
PNAME #REVISION# (1) PNAME #REVISION# (1)

NAME

pname − spreadsheet calculator

SYNOPSIS

pname [-c] [-m] [-n] [-r] [-x] [file]

DESCRIPTION

The spreadsheet calculator pname is based on rectangular tables much like a financial spreadsheet.
When invoked it presents you with a table organized as rows and columns of cells. If invoked
without a file argument, the table is initially empty. Otherwise file is read in (see the Get com-
mand below). Each cell may have associated with it a numeric value, a label string, and/or an
expression (formula) which evaluates to a numeric value or label string, often based on other cell
values.

For a on-line tutorial, type the command:

pname #LIBDIR#/tutorial.pname

To print a quick reference card, type the command:

pnameqref | [your printer commmand]

OPTIONS

−c Start the program with the recalculation being done in column order.

−m Start the program with automatic recalculation disabled. The spreadsheet will be recal-
culated only when the ‘‘@’’ command is used.

−n Start the program in quick numeric entry mode (see below).

−r Start the program with the recalculation being done in row order (default option).

−x Cause the Get and Put commands (see below) to encrypt and decrypt data files.

−R Start the program with automatic newline action set to increment the row (see below).

−C Start the program with automatic newline action set to increment the column (see below).

All of these options can be changed with the ˆT and S commands (see below) while pname is run-
ning. Options specified when pname is invoked override options saved in the data file.

General Information
The screen is divided into four regions. The top line is for entering commands and displaying cell
values. The second line is for messages from pname. The third line and the first four columns
show the column and row numbers, from which are derived cell addresses, e.g. A0 for the cell in
column A, row 0. Note that column names are case-insensitive: you can enter A0 or a0 .

The rest of the screen forms a window looking at a portion of the table. The total number of dis-
play rows and columns available, hence the number of table rows and columns displayed, is set by
curses(3) and may be overridden by setting the LINES and COLUMNS environment variables,
respectively.

The screen has two cursors: a cell cursor, indicated by a highlighted cell and a ‘‘<’’ on the screen,
and a character cursor, indicated by the terminal’s hardware cursor. The cell and character cur-
sors are often the same. They differ when you type a command on the top line.

If a cell’s numeric value is wider than the column width (see the f command), the cell is filled with
asterisks. If a cell’s label string is wider than the column width, it is truncated at the start of the
next non-blank cell in the row, if any.

Cursor control commands and row and column commands can be prefixed by a numeric argument
which indicates how many times the command is to be executed. You can type ˆU before a
repeat count if quick numeric entry mode is enabled or if the number is to be entered while the
character cursor is on the top line.

Commands which use the terminal’s control key, such as ˆN , work both when a command is being
typed and when in normal mode.

1

PNAME #REVISION# (1) PNAME #REVISION# (1)

Changing Options

ˆTo Toggle options. This command allows you to switch the state of one option selected by o.
A small menu lists the choices for o when you type ˆT . The options selected are saved
when the data and formulas are saved so that you will have the same setup next time you
enter the spreadsheet.

a Automatic Recalculation. When set, each change in the spreadsheet causes the
entire spreadsheet be recalculated. Normally this is not noticeable, but for very
large spreadsheets, it may be faster to clear automatic recalculation mode and
update the spreadsheet via explicit ‘‘@’’ commands. Default is automatic recalcu-
lation on.

c Current cell highlighting. If enabled, the current cell is highlighted (using the ter-
minal’s standout mode, if available) in addition to being marked by the cell cur-
sor.

e External function execution. When disabled, external functions (see @ext()
below) are not called. This saves a lot of time at each screen update. External
functions are disabled by default. If disabled, and external functions are used
anywhere, a warning is printed each time the screen is updated, and the result of
@ext() is the value from the previous call, if any, or a null string.

l Autolabeling. If enabled, using the define command (/d) causes a label to be
automatically generated in the cell to the left of the defined cell. This is only
done if the cell to the left is empty. Default is enabled.

n Quick numeric entry. If enabled, a typed digit is assumed to be the start of a
numeric value for the current cell, not a repeat count, unless preceded by ˆU .
The cursor controls (ˆP , ˆN , ˆB , ˆF) in this mode will end a numeric entry.

t Top line display. If enabled, the name and value of the current cell is displayed
on the top line. If there is an associated label string, the first character of the
string value is ‘‘|’’ for a centered string, ‘‘<’’ for a leftstring or ‘‘>’’ for a right-
string (see below), followed by "string" for a constant string or {expr} for a string
expression. A constant string may be preceeded with a backslash (‘\’). In this
case the constant string will be used as a ‘‘wheel’’ to fill a column, e.g. "\-" for a
line in a column, and "\Yeh " for "Yeh Yeh Ye". If the cell has a numeric value,
it follows as [value], which may be a constant or expression.

x Encryption. See the −x option.

$ Dollar prescale. If enabled, all numeric constants (not expressions) which you
enter are multipled by 0.01 so you don’t have to keep typing the decimal point if
you enter lots of dollar figures.

r Newline action. This option toggles between three cases. The default is no
action. If this option is used once, after each command which is terminated by a
newline character is completed, the current cell will be moved down one row. If
this option is used again, after each command which is terminated by a newline
character is completed, the current cell will be moved right one column. Another
use of this option will restore the default action.

z Set newline action limits. This option sets limits to the newline action option
above. When this option is invoked, the row and column of the current cell are
remembered. If a later newline action would take the current cell to the right of
the remembered column, then the current cell is instead moved to the first col-
umn of the next row. If a newline action would take the current cell below the
remembered row, then the current cell is instead moved to the top row of the
next column.

