

1. A connection shall be established.

2. The server supports the server role for the getCapabilityList service.

Sequence:

A temporary variable of type SEQUENCE OF VisibleString, <TMP:capabilities>, is initialized to
be {}.

PART 20 - MMS September 1993 (Stable)

1. The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 getCapabilityList {
 }
 }

There shall be zero or more occurrences of subsequence two.

2.a The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 getCapabilityList {
 listOfCapabilities <LOCAL>,
 -- Values of listOfCapabilities are concatenated with the
 -- contents of temporary variable <TMP:capabilities>.
 -- <TMP:continueAfterName> is set equal to the last element
 -- in the sequence of listOfCapabilities.
 moreFollows TRUE
 }
 }

2.b The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 getCapabilityList {
 continueAfter <TMP:continueAfterName>
 -- The continueAfter parameter is not sent if its contents are
 -- the NULL string
 }
 }

3. The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 getCapabilityList {
 listOfCapabilities <LOCAL>,
 -- Values of listOfCapabilities are concatenated with the
 -- contents of temporary variable <TMP:capabilities>.
 -- <TMP:continueAfterName> is set equal to the last element
 -- in the sequence of listOfCapabilities.
 moreFollows FALSE
 }
 }

Pass Condition:

PART 20 - MMS September 1993 (Stable)

1. The sequence of values contained in <TMP:capabilities> after parsing is complete
shall match the sequence of values contained in <sPICS:capabilitiesOfVmd>.

Domain management test cases

DOM_UPLD_01

Name: DOM_UPLD_01

Purpose: Tests an upload of a single Domain.

Inputs: 1.X - integer index of the required Domain in the PIXIT list of Domains.

Initial Conditions:

1. A connection is established with InitiateUploadSequence, UploadSegment, and
TerminateUploadSequence supported by the server.

2. Domain named in <PIXIT:DOM.X.DomainName> exists in the server in a state that
can be that it can be uploaded.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 initiateUploadSequence
 <sPIXIT:DOM:X:DomainName>
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 initiateUploadSequence {
 ulsmID <LOCAL>,
 -- <TMP:ulsmID> is set equal to ulsmID.
 listOfCapabilities <sPIXIT:DOM:X:listOfCapabilities>
 }
 }

2. The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 uploadSegment <TMP:ulsmID>
 }

PART 20 - MMS September 1993 (Stable)

There shall be zero or more occurrences of subsequence three.

3.a The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 uploadSegment {
 loadData <LOCAL>,
 moreFollows TRUE
 }
 }

3.b The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 uploadSegment <TMP:ulsmID>
 }

4. The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 uploadSegment {
 loadData <LOCAL>,
 moreFollows FALSE
 }
 }

5.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 terminateUploadSequence
 <TMP:ulsmID>
 }

5.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 terminateUploadSequence NULL
 }

Pass Condition:

1. The sequence of received segments contains sufficient information to reconstruct the
original Domain content.

PART 20 - MMS September 1993 (Stable)
DOM_DNLD_01

Name: DOM_DNLD_01

Purpose: Tests the ability to download a Domain into the server system.

Inputs: 1. X - Integer value indicating the index in the list of Domains in the server
PIXIT.

Initial Conditions:

1. A connection is established with InitiateDownloadSequence supported by the server
and DownloadSegment and TerminateDownloadSequence supported by the client.

2. Domain named in <sPIXIT:DOM:X:DomainName> does not exist in the server.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 initiateDownloadSequence {
 DomainName <sPIXIT:DOM:X:DomainName>,
 listOfCapabilities
 <sPIXIT:DOM:X:listOfCapabilities>,
 sharable <sPIXIT:DOM:X:sharable>
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 initateDownloadSequence NULL
 }

2. The server sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 downloadSegment <sPIXIT:DOM:X:DomainName>
 }

There shall be exactly one occurrence of subsequence three.

3.a. The client sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 downloadSegment {
 loadData <LOCAL>,
 moreFollows TRUE

PART 20 - MMS September 1993 (Stable)
 }
 }

3.b. The server sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 downloadSegment <sPIXIT:DOM:X:DomainName>
 }

4. The client sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 downloadSegment {
 loadData <LOCAL>,
 moreFollows FALSE
 }
 }

4.a The server sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 terminateDownloadSequence{
 DomainName <sPIXIT:DOM:X:DomainName>
 -- discard shall not be present
 }
 }

4.b The client sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 terminateDownloadSequence NULL
 }

Pass Condition:

1. A Domain exists on the server with name <sPIXIT:DOM:X:DomainName> and is in the
Ready state.

DOM_DELE_01

Name: DOM_DELE_01

Purpose: Test the ability to delete a Domain on the server.

