
beginner



beginner ii

COLLABORATORS

TITLE :

beginner

ACTION NAME DATE SIGNATURE

WRITTEN BY January 9, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



beginner iii

Contents

1 beginner 1

1.1 beginner.guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 beginner.guide/Introduction to Amiga E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 beginner.guide/A Simple Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 beginner.guide/The code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 beginner.guide/Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 beginner.guide/Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 beginner.guide/Understanding a Simple Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 beginner.guide/Changing the Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.9 beginner.guide/Tinkering with the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.10 beginner.guide/Brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.11 beginner.guide/Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.12 beginner.guide/Procedure Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.13 beginner.guide/Procedure Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.14 beginner.guide/Extending the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.15 beginner.guide/Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.16 beginner.guide/Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.17 beginner.guide/Style Reuse and Readability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.18 beginner.guide/The Simple Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.19 beginner.guide/Variables and Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.20 beginner.guide/Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.21 beginner.guide/Variable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.22 beginner.guide/Variable declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.23 beginner.guide/Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.24 beginner.guide/Global and local variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.25 beginner.guide/Changing the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.26 beginner.guide/Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.27 beginner.guide/Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.28 beginner.guide/Logic and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.29 beginner.guide/Precedence and grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



beginner iv

1.30 beginner.guide/Program Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.31 beginner.guide/Conditional Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.32 beginner.guide/IF block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.33 beginner.guide/IF expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.34 beginner.guide/SELECT block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.35 beginner.guide/SELECT..OF block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.36 beginner.guide/Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.37 beginner.guide/FOR loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.38 beginner.guide/WHILE loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.39 beginner.guide/REPEAT..UNTIL loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.40 beginner.guide/Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.41 beginner.guide/Format and Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.42 beginner.guide/Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.43 beginner.guide/Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.44 beginner.guide/Spacing and Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.45 beginner.guide/Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.46 beginner.guide/Procedures and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.47 beginner.guide/Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.48 beginner.guide/One-Line Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.49 beginner.guide/Default Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.50 beginner.guide/Multiple Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.51 beginner.guide/Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.52 beginner.guide/Numeric Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.53 beginner.guide/String Constants Special Character Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.54 beginner.guide/Named Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.55 beginner.guide/Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.56 beginner.guide/Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.57 beginner.guide/Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.58 beginner.guide/LONG Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.59 beginner.guide/Default type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.60 beginner.guide/Memory addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.61 beginner.guide/PTR Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.62 beginner.guide/Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.63 beginner.guide/Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.64 beginner.guide/Indirect types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.65 beginner.guide/Finding addresses (making pointers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.66 beginner.guide/Extracting data (dereferencing pointers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.67 beginner.guide/Procedure parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.68 beginner.guide/ARRAY Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



beginner v

1.69 beginner.guide/Tables of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.70 beginner.guide/Accessing array data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.71 beginner.guide/Array pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.72 beginner.guide/Point to other elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.73 beginner.guide/Array procedure parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.74 beginner.guide/OBJECT Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.75 beginner.guide/Example object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.76 beginner.guide/Element selection and element types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.77 beginner.guide/Amiga system objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.78 beginner.guide/LIST and STRING Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.79 beginner.guide/Normal strings and E-strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.80 beginner.guide/String functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.81 beginner.guide/Lists and E-lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.82 beginner.guide/List functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.83 beginner.guide/Complex types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.84 beginner.guide/Typed lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.85 beginner.guide/Static data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.86 beginner.guide/Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1.87 beginner.guide/More About Statements and Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.88 beginner.guide/Turning an Expression into a Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1.89 beginner.guide/Initialised Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1.90 beginner.guide/Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1.91 beginner.guide/More Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1.92 beginner.guide/Side-effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1.93 beginner.guide/BUT expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1.94 beginner.guide/Bitwise AND and OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1.95 beginner.guide/SIZEOF expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1.96 beginner.guide/More Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1.97 beginner.guide/INC and DEC statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1.98 beginner.guide/Labelling and the JUMP statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.99 beginner.guide/EXIT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.100beginner.guide/LOOP block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1.101beginner.guide/Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1.102beginner.guide/Quoted Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1.103beginner.guide/Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1.104beginner.guide/Quotable expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1.105beginner.guide/Lists and quoted expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

1.106beginner.guide/Assembly Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

1.107beginner.guide/Assembly and the E language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



beginner vi

1.108beginner.guide/Static memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

1.109beginner.guide/Things to watch out for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

1.110beginner.guide/E Built-In Constants Variables and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1.111beginner.guide/Built-In Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1.112beginner.guide/Built-In Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

1.113beginner.guide/Built-In Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1.114beginner.guide/Input and output functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

1.115beginner.guide/Intuition support functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

1.116beginner.guide/Graphics functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

1.117beginner.guide/Maths and logic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

1.118beginner.guide/System support functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

1.119beginner.guide/Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

1.120beginner.guide/Using Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

1.121beginner.guide/Amiga System Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

1.122beginner.guide/Non-Standard Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

1.123beginner.guide/Example Module Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

1.124beginner.guide/Code Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

1.125beginner.guide/Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

1.126beginner.guide/Procedures with Exception Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

1.127beginner.guide/Raising an Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

1.128beginner.guide/Automatic Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

1.129beginner.guide/Raise within an Exception Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

1.130beginner.guide/Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

1.131beginner.guide/Static Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

1.132beginner.guide/Deallocation of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

1.133beginner.guide/Dynamic Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

1.134beginner.guide/NEW and END Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

1.135beginner.guide/Object and simple typed allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

1.136beginner.guide/Array allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

1.137beginner.guide/List and typed list allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

1.138beginner.guide/OOP object allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

1.139beginner.guide/Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

1.140beginner.guide/Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

1.141beginner.guide/Floating-Point Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

1.142beginner.guide/Floating-Point Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

1.143beginner.guide/Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

1.144beginner.guide/Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

1.145beginner.guide/Factorial Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

1.146beginner.guide/Mutual Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



beginner vii

1.147beginner.guide/Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

1.148beginner.guide/Stack (and Crashing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

1.149beginner.guide/Stack and Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

1.150beginner.guide/Object Oriented E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

1.151beginner.guide/OOP Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

1.152beginner.guide/Classes and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

1.153beginner.guide/Example class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

1.154beginner.guide/Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

1.155beginner.guide/Objects in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

1.156beginner.guide/Methods in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

1.157beginner.guide/Inheritance in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

1.158beginner.guide/Data-Hiding in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

1.159beginner.guide/Introduction to the Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

1.160beginner.guide/String Handling and I-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

1.161beginner.guide/Timing Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

1.162beginner.guide/Argument Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

1.163beginner.guide/Any AmigaDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

1.164beginner.guide/AmigaDOS 2.0 (and above) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

1.165beginner.guide/Gadgets IDCMP and Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

1.166beginner.guide/Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

1.167beginner.guide/IDCMP Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

1.168beginner.guide/Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

1.169beginner.guide/Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

1.170beginner.guide/Recursion Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

1.171beginner.guide/Common Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

1.172beginner.guide/Assignment and Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

1.173beginner.guide/Pointers and Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

1.174beginner.guide/String and List Misuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

1.175beginner.guide/Initialising Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

1.176beginner.guide/Freeing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

1.177beginner.guide/Pointers and Dereferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

1.178beginner.guide/Mathematics Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

1.179beginner.guide/Signed and Unsigned Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

1.180beginner.guide/Other Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

1.181beginner.guide/Amiga E Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

1.182beginner.guide/Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

1.183beginner.guide/Amiga E Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

1.184beginner.guide/Guide Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

1.185beginner.guide/E Language Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

1.186beginner.guide/Main Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206



beginner 1 / 258

Chapter 1

beginner

1.1 beginner.guide

Copyright (c) 1994-1995, Jason R. Hulance.

A Beginner’s Guide to Amiga E

*****************************

This Guide gives an introduction to the Amiga E programming language
and, to some extent, programming in general.

Part One: Getting Started

Introduction to Amiga E

Understanding a Simple Program

Variables and Expressions

Program Flow Control

Summary
Part Two: The E Language

Format and Layout

Procedures and Functions

Constants

Types

More About Statements and Expressions

E Built-In Constants Variables and Functions

Modules



beginner 2 / 258

Exception Handling

Memory Allocation

Floating-Point Numbers

Recursion

Object Oriented E
Part Three: Worked Examples

Introduction to the Examples

String Handling and I-O

Timing Expressions

Argument Parsing

Gadgets IDCMP and Graphics

Recursion Example
Part Four: Appendices

Common Problems

Other Information
Indices

E Language Index

Main Index

1.2 beginner.guide/Introduction to Amiga E

Introduction to Amiga E

***********************

To interact with your Amiga you need to speak a language it understands.
Luckily, there is a wide choice of such languages, each of which fits a
particular need. For instance, BASIC (in most of its flavours) is simple
and easy to learn, and so is ideal for beginners. Assembly, on the other
hand, requires a lot of effort and is quite tedious, but can produce the
fastest programs so is generally used by commercial programmers. These
are two extremes and most businesses and colleges use C or
Pascal/Modula-2, which try to strike a balance between simplicity and
speed.

E programs look very much like Pascal or Modula-2 programs, but E is
based more closely on C. Anyone familiar with these languages will easily
learn E, only really needing to get to grips with E’s unique features and



beginner 3 / 258

those borrowed from other languages. This guide is aimed at people who
haven’t done much programming and may be too trivial for competent
programmers, who should find the ‘E Reference Manual’ more than adequate
(although some of the later sections offer different explanations to the
Reference Manual, which may prove useful).

Part One (this part) goes through some of the basics of the E language
and programming in general. Part Two delves deeper into E, covering the
more complex topics and the unique features of E. Part Three goes through
a few example programs, which are a bit longer than the examples in the
other Parts. Finally, Part Four contains the Appendices, which is where
you’ll find some other, miscellaneous information.

A Simple Program

1.3 beginner.guide/A Simple Program

A Simple Program
================

If you’re still reading you’re probably desperate to do some
programming in E but you don’t know how to start. We’ll therefore jump
straight in the deep end with a small example. You’ll need to know two
things before we start: how to use a text editor and the Shell/CLI.

The code

Compilation

Execution

1.4 beginner.guide/The code

The code
--------

Enter the following lines of code into a text editor and save it as the
file simple.e (taking care to copy each line accurately). (Just type the
characters shown, and at the end of each line press the RETURN or ENTER
key.)

PROC main()
WriteF(’My first program’)

ENDPROC

Don’t try to do anything different, yet, to the code: the case of the



beginner 4 / 258

letters in each word is significant and the funny characters are important.
If you’re a real beginner you might have difficulty finding the ’
character. On my GB keyboard it’s on the big key in the top left-hand
corner directly below the ESC key. On a US and most European keyboards
it’s two to the right of the L key, next to the ; key.

1.5 beginner.guide/Compilation

Compilation
-----------

Once the file is saved (preferably in the RAM disk, since it’s only a
small program), you can use the E compiler to turn it into an executable
program. All you need is the file ec in your C: directory or somewhere
else on your search path (advanced users note: we don’t need the Emodules:
assignment because we aren’t using any modules). Assuming you have this
and you have a Shell/CLI running, enter the following at the prompt after
changing directory to where you saved your new file:

ec simple

If all’s well you should be greeted, briefly, by the E compiler. If
anything went wrong then double-check the contents of the file simple.e,
that your CLI is in the same directory as this file, and that the program
ec is in your C: directory (or on your search path).

1.6 beginner.guide/Execution

Execution
---------

Once everything is working you can run your first program by entering
the following at the CLI prompt:

simple

As a help here’s the complete transcript of the whole compilation and
execution process (the CLI prompt, below, is the bit of text beginning
with 1. and ending in >):

1.System3.0:> cd ram:
1.Ram Disk:> ec simple
Amiga E Compiler/Assembler/Linker/PP v3.1a registered (c) ’91-95 Wouter
lexical analysing ...
parsing and compiling ...
no errors
1.Ram Disk:> simple
My first program1.Ram Disk:>

Your display should be something similar if it’s all worked. Notice how



beginner 5 / 258

the output from the program runs into the prompt (the last line). We’ll
fix this soon.