2

PNAME #REVISION# (1) PNAME #REVISION# (1)

The quick numeric entry, newline action and set newline action limits options can be com-
bined to allow very quick entry of large amounts of data. If all the data to be entered is
in a single row or column then setting the quick numeric entry and the appropriate new-
line action will allow the numbers to be entered without any explicit commands to posi-
tion the current cell or enter a number.

If the data entry involves several entries in each row for many rows, then setting the quick
numeric entry option, setting the newline action to move right after each entry and set-
ting the newline action limits on the last column on which data should be entered will
allow the data to entered quickly. If necessary, columns which do not need data to be
entered can be hidden with the z command. Similar arrangements can be made for enter-
ing several rows of data in each column.

S Set options. This command allows you to set various options. A small menu lists the
options that cannot be changed through ˆT above.

byrows/bycols
Specify the order cell evaluation when updating. These options also affect the
order in which cells are filled (see /f) and whether a row or column is cleared by
an x command.

iterations=n
Set the maximum number of recalculations before the screen is displayed again.
Iterations is set to 10 by default.

tblstyle=s
Control the output of the T command. s can be: 0 (default) to give colon delim-
ited fields, with no tbl control lines; tbl to give colon delimited fields, with tbl(1)
control lines; latex to give a LaTeX tabular environment; slatex to give a SLa-
TeX (Scandinavian LaTeX) tabular environment; tex to give a TeX simple
tabbed alignment with ampersands as delimiters; and frame to give a tblstyle
output for FrameMaker.

Other Set options are normally used only in pname data files since they are available
through ˆT . You can also use them interactively

autocalc/!autocalc
Set/clear auto recalculation mode.

numeric/!numeric
Set/clear numeric mode.

prescale/!prescale
Set/clear numeric prescale mode.

extfun/!extfun
Enable/disable external functions.

cellcur/!cellcur
Set/clear current cell highlighting mode.

toprow/!toprow
Set/clear top row display mode.

rndinfinity/!rndinfinity
default: round-to-even (banker’s round), *.5 will round to the closest even num-
ber; doing a ’set rndinfinity’ will round *.5 up to the next integer (rounding to
infinity).

craction=n
Set the newline action. n can be: 0 (default) to give no action; 1 to move down
after each entry; or 2 to move right after each entry.

3

PNAME #REVISION# (1) PNAME #REVISION# (1)

rowlimit=n
Set the remembered limit for the maximum row below which the current cell will
be moved to the top of the next column if the newline action is set to move the
current cell down. n can be -1 (default) to disable this facility.

collimit=n
Set the remembered limit for the maximum column to the right of which the cur-
rent cell will be moved to the left of the next row if the newline action is set to
move the current cell right. n can be -1 (default) to disable this facility.

Cursor Control Commands

ˆP Move the cell cursor up to the previous row.

ˆN Move the cell cursor down to the next row.

ˆB Move the cell cursor backward one column.

ˆF Move the cell cursor forward one column.

h, j, k, l
If the character cursor is not on the top line, these are alternate, vi-compatible cell cursor
controls (left, down, up, right). Space is just like l (right).

H, J, K, L
If the character cursor is not on the top line, these move the cursor by half pages (left,
down, up, right).

ˆH If the character cursor is not on the top line, ˆH is the same as ˆB .

SPACE
If the character cursor is not on the top line, the space bar is the same as ˆF .

TAB If the character cursor is on the top line, TAB starts a range (see below). Otherwise, it is
the same as ˆF .

Arrow Keys
The terminal’s arrow keys provide another alternate set of cell cursor controls if they exist
and are supported in the appropriate termcap entry. Some terminals have arrow keys
which conflict with other control key codes. For example, a terminal might send ˆH when
the back arrow key is pressed. In these cases, the conflicting arrow key performs the same
function as the key combination it mimics.

ˆ Move the cell cursor up to row 0 of the current column.

Move the cell cursor down to the last valid row of the current column.

0 Move the cell cursor backward to column A of the current row. This command must be
prefixed with ˆU if quick numeric entry mode is enabled.

$ Move the cell cursor forward to the last valid column of the current row.

b Scan the cursor backward (left and up) to the previous valid cell.

w Scan the cursor forward (right and down) to the next valid cell.

ˆEd Go to end of range. Follow ˆE by a direction indicator such as ˆP or j . If the cell cursor
starts on a non-blank cell, it goes in the indicated direction until the last non-blank adja-
cent cell. If the cell cursor starts on a blank cell, it goes in the indicated direction until
the first non-blank cell. This command is useful when specifying ranges of adjacent cells
(see below), especially when the range is bigger than the visible window.

g Go to a cell. pname prompts for a cell’s name, a regular expression surrounded by
quotes, or a number. If a cell’s name such as ae122 or a the name of a defined range is
given, the cell cursor goes directly to that cell. If a quoted regular expression such as "

Tax Table " or " ˆJan [0-9]*$ " is given, pname searches for a cell containing a string

4

PNAME #REVISION# (1) PNAME #REVISION# (1)

matching the regular expression. See regex(3) or ed(1) for more details on the form of
regular expressions. If a number is given, pname will search for a cell containing that
number. Searches for either strings or numbers proceed forward from the current cell,
wrapping back to a0 at the end of the table, and terminate at the current cell if the string
or number is not found. You may also go to a cell with an ERROR (divide by zero, etc in
this cell) or INVALID (references a cell containing an ERROR). g error will take you to
the next ERROR, while g invalid take you to the next invalid. The last g command is
saved, and can be re-issued by entering g<return>.