Inputs: 1. X - Integer value indicating the index of the Domain to be deleted in the
server PIXIT.

Initial Conditions:

PART 20 - MMS September 1993 (Stable)

1. A connection is established with DeleteDomain supported by the server.

2. Domain named in <sPIXIT:DOM:X:DomainName> exists, is in the READY state and
has an MMS deletable attribute set to TRUE.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 deleteDomain <sPIXIT:DOM:X:DomainName>
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 deleteDomain NULL
 }

Pass Condition:

1. Domain <sPIXIT:DOM:X:DomainName> no longer present on the server device.

DOM_GETA_01

Name: DOM_GETA_01

Purpose: Test the ability to get the attributes of a Domain on the server.

Inputs: 1. X - Integer value indicating the index of the Domain to be deleted in the
server PIXIT.

Initial Conditions:

1. A connection is established with GetDomainAttributes supported by the server.

2. Domain named in <sPIXIT:DOM:X:DomainName> exists.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 getDomainAttributes <sPIXIT:DOM:X:DomainName>
 }

1.b The server sends:

PART 20 - MMS September 1993 (Stable)
 confirmed-ResponsePDU {
 invokeID <ID>,
 getDomainAttributes {
 listOfCapabilities <sPIXIT:DOM:X:listOfCapabilities>,
 state <LOCAL>,
 mmsDeletable <sPIXIT:DOM:X:mmsDeletable>,
 sharable <sPIXIT:DOM:X:sharable>,
 listOfProgramInvocations <LOCAL>,
 uploadInProgress <LOCAL>
 }
 }

Pass Condition:

Program Invocation test cases

PIM_CREA_01

Name: PIM_CREA_01

Purpose: Test the ability to create a Program Invocation on the server.

Inputs: 1. X - Integer value indicating the index of the Program Invocation to be
created in the server PIXIT.

Initial Conditions:

1. A connection is established with CreateProgramInvocation supported by the server.

2. Program Invocation named in <sPIXIT:PI:X:PIName> does not exist in the server.

3. Domains named in <sPIXIT:PI:X:listOfDomainNames> exist and are able to be
incorporated into a Program Invocation.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 CreateProgramInvocation {
 programInvocationName <sPIXIT:PI:X:PIName>,
 listOfDomainNames
 <sPIXIT:PI:X:listOfDomainNames>,
 reusable <sPIXIT:PI:X:reusable>,
 monitorType <sPIXIT:PI:X:monitorType>
 -- The monitorType parameter is not sent if
 -- the server PIXIT indicates the Program Invocation is not
 -- monitored.

PART 20 - MMS September 1993 (Stable)
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 createProgramInvocation NULL
 }

Pass Condition:

1. A Program Invocation exists on the server with name <sPIXIT:PI:X:PIName> and is in
the IDLE state.

PIM_DELE_01

Name: PIM_DELE_01

Purpose: Test the ability to delete a Program Invocation on the server.

Inputs: 1. X - Integer value indicating the index of the Program Invocation to be
deleted in the server PIXIT.

Initial Conditions:

1. A connection is established with DeleteProgramInvocation supported by the server.

2. Program Invocation named in <sPIXIT:PI:X:PIName> exists on the server.

3. The Program Invocation is in one of the following states - IDLE, STOPPED or
UNRUNNABLE.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 DeleteProgramInvocation
 <sPIXIT:PI:X:PIName>
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 deleteProgramInvocation NULL
 }

Pass Condition:

PART 20 - MMS September 1993 (Stable)
1. The Program Invocation is deleted.

PIM_STRT_01

Name: PIM_STRT_01

Purpose: Test the ability to start a Program Invocation on the server.

Inputs: 1. X - Integer value indicating the index of the Program Invocation to be
started in the server PIXIT.