1.7 beginner.guide/Understanding a Simple Program

Understanding a Simple Program

******************************

To understand the example program we need to understand quite a few
things. The observant amongst you will have noticed that all it does is
print out a message, and that message was part of a line we wrote in the
program. The first thing to do is see how to change this message.

Changing the Message

Procedures

Parameters

Strings

Style Reuse and Readability

The Simple Program

1.8 beginner.guide/Changing the Message

Changing the Message
====================

Edit the file so that line contains a different message between the two
’ characters and compile it again using the same procedure as before.
Don’t use any ’ characters except those around the message. If all went
well, when you run the program again it should produce a different message.
If something went wrong, compare the contents of your file with the
original and make sure the only difference is the message between the ’
characters.

Tinkering with the example

Brief overview

1.9 beginner.guide/Tinkering with the example



beginner 6 / 258

Tinkering with the example
--------------------------

Simple tinkering is a good way to learn for yourself so it is
encouraged on these simple examples. Don’t stray too far, though, and if
you start getting confused return to the proper example pretty sharpish!

1.10 beginner.guide/Brief overview

Brief overview
--------------

We’ll look in detail at the important parts of the program in the
following sections, but we need first to get a glimpse of the whole
picture. Here’s a brief description of some fundamental concepts:

* Procedures: We defined a procedure called main and used the
(built-in) procedure WriteF. A procedure can be thought of as a
small program with a name.

* Parameters: The message in parentheses after WriteF in our
program is the parameter to WriteF. This is the data which the
procedure should use.

* Strings: The message we passed to WriteF was a series of
characters enclosed in ’ characters. This is known as a string.

1.11 beginner.guide/Procedures

Procedures
==========

As mentioned above, a procedure can be thought of as a small program
with a name. In fact, when an E program is run the procedure called main
is executed. Therefore, if your E program is going to do anything you
must define a main procedure. Other (built-in or user-defined) procedures
may be run (or called) from this procedure (as we did WriteF in the
example). For instance, if the procedure fred calls the procedure barney
the code (or mini-program) associated with barney is executed. This may
involve calls to other procedures, and when the execution of this code is
complete the next piece of code in the procedure fred is executed (and
this is generally the next line of the procedure). When the end of the
procedure main has been reached the program has finished. However, lots
can happen between the beginning and end of a procedure, and sometimes the
program may never get to finish. Alternatively, the program may crash,
causing strange things to happen to your computer.



beginner 7 / 258

Procedure Definition

Procedure Execution

Extending the example

1.12 beginner.guide/Procedure Definition

Procedure Definition
--------------------

Procedures are defined using the keyword PROC, followed by the new
procedure’s name (in lowercase letters), a description of the parameters
it takes (in parentheses), a series of lines forming the code of the
procedure and then the keyword ENDPROC. Look at the example program again
to identify the various parts. See

The code
.

1.13 beginner.guide/Procedure Execution

Procedure Execution
-------------------

Procedures can be called (or executed) from within the code part of
another procedure. You do this by giving its name, followed by some data
in parentheses. Look at the call to WriteF in the example program. See

The code
.

1.14 beginner.guide/Extending the example

Extending the example
---------------------

Here’s how we could change the example program to define another
procedure:

PROC main()
WriteF(’My first program’)
fred()

ENDPROC

PROC fred()



beginner 8 / 258

WriteF(’...slightly improved’)
ENDPROC

This may seem complicated, but in fact it’s very simple. All we’ve done
is define a second procedure called fred which is just like the original
program--it outputs a message. We’ve called this procedure in the main
procedure just after the line which outputs the original message.
Therefore, the message in fred is output after this message. Compile the
program as before and run it so you don’t have to take my word for it.

1.15 beginner.guide/Parameters

Parameters
==========

Generally we want procedures to work with particular data. In our
example we wanted the WriteF procedure to work on a particular message.
We passed the message as a parameter (or argument) to WriteF by
putting it between the parentheses (the ( and ) characters) that follow
the procedure name. When we called the fred procedure, however, we did
not require it to use any data so the parentheses were left empty.

When defining a procedure when define how much and what type of data we
want it to work on, and when calling a procedure we give the specific data
it should use. Notice that the procedure fred (like the procedure main)
has empty parentheses in its definition. This means that the procedure
cannot be given any data as parameters when it is called. Before we can
define our own procedure that takes parameters we must learn about
variables. We’ll do this in the next chapter. See

Global and local variables
.

1.16 beginner.guide/Strings

Strings
=======

A series of characters between two ’ characters is known as a string.
Almost any character can be used in a string, although the \ and ’
characters have a special meaning. For instance, a linefeed is denoted by
the two characters \n. We now know how to stop the message running into
the prompt. Change the program to be:

PROC main()
WriteF(’My first program\n’)
fred()

ENDPROC



beginner 9 / 258

PROC fred()
WriteF(’...slightly improved\n’)

ENDPROC

Compile it as before, and run it. You should notice that the messages now
appear on lines by themselves, and the second message is separated from
the prompt which follows it. We have therefore cured the linefeed problem
we spotted earlier (see

Execution
).

1.17 beginner.guide/Style Reuse and Readability

Style, Reuse and Readability
============================

The example has grown into two procedures, one called main and one
called fred. However, we could get by with only one procedure:

PROC main()
WriteF(’My first program\n’)
WriteF(’...slightly improved\n’)

ENDPROC

What we’ve done is replace the call to the procedure fred with the code
it represents (this is called inlining the procedure). In fact, almost
all programs can be easily re-written to eliminate all but the main
procedure. However, splitting a program up using procedures normally
results in more readable code. It is also helpful to name your procedures
so that their function is apparent, so our procedure fred should probably
have been named message or something similar. A well-written program in
this style can read just like English (or any other spoken language).

Another reason for having procedures is to reuse code, rather than
having to write it out every time you use it. Imagine you wanted to print
the same, long message fairly often in your program--you’d either have to
write it all out every time, or you could write it once in a procedure and
call this procedure when you wanted the message printed. Using a
procedure also has the benefit of having only one copy of the message to
change, should it ever need changing.

1.18 beginner.guide/The Simple Program

The Simple Program
==================

The simple program should now (hopefully) seem simple. The only bit
that hasn’t been explained is the built-in procedure WriteF. E has many
built-in procedures and later we’ll meet some of them in detail. The



beginner 10 / 258

first thing we need to do, though, is manipulate data. This is really
what a computer does all the time--it accepts data from some source
(possibly the user), manipulates it in some way (possibly storing it
somewhere, too) and outputs new data (usually to a screen or printer).
The simple example program did all this, except the first two stages were
rather trivial. You told the computer to execute the compiled program
(this was some user input) and the real data (the message to be printed)
was retrieved from the program. This data was manipulated by passing it
as a parameter to WriteF, which then did some clever stuff to print it on
the screen. To do our own manipulation of data we need to learn about
variables and expressions.

1.19 beginner.guide/Variables and Expressions

Variables and Expressions

*************************

Anybody who’s done any school algebra will probably know what a
variable is--it’s just a named piece of data. In algebra the data is
usually a number, but in E it can be all sorts of things (e.g., a string).
The manipulation of data like the addition of two numbers is known as an
expression. The result of an expression can be used to build bigger
expressions. For instance, 1+2 is an expression, and so is 6-(1+2). The
good thing is you can use variables in place of data in expressions, so if
x represents the number 1 and y represents 5, then the expression y-x
represents the number 4. In the next two sections we’ll look at what kind
of variables you can define and what the different sorts of expressions
are.

Variables

Expressions

1.20 beginner.guide/Variables

Variables
=========

Variables in E can hold many different kinds of data (called types).
However, before a variable can be used it must be defined, and this is
known as declaring the variable. A variable declaration also decides
whether the variable is available for the whole program or just during the
code of a procedure (i.e., whether the variable is global or local).
Finally, the data stored in a variable can be changed using assignments.
The following sections discuss these topics in slightly more detail.



beginner 11 / 258

Variable types

Variable declaration

Assignment

Global and local variables

Changing the example

1.21 beginner.guide/Variable types

Variable types
--------------

In E a variable is a storage place for data (and this storage is part
of the Amiga’s RAM). Different kinds of data may require different
amounts of storage. However, data can be grouped together in types, and
two pieces of data from the same type require the same amount of storage.
Every variable has an associated type and this dictates the maximum amount
of storage it uses. Most commonly, variables in E store data from the
type LONG. This type contains the integers from -2,147,483,648 to
2,147,483,647, so is normally more than sufficient. There are other
types, such as INT and LIST, and more complex things to do with types, but
for now knowing about LONG is enough.

1.22 beginner.guide/Variable declaration

Variable declaration
--------------------

Variables must be declared before they can be used. They are declared
using the DEF keyword followed by a (comma-separated) list of the names of
the variables to be declared. These variables will all have type LONG
(later we will see how to declare variables with other types). Some
examples will hopefully make things clearer:

DEF x

DEF a, b, c

The first line declares the single variable x, whilst the second declares
the variables a, b and c all in one go.

1.23 beginner.guide/Assignment



beginner 12 / 258

Assignment
----------

The data stored by variables can be changed and this is normally done
using assignments. An assignment is formed using the variable’s name
and an expression denoting the new data it is to store. The symbol :=
separates the variable from the expression. For example, the following
code stores the number two in the variable x. The left-hand side of the
:= is the name of the variable to be affected (x in this case) and the
right-hand side is an expression denoting the new value (simply the number
two in this case).

x := 2

The following, more complex example uses the value stored in the variable
before the assignment as part of the expression for the new data. The
value of the expression on the right-hand side of the := is the value
stored in the variable x plus one. This value is then stored in x,
over-writing the previous data. (So, the overall effect is that x is
incremented.)

x := x + 1

This may be clearer in the next example which does not change the data
stored in x. In fact, this piece of code is just a waste of CPU time,
since all it does is look up the value stored in x and store it back there!

x := x

1.24 beginner.guide/Global and local variables

Global and local variables (and procedure parameters)
-----------------------------------------------------

There are two kinds of variable: global and local. Data stored by
global variables can be read and changed by all procedures, but data
stored by local variables can only be accessed by the procedure to which
they are local. Global variables must be declared before the first
procedure definition. Local variables are declared within the procedure
to which they are local (i.e., between the PROC and ENDPROC). For
example, the following code declares a global variable w and local
variables x and y.

DEF w

PROC main()
DEF x
x:=2
w:=1
fred()

ENDPROC

PROC fred()



beginner 13 / 258

DEF y
y:=3
w:=2

ENDPROC

The variable x is local to the procedure main, and y is local to fred.
The procedures main and fred can read and alter the value of the global
variable w, but fred cannot read or alter the value of x (since that
variable is local to main). Similarly, main cannot read or alter y.

The local variables of one procedure are, therefore, completely
different to the local variables of another procedure. For this reason
they can share the same names without confusion. So, in the above
example, the local variable y in fred could have been called x and the
program would have done exactly the same thing.

DEF w

PROC main()
DEF x
x:=2
w:=1
fred()

ENDPROC

PROC fred()
DEF x
x:=3
w:=2

ENDPROC

This works because the x in the assignment in fred can refer only to the
local variable x of fred (the x in main is local to main so cannot be
accessed from fred).

If a local variable for a procedure has the same name as a global
variable then in the rest of the procedure the name refers only to the
local variable. Therefore, the global variable cannot be accessed in the
procedure, and this is called descoping the global variable.