Cell Entry and Editing Commands
Cells can contain both a numeric value and a string value. Either value can be the result of an
expression, but not both at once, i.e. each cell can have only one expression associated with it.
Entering a valid numeric expression alters the cell’s previous numeric value, if any, and replaces
the cell’s previous string expression, if any, leaving only the previously computed constant label
string. Likewise, entering a valid string expression alters the cell’s the previous label string, if any,
and replaces the cell’s previous numeric expression, if any, leaving only the previously computed
constant numeric value.

= Enter a numeric constant or expression into the current cell. pname prompts for the
expression on the top line. The usual way to enter a number into a cell is to type ‘‘=’’,
then enter the number in response to the prompt on the top line. The quick numeric
entry option, enabled through the −n option or ˆT command, shows the prompt when
you enter the first digit of a number (you can skip typing ‘‘=’’).

< Enter a label string into the current cell to be flushed left against the left edge of the cell.

" Enter a label string into the current cell to be centered in the column.

> Enter a label string into the current cell to be flushed right against the right edge of the
cell.

F Enter a format string into the current cell. This format string overrides the precision
specified with the ‘‘f’’ command. The format only applies to numeric values. The follow-
ing characters can be used to build a format string:

Digit placeholder. If the number has fewer digits on either side of the decimal
point than there are ‘#’ characters in the format, the extra ‘#’ characters are
ignored. The number is rounded to the number of digit placeholders as there are
to the right of the decimal point. If there are more digits in the number than
there are digit placeholders on the left side of the decimal point, then those digits
are displayed.

0 Digit placeholder. Same as for ‘#’ except that the number is padded with zeroes
on either side of the decimal point. The number of zeroes used in padding is
determined by the number of digit placeholders after the ‘0’ for digits on the left
side of the decimal point and by the number of digit placeholders before the ‘0’
for digits on the right side of the decimal point.

. Decimal point. Determines how many digits are placed on the right and left sides
of the decimal point in the number. Note that numbers smaller than 1 will begin
with a decimal point if the left side of the decimal point contains only a ‘#’ digit
placeholder. Use a ‘0’ placeholder to get a leading zero in decimal formats.

% Percentage. For each ‘%’ character in the format, the actual number gets multi-
plied by 100 (only for purposes of formatting -- the original number is left
unmodified) and the ‘%’ character is placed in the same position as it is in the
format.

, Thousands separator. The presence of a ‘,’ in the format (multiple commas are
treated as one) will cause the number to be formatted with a ‘,’ separating each
set of three digits in the integer part of the number with numbering beginning

5

PNAME #REVISION# (1) PNAME #REVISION# (1)

from the right end of the integer.

\ Quote. This character causes the next character to be inserted into the formatted
string directly with no special interpretation.

E- E+ e- e+
Scientific format. Causes the number to formatted in scientific notation. The
case of the ‘E’ or ‘e’ given is preserved. If the format uses a ‘+’, then the sign is
always given for the exponent value. If the format uses a ‘-’, then the sign is only
given when the exponent value is negative. Note that if there is no digit place-
holder following the ‘+’ or ‘-’, then that part of the formatted number is left out.
In general, there should be one or more digit placeholders after the ‘+’ or ‘-’.

; Format selector. Use this character to separate the format into two distinct for-
mats. The format to the left of the ‘;’ character will be used if the number given
is zero or positive. The format to the right of the ‘;’ character is used if the
number given is negative.

Some example formats are integer (‘‘0’’ or ‘‘#’’), fixed (‘‘0.00’’), percentage (‘‘0%’’ or
‘‘0.00%’’), scientific (‘‘0.00E+00’’), and currency (‘‘$#,0.00;($#,0.00)’’).

Strings you enter must start with ". You can leave off the trailing " and pname will add it for
you. You can also enter a string expression by backspacing over the opening " in the prompt.

e Edit the value associated with the current cell. This is identical to ‘‘=’’ except that the
command line starts out containing the old numeric value or expression associated with
the cell. The editing in this mode is vi-like.

ˆh Move back a character

+ Forward through history (neat) (same as j)

- Backward through history (neat) (same as k)

ESC Done editing

TAB Mark && append a range (ex: A0:A0)
TAB, move around within a range; TAB, append range string.

CR Save

$ Goto last column

. Insert current dot buffer

/ Search for a string in the history
ESC edit the string you typed
CR search
ˆh backspace

0 Goto column 0

D Delete to send

I Insert at column 0; ESC revert back to edit mode

R Replace mode; ESC revert back to edit mode

X Delete the char to the left

a Append after cursor; ESC revert back to edit mode

b Move back a word

c Change mode; ESC revert back to edit mode

d Delete ...
b back word
f forward (right)

6

PNAME #REVISION# (1) PNAME #REVISION# (1)

h back char
l forward
t delete forward up to a given char (next char typed)
w delete next word forward

f Find the next char typed

h Move left a char

i Insert before cursor; ESC revert back to edit mode

j Forward through history (neat) (same as +)

k Backward through history (neat) (same as -)

l Move right a char

n Continue search

q Stop editing

r Replace char

t Goto a char

u Undo

w Forward a word

x Delete the current char (moving to the right)

E Edit the string associated with the current cell. This is identical to ‘‘<’’, ‘‘"’’, or ‘‘>’’
except that the command line starts out containing the old string value or expression
associated with the cell. SEE e ABOVE.