Initial Conditions:

1. A connection is established with Start supported by the server.

2. Program Invocation named in <sPIXIT:PI:X:PIName> exists on the server and be in
the IDLE state.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 start {
 programInvocationName <sPIXIT:PI:X:PIName>,
 executionArgument <sPIXIT:PI:X:executionArgument>
 -- This parameter is not sent if the server
 -- PIXIT does not specify an execution argument.
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 start NULL
 }

Pass Condition:

1. The Program Invocation makes the transition to the RUNNING state.

PIM_STOP_01

Name: PIM_STOP_01

Purpose: Test the ability to stop a Program Invocation on the server.

Inputs: 1. X - Integer value indicating the index of the Program Invocation to be

PART 20 - MMS September 1993 (Stable)
stopped in the server PIXIT.

Initial Conditions:

1. A connection is established with Stop supported by the server.

2. Program Invocation named in <sPIXIT:PI:X:PIName> exists on the server and be in
the RUNNING state.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 stop {
 programInvocationName <sPIXIT:PI:X:PIName>
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 stop NULL
 }

Pass Condition:

1. The Program Invocation makes the transition to the STOPPED state.

PIM_RESM_01

Name: PIM_RESM_01

Purpose: Test the ability to resume a Program Invocation on the server.

Inputs: 1. X - Integer value indicating the index of the Program Invocation to be
resumed in the server PIXIT.

Initial Conditions:

1. A connection is established with Resume supported by the server.

2. Program Invocation named in <sPIXIT:PI:X:PIName> exists on the server and be in
the STOPPED state.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {

PART 20 - MMS September 1993 (Stable)
 invokeID <ID>,
 resume {
 programInvocationName <sPIXIT:PI:X:PIName>,
 executionArgument <sPIXIT:PI:X:executionArgument>
 -- This parameter is not sent if the server
 -- PIXIT does not specify an execution argument.
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 resume NULL
 }

Pass Condition:

1. The Program Invocation makes the transition to the RUNNING state.

PIM_REST_01

Name: PIM_REST_01

Purpose: Test the ability to reset a Program Invocation on the server.

Inputs: 1. X - Integer value indicating the index of the Program Inovocation to be reset
in the server PIXIT.

Initial Conditions:

1. A connection is established with Reset supported by the server.

2. Program Invocation named in <sPIXIT:PI:X:PIName> exists on the server and is in the
STOPPED state.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 reset {
 programInvocationName <sPIXIT:PI:X:PIName>
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 reset NULL

PART 20 - MMS September 1993 (Stable)
 }

Pass Condition:

1. The Program Invocation makes the transition to the IDLE state.

PIM_GPIA_01

Name: PIM_GPIA_01

Purpose: Test the ability to get the attributes of a Program Invocation on the server.

Inputs: 1. X - Integer value indicating the index of the Program Invocation to be reset
in the server PIXIT.

Initial Conditions:

1. A connection shall be established with GetProgramInvocationAttributes supported by
the server.

2. Program Invocation named in <sPIXIT:PI:X:PIName> exists on the server.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeID <ID>,
 getProgramInvocationAttributes
 <sPIXIT:PI:X:PIName>
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeID <ID>,
 getProgramInvocationAttributes {
 state <LOCAL>,
 listOfDomainNames <sPIXIT:PI:X:listOfDomainNames>,
 mmsDeletable <sPIXIT:PI:X:mmsDeletable>,
 reusable <sPIXIT:PI:X:reusable>,
 monitor <sPIXIT:PI:X:monitor>,
 executionArgument <sPIXIT:PI:X:executionArgument>
 }
 }

Pass Condition:

Variable access test cases

PART 20 - MMS September 1993 (Stable)

VAR_READ_01

Name: VAR_READ_01

Purpose: To test the Read service for a single NAMED variable marked as readable
(R,RW,RWV) in the server PIXIT NAMED_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:NAMED_VAR table of the
server.

Initial Conditions:

1. Connection established with Read negotiated by the server.

2. VNAM shall be negotiated on the connection.

3. Appropriate values for STR1, STR2, and NEST shall be negotiated to support variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification name
 <sPIXIT:NAMED_VAR:X:Name>
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success>.
 }
 }
 }

Pass Condition:

<TMP:success> is consistent with the type specification in

PART 20 - MMS September 1993 (Stable)
<sPIXIT:NAMED_VAR:X:TypeSpec>.