The parameters of a procedure are local variables for that procedure.
We’ve seen how to pass values as parameters when a procedure is called
(the use of WriteF in the example), but until now we haven’t been able to
define a procedure which takes parameters. Now we know a bit about
variables we can have a go:

DEF y

PROC onemore(x)
y:=x+1

ENDPROC

This isn’t a complete program so don’t try to compile it. Basically,
we’ve declared a variable y (which will be of type LONG) and a procedure
onemore. The procedure is defined with a parameter x, and this is just
like a (local) variable declaration. When onemore is called a parameter
must be supplied, and this value is stored in the (local) variable x



beginner 14 / 258

before execution of onemore’s code. The code stores the value of x plus
one in the (global) variable y. The following are some examples of
calling onemore:

onemore(120)
onemore(52+34)
onemore(y)

A procedure can be defined to take any number of parameters. Below,
the procedure addthem is defined to take two parameters, a and b, so it
must therefore be called with two parameters. Notice that values stored
by the parameter variables (a and b) can be changed within the code of the
procedure.

DEF y

PROC addthem(a, b)
a:=a+2
y:=a*b

ENDPROC

The following are some examples of calling addthem:

addthem(120,-20)
addthem(52,34)
addthem(y,y)

1.25 beginner.guide/Changing the example

Changing the example
--------------------

Before we change the example we must learn something about WriteF. We
already know that the characters \n in a string mean a linefeed. However,
there are several other important combinations of characters in a string,
and some are special to procedures like WriteF. One such combination is
\d, which is easier to describe after we’ve seen the changed example.

PROC main()
WriteF(’My first program\n’)
fred()

ENDPROC

PROC fred()
WriteF(’...brought to you by the number \d\n’, 236)

ENDPROC

You might be able to guess what happens, but compile it and try it out
anyway. If everything’s worked you should see that the second message
prints out the number that was passed as the second parameter to WriteF.
That’s what the \d combination does--it marks the place in the string
where the number should be printed. Here’s the output the example should
generate:



beginner 15 / 258

My first program
...brought to you by the number 236

Try this next change:

PROC main()
WriteF(’My first program\n’)
fred()

ENDPROC

PROC fred()
WriteF(’...the number \d is quite nice\n’, 16)

ENDPROC

This is very similar, and just shows that the \d really does mark the
place where the number is printed. Again, here’s the output it should
generate:

My first program
...the number 16 is quite nice

We’ll now try printing two numbers.

PROC main()
WriteF(’My first program\n’)
fred()

ENDPROC

PROC fred()
WriteF(’...brought to you by the numbers \d and \d\n’, 16, 236)

ENDPROC

Because we’re printing two numbers we need two lots of \d, and we need to
supply two numbers as parameters in the order in which we want them to be
printed. The number 16 will therefore be printed before the word ‘and’
and before the number 236. Here’s the output:

My first program
...brought to you by the numbers 16 and 236

We can now make a big step forward and pass the numbers as parameters
to the procedure fred. Just look at the differences between this next
example and the previous one.

PROC main()
WriteF(’My first program\n’)
fred(16, 236)

ENDPROC

PROC fred(a,b)
WriteF(’...brought to you by the numbers \d and \d\n’, a,b)

ENDPROC

This time we pass the (local) variables a and b to WriteF. This is
exactly the same as passing the values they store (which is what the
previous example did), and so the output will be the same. In the next
section we’ll manipulate the variables by doing some arithmetic with a and



beginner 16 / 258

b, and get WriteF to print the results.

1.26 beginner.guide/Expressions

Expressions
===========

The E language includes the normal mathematical and logical operators.
These operators are combined with values (usually in variables) to give
expressions which yield new values. The following sections discuss this
topic in more detail.

Mathematics

Logic and comparison

Precedence and grouping

1.27 beginner.guide/Mathematics

Mathematics
-----------

All the standard mathematical operators are supported in E. You can do
addition, subtraction, multiplication and division. Other functions such
as sine, modulus and square-root can also be used as they are part of the
Amiga system libraries, but we only need to know about simple mathematics
at the moment. The + character is used for addition, - for subtraction, *
for multiplication (it’s the closest you can get to a multiplication sign
on a keyboard without using the letter x), and / for division (be careful
not to confuse the \ used in strings with / used for division). The
following are examples of expressions:

1+2+3+4
15-5
5*2
330/33
-10+20
3*3+1

Each of these expressions yields ten as its result. The last example is
very carefully written to get the precedence correct (see

Precedence and grouping
).

All the above expressions use integer operators, so they manipulate
integers, giving integers as results. Floating-point numbers are also



beginner 17 / 258

supported by E, but using them is quite complicated (see

Floating-Point Numbers
). (Floating-point numbers can represent both very

small fractions and very large integers, but they have a limited accuracy,
i.e., a limited number of significant digits.)

1.28 beginner.guide/Logic and comparison

Logic and comparison
--------------------

Logic lies at the very heart of a computer. They rarely guess what to
do next; instead they rely on hard facts and precise reasoning. Consider
the password protection on most games. The computer must decide whether
you entered the correct number or word before it lets you play the game.
When you play the game it’s constantly making decisions: did your laser
hit the alien, have you got any lives left, etc. Logic controls the
operation of a program.

In E, the constants TRUE and FALSE represent the truth values true and
false (respectively), and the operators AND and OR are the standard logic
operators. The comparison operators are = (equal to), > (greater than), <
(less than), >= (greater than or equal to), <= (less than or equal to) and
<> (not equal to). All the following expressions are true:

TRUE
TRUE AND TRUE
TRUE OR FALSE
1=1
2>1
3<>0

And these are all false:

FALSE
TRUE AND FALSE
FALSE OR FALSE
0=2
2<1
(2<1) AND (-1=0)

The last example must use parentheses. We’ll see why in the next section
(it’s to do with precedence, again).

The truth values TRUE and FALSE are actually numbers. This is how the
logic system works in E. TRUE is the number -1 and FALSE is zero. The
logic operators AND and OR expect such numbers as their parameters. In
fact, the AND and OR operators are really bit-wise operators (see

Bitwise AND and OR
), so most of the time any non-zero number is taken to

be TRUE. It can sometimes be convenient to rely on this knowledge,



beginner 18 / 258

although most of the time it is preferable (and more readable) to use a
slightly more explicit form. Also, these facts can cause a few subtle
problems as we shall see in the next section.

1.29 beginner.guide/Precedence and grouping

Precedence and grouping
-----------------------

At school most of us are taught that multiplications must be done
before additions in a sum. In E it’s different--there is no operator
precedence. This means that expressions like 1+3*3 do not give the
results a mathematician might expect. In fact, 1+3*3 represents the
number 12 in E. This is because the addition, 1+3, is done before the
multiplication, since it occurs before the multiplication. If the
multiplication were written before the addition it would be done first
(like we would normally expect). Therefore, 3*3+1 represents the number
10 in E and in school mathematics.

To overcome this difference we can use parentheses to group the
expression. If we’d written 1+(3*3) the result would be 10. This is
because we’ve forced E to do the multiplication first. Although this may
seem troublesome to begin with, it’s actually a lot better than learning a
lot of rules for deciding which operator is done first (in C this can be a
real pain, and you usually end up writing the brackets in just to be
sure!).

The logic examples above contained the expression:

(2<1) AND (-1=0)

This expression was false. If we’d left the parentheses out, E would have
seen it as:

((2<1) AND -1) = 0

Now the number -1 shouldn’t really be used to represent a truth value with
AND, but we do know that TRUE is the number -1, so E will make sense of
this and the E compiler won’t complain. We will soon see how AND and OR
really work (see

Bitwise AND and OR
), but for now we’ll just work out what

E would calculate for this expression:

1. Two is not less than one so 2<1 can be replaced by FALSE.

(FALSE AND -1) = 0

2. TRUE is -1 so we can replace -1 by TRUE.

(FALSE AND TRUE) = 0

3. FALSE AND TRUE is FALSE.



beginner 19 / 258

(FALSE) = 0

4. FALSE is really the number zero, so we can replace it with zero.

0 = 0

5. Zero is equal to zero, so the expression is TRUE.

TRUE

So E calculates the expression to be true. But the original expression
(with parentheses) was false. Bracketing is therefore very important! It
is also very easy to do correctly.

1.30 beginner.guide/Program Flow Control

Program Flow Control

********************

A computer program often needs to repeatedly execute a series of
statements or execute different statements according to the result of some
decision. For example, a program to print all the numbers between one and
a thousand would be very long and tedious to write if each print statement
had to be given individually--it would be much better to use a variable
and repeatedly print its value and increment it. Also, things sometimes
go wrong and a program must decide whether to continue or print an error
message and stop--this part of a program is a typical example of a
conditional block.

Conditional Block

Loops

1.31 beginner.guide/Conditional Block

Conditional Block
=================

There are two kinds of conditional block: IF and SELECT. Examples of
these blocks are given below as fragments of E code (i.e., the examples
are not complete E programs).

IF x>0
x:=x+1
WriteF(’Increment: x is now \d\n’, x)

ELSEIF x<0



beginner 20 / 258

x:=x-1
WriteF(’Decrement: x is now \d\n’, x)

ELSE
WriteF(’Zero: x is 0\n’)

ENDIF

In the above IF block, the first part checks if the value of x is greater
than zero, and, if it is, x is incremented and the new value is printed
(with a message saying it was incremented). The program will then skip
the rest of the block, and will execute the statements which follow the
ENDIF. If, however, x it is not greater than zero the ELSEIF part is
checked, so if x is less than zero it will be decremented and printed, and
the rest of the block is skipped. If x is not greater than zero and not
less than zero the statements in the ELSE part are executed, so a message
saying x is zero is printed. The IF conditional is described in more
detail below.

IF block

IF expression
SELECT x

CASE 0
WriteF(’x is zero\n’)

CASE 10
WriteF(’x is ten\n’)

CASE -2
WriteF(’x is -2\n’)

DEFAULT
WriteF(’x is not zero, ten or -2\n’)

ENDSELECT

The SELECT block is similar to the IF block--it does different things
depending on the value of x. However, x is only checked against specific
values, given in the series of CASE statements. If it is not any of these
values the DEFAULT part is executed.

There’s also a variation on the SELECT block (known as the SELECT..OF
block) which matches ranges of values and is quite fast. The two kinds of
SELECT block are described in more detail below.

SELECT block

SELECT..OF block

1.32 beginner.guide/IF block

IF block
--------

The IF block has the following form (the bits like expression are



beginner 21 / 258

descriptions of the kinds of E code which is allowed at that point--they
are not proper E code):

IF expressionA
statementsA

ELSEIF expressionB
statementsB

ELSE
statementsC

ENDIF

This block means:

* If expressionA is true (i.e., represents TRUE or any non-zero
number) the code denoted by statementsA is executed.

* If expressionA is false (i.e., represents FALSE or zero) and
expressionB is true the statementsB part is executed.

* If both expressionA and expressionB are false the statementsC
part is executed.

There does not need to be an ELSE part but if one is present it must be
the last part (immediately before the ENDIF). Also, there can be any
number of ELSEIF parts between the IF and ELSE parts.

An alternative to this vertical form (where each part is on a separate
line) is the horizontal form:

IF expression THEN statementA ELSE statementB

This has the disadvantage of no ELSEIF parts and having to cram everything
onto a single line. Notice the presence of the THEN keyword to separate the
expression and statement. This horizontal form is closely related to
the IF expression, which is described below (see

IF expression
).