To enter and edit a cell’s number part, use the ‘‘=’’ and e commands. To enter and edit a cell’s
string part, use the ‘‘<’’, ‘‘"’’, ‘‘>’’, and E commands. See the sections below on numeric and
string expressions for more information.

x Clear the current cell. Deletes the numeric value, label string, and/or numeric or string
expression. You can prefix this command with a count of the number of cells on the cur-
rent row to clear. The current column is used if column recalculation order is set. Cells
cleared with this command may be recalled with any of the pull commands (see below).

m Mark a cell to be used as the source for the copy command.

c Copy the last marked cell to the current cell, updating row and column references in its
numeric or string expression, if any.

+ If not in numeric mode, add the current numeric argument (default 1) to the value of the
current cell. In numeric mode, ‘‘+’’ introduces a new numeric expression or value, the
same as ‘‘=’’.

- If not in numeric mode, subtract the current numeric argument (default 1) from the value
of the current cell. In numeric mode, ‘‘-’’ introduces a new, negative, numeric expression
or value, like ‘‘=’’.

RETURN
If you are not editing a cell (top line is empty), pressing RETURN will make pname enter
insert mode. At this point you may type any valid command or press ESC once to edit.

File Commands

G Get a new database from a file. If encryption is enabled, the file is decrypted before it is
loaded into the spreadsheet.

P Put the current database into a file. If encryption is enabled, the file is encrypted before
it is saved.

7

PNAME #REVISION# (1) PNAME #REVISION# (1)

W Write a listing of the current database into a file in a form that matches its appearance on
the screen. This differs from the Put command in that its files are intended to be
reloaded with Get , while Write produces a file for people to look at. Hidden rows or
columns are not shown when the data is printed.

T Write a listing of the current database to a file, but include delimiters suitable for process-
ing by the tbl , LaTeX , or TeX table processors. The delimiters are controlled by the
tblstyle option. See Set above. The delimiters are are a colon (:) for style 0 or tbl and an
ampersand (&) for style latex or tex .

With the Put , Write, and Table commands, the optional range argument writes a subset of the
spreadsheet to the output file.

With the Write and Table commands, if you try to write to the last file used with the Get or Put
commands, or the file specified on the command line when pname was invoked, you are asked to
confirm that the (potentially) dangerous operation is really what you want.

The three output commands, Put , Write, and Table, can pipe their (unencrypted only) output to
a program. To use this feature, enter ‘‘| program’’ to the prompt asking for a filename. For exam-
ple, to redirect the output of the Write command to the printer, you might enter ‘‘| lpr -p’’.

M Merge the database from the named file into the current database. Values and expres-
sions defined in the named file are read into the current spreadsheet overwriting the exist-
ing entries at matching cell locations.

R Run macros. Since pname files are saved as ASCII files, it is possible to use them as
primitive macro definition files. The Run command makes this easier. It’s like the Merge
command, but prints a saved path name as the start of the filename to merge in. The
string to use is set with the Define command. To write macros, you must be familiar
with the file format written by the Put command. This facility is still primitive and could
be much improved.

D Define a path for the Run command to use.

All file operations take a filename as the first argument to the prompt on the top line. The
prompt supplies a " to aid in typing in the filename. The filename can also be obtained from a
cell’s label string or string expression. In this case, delete the leading " with the backspace key
and enter a cell name such as a22 instead. If the resulting string starts with ‘‘|’’, the rest of the
string is interpreted as a UNIX command, as above.

Row and Column Commands
These commands can be used on either rows or columns. The second letter of the command is
either a row designator (one of the characters r , ˆB , ˆF , h, l) or a column designator (one of c,
ˆP , ˆN , k , j). A small menu lists the choices for the second letter when you type the first letter
of one of these commands. Commands which move or copy cells also modify the row and column
references in affected cell expressions. The references may be frozen by using the fixed operator or
using the $ character in the reference to the cell (see below).

ir, ic Insert a new row (column) by moving the row (column) containing the cell cursor, and all
following rows (columns), down (right) one row (column). The new row (column) is
empty.

ar, ac Append a new row (column) immediately following the current row (column). It is ini-
tialized as a copy of the current one.

dr, dc Delete the current row (column).

pr, pc, pm
Pull deleted rows (columns) back into the spreadsheet. The last deleted set of cells is put
back into the spreadsheet at the current location. pr inserts enough rows to hold the
data. pc inserts enough columns to hold the data. pm (merge) does not insert rows or
columns; it overwrites the cells beginning at the current cell cursor location.

8

PNAME #REVISION# (1) PNAME #REVISION# (1)

vr, vc Remove expressions from the affected rows (columns), leaving only the values which were
in the cells before the command was executed.

zr, zc Hide (‘‘zap’’) the current row (column). This keeps a row (column) from being displayed
but keeps it in the data base. The status of the rows and columns is saved with the data
base so hidden rows and columns will be still be hidden when you reload the spreadsheet.
Hidden rows or columns are not printed by the W command.

sr, sc Show hidden rows (columns). Enter a range of rows (columns) to be revealed. The
default is the first range of rows (columns) currently hidden. This command ignores the
repeat count, if any.

f Set the output format to be used for printing the numeric values in each cell in the cur-
rent column. Enter three numbers: the total width in characters of the column, the
number of digits to follow decimal points, and the format type. Format types are 0 for
fixed point, 1 for scientific notation, 2 for engineering notation, and 3 for dates. Values
are rounded off to the least significant digit displayed. The total column width affects
displays of strings as well as numbers. A preceding count can be used to affect more than
one column. This command has only a column version (no second letter).