VAR_READ_02

Name: VAR_READ_02

Purpose: To test the Read service for a single UNNAMED variable marked as readable
(R,RW,RWV) in the server PIXIT ADDR_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

1. A connection is established with Read supported by the server.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification address
 <sPIXIT:ADDR_VAR:X:Address>
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success>.
 }
 }
 }

Pass Condition:

PART 20 - MMS September 1993 (Stable)
<TMP:success> is consistent with the type specification in <sPIXIT:ADDR_VAR:X:TypeSpec>.

VAR_READ_03

Name: VAR_READ_03

Purpose: To test the Read service for a single SINGLE variable marked as readable
(R,RW,RWV) in the server PIXIT ADDR_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

1. A connection is established with Read supported by the server.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a. Client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification variableDescription {
 address <sPIXIT:ADDR_VAR:X:Address>,
 typeSpecification <sPIXIT:ADDR_VAR:X:TypeSpec>
 }
 }
 }
 }

1.b. Server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success>.
 }
 }
 }

PART 20 - MMS September 1993 (Stable)
Pass Condition:

<TMP:success> is consistent with the type specification in <sPIXIT:ADDR_VAR:X:TypeSpec>.

VAR_WRIT_01

Name: VAR_WRIT_01

Inputs: To test the Write service for a single NAMED variable marked as writable
(RW,RWV) in the server PIXIT NAMED_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:NAMED_VAR table of the
server.

Initial Conditions:

1. A connection is established with Write supported by the server.

2. VNAM is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated as appropriate to
support the variable being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 write {
 variableAccessSpecification listOfVariable {
 variableSpecification name
 <sPIXIT:NAMED_VAR:X:Name>
 },
 listOfData {
 <sPIXIT:NAMED_VAR:X:Data>
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 write {
 success NULL
 }
 }

Pass Condition:

PART 20 - MMS September 1993 (Stable)
VAR_WRIT_02

Name: VAR_WRIT_02

Purpose: To test the Write service for a single UNNAMED variable marked as writable
(RW,RWV) in the server PIXIT ADDR_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

1. A connection is established with Write supported by the server.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 write {
 variableAccessSpecification listOfVariable {
 variableSpecification address
 <sPIXIT:ADDR_VAR:X:Address>
 },
 listOfData {
 <sPIXIT:ADDR_VAR:X:Data>
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 write {
 success NULL
 }
 }

Pass Condition:

VAR_WRIT_03

Name: VAR_WRIT_03

PART 20 - MMS September 1993 (Stable)
Purpose: To test the Write service for a single SINGLE variable marked as writable
(RW,RWV) in the server PIXIT ADDR_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

1. A connection is established with Write supported by the server.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 write {
 variableAccessSpecification listOfVariable {
 variableSpecification variableDescription {
 address <sPIXIT:ADDR_VAR:X:Address>,
 typeSpecification <sPIXIT:ADDR_VAR:X:TypeSpec>
 }
 },
 listOfData {
 <sPIXIT:ADDR_VAR:X:Data>
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 write {
 success NULL
 }
 }

Pass Condition:

VAR_RMWV_01

Name: VAR_RMWV_01

Purpose: To test the ability to read, modify, write, and verify the changed value of a
single NAMED variable marked as read-write-verifiable (RWV) in the server PIXIT NAMED_VAR
table.

PART 20 - MMS September 1993 (Stable)

Inputs: X - integer value indicating the INDEX into the sPIXIT:NAMED_VAR table of the
server.

Initial Conditions:

1. A connection is established with Read supported by the server.

2. VNAM is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification name
 <sPIXIT:NAMED_VAR:X:Name>
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success1>.
 }
 }
 }

2. The client alters <TMP:success1>. The new value shall be consistent with the type
specification <sPIXIT:NAMED_VAR:X:TypeSpec>.

3.a The client sends:

 confirmed-RequestPDU {
 invokeId < ID>,
 write {
 variableAccessSpecification listOfVariable {
 variableSpecification name
 <sPIXIT:NAMED_VAR:X:Name>

PART 20 - MMS September 1993 (Stable)
 },
 listOfData {
 <TMP:success1>
 }
 }
 }

3.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 write {
 success NULL
 }
 }

4.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification name
 <sPIXIT:NAMED_VAR:X:Name>
 }
 }
 }

4.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success2>.
 }
 }
 }

Pass Condition: <TMP:success1> shall be equal to <TMP:success2>.