To help make things clearer here are a number of E code fragments which
illustrate the allowable IF blocks:

IF x>0 THEN x:=x+1 ELSE x:=0

IF x>0
x:=x+1

ELSE
x:=0

ENDIF

IF x=0 THEN WriteF(’x is zero\n’)

IF x=0
WriteF(’x is zero\n’)

ENDIF

IF x<0
Write(’Negative x\n’)



beginner 22 / 258

ELSEIF x>2000
Write(’Too big x\n’)

ELSEIF (x=2000) OR (x=0)
Write(’Worrying x\n’)

ENDIF

IF x>0
IF x>2000

WriteF(’Big x\n’)
ELSE

WriteF(’OK x\n’)
ENDIF

ELSE
IF x<-800 THEN WriteF(’Small x\n’) ELSE Write(’Negative OK x’)

ENDIF

In the last example there are nested IF blocks (i.e., an IF block within
an IF block). There is no ambiguity in which ELSE or ELSEIF parts belong
to which IF block because the beginning and end of the IF blocks are
clearly marked. For instance, the first ELSE line can only be interpreted
as being part of the innermost IF block.

As a matter of style the conditions on the IF and ELSEIF parts should
not overlap (i.e., at most one of the conditions should be true). If
they do, however, the first one will take precedence. Therefore, the
following two fragments of E code do the same thing:

IF x>0
WriteF(’x is bigger than zero\n’)

ELSEIF x>200
WriteF(’x is bigger than 200\n’)

ELSE
WriteF(’x is too small\n’)

ENDIF

IF x>0
WriteF(’x is bigger than zero\n’)

ELSE
WriteF(’x is too small\n’)

ENDIF

The ELSEIF part of the first fragment checks whether x is greater than 200.
But, if it is, the check in the IF part would have been true (x is
certainly greater than zero if it’s greater than 200), and so only the
code in the IF part is executed. The whole IF block behaves as if the
ELSEIF was not there.

1.33 beginner.guide/IF expression

IF expression
-------------

IF is such a commonly used construction that there is also an IF



beginner 23 / 258

expression. The IF block is a statement and it controls which lines of
code are executed, whereas the IF expression is an expression and it
controls its own value. For example, the following IF block:

IF x>0
y:=x+1

ELSE
y:=0

ENDIF

can be written more succinctly using an IF expression:

y:=(IF x>0 THEN x+1 ELSE 0)

The parentheses are unnecessary but they help to make the example more
readable. Since the IF block is just choosing between two assignments to
y it isn’t really the lines of code that are different (they are both
assignments), rather it is the values that are assigned to y that are
different. The IF expression makes this similarity very clear. It
chooses the value to be assigned in just the same way that the IF block
choose the assignment.

As you can see, IF expressions are written like the horizontal form of
the IF block. However, there must be an ELSE part and there can be no
ELSEIF parts. This means that the expression will always have a value,
and it isn’t cluttered with lots of cases.

Don’t worry too much about IF expressions, since there are only useful
in a handful of cases and can always be rewritten as a more wordy IF block.
Having said that they are very elegant and a lot more readable than the
equivalent IF block.

1.34 beginner.guide/SELECT block

SELECT block
------------

The SELECT block has the following form:

SELECT variable
CASE expressionA

statementsA
CASE expressionB

statementsB
DEFAULT

statementsC
ENDSELECT

The value of the selection variable (denoted by variable in the SELECT
part) is compared with the value of the expression in each of the CASE
parts in turn. If there’s a match, the statements in the (first) matching
CASE part are executed. There can be any number of CASE parts between the
SELECT and DEFAULT parts. If there is no match, the statements in the
DEFAULT part are executed. There does not need to be a DEFAULT part but



beginner 24 / 258

if one is present it must be the last part (immediately before the
ENDSELECT).

It should be clear that SELECT blocks can be rewritten as IF blocks,
with the checks on the IF and ELSEIF parts being equality checks. For
example, the following code fragments are equivalent:

SELECT x
CASE 22

WriteF(’x is 22\n’)
CASE (y+z)/2

WriteF(’x is (y+x)/2\n’)
DEFAULT

WriteF(’x isn’t anything significant\n’)
ENDSELECT

IF x=22
WriteF(’x is 22\n’)

ELSEIF x=(y+z)/2
WriteF(’x is (y+x)/2\n’)

ELSE
WriteF(’x isn’t anything significant\n’)

ENDIF

Notice that the IF and ELSEIF parts come from the CASE parts, the ELSE
part comes from the DEFAULT part, and the order of the parts is preserved.
The advantage of the SELECT block is that it’s much easier to see that the
value of x is being tested all the time, and also we don’t have to keep
writing x= in the checks.

1.35 beginner.guide/SELECT..OF block

SELECT..OF block
----------------

The SELECT..OF block is a bit more complicated than the normal SELECT
block, but can be very useful. It has the following form:

SELECT maxrange OF expression
CASE constA

statementsA
CASE constB1 TO constB2

statementsB
CASE range1, range2

statementsC
DEFAULT

statementsD
ENDSELECT

The value to be matched is expression, which can be any expression,
not just a variable like in the normal SELECT block. However, the
maxrange, constA, constB1 and constB2 must all be explicit numbers,
i.e., constants (see

Constants



beginner 25 / 258

). maxrange must be a positive constant
and the other constants must be between zero and maxrange (including
zero but excluding maxrange).

The CASE values to be matched are specified using ranges. A simple
range is a single constant (the first CASE above). The more general range
is shown in the second CASE, using the TO keyword (constB2 must be
greater than constB1). A general CASE in the SELECT..OF block can
specify a number of possible ranges to match against by separating each
range with a comma, as in the third CASE above. For example, the
following CASE lines are equivalent and can be used to match any number
from one to five (inclusive):

CASE 1 TO 5

CASE 1, 2, 3, 4, 5

CASE 1 TO 3, 3 TO 5

CASE 1, 2 TO 3, 4, 5

CASE 1, 5, 2, 4, 3

CASE 2 TO 3, 5, 1, 4

If the value of the expression is less than zero, greater than or
equal to maxrange, or it does not match any of the constants in the CASE
ranges, then the statements in the DEFAULT part are executed. Otherwise
the statements in the first matching CASE part are executed. As in the
normal SELECT block, there does not need to be a DEFAULT part.

The following SELECT..OF block prints the (numeric) day of the month
nicely:

SELECT 32 OF day
CASE 1, 21, 31

WriteF(’The \dst day of the month\n’, day)
CASE 2, 22

WriteF(’The \dnd day of the month\n’, day)
CASE 3, 23

WriteF(’The \drd day of the month\n’, day)
CASE 4 TO 20, 24 TO 30

WriteF(’The \dth day of the month\n’, day)
DEFAULT

WriteF(’Error: invalid day=\d\n’, day)
ENDSELECT

The maxrange for this block is 32, since 31 is the maximum of the values
used in the CASE parts. If the value of day was 100, for instance, then
the statements in the DEFAULT part would be executed, signalling an
invalid day.

This example can be rewritten as an IF block:

IF (day=1) OR (day=21) OR (day=31)
WriteF(’The \dst day of the month\n’, day)

ELSEIF (day=2) OR (day=22)



beginner 26 / 258

WriteF(’The \dnd day of the month\n’, day)
ELSEIF (day=3) OR (day=23)

WriteF(’The \drd day of the month\n’, day)
ELSEIF ((4<=day) AND (day<=20)) OR ((24<=day) AND (day<=30))

WriteF(’The \dth day of the month\n’, day)
ELSE

WriteF(’Error: invalid day=\d\n’, day)
ENDIF

The comma separating two ranges in the CASE part has been replaced by an
OR of two comparison expressions, and the TO range has been replaced
by an AND of two comparisons. (It is worth noticing the careful
bracketing of the resulting expressions.)

Clearly, the SELECT..OF block is much more readable than the equivalent
IF block. It is also a lot faster, mainly because none of the comparisons
present in IF block have to be done in the SELECT..OF version. Instead
the value to be matched is used to immediately locate the correct CASE
part. However, it’s not all good news: the maxrange value directly
affects the size of compiled executable, so it is recommended that
SELECT..OF blocks be used only with small maxrange values. See the
‘Reference Manual’ for more details.

1.36 beginner.guide/Loops

Loops
=====

Loops are all about making a program execute a series of statements
over and over again. Probably the simplest loop to understand is the FOR
loop. There are other kinds of loops, but they are easier to understand
once we know how to use a FOR loop.

FOR loop

WHILE loop

REPEAT..UNTIL loop

1.37 beginner.guide/FOR loop

FOR loop
--------

If you want to write a program to print the numbers one to 100 you can
either type each number and wear out your fingers, or you can use a single
variable and a small FOR loop. Try compiling this E program (the space



beginner 27 / 258

after the \d in the string is needed to separate the printed numbers):

PROC main()
DEF x
FOR x:=1 TO 100

WriteF(’\d ’, x)
ENDFOR
WriteF(’\n’)

ENDPROC

When you run this you’ll get all the numbers from one to 100 printed, just
like we wanted. It works by using the (local) variable x to hold the
number to be printed. The FOR loop starts off by setting the value of x
to one (the bit that looks like an assignment). Then the statements
between the FOR and ENDFOR lines are executed (so the value of x gets
printed). When the program reaches the ENDFOR it increments x and checks
to see if it is bigger than 100 (the limit we set with the TO part). If
it is, the loop is finished and the statements after the ENDFOR are
executed. If, however, it wasn’t bigger than 100, the statements between
the FOR and ENDFOR lines are executed all over again, and this time x is
one bigger since it has been incremented. In fact, this program does
exactly the same as the following program (the ... is not E code--it
stands for the 97 other WriteF statements):

PROC main()
WriteF(’\d ’, 1)
WriteF(’\d ’, 2)
...
WriteF(’\d ’, 100)
WriteF(’\n’)

ENDPROC

The general form of the FOR loop is as follows:

FOR var := expressionA TO expressionB STEP number
statements

ENDFOR

The var bit stands for the loop variable (in the example above this was
x). The expressionA bit gives the start value for the loop variable
and the expressionB bit gives the last allowable value for it. The STEP
part allows you to specify the value (given by number) which is added to
the loop variable on each loop. Unlike the values given for the start and
end (which can be arbitrary expressions), the STEP value must be a
constant (see

Constants
). The STEP value defaults to one if the STEP part

is omitted (as in our example). Negative STEP values are allowed, but in
this case the check used at the end of each loop is whether the loop
variable is less than the value in the TO part. Zero is not allowed as
the STEP value.

As with the IF block there is a horizontal form of a FOR loop:

FOR var := expA TO expB STEP expC DO statement



beginner 28 / 258

1.38 beginner.guide/WHILE loop

WHILE loop
----------

The FOR loop used a loop variable and checked whether that variable had
gone past its limit. A WHILE loop allows you to specify your own loop
check. For instance, this program does the same as the program in the
previous section:

PROC main()
DEF x
x:=1
WHILE x<=100

WriteF(’\d ’, x)
x:=x+1

ENDWHILE
WriteF(’\n’)

ENDPROC

We’ve replaced the FOR loop with an initialisation of x and a WHILE loop
with an extra statement to increment x. We can now see the inner workings
of the FOR loop and, in fact, this is exactly how the FOR loop works.

It is important to know that our check, x<=100, is done before the loop
statements are executed. This means that the loop statements might not
even be executed once. For instance, if we’d made the check x>=100 it
would be false at the beginning of the loop (since x is initialised to one
in the assignment before the loop). Therefore, the loop would have
terminated immediately and execution would pass straight to the statements
after the ENDWHILE.