@myrow, @mycol
Are functions that return the row or column of the current cell respectively. ex: The cell
directly above a cell in the D column could then be accessed by @nval("d",@myrow-1).
NOTE: @myrow and @mycol can’t be used in specifying ranges.

Range Commands
Range operations affect a rectangular region on the screen defined by the upper left and lower
right cells in the region. All of the commands in this class start with a slash; the second letter of
the command indicates which command. A small menu lists the choices for the second letter
when you type ‘‘/’’. pname prompts for needed parameters for each command. Phrases sur-
rounded by square brackets in the prompt are informational only and may be erased with the
backspace key.

Prompts requesting variable names may be satisfied with either an explicit variable name, such as
A10 , or with a variable name previously defined in a /d command (see below). Range name
prompts require either an explicit range such as A10:B20 , or a range name previously defined
with a /d command. A default range shown in the second line is used if you omit the range from
the command or press the TAB key (see below). The default range can be changed by moving the
cell cursor via the control commands (ˆP , ˆN , ˆB , ˆF) or the arrow keys. The cells in the
default range are highlighted (using the terminal’s standout mode, if available).

/x Clear a range. Cells cleared with this command may be recalled with any of the pull
commands.

/v Values only. This command removes the expressions from a range of cells, leaving just
the values of the expressions.

/c Copy a source range to a destination range. The source and destination may be different
sizes. The result is always one or more full copies of the source. Copying a row to a row
yields a row. Copying a column to a column yields a column. Copying a range to any-
thing yields a range. Copying a row to a column or a column to a row yields a range with
as many copies of the source as there are cells in the destination. This command can be
used to duplicate a cell through an arbitrary range by making the source a single cell
range such as b20:b20 .

/f Fill a range with constant values starting with a given value and increasing by a given
increment. Each row is filled before moving on to the next row if row order recalculation
is set. Column order fills each column in the range before moving on to the next column.
The start and increment numbers may be positive or negative. To fill all cells with the
same value, give an increment of zero.

9

PNAME #REVISION# (1) PNAME #REVISION# (1)

/d Use this command to assign a symbolic name to a single cell or a rectangular range of
cells on the screen. The parameters are the name, surrounded by "", and either a single
cell name such as A10 or a range such as a1:b20 . Names defined in this fashion are used
by the program in future prompts, may be entered in response to prompts requesting a
cell or range name, and are saved when the spreadsheet is saved with the Put command.
Names defined must be more than two alpha characters long to differentiate them from a
column names, and must not have embedded special characters. Names may include the
character ‘‘ ’’ or numerals as long as they occur after the first three alpha characters.

/l Use this command to lock the current cell or a range of cells, i.e make them immune to
any type of editing. A locked cell can’t be changed in anyway until it is unlocked.

/U This command is the opposite of the /l command and thus unlocks a locked cell and
makes it editable.

/s This command lists (shows) the currently defined range names. If there are no defined
range names, then a message is given, otherwise it pipes output to sort , then to less . If
the environment variable PAGER is set, its value is used in place of less.

/u Use this command to undefine a previously defined range name.

/F Use this command to assign a value format string (see the ‘‘F’’ cell entry command) to a
range of cells.

Miscellaneous Commands

Q
q
ˆC Exit from pname. If you made any changes since the last Get or Put , pname asks about

saving your data before exiting.

ˆG
ESC Abort entry of the current command.

? Enter an interactive help facility. Lets you look up brief summaries of the main features
of the program. The help facility is structured like this manual page so it is easy to find
more information on a particular topic.

! Shell escape. pname prompts for a shell command to run. End the command line with
the RETURN key. If the environment variable SHELL is defined, that shell is run. If not,
/bin/sh is used. Giving a null command line starts the shell in interactive mode. A sec-
ond ‘‘!’’ repeats the previous command.

ˆL Redraw the screen.

ˆR Redraw the screen with special highlighting of cells to be filled in. This is useful for find-
ing values you need to provide or update in a form with which you aren’t familiar or of
which you have forgotten the details.

It’s also useful for checking a form you are creating. All cells which contain constant
numeric values (not the result of a numeric expression) are highlighted temporarily, until
the next screen change, however minor. To avoid ambiguity, the current range (if any)
and current cell are not highlighted.

ˆX This command is similar to ˆR, but highlights cells which have expressions. It also dis-
plays the expressions in the highlighted cells as left-flushed strings, instead of the numeric
values and/or label strings of those cells. This command makes it easier to check expres-
sions, at least when they fit in their cells or the following cell(s) are blank so the expres-
sions can slop over (like label strings). In the latter case, the slop over is not cleared on
the next screen update, so you may want to type ˆL after the ˆX in order to clean up the
screen.

10

PNAME #REVISION# (1) PNAME #REVISION# (1)

@ Recalculates the spreadsheet.

ˆV Type, in the command line, the name of the current cell (the one at the cell cursor). This
is useful when entering expressions which refer to other cells in the table.

ˆW Type, in the command line, the expression attached to the current cell. If there is none,
the result is ‘‘?’’.

ˆA Type, in the command line, the numeric value of the current cell, if any.