VAR_RMWV_02

Name: VAR_RMWV_02

Purpose: To test the ability to read, modify, write, and verify the changed value of a
single UNNAMED variable marked as read-write-verifiable (RWV) in the server PIXIT
ADDR_VAR table.

PART 20 - MMS September 1993 (Stable)

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

1. A connection is established with Read supported by the server.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification address
 <sPIXIT:ADDR_VAR:X:Address>
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success1>.
 }
 }
 }

2. The client alters <TMP:success1>. The new value shall be consistent with the type
specification <sPIXIT:ADDR_VAR:X:TypeSpec>.

3.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 write {
 variableAccessSpecification listOfVariable {
 variableSpecification address
 <sPIXIT:ADDR_VAR:X:Address>

PART 20 - MMS September 1993 (Stable)
 },
 listOfData {
 <TMP:success1>
 }
 }
 }

3.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 write {
 success NULL
 }
 }

4.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification address
 <sPIXIT:ADDR_VAR:X:Address>
 }
 }
 }

4.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success2>.
 }
 }
 }

Pass Condition: <TMP:success1> shall be equal to <TMP:success2>.

VAR_RMWV_03

Name: VAR_RMWV_03

Purpose: To test the ability to read, modify, write, and verify the changed value of a
single SINGLE variable marked as read-write-verifiable (RWV) in the server PIXIT ADDR_VAR

PART 20 - MMS September 1993 (Stable)
table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

1. A connection is established with Read supported by the server.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification variableDescription {
 address <sPIXIT:ADDR_VAR:X:Address>,
 typeSpecification <sPIXIT:ADDR_VAR:X:TypeSpec>
 }
 }
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success1>.
 }
 }
 }

2. The client alters <TMP:success1>. The new value shall be consistent with the type
specification <sPIXIT:ADDR_VAR:X:TypeSpec>.

3.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 write {

PART 20 - MMS September 1993 (Stable)
 variableAccessSpecification listOfVariable {
 variableSpecification variableDescription {
 address <sPIXIT:ADDR_VAR:X:Address>,
 typeSpecification <sPIXIT:ADDR_VAR:X:TypeSpec>
 }
 },
 listOfData {
 <TMP:success1>
 }
 }
 }

3.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 write {
 success NULL
 }
 }

4.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 read {
 specificationWithResult FALSE,
 -- As an option, specificationWithResult is omitted.
 variableAccessSpecification listOfVariable {
 variableSpecification variableDescription {
 address <sPIXIT:ADDR_VAR:X:Address>,
 typeSpecification <sPIXIT:ADDR_VAR:X:TypeSpec>
 }
 }
 }
 }

4.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 read {
 -- variableAccessSpecification is not present
 listOfAccessResult {
 success <LOCAL>
 -- The value of success is saved as <TMP:success2>.
 }
 }
 }

Pass Condition: <TMP:success1> shall be equal to <TMP:success2>.

PART 20 - MMS September 1993 (Stable)
VAR_IRPT_01

Name: VAR_IRPT_01

Purpose: To test the InformationReport service for a single NAMED variable marked as
readable (R,RW,RWV) in the server PIXIT NAMED_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:NAMED_VAR table of the
server.

Initial Conditions:

1. A connection is established with InformationReport supported by the client.

2. VNAM is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The server sends:

 unconfirmed-PDU {
 informationReport {
 variableAccessSpecification listOfVariable {
 variableSpecification name
 <sPIXIT:NAMED_VAR:X:Name>
 },
 listOfAccessResult {
 success <LOCAL>
 -- the value of success is saved as <TMP:success>.
 }
 }
 }

Pass Condition: <TMP:success> is consistent with the type specification in
<sPIXIT:NAMED_VAR:X:TypeSpec>.