Here’s a more complicated example:

PROC main()
DEF x,y
x:=1
y:=2
WHILE (x<10) AND (y<10)

WriteF(’x is \d and y is \d\n’, x, y)
x:=x+2
y:=y+2

ENDWHILE
ENDPROC

We’ve used two (local) variables this time. As soon as one of them is ten
or more the loop is terminated. A bit of inspection of the code reveals
that x is initialised to one, and keeps having two added to it. It will,
therefore, always be an odd number. Similarly, y will always be even.
The WHILE check shows that it won’t print any numbers which are greater
than or equal to ten. From this and the fact that x starts at one and y
at two we can decide that the last pair of numbers will be seven and eight.
Run the program to confirm this. It should produce the following output:



beginner 29 / 258

x is 1 and y is 2
x is 3 and y is 4
x is 5 and y is 6
x is 7 and y is 8

Like the FOR loop, there is a horizontal form of the WHILE loop:

WHILE expression DO statement

Loop termination is always a big problem. FOR loops are guaranteed to
eventually reach their limit (if you don’t mess with the loop variable,
that is). However, WHILE loops (and all other loops) may go on forever
and never terminate. For example, if the loop check were 1<2 it would
always be true and nothing the loop could do would prevent it being true!
You must therefore take care that you make sure your loops terminate in
some way if you want to program to finish. There is a sneaky way of
terminating loops using the JUMP statement, but we’ll ignore that for now.

1.39 beginner.guide/REPEAT..UNTIL loop

REPEAT..UNTIL loop
------------------

A REPEAT..UNTIL loop is very similar to a WHILE loop. The only
difference is where you specify the loop check, and when and how the check
is performed. To illustrate this, here’s the program from the previous
two sections rewritten using a REPEAT..UNTIL loop (try to spot the subtle
differences):

PROC main()
DEF x
x:=1
REPEAT

WriteF(’\d ’, x)
x:=x+1

UNTIL x>100
WriteF(’\n’)

ENDPROC

Just as in the WHILE loop version we’ve got an initialisation of x and an
extra statement in the loop to increment x. However, this time the loop
check is specified at the end of the loop (in the UNTIL part), and the
check is only performed at the end of each loop. This difference means
that the code in a REPEAT..UNTIL loop will be executed at least once,
whereas the code in a WHILE loop may never be executed. Also, the logical
sense of the check follows the English: a REPEAT..UNTIL loop executes
until the check is true, whereas the WHILE loop executes while the
check is true. Therefore, the REPEAT..UNTIL loop executes while the check
is false! This may seem confusing at first, but just remember to read the
code as if it were English and you’ll get the correct interpretation.



beginner 30 / 258

1.40 beginner.guide/Summary

Summary

*******

This is the end of Part One, which was hopefully enough to get you
started. If you’ve grasped the main concepts you are good position to
attack Part Two, which covers the E language in more detail.

This is probably a good time to look at the different parts of one of
the examples from the previous sections, since we’ve now used quite a bit
of E. The following examination uses the WHILE loop example. Just to make
things easier to follow, each line has been numbered (don’t try to compile
it with the line numbers on!).

1. PROC main()
2. DEF x,y
3. x:=1
4. y:=2
5. WHILE (x<10) AND (y<10)
6. WriteF(’x is \d and y is \d\n’, x, y)
7. x:=x+2
8. y:=y+2
9. ENDWHILE

10. ENDPROC

Hopefully, you should be able to recognise all the features listed in the
table below. If you don’t then you might need to go back over the
previous chapters, or find a much better programming guide than this!

Line(s) Observation
---------------------------------------------------------
1-10 The procedure definition.

1 The declaration of the procedure main, with no
parameters.

2 The declaration of local variables x and y.

3, 4 Initialisation of x and y using assignment
statements.

5-9 The WHILE loop.

5 The loop check for the WHILE loop using the
logical operator AND, the comparison operator
<, and parentheses to group the expression.

6 The call to the (built-in) procedure WriteF
using parameters. Notice the string, the place
holders for numbers, \d, and the linefeed,
\n.

7, 8 Assignments to x and y, adding two to
their values.



beginner 31 / 258

9 The marker for the end of the WHILE loop.

10 The marker for the end of the procedure.

1.41 beginner.guide/Format and Layout

Format and Layout

*****************

In this chapter we’ll look at the rules which govern the format and
layout of E code. In the previous Part we saw examples of E code that
were quite nicely indented and the structure of the program was easily
visible. This was just a convention and the E language does not constrain
you to write code in this way. However, there are certain rules that must
be followed. (This chapter refers to some concepts and parts of the E
language which were not covered in Part One. Don’t let this put you
off--those things will be dealt with in later chapters, and it’s maybe a
good idea to read this chapter again when they have been.)

Identifiers

Statements

Spacing and Separators

Comments

1.42 beginner.guide/Identifiers

Identifiers
===========

An identifier is a word which the compiler must interpret rather than
treating literally. For instance, a variable is an identifier, as is a
keyword (e.g., IF), but anything in a string is not (e.g., fred in ’fred
and wilma’ is not an identifier). Identifiers can be made up of upper- or
lower-case letters, numbers and underscores (the _ character). There are
only two constraints:

1. The first character cannot be a number (this would cause confusion
with numeric constants).

2. The case of the first few characters of identifiers is significant.

For keywords (e.g., ENDPROC), constants (e.g., TRUE) and assembly
mnemonics (e.g., MOVE.L) the first two characters must both be uppercase.
For E built-in or Amiga system procedures/functions the first character
must be uppercase and the second must be lowercase. For all other



beginner 32 / 258

identifiers (i.e., local, global and procedure parameter variables, object
names and element names, procedure names and code labels) the first
character must be lowercase.

Apart from these constraints you are free to write identifiers how you
like, although it’s arguably more tasteful to use all lowercase for
variables and all uppercase for keywords and constants.

1.43 beginner.guide/Statements

Statements
==========

A statement is normally a single line of an instruction to the
computer. Each statement normally occupies a single line. If a procedure
is thought of as a paragraph then a statement is a sentence. Variables,
expressions and keywords are the words which make up the sentence.

So far in our examples we have met only two kinds of statement: the
single line statement and the multi-line statement. The assignments we
have seen were single line statements, and the vertical form of the IF
block is a multi-line statement. The horizontal form of the IF block was
actually the single line statement form of the IF block. Notice that
statements can be built up from other statements, as is the case for IF
blocks. The code parts between the IF, ELSEIF, ELSE and ENDIF lines are
sequences of statements.

Single line statements can often be very short, and you may be able to
fit several of them onto an single line without the line getting too long.
To do this in E you use a semi-colon (the ; character) to separate each
statement on the line. For example, the following code fragments are
equivalent:

fred(y,z)
y:=x
x:=z+1

fred(y,z); y:=x; x:=z+1

On the other hand you may want to split a long statement over several
lines. This is a bit more tricky because the compiler needs to see that
you haven’t finished the statement when it gets to the end of a line.
Therefore you can only break a statement at certain places. The most
common place is after a comma that is part of the statement (like in a
procedure call with more than one parameter), but you can also split a
line after binary operators and anywhere between opening and closing
brackets. The following examples are rather silly but show some allowable
line breaking places.

fred(a, b, c,
d, e, f) /* After a comma */

x:=x+
y+



beginner 33 / 258

z /* After a binary operator */

x:=(1+2
+3) /* Between open...close brackets */

list:= [ 1,2,
[3,4],

] /* Between open...close brackets */

The simple rule is this: if a complete line can be interpreted as a
statement then it will be, otherwise it will be interpreted as part of a
statement which continues on the following lines.

Strings may also get a bit long. You can split them over several lines
by breaking them into several separate strings and using + between them.
If a line ends with a + and the previous thing on the line was a string
then the E compiler takes the next string to be a continuation. The
following calls to WriteF print the same thing:

WriteF(’This long string can be broken over several lines.\n’)

WriteF(’This long string ’ +
’can be broken over several lines.\n’)

WriteF(’This long’ +
’ string can be ’ +
’broken over several ’ +
’lines.\n’)

1.44 beginner.guide/Spacing and Separators

Spacing and Separators
======================

The examples we’ve seen so far used a rigid indentation convention
which was intended to illuminate the structure of the program. This was
just a convention, and the E language places no constraints on the amount
of whitespace (spaces, tabs and linefeeds) you place between statements.
However, within statements you must supply enough spacing to make the
statement readable. This generally means that you must put whitespace
between adjacent identifiers which start or end with a letter, number or
underscore (so that the compiler does not think it’s one big identifier!).
In practice this means you should put a space after a keyword if it might
run into a variable or procedure name. Most other times (like in
expressions) identifiers are separated by non-identifier characters (a
comma, parenthesis or other symbol).

1.45 beginner.guide/Comments



beginner 34 / 258

Comments
========

A comment is something that the E compiler ignores and is only there
to help the reader. Remember that one day in the future you may be the
reader, and it may be quite hard to decipher your own code without a few
decent comments! Comments are therefore pretty important.

You can write comments anywhere you can write whitespace that isn’t
part of a string. There are two kinds of comment: one uses /* to mark the
start of the comment text and */ to mark the end, and the other uses -> to
mark the start, with the comment text continuing to the end of the line.
You must be careful not to write /*, */ or -> as part of the comment text,
unless part of a nested comment. In practice a comment is best put on a
line by itself or after the end of the code on a line.

/* This line is a comment */
x:=1 /* This line contains an assignment then a comment */

/* y:=2 /* This whole line is a comment with a nested comment */*/

x:=1 -> Assignment then a comment
-> y:=2 /* A nested comment comment */

1.46 beginner.guide/Procedures and Functions

Procedures and Functions

************************

A function is a procedure which returns a value. This value can be
any expression so it may depend on the parameters with which the function
was called. For instance, the addition operator + can be thought of as a
function which returns the sum of its two parameters.

Functions

One-Line Functions

Default Arguments

Multiple Return Values

1.47 beginner.guide/Functions

Functions
=========

We can define our own addition function, add, in a very similar way to



beginner 35 / 258

the definition of a procedure. (The only difference is that a function
explicitly returns a value.)

PROC main()
DEF sum
sum:=12+79
WriteF(’Using +, sum is \d\n’, sum)
sum:=add(12,79)
WriteF(’Using add, sum is \d\n’, sum)

ENDPROC

PROC add(x, y)
DEF s
s:=x+y

ENDPROC s

This should generate the following output:

Using +, sum is 91
Using add, sum is 91

In the procedure add the value s is returned using the ENDPROC label. The
value returned from add can be used in expressions, just like any other
value. You do this by writing the procedure call where you want the value
to be. In the above example we wanted the value to be assigned to sum so
we wrote the call to add on the right-hand side of the assignment. Notice
the similarities between the uses of + and add. In general, add(a,b) can
be used in exactly the same places that a+b can (more precisely, it can be
used anywhere (a+b) can be used).

The RETURN keyword can also be used to return values from a procedure.
If the ENDPROC method is used then the value is returned when the
procedure reaches the end of its code. However, if the RETURN method is
used the value is returned immediately at that point and no more of the
procedure’s code is executed. Here’s the same example using RETURN:

PROC add(x, y)
DEF s
s:=x+y
RETURN s

ENDPROC

The only difference is that you can write RETURN anywhere in the code part
of a procedure and it finishes the execution of the procedure at that
point (rather than execution finishing when it reaches the end of the
code). In fact, you can use RETURN in the main procedure to prematurely
finish the execution of a program.

Here’s a slightly more complicated use of RETURN:

PROC limitedadd(x,y)
IF x>10000

RETURN 10000
ELSEIF x<-10000

RETURN -10000
ELSE

RETURN x+y



beginner 36 / 258

ENDIF
/* The following code is redundant */
x:=1
IF x=1 THEN RETURN 9999 ELSE RETURN -9999

ENDPROC

This function checks to see if x is greater than 10,000 or less than
-10,000, and if it is a limited value is returned (which is generally not
the correct sum!). If x is between -10,000 and 10,000 the correct answer
is returned. The lines after the first IF block will never get executed
because execution will have finished at one of the RETURN lines. Those
lines are therefore just a waste of compiler time and can safely be
omitted (as the comment suggests).