The ˆV , ˆW , and ˆA commands only work when the character cursor is on the command line
and beyond the first character.

TAB When the character cursor is on the top line, defines a range of cells via the cursor control
commands or the arrow keys. The range is highlighted, starts at the cell where you typed
TAB, and continues through the current cell cursor. Pressing TAB again causes the high-
lighted range to be entered into the command line and the highlighting to be turned off.
This is most useful for defining ranges to functions such as @sum(). Pressing ‘‘)’’ acts just
like typing the TAB key the second time and adds the closing ‘‘)’’. Note that when you
give a range command, you don’t need to press the first TAB to begin defining a range
starting with the current cell.

Variable Names
Normally, a variable name is just the name of a cell, such as K20 . The value is the numeric or
string value of the cell, according to context.

When a cell’s expression (formula) is copied to another location via copy or range-copy, variable
references are by default offset by the amount the formula moved. This allows the new formula to
work on new data. If cell references are not to change, you can either use the fixed operator (see
below), or one of the following variations on the cell name.

K20 References cell K20 ; the reference changes when the formula is copied.

K20 Always refers to cell K20 ; the reference stays fixed when the formula is copied.

$K20 Keeps the column fixed at column K; the row is free to vary.

K$20 Similarly, this fixes the row and allows the column to vary.

These conventions also hold on defined ranges. Range references vary when formulas containing
them are copied. If the range is defined with fixed variable references, the references do not
change.

fixed To make a variable not change automatically when a cell moves, put the word fixed in
front of the reference, for example: B1 ∗ fixed C3.

Numeric Expressions
Numeric expressions used with the ‘‘=’’ and e commands have a fairly conventional syntax. Terms
may be constants, variable names, parenthesized expressions, and negated terms. Ranges may be
operated upon with range functions such as sum (@sum()) and average (@avg()). Terms may be
combined using binary operators.

−e Negation.

e+e Addition.

e−e Subtraction.

e∗e Multiplication.

e/e Division.

e1%e2 e1 mod e2.

eˆe Exponentiation.

e<e

11

PNAME #REVISION# (1) PNAME #REVISION# (1)

e<=e
e=e
e!=e
e>=e
e>e Relationals: true (1) if and only if the indicated relation holds, else false (0). Note that

‘‘<=’’, ‘‘!=’’, and ‘‘>=’’ are converted to their ‘‘˜()’’ equivalents.

˜e Boolean operator NOT.

e&e Boolean operator AND.

e|e Boolean operator OR.

@if(e,e,e)
e?e:e Conditional: If the first expression is true then the value of the second is returned, other-

wise the value of the third.
Operator precedence from highest to lowest is:

−, ˜
ˆ
∗, /
+, −
<, <=, =, !=, >=, >
&
|
?:

Built-in Range Functions
These functions return numeric values.
@sum(r) Sum all valid (nonblank) entries in the region whose two corners are defined

by the two variable names (e.g. c5:e14) or the range name specified.
@prod(r) Multiply together all valid (nonblank) entries in the specified region.
@avg(r) Average all valid (nonblank) entries in the specified region.
@count(r) Count all valid (nonblank) entries in the specified region.
@max(r) Return the maximum value in the specified region. See also the multi argu-

ment version of @max below.
@min(r) Return the minimum value in the specified region. See also the multi argu-

ment version of @min below.
@stddev(r) Return the sample standard deviation of the cells in the specified region.
@lookup(e,r)
@lookup(se,r) Evaluates the expression then searches through the range r for a matching

value. The range should be either a single row or a single column. The
expression can be either a string expression or a numeric expression. If it is a
numeric expression, the range is searched for the the last value less than or
equal to e. If the expression is a string expression, the string portions of the
cells in the range are searched for an exact string match. The value returned
is the numeric value from the next row and the same column as the match, if
the range was a single row, or the value from the next column and the same
row as the match if the range was a single column.

@hlookup(e,r,n)
@hlookup(se,r,n) Evaluates the expression then searches through the first row in the range r

for a matching value. The expression can be either a string expression or a
numeric expression. If it is a numeric expression, the row is searched for the
the last value less than or equal to e. If the expression is a string expression,
the string portions of the cells in the row are searched for an exact string
match. The value returned is the numeric value from the same column n
rows below the match.

12

PNAME #REVISION# (1) PNAME #REVISION# (1)

@vlookup(e,r,n)
@vlookup(se,r,n) Evaluates the expression then searches through the first column in the range

r for a matching value. The expression can be either a string expression or a
numeric expression. If it is a numeric expression, the column is searched for
the the last value less than or equal to e. If the expression is a string expres-
sion, the string portions of the cells in the column are searched for an exact
string match. The value returned is the numeric value from the same row n
columns to the right of the match.

@index(e,r) Use the value of the expression e to index into the range r . The numeric
value at that position is returned. The value 1 selects the first item in the
range, 2 selects the second item, etc. R should be either a single row or a sin-
gle column.

@stindex(e,r) Use the value of e to index into the range r . The string value at that posi-
tion is returned. The value 1 selects the first item in the range, 2 selects the
second item, etc. The range should be either a single row or a single column.

Built-in Numeric Functions
All of these functions operate on floating point numbers (doubles) and return numeric values.
Most of them are standard system functions more fully described in math(3). The trig functions
operate with angles in radians.

@sqrt(e) Return the square root of e.

@exp(e) Return the exponential function of e.

@ln(e) Return the natural logarithm of e.

@log(e) Return the base 10 logarithm of e.