VAR_IRPT_02

Name: VAR_IRPT_02

Purpose: To test the InformationReport service for a single UNNAMED variable marked
as readable (R,RW,RWV) in the server PIXIT ADDR_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

PART 20 - MMS September 1993 (Stable)
1. A connection is established with InformationReport supported by the client.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The server sends:

 unconfirmed-PDU {
 informationReport {
 variableAccessSpecification listOfVariable {
 variableSpecification address
 <sPIXIT:ADDR_VAR:X:Address>
 },
 listOfAccessResult {
 success <LOCAL>
 -- the value of success is saved as <TMP:success>.
 }
 }
 }

Pass Condition: <TMP:success> is consistent with the type specification in
<sPIXIT:ADDR_VAR:X:TypeSpec>.

VAR_IRPT_03

Name: VAR_IRPT_03

Purpose: To test the InformationReport service for a single SINGLE variable marked as
readable (R,RW,RWV) in the server PIXIT ADDR_VAR table.

Inputs: X - integer value indicating the INDEX into the server PIXIT ADDR_VAR table of
the server.

Initial Conditions:

1. A connection is established with InformationReport supported by the client.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The server sends:

 unconfirmed-PDU {
 informationReport {

PART 20 - MMS September 1993 (Stable)
 variableAccessSpecification listOfVariable {
 variableSpecification variableDescription {
 address <sPIXIT:ADDR_VAR:X:Address>,
 typeSpecification <sPIXIT:ADDR_VAR:X:TypeSpec>
 }
 },
 listOfAccessResult {
 success <LOCAL>
 -- the value of success is saved as <TMP:success>.
 }
 }
 }

Pass Condition: <TMP:success> is consistent with the type specification in
<sPIXIT:ADDR_VAR:X:TypeSpec>.

VAR_GVAA_01

Name: VAR_GVAA_01

Purpose: To test the GetVariableAccessAttributes service for a single NAMED variable
with NON PUBLIC access method as specified in the server PIXIT NAMED_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:NAMED_VAR table of the
server.

Initial Conditions:

1. A connection is established with GetVariableAccessAttributes supported by the
server.

2. VNAM is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 getVariableAccessAttributes {
 name <sPIXIT:NAMED_VAR:X:Name>
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 getVariableAccessAttributes {

PART 20 - MMS September 1993 (Stable)
 mms_deletable <sPIXIT:NAMED_VAR:X:Deletable>,
 -- the address parameter is not present
 typeSpecification <sPIXIT:NAMED_VAR:X:TypeSpec>
 }
 }

Pass Condition:

VAR_GVAA_02

Name: VAR_GVAA_02

Purpose: To test the GetVariableAccessAttributes service for a single NAMED variable
with PUBLIC access method as specified in the server PIXIT NAMED_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:NAMED_VAR table of the
server.

Initial Conditions:

1. A connection is established with GetVariableAccessAttributes supported by the
server.

2. VNAM is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 getVariableAccessAttributes {
 name <sPIXIT:NAMED_VAR:X:Name>
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 getVariableAccessAttributes {
 mms_deletable <sPIXIT:NAMED_VAR:X:Deletable>,
 address <sPIXIT:NAMED_ADDR:X:Address>
 typeSpecification <sPIXIT:NAMED_VAR:X:TypeSpec>
 }
 }

Pass Condition:

PART 20 - MMS September 1993 (Stable)

VAR_GVAA_03

Name: VAR_GVAA_03

Purpose: To test the GetVariableAccessAttributes service for a single UNNAMED variable
with as specified in the server PIXIT ADDR_VAR table.

Inputs: X - integer value indicating the INDEX into the sPIXIT:ADDR_VAR table of the
server.

Initial Conditions:

1. A connection is established with GetVariableAccessAttributes supported by the
server.

2. VADR is supported on the connection.

3. Appropriate values for STR1, STR2, and NEST are negotiated to support the variable
being tested.

Sequence:

1.a The client sends:

 confirmed-RequestPDU {
 invokeId <ID>,
 getVariableAccessAttributes {
 address <sPIXIT:ADDR_VAR:X:Address>
 }
 }

1.b The server sends:

 confirmed-ResponsePDU {
 invokeId <ID>,
 getVariableAccessAttributes {
 mms_deletable <sPIXIT:ADDR_VAR:X:Deletable>,
 -- the address parameter is not present
 typeSpecification <sPIXIT:ADDR_VAR:X:TypeSpec>
 }
 }

Pass Condition:

Semaphore management test cases

Operator communication test cases

PART 20 - MMS September 1993 (Stable)
Event management test cases

Journal management test cases

Basic functional test script language

References