If no value is given with the ENDPROC or RETURN keyword then zero is
returned. Therefore, all procedures are actually functions (and the terms
procedure and function will tend to be used interchangeably). So, what
happens to the value when you write a procedure call on a line by itself,
not in an expression? Well, as we will see, the value is simply discarded
(see

Turning an Expression into a Statement
). This is what happened in

the previous examples when we called the procedures fred and WriteF.

1.48 beginner.guide/One-Line Functions

One-Line Functions
==================

Just as the IF block and FOR loop have horizontal, single line forms,
so does a procedure definition. The general form is:

PROC name (arg1, arg2, ...) IS expression

Alternatively, the RETURN keyword can be used:

PROC name (arg1, arg2, ...) RETURN expression

At first sight this might seem pretty unusable, but it is useful for very
simple functions and our add function in the previous section is a good
example. If you look closely at the original definition you’ll see that
the local variable s wasn’t really needed. Here’s the one-line definition
of add:

PROC add(x,y) IS x+y

1.49 beginner.guide/Default Arguments



beginner 37 / 258

Default Arguments
=================

Sometimes a procedure (or function) will quite often be called with a
particular (constant) value for one of its parameters, and it might be
nice if you didn’t have to fill this value in all the time. Luckily, E
allows you to define default values for a procedure’s parameters when
you define the procedure. You can then just leave out that parameter when
you call the procedure and it will default to the value you defined for it.
Here’s a simple example:

PROC play(track=1)
WriteF(’Starting to play track \d\n’, track)
/* Rest of the code... */

ENDPROC

PROC main()
play(1) -> Start playing from track 1
play(6) -> Start playing from track 6
play() -> Start playing from track 1

ENDPROC

This is an outline of a program to control something like a CD player.
The play procedure has one parameter, track, which represents the first
track that should be played. Often, though, you just tell the CD player
to play, and don’t specify a particular track. In this case, play starts
from the first track. This is exactly what happens in the example above:
the track parameter has a default value of 1 defined for it (the =1 in the
definition of the play procedure), and the third call to play in main does
not specify a value for track, so the default value is used.

There are two constraints on the use of default arguments:

1. Any number of the parameters of a procedure may have default values
defined for them, although they may only be the right-most parameters.
This means that for a three parameter procedure, the second parameter
can have a default value only if the last parameter does as well, and
the first can have one only if both the others do. This should not
be a big problem because you can always reorder the parameters in the
procedure definition.

The following examples show legal definitions of procedures with
default arguments:

PROC fred(x, y, z) IS x+y+z -> No defaults

PROC fred(x, y, z=1) IS x+y+z -> z defaults to 1

PROC fred(x, y=23, z=1) IS x+y+z -> y and z have defaults

PROC fred(x=9, y=23, z=1) IS x+y+z -> All have defaults

On the other hand, these definitions are all illegal:

PROC fred(x, y=23, z) IS x+y+z -> Illegal: no z default



beginner 38 / 258

PROC fred(x=9, y, z=1) IS x+y+z -> Illegal: no y default

2. When you call a procedure which has default arguments you can only
leave out the right-most parameters. This means that for a three
parameter procedure with all three parameters having default values,
you can leave out the second parameter in a call to this procedure
only if you also leave out the third parameter. The first parameter
may be left out only if both the others are, too.

The following example shows which parameters are considered defaults:

PROC fred(x, y=23, z=1)
WriteF(’x is \d, y is \d, z is \d\n’, x, y, z)

ENDPROC

PROC main()
fred(2, 3, 4) -> No defaults used
fred(2, 3) -> z defaults to 1
fred(2) -> y and z default
fred() -> Illegal: x has no default

ENDPROC

In this example, you cannot leave out the y parameter in a call to
fred without leaving out the z parameter as well. To make y have its
default value and z some value other than its default you need to
supply the y value explicitly in the call:

fred(2, 23, 9) -> Need to supply 23 for y

These constraints are necessary in order to make procedure calls
unambiguous. Consider a three-parameter procedure with default values for
two of the parameters. If it is called with only two parameters then,
without these constraints, it would not be clear which two parameters had
been supplied and which had not. If, however, the procedure were defined
and called according to these constraints, then it must be the third
parameter that needs to be defaulted (and the two parameters with default
values must be the last two).

1.50 beginner.guide/Multiple Return Values

Multiple Return Values
======================

So far we’ve only seen functions which return only one value, since
this is something common to most programming languages. However, E allows
you to return up to three values from a function. To do this you list the
values separated by commas after the ENDPROC, RETURN or IS keyword, where
you would normally have specified only one value. A good example is a
function which manipulates a screen coordinate, which is a pair of values:
the x- and y-coordinates.

PROC movediag(x, y) IS x+8, y+4

All this function does is add 8 to the x-coordinate and 4 to the



beginner 39 / 258

y-coordinate. To get to the return values other than the first one you
must use a multiple-assignment statement:

PROC main()
DEF a, b
a, b:=movediag(10, 3)
/* Now a should be 10+8, and b should be 3+4 */
WriteF(’a is \d, b is \d\n’, a, b)

ENDPROC

a is assigned the first return value and b is assigned the second. You
don’t need to use all the return values from a function, so the assignment
in the example above could have assigned only to a (in which case it would
not be a multiple-assignment anymore). A multiple-assignment makes sense
only if the right-hand side is a function call, so don’t expect things
like the following example to set b properly:

a,b:=6+movediag(10,3) -> No obvious value for b

If you use a function with more than one return value in any other
expression (i.e., something which is not the right-hand side of an
assignment), then only the first return value is used. For this reason
the return values of a function have special names: the first return value
is called the regular value of the function, and the other values are
the optional values.

PROC main()
DEF a, b
/* The next two lines ignore the second return value */
a:=movediag(10, 3)
WriteF(’x-coord of movediag(21, 4) is \d\n’, movediag(21,4))

ENDPROC

1.51 beginner.guide/Constants

Constants

*********

A constant is a value that does not change. A (literal) number like
121 is a good example of a constant--its value is always 121. We’ve
already met another kind of constant: string constants (see

Strings
). As

you can doubtless tell, constants are pretty important things.

Numeric Constants

String Constants Special Character Sequences

Named Constants

Enumerations



beginner 40 / 258

Sets

1.52 beginner.guide/Numeric Constants

Numeric Constants
=================

We’ve met a lot of numbers in the previous examples. Technically
speaking, these were numeric constants (constant because they don’t change
value like a variable might). They were all decimal numbers, but you can
use hexadecimal and binary numbers as well. There’s also a way of
specifying a number using characters. To specify a hexadecimal number you
use a $ before the digits (and after the optional minus sign - to
represent a negative value). To specify a binary number you use a %
instead.

Specifying numbers using characters is more complicated, because the
base of this system is 256 (the base of decimal is ten, that of
hexadecimal is 16 and that of binary is two). The digits are enclosed in
double-quotes (the " character), and there can be at most four digits.
Each digit is a character representing its ASCII value. Therefore, the
character A represents 65 and the character 0 (zero) represents 48. This
upshot of this is that character A has ASCII value "A" in E, and "0z"
represents ("0" * 256) + "z" = (48 * 256) + 122 = 12,410. However, you
probably don’t need to worry about anything other than the single
character case, which gives you the ASCII value of the character.

The following table shows the decimal value of several numeric
constants. Notice that you can use upper- or lower-case letters for the
hexadecimal constants. Obviously the case of characters is significant
for character numbers.

Number Decimal value
----------------------

21 21
-143 -143
$1a 26
-$B1 -177

%1110 14
-%1010 -10

"z" 122
"Je" 19,045
-"A" -65

1.53 beginner.guide/String Constants Special Character Sequences

String Constants: Special Character Sequences
=============================================



beginner 41 / 258

We have seen that in a string the character sequence \n means a
linefeed (see

Strings
). There are several other similar such special

character sequences which represent useful characters that can’t be typed
in a string. The following table shows all these sequences. Note that
there are some other similar sequences which are used to control
formatting with built-in procedures like WriteF. These are listed where
WriteF and similar procedures are described (see

Input and output functions
).

Sequence Meaning
--------------------------------------

\0 A null (ASCII zero)
\a An apostrophe ’
\b A carriage return (ASCII 13)
\e An escape (ASCII 27)
\n A linefeed (ASCII 10)
\q A double quote (ASCII 34)
\t A tab (ASCII 9)
\ A backslash \

An apostrophe can also be produced by typing two apostrophes in a row in a
string. It’s best to use this only in the middle of a string, where it’s
nice and obvious:

WriteF(’Here\as an apostrophe.\n’) /* Using \a */

WriteF(’Here’’s another apostrophe.\n’) /* Using ’’ */

1.54 beginner.guide/Named Constants

Named Constants
===============

It is often nice to be able to give names to certain constants. For
instance, as we saw earlier, the truth value TRUE actually represents the
value -1, and FALSE represents zero (see

Logic and comparison
). These are

our first examples of named constants. To define your own you use the
CONST keyword as follows:

CONST ONE=1, LINEFEED=10, BIG_NUM=999999

This has defined the constant ONE to represent one, LINEFEED ten and
BIG_NUM 999,999. Named constants must begin with two uppercase letters,
as mentioned before (see

Identifiers
).



beginner 42 / 258

You can use previously defined constants to give the value of a new
constant, but in this case the definitions must occur on different CONST
lines.

CONST ZERO=0
CONST ONE=ZERO+1
CONST TWO=ONE+1

The expression used to define the value of a constant can use only simple
operators (no function calls) and constants.

1.55 beginner.guide/Enumerations

Enumerations
============

Often you want to define a whole lot of constants and you just want
them all to have a different value so you can tell them apart easily. For
instance, if you wanted to define some constants to represent some famous
cities and you only needed to know how to distinguish one from another
then you could use an enumeration like this:

ENUM LONDON, MOSCOW, NEW_YORK, PARIS, ROME, TOKYO

The ENUM keyword begins the definitions (like the CONST keyword does for
an ordinary constant definition). The actual values of the constants
start at zero and stretch up to five. In fact, this is exactly the same
as writing:

CONST LONDON=0, MOSCOW=1, NEW_YORK=2, PARIS=3, ROME=4, TOKYO=5

The enumeration does not have to start at zero, though. You can change
the starting value at any point by specifying a value for an enumerated
constant. For example, the following constant definitions are equivalent:

ENUM APPLE, ORANGE, CAT=55, DOG, GOLDFISH, FRED=-2,
BARNEY, WILMA, BETTY

CONST APPLE=0, ORANGE=1, CAT=55, DOG=56, GOLDFISH=57,
FRED=-2, BARNEY=-1, WILMA=0, BETTY=1

1.56 beginner.guide/Sets

Sets
====

Yet another kind of constant definition is the set definition. This
useful for defining flag sets, i.e., a number of options each of which can
be on or off. The definition is like a simple enumeration, but using the



beginner 43 / 258

SET keyword and this time the values start at one and increase as powers
of two (so the next value is two, the next is four, the next eight, and so
on). Therefore, the following definitions are equivalent:

SET ENGLISH, FRENCH, GERMAN, JAPANESE, RUSSIAN

CONST ENGLISH=1, FRENCH=2, GERMAN=4, JAPANESE=8, RUSSIAN=16

However, the significance of the values it is best shown by using binary
constants:

CONST ENGLISH=%00001, FRENCH=%00010, GERMAN=%00100,
JAPANESE=%01000, RUSSIAN=%10000

If a person speaks just English then we can use the constant ENGLISH. If
they also spoke Japanese then to represent this with a single value we’d
normally need a new constant (something like ENG_JAP). In fact, we’d
probably need a constant for each combination of languages a person might
know. However, with the set definition we can OR the ENGLISH and JAPANESE
values together to get a new value, %01001, and this represents a set
containing both ENGLISH and JAPANESE. On the other hand, to find out if
someone speaks French we would AND the value for the languages they know
with %00010 (or the constant FRENCH). (As you might have guessed, AND and
OR are really bit-wise operators, not simply logical operators. See

Bitwise AND and OR
.)