@floor(e) Return the largest integer not greater than e.

@ceil(e) Return the smallest integer not less than e.

@rnd(e) Round e to the nearest integer. default: round-to-even (banker’s round), *.5
will round to the closest even number; ’set rndinfinity’ will round *.5 up to
the next integer.

@round(e,n) Round e to n decimal places. n may be positive to round off the right side of
the decimal, and negative to round off the left side. See @rnd(e) above for
rounding types.

@abs(e)
@fabs(e) Return the absolute value of e.
@pow(e1,e2) Return e1 raised to the power of e2 .
@hypot(e1,e2) Return sqrt(e1∗e1+e2∗e2), taking precautions against unwarranted overflows.
pi @pi A constant quite close to pi.
@dtr(e) Convert e in degrees to radians.
@rtd(e) Convert e in radians to degrees.
@sin(e)
@cos(e)
@tan(e) Return trigonometric functions of radian arguments. The magnitude of the

arguments are not checked to assure meaningful results.

@asin(e) Return the arc sine of e in the range -pi/2 to pi/2.

@acos(e) Return the arc cosine of e in the range 0 to pi.

@atan(e) Return the arc tangent of e in the range -pi/2 to pi/2.

@atan2(e1,e2) Returns the arc tangent of e1/e2 in the range -pi to pi.

@max(e1,e2,...) Return the maximum of the values of the expressions. Two or more expres-
sions may be specified. See also the range version of @max above.

13

PNAME #REVISION# (1) PNAME #REVISION# (1)

@min(e1,e2,...) Return the minimum of the values of the expressions. Two or more expres-
sions may be specified. See also the range version of @min above.

@ston(se) Convert string expression se to a numeric value.

@eqs(se1,se2) Return 1 if string expression se1 has the same value as string expression se2 ,
0 otherwise.

@nval(se,e) Return the numeric value of a cell selected by name. String expression se
must evaluate to a column name (‘‘A’’-‘‘AE’’) and e must evaluate to a row
number (0-199). If se or e is out of bounds, or the cell has no numeric value,
the result is 0. You can use this for simple table lookups. Be sure the table
doesn’t move unexpectedly! See also @sval() below.

String Expressions
String expressions are made up of constant strings (characters surrounded by double quotation
marks), variables (cell names, which refer to the cells’s label strings or expressions), and string
functions. Note that string expressions are only allowed when entering a cell’s label string, not its
numeric part. Also note that string expression results may be left or right flushed or centered,
according to the type of the cell’s string label.

Concatenate strings. For example, the string expression

A0 # "zy dog"

displays the string ‘‘the lazy dog’’ in the cell if the value of A0 ’s string is ‘‘the la’’.

Built-in String Functions

@substr(se,e1,e2) Extract and return from string expression se the substring indexed by charac-
ter number e1 through character number e2 (defaults to the size of se if
beyond the end of it). If e1 is less than 1 or greater than e2 , the result is the
null string. For example,

@substr ("Nice jacket", 4, 7)

returns the string ‘‘e jac’’.

@fmt(se,e) Convert a number to a string. The argument se must be a valid printf (3)
format string. e is converted according to the standard rules. For example,
the expression

@fmt ("∗∗%6.3f∗∗", 10.5)

yields the string ‘‘∗∗10.500∗∗’’. e is a double, so applicable formats are e, E,
f, g, and G. Try ‘‘%g’’ as a starting point.

@sval(se,e) Return the string value of a cell selected by name. String expression se must
evaluate to a column name (‘‘A’’-‘‘AE’’) and e must evaluate to a row number
(0-199). If se or e is out of bounds, or the cell has no string value, the result
is the null string. You can use this for simple table lookups. Be sure the
table doesn’t move unexpectedly!

@upper(e) and @lower(e) will case the string expression to upper or lower.

@capital(e) will convert the first letter of words in a string into upper case and other let-
ters to lower case (the latter if all letters of the string are upper case).

@upper(e) and @lower(e) will case the string expression to upper or lower.

@capital(e) will convert the first letter of words in a string into upper case.

@ext(se,e) Call an external function (program or script). The purpose is to allow arbi-
trary functions on values, e.g. table lookups and interpolations. String
expression se is a command or command line to call with popen(3). The
value of e is converted to a string and appended to the command line as an

14

PNAME #REVISION# (1) PNAME #REVISION# (1)

argument. The result of @ext() is a string: the first line printed to standard
output by the command. The command should emit exactly one output line.
Additional output, or output to standard error, messes up the screen. @ext()
returns a null string and prints an appropriate warning if external functions
are disabled, se is null, or the attempt to run the command fails.

External functions can be slow to run, and if enabled are called at each screen
update, so they are disabled by default. You can enable them with ˆT when
you really want them called.

A simple example:

@ext ("echo", a1)

You can use @ston() to convert the @ext() result back to a number. For
example:

@ston (@ext ("form.sc.ext", a9 + b9))

Note that you can built a command line (including more argument values)
from a string expression with concatenation. You can also "hide" the second
argument by ending the command line (first argument) with ‘‘ #’’ (shell com-
ment).

@coltoa(e) Returns a string name for a column from the numeric argument. For exam-
ple:

@coltoa(@mycol-1) @nval(coltoa(@mycol-1), @myrow+1)

Built-in Financial Functions
Financial functions compute the mortgage (or loan) payment, future value, and the present value
functions. Each accepts three arguments, an amount, a rate of interest (per period), and the
number of periods. These functions are the same as those commonly found in other spreadsheets
and financial calculators

@pmt(e1,e2,e3) @pmt(60000,.01,360) computes the monthly payments for a $60000 mortgage
at 12% annual interest (.01 per month) for 30 years (360 months).

@fv(e1,e2,e3) @fv(100,.005,36) computes the future value for of 36 monthly payments of
$100 at 6% interest (.005 per month). It answers the question: "How much
will I have in 36 months if I deposit $100 per month in a savings account pay-
ing 6% interest compounded monthly?"

@pv(e1,e2,e3) @pv(1000,.015,36) computes the present value of an a ordinary annuity of 36
monthly payments of $1000 at 18% annual interest. It answers the question:
"How much can I borrow at 18% for 30 years if I pay $1000 per month?"

Built-in Date and Time Functions
Time for pname follows the system standard: the number of seconds since 1970. All date and
time functions except @date() return numbers, not strings.

@now Return the current time encoded as the number of seconds since the begin-
ning of the epoch (December 31, 1969, midnight, GMT.)

@dts(e1,e2,e3) @dts(9,14,1988) converts the date September 14, 1988 to the number of sec-
onds from the epoch to the first second of 9/14/88, local time. For example,
@date(@dts(12,14,1976)) yields

Tue Dec 14 00:00:00 1976

The month should be range from 1 to 12, the day should range from 1 to the
number of days in the specified month, and the year should range from 1970
to 1999.

15

PNAME #REVISION# (1) PNAME #REVISION# (1)

@tts(e1,e2,e3) @tts(8,20,45) converts the time 8:40:45 to the number of seconds since mid-
night, the night before. The hour should range from 0 to 23; the minutes and
seconds should range from 0 to 59.

The following functions take the time in seconds (e.g. from @now) as an argument and return the
specified value. The functions all convert from GMT to local time.

@date(e) Convert the time in seconds to a date string 24 characters long in the follow-
ing form:

Sun Sep 16 01:03:52 1973

Note that you can extract parts of this fixed-format string with @substr().

@year(e) Return the year. Valid years begin with 1970. The last legal year is system
dependent.

@month(e) Return the month, encoded as 1 (January) to 12 (December).

@day(e) Return the day of the month, encoded as 1 to 31.

@hour(e) Return the number of hours since midnight, encoded as 0 to 23.

@minute(e) Return the number of minutes since the last full hour, encoded as 0 to 59.

@second(e) Return the number of seconds since the last full minute, encoded as 0 to 59.

Spreadsheet Update
Re-evaluation of spreadsheet expressions is done by row or by column depending on the selected
calculation order. Evaluation is repeated up to iterations times for each update if necessary, so
forward references usually work as expected. See set above. If stability is not reached after ten
iterations, a warning is printed. This is usually due to a long series of forward references, or to
unstable cyclic references (for example, set A0 ’s expression to ‘‘A0+1’’).

@numiter Returns the number of iterations performed so far.

FILES

#LIBDIR#/tutorial.pname tutorial spreadsheet

SEE ALSO

bc(1), dc(1), crypt(1), ppname(1)

BUGS

Top-to-bottom, left-to-right evaluation of expressions is silly. A proper following of the depen-
dency graph with (perhaps) recourse to relaxation should be implemented.

Only one previous value is saved from any call of @ext(). If it is used more than once in a spread-
sheet and external functions are enabled and later disabled, the last returned value pops up in
several places.

On some systems, if the cell cursor is in column 0 with topline enabled (so the current cell is high-
lighted), or if any cell in column 0 is highlighted, the corresponding row number gets displayed
and then blanked during a screen refresh. This looks like a bug in curses .

Many commands give no indication (a message or beep) if they have null effect. Some should give
confirmation of their action, but they don’t.

AUTHORS

This is a much modified version of a public domain spread sheet originally authored by James
Gosling, and subsequently modified and posted to USENET by Mark Weiser under the name vc.
The program was subsequently renamed sc, and further modified by numerous contributors, Jeff
Buhrt of Proslink, Inc. ({sequent, uunet}!sawmill!prslnk!buhrt) and Robert Bond of Sequent,
prominent among them. Other contributors include: Tom Anderson, Glenn T. Barry, Gregory
Bond, Stephen (Steve) M. Brooks, Peter Brower, John Campbell, Lawrence Cipriani, Jim Claus-
ing, Dave Close, Chris Cole, Jonathan Crompron, David I. Dalva, Glen Ditchfield, Sam Drake,
James P. Dugal, Paul Eggert, Andy Fyfe, Jack Goral, Piercarlo "Peter" Grandi, Henk Hesselink,

16

PNAME #REVISION# (1) PNAME #REVISION# (1)

Jeffrey C Honig, Kurt Horton, Jonathan I. Kamens, Peter King, Tom Kloos, Casey Leedom, Jay
Lepreau, Dave Lewis, Rick Linck, Soren Lundsgaard, Tad Mannes, Rob McMahon, Chris Metcalf,
Mark Nagel, Ulf Noren, Marius Olafsson, Gene H. Olson, Henk P. Penning, Rick Perry, Larry
Philps, Eric Putz, Jim Richardson, Michael Richardson, R. P. C. Rodgers, Kim Sanders, Mike
Schwartz, Alan Silverstein, Lowell Skoog, Herr Soeryantono, Tim Theisen, Tom Tkacik, Andy
Valencia, Adri Verhoef, Rick Walker, Petri Wessman, and Tim Wilson.

17