Consider this program fragment:

speak:=GERMAN OR ENGLISH OR RUSSIAN /* Speak any of these */
IF speak AND JAPANESE

WriteF(’Can speak in Japanese\n’)
ELSE

WriteF(’Unable to speak in Japanese\n’)
ENDIF
IF speak AND (GERMAN OR FRENCH)

WriteF(’Can speak in German or French\n’)
ELSE

WriteF(’Unable to speak in German or French\n’)
ENDIF

The assignment sets speak to show that the person can speak in German,
English or Russian. The first IF block tests whether the person can speak
in Japanese, and the second tests whether they can speak in German or
French.

When using sets be careful you don’t get tempted to add values instead
of OR-ing them. Adding two different constants from the same set is the
same as OR-ing them, but adding a constant to itself isn’t. This is not
the only time addition doesn’t give the same answer, but it’s the most
obvious. If you to stick to using OR you won’t have a problem.



beginner 44 / 258

1.57 beginner.guide/Types

Types

*****

We’ve already met the LONG type and found that this was the normal type
for variables (see

Variable types
). The types INT and LIST were also

mentioned. Learning how to use types in an effective and readable way is
very important. The type of a variable (as well as its name) can give
clues to the reader about how or for what it is used. There are also more
fundamental reasons for needing types, e.g., to logically group data using
objects (see

OBJECT Type
).

This is a very large chapter and you might like to take it slowly. One
of the most important things to get to grips with is pointers.
Concentrate on trying to understand these as they play a large part in any
kind of system programming.

LONG Type

PTR Type

ARRAY Type

OBJECT Type

LIST and STRING Types

Linked Lists

1.58 beginner.guide/LONG Type

LONG Type
=========

The LONG type is the most important type because it is the default type
and by far the most common type. It can be used to store a variety of
data, including memory addresses, as we shall see.

Default type

Memory addresses



beginner 45 / 258

1.59 beginner.guide/Default type

Default type
------------

LONG is the default type of variables. It is a 32-bit type, meaning
that 32-bits of memory (RAM) are used to store the data for each variable
of this type and the data can take (integer) values in the range
-2,147,483,648 to 2,147,483,647. Variables default to being LONG typed,
but they can also be explicitly declared as LONG:

DEF x:LONG, y

PROC fred(p:LONG, q, r:LONG)
DEF zed:LONG
statements

ENDPROC

The global variable x, procedure parameters p and r, and local variable
zed have all been declared to be LONG values. The declarations are
very similar to the kinds we’ve seen before, except that the variables
have :LONG after their name in the declaration. This is the way the type
of a variable is given. Note that the global variable y and the procedure
parameter q are also LONG, since they do not have a type specified and
LONG is the default type for variables.

1.60 beginner.guide/Memory addresses

Memory addresses
----------------

There’s a very good reason why LONG is the normal type. A 32-bit
(integer) value can be used as a memory address. Therefore we can store
the address (or location) of data in a variable (the variable is then
called a pointer). The variable would then not contain the value of the
data but a way of finding the data. Once the data location is known the
data can be read or even altered! The next section covers pointers and
addresses in more detail. See

PTR Type
.

1.61 beginner.guide/PTR Type

PTR Type
========

The PTR type is used to hold memory addresses. Variables which have a
PTR type are called pointers (since they store memory addresses, as
mentioned in the previous section). This section describes, in detail,



beginner 46 / 258

addresses, pointers and the PTR type.

Addresses

Pointers

Indirect types

Finding addresses (making pointers)

Extracting data (dereferencing pointers)

Procedure parameters

1.62 beginner.guide/Addresses

Addresses
---------

To understand memory addresses, a good analogy is to think of memory as
a road or street, each memory location as a post-box on a house, and each
piece of data as a letter. If you were a postman you would need to know
where to put your letters, and this information is given by the address of
the post-box. As time goes by, each post-box is filled with different
letters. This is like the value in a memory location (or variable)
changing. To change the letters stored in your post-box, you tell your
friends your address and they can send letters in and fill it. This is
like letting some program change your data by giving it the address of the
data.

The next two diagrams illustrate this analogy. A letter contains an
address which points to a particular house (or lot of mail) on a street.

+-------+
| Letter|
|-------|
|Address+----*
+-------+ \

\
\

+--------+ +---\----+ +--------+ +--------+
| House | | House | | House | | House |

Street: |+------+| |+------+| |+------+| ... |+------+|
|| Mail || || Mail || || Mail || || Mail ||
+========+ +========+ +========+ +========+

A pointer contains an address which points to a variable (or data) in
memory.

+-------+
|Pointer|
|-------|



beginner 47 / 258

|Address+----*
+-------+ \

\
\

+--------+ +---\----+ +--------+ +--------+
|Variable| |Variable| |Variable| |Variable|

Memory: |+------+| |+------+| |+------+| ... |+------+|
|| Data || || Data || || Data || || Data ||
+========+ +========+ +========+ +========+

1.63 beginner.guide/Pointers

Pointers
--------

Variables which contain memory addresses are called pointers. As we
saw in the previous section, we can store memory addresses in LONG
variables. However, we then don’t know the type of the data stored at
those addresses. If it is important (or useful) to know this then the PTR
type (or, more accurately, one of the many PTR types) should be used.

DEF p:PTR TO LONG, i:PTR TO INT,
cptr:PTR TO CHAR, gptr:PTR TO gadget

The values stored in each of p, cptr, i and gptr are LONG since they are
memory addresses. However, the data at the address stored in p is taken
to be LONG (a 32-bit value), that at cptr is CHAR (an 8-bit value), that
at i is INT (a 16-bit value), and that at gptr is gadget, which is an
object (see

OBJECT Type
).

1.64 beginner.guide/Indirect types

Indirect types
--------------

In the previous example we saw INT and CHAR used as the destination
types of pointers, and these are the 16- and 8-bit equivalents
(respectively) of the LONG type. However, unlike LONG these types cannot
be used directly to declare global or local variables, or procedure
parameters. They can only be used in constructing types (for instance
with PTR TO). The following declarations are therefore illegal, and it
might be nice to try compiling a little program with such a declaration,
just to see the error message the E compiler gives.

/* This program fragment contains illegal declarations */
DEF c:CHAR, i:INT



beginner 48 / 258

/* This program fragment contains illegal declarations */
PROC fred(a:INT, b:CHAR)

DEF x:INT
statements

ENDPROC

This is not much of a limitation because you can store INT or CHAR
values in LONG variables if you really need to. However, it does mean
there’s a nice, simple rule: every direct value in E is a 32-bit quantity,
either a LONG or a pointer. In fact, LONG is actually short-hand for PTR
TO CHAR, so you can use LONG values like they were actually PTR TO CHAR
values.

1.65 beginner.guide/Finding addresses (making pointers)

Finding addresses (making pointers)
-----------------------------------

If a program knows the address of a variable it can directly read or
alter the value stored in the variable. To obtain the address of a simple
variable you use { and } around the variable name. The address of
non-simple variables (e.g., objects and arrays) can be found much more
easily (see the appropriate section), and in fact you will very rarely
need to use {var }. However, if you understand how to explicitly
make pointers with {var } and use the pointers to get to data, then
you’ll understand the way pointers are used for the non-simple types much
more quickly.

Addresses can be stored in a variable, passed to a procedure or
whatever (they’re just 32-bit values). Try out the following program:

DEF x

PROC main()
fred(2)

ENDPROC

PROC fred(y)
DEF z
WriteF(’x is at address \d\n’, {x})
WriteF(’y is at address \d\n’, {y})
WriteF(’z is at address \d\n’, {z})
WriteF(’fred is at address \d\n’, {fred})

ENDPROC

Notice that you can also find the address of a procedure using { and }.
This is is the memory location of the code the procedure represents.
Here’s the output from one execution of this program (don’t expect your
output to be exactly the same, though):

x is at address 3758280
y is at address 3758264
z is at address 3758252
fred is at address 3732878



beginner 49 / 258

This is an interesting program to run several times under different
circumstances. You should see that sometimes the numbers for the
addresses change. Running the program when another is multi-tasking (and
eating memory) should produce the best changes, whereas running it
consecutively (in one CLI) should produce the smallest (if any) changes.
This gives you a glimpse at the complex memory handling of the Amiga and
the E compiler.

1.66 beginner.guide/Extracting data (dereferencing pointers)

Extracting data (dereferencing pointers)
----------------------------------------

If you have an address stored in a variable (i.e., a pointer) you can
extract the data using the ^ operator. This act of extracting data via a
pointer is called dereferencing the pointer. This operator should only
really be used when {var } has been used to obtain an address. To
this end, LONG values are read and written when dereferencing pointers in
this way. For pointers to non-simple types (e.g., objects and arrays),
dereferencing is achieved in much more readable ways (see the appropriate
section for details), and this operator is not used. In fact, ^var is
seldom used in programs, but is useful for explaining how pointers work,
especially in conjunction with {var }.

Using pointers can remove the scope restriction on local variables,
i.e., they can be altered from outside the procedure for which they are
local. Whilst this kind of use is not generally advised, it makes for a
good example which shows the power of pointers. For example, the
following program changes the value of the local variable x for the
procedure fred from within the procedure barney.

PROC main()
fred()

ENDPROC

PROC fred()
DEF x, p:PTR TO LONG
x:=33
p:={x}
barney(p)
WriteF(’x is now \d\n’, x)

ENDPROC

PROC barney(ptr:PTR TO LONG)
DEF val
val:=^ptr
^ptr:=val-6

ENDPROC

Here’s what you can expect it to generate as output:

x is now 27



beginner 50 / 258

Notice that the ^ operator (i.e., dereferencing) is quite versatile. In
the first assignment of the procedure barney it is used (with the pointer
ptr) to get the value stored in the local variable x, and in the second it
is used to change this variable’s value. In either case, dereferencing
makes the pointer behave exactly as if you’d written the variable for
which it is a pointer. To emphasise this, we can remove the barney
procedure, like we did above (see

Style Reuse and Readability
):

PROC main()
fred()

ENDPROC

PROC fred()
DEF x, p:PTR TO LONG, val
x:=33
p:={x}
val:=x
x:=val-6
WriteF(’x is now \d\n’, x)

ENDPROC

Everywhere the barney procedure used ^ptr we’ve written x (because we are
now in the procedure for which x is local). We’ve also eliminated the ptr
variable (the parameter to the barney procedure), since it was only used
with the ^ operator.

To make things clear the fred and barney example is deliberately
‘wordy’. The val and p variables are unnecessary, and the pointer types
could be abbreviated to LONG or even omitted, for the reasons outlined
above (see

LONG Type
). This is the compact form of the example:

PROC main()
fred()

ENDPROC

PROC fred()
DEF x
x:=33
barney({x})
WriteF(’x is now \d\n’, x)

ENDPROC

PROC barney(ptr)
^ptr:=^ptr-6

ENDPROC

By far the most common use of pointers is to address (or reference)
large structures of data. It would be extremely expensive (in terms of
CPU time) to pass large amounts of data from procedure to procedure, so
addresses to such data are passed instead (and, as we know, these are just
32-bit values). The Amiga system functions (such as ones for creating
windows) require a lot of structured data, so if you plan to do any real
programming you are going to have to understand and use pointers.



beginner 51 / 258

1.67 beginner.guide/Procedure parameters

Procedure parameters
--------------------

Only local and global variables have the luxury of a large choice of
types. Procedure parameters can only be LONG or PTR TO type. This is
not really a big limitation as we shall see in the later sections.

1.68 beginner.guide/ARRAY Type

ARRAY Type
==========

Quite often, the data used by a program needs to be ordered in some
way, primarily so that it can be accessed easily. E provides a way to
achieve such simple ordering: the ARRAY type. This type (in its various
forms) is common to most computer languages.

Tables of data

Accessing array data

Array pointers

Point to other elements

Array procedure parameters

1.69 beginner.guide/Tables of data

Tables of data
--------------

Data can be grouped together in many different ways, but probably the
most common and straight-forward way is to make a table. In a table the
data is ordered either vertically or horizontally, but the important thing
is the relative positioning of the elements. The E view of this kind of
ordered data is the ARRAY type. An array is just a fixed sized
collection of data in order. The size of an array is important and this
is fixed when it is declared. The following illustrates array
declarations:



beginner 52 / 258

DEF a[132]:ARRAY,
table[21]:ARRAY OF LONG,
ints[3]:ARRAY OF INT,
objs[54]:ARRAY OF myobject

The size of the array is given in the square brackets ([ and ]). The type
of the elements in the array defaults to CHAR, but this can be given
explicitly using the OF keyword and the type name. However, only LONG,
INT, CHAR and object types are allowed (LONG can hold pointer values
so this isn’t much of a limitation). Object types are described below
(see

OBJECT Type
).

As mentioned above, procedure parameters cannot be arrays (see

Procedure parameters
). We will overcome this limitation soon (see

Array procedure parameters
).

1.70 beginner.guide/Accessing array data

Accessing array data
--------------------

To access a particular element in an array you use square brackets
again, this time specifying the index (or position) of the element you
want. Indices start at zero for the first element of the array, one for
the second element and, in general, (n-1) for the n-th element. This may
seem strange at first, but it’s the way most computer languages do it! We
will see a reason why this makes sense soon (see

Array pointers
).

DEF a[10]:ARRAY

PROC main()
DEF i
FOR i:=0 TO 9

a[i]:=i*i
ENDFOR
WriteF(’The 7th element of the array a is \d\n’, a[6])
a[a[2]]:=10
WriteF(’The array is now:\n’)
FOR i:=0 TO 9

WriteF(’ a[\d] = \d\n’, i, a[i])
ENDFOR

ENDPROC

This should all seem very straight-forward although one of the lines looks
a bit complicated. Try to work out what happens to the array after the



beginner 53 / 258

assignment immediately following the first WriteF. In this assignment the
index comes from a value stored in the array itself! Be careful when
doing complicated things like this, though: make sure you don’t try to
read data from or write data to elements beyond the end of the array. In
our example there are only ten elements in the array a, so it wouldn’t be
sensible to talk about the eleventh element. The program could have
checked that the value stored at a[2] was a number between zero and nine
before trying to access that array element, but it wasn’t necessary in
this case. Here’s the output this example should generate:

The 7th element of the array a is 36
The array is now:
a[0] = 0
a[1] = 1
a[2] = 4
a[3] = 9
a[4] = 10
a[5] = 25
a[6] = 36
a[7] = 49
a[8] = 64
a[9] = 81

If you do try to write to a non-existent array element strange things
can happen. This may be practically unnoticeable (like corrupting some
other data), but if you’re really unlucky you might crash your computer.
The moral is: stay within the bounds of the array.

A short-hand for the first element of an array (i.e., the one with an
index of zero) is to omit the index and write only the square brackets.
Therefore, a[] is the same as a[0].

1.71 beginner.guide/Array pointers

Array pointers
--------------

When you declare an array the address of the (beginning of the) array
is given by the variable name without square brackets. Consider the
following program:

DEF a[10]:ARRAY OF INT

PROC main()
DEF ptr:PTR TO INT, i
FOR i:=0 TO 9

a[i]:=i
ENDFOR
ptr:=a
ptr++
ptr[]:=22
FOR i:=0 TO 9

WriteF(’a[\d] is \d\n’, i, a[i])



beginner 54 / 258

ENDFOR
ENDPROC

Here’s the output from it:

a[0] is 0
a[1] is 22
a[2] is 2
a[3] is 3
a[4] is 4
a[5] is 5
a[6] is 6
a[7] is 7
a[8] is 8
a[9] is 9

You should notice that the second element of the array has been changed
using the pointer. The ptr++ statement increments the pointer ptr to
point to the next element of the array. It is important that ptr is
declared as PTR TO INT since the array is an ARRAY OF INT. The [] is used
to dereference the pointer and therefore 22 is stored in the second
element of the array. In fact, the ptr can be used in exactly the same
way as an array, so ptr[1] would be the next (or third element) of the
array a (after the ptr++ statement). Also, since ptr points to the second
element of a, negative values may legitimately be used as the index, and
ptr[-1] is the first element of a.

In fact, the following declarations are identical except the first
reserves an appropriate amount of memory for the array whereas the second
relies on you having done this somewhere else in the program.

DEF a[20]:ARRAY OF INT

DEF a:PTR TO INT

The following diagram is similar to the diagrams given earlier (see

Addresses
). It is an illustration of an array, a, which was declared to

be an array of twenty INTs.

+--------+
|Variable|
| ’a’ |
|--------|
| Address+----*
+--------+ \

\
\

+-------+ +--\----+ +-------+ +-------+ +-------+
|Unknown| | a[0] | | a[1] | | a[19] | |Unknown|

Memory: |+-----+| |+-----+| |+-----+| ... |+-----+| |+-----+|
|| XXX || || INT || || INT || || INT || || XXX ||
+=======+ +=======+ +=======+ +=======+ +=======+

As you can see, the variable a is a pointer to the reserved chunk of
memory which contains the array elements. Parts of memory that aren’t



beginner 55 / 258

between a[0] and a[19] are marked as ‘Unknown’ because they are not part
of the array. This memory should therefore not be accessed using the
array a.

1.72 beginner.guide/Point to other elements

Point to other elements
-----------------------

We saw in the previous section how to increment a pointer so that it
points to the next element in the array. Decrementing a pointer p (i.e.,
making it point to the previous element) is done in a similar way, using
the p-- statement which works in the same way as the p++ statement. In
fact, p++ and p-- are really expressions which denote pointer values. p++
denotes the address stored in p before it is incremented, and p-- denotes
the address after p is decremented. Therefore,

addr:=p
p++

does the same as

addr:=p++

And

p--
addr:=p

does the same as

addr:=p--

The reason why ++ and -- should be used to increment and decrement a
pointer is that values from different types occupy different numbers of
memory locations. In fact, a single memory location is a byte, and this
is eight bits. Therefore, CHAR values occupy a single byte, whereas LONG
values take up four bytes (32 bits). If p were a pointer to CHAR and it
was pointing to an array (of CHAR) the p+1 memory location would contain
the second element of the array (and p+2 the third, etc.). But if p were
a pointer to an array of LONG the second element in the array would be at
p+4 (and the third at p+8). The locations p, p+1, p+2 and p+3 all make up
the LONG value at address p. Having to remember things like this is a
pain, and it’s a lot less readable than using ++ or --. However, you must
remember to declare your pointer with the correct type in order for ++ and
-- to work correctly.

1.73 beginner.guide/Array procedure parameters



beginner 56 / 258

Array procedure parameters
--------------------------

Since we now know how to get the address of an array we can simulate
passing an array as a procedure parameter by passing the address of the
array. For example, the following program uses a procedure to fill in the
first x elements of an array with their index numbers.

DEF a[10]:ARRAY OF INT

PROC main()
DEF i
fillin(a, 10)
FOR i:=0 TO 9

WriteF(’a[\d] is \d\n’, i, a[i])
ENDFOR

ENDPROC

PROC fillin(ptr:PTR TO INT, x)
DEF i
FOR i:=0 TO x-1

ptr[]:=i
ptr++

ENDFOR
ENDPROC

Here’s the output it should generate:

a[0] is 0
a[1] is 1
a[2] is 2
a[3] is 3
a[4] is 4
a[5] is 5
a[6] is 6
a[7] is 7
a[8] is 8
a[9] is 9

The array a only has ten elements so we shouldn’t fill in any more than
the first ten elements. Therefore, in the example, the call to the
procedure fillin should not have a bigger number than ten as the second
parameter. Also, we could treat ptr more like an array (and not use ++),
but in this case using ++ is slightly better since we are assigning to
each element in turn. The alternative definition of fillin (without using
++) is:

PROC fillin2(ptr:PTR TO INT, x)
DEF i
FOR i:=0 TO x-1

ptr[i]:=i
ENDFOR

ENDPROC

Also, yet another version of fillin uses the expression form of ++ and the
horizontal form of the FOR loop to give a really compact definition.



beginner 57 / 258

PROC fillin3(ptr:PTR TO INT, x)
DEF i
FOR i:=0 TO x-1 DO ptr[]++:=i

ENDPROC

1.74 beginner.guide/OBJECT Type

OBJECT Type
===========

Objects are the E equivalent of C and Assembly structures, or Pascal
records. They are like arrays except the elements are named not numbered,
and the elements can be of different types. To find a particular element
in an object you use a name instead of an index (number). Objects are
also the basis of the OOP features of E (see

Object Oriented E
).

Example object

Element selection and element types

Amiga system objects

1.75 beginner.guide/Example object

Example object
--------------

We’ll dive straight in with this first example, and define an object
and use it. Object definitions are global and must be made before any
procedure definitions.

OBJECT rec
tag, check
table[8]:ARRAY
data:LONG

ENDOBJECT

PROC main()
DEF a:rec
a.tag:=1
a.check:=a
a.data:=a.tag+(10000*a.tag)

ENDPROC

This program doesn’t visibly do anything so there isn’t much point in



beginner 58 / 258

compiling it. What it does do, however, is show how a typical object is
defined and elements of an object are selected.

The object being defined in the example is rec, and its elements are
defined just like variable declarations (but without a DEF). There can be
as many lines of element definitions as you like between the OBJECT and
ENDOBJECT lines, and each line can contain any number of elements
separated by commas. The elements of the rec object are tag and check
(which are LONG), table (which is an array of CHAR with eight elements)
and data (which is also LONG). Every variable of rec object type will
have space reserved for each of these elements. The declaration of the
(local) variable a therefore reserves enough memory for one rec object.

1.76 beginner.guide/Element selection and element types

Element selection and element types
-----------------------------------

To select elements in an object obj you use obj.name, where name is one
of the element names. In the example, the tag element of the rec object a
is selected by writing a.tag. The other elements are selected in a
similar way.

Just like an array declaration the address of an object obj is stored
in the variable obj, and any pointer of type PTR TO objectname can be
used just like an object of type objectname. Therefore, in the previous
example a is a PTR TO rec.

As the example object shows, the elements of an object can have several
different types. In fact, the elements can have any type, including
object, pointer to object and array of object. The following example
shows how to access some different typed elements.

OBJECT rec
tag, check
table[8]:ARRAY
data:LONG

ENDOBJECT

OBJECT bigrec
data:PTR TO LONG
subrec:PTR TO rec
rectable[22]:ARRAY OF rec

ENDOBJECT

PROC main()
DEF r:rec, b:bigrec, rt:PTR TO rec
r.table[]:="H"
b.subrec:=r
b.subrec.tag:=1
b.subrec.data:=r.tag+(10000*b.subrec.tag)
b.subrec.table[1]:="i"
b.rectable[0].data:=r.tag
b.rectable[0].table[0]:="A"



beginner 59 / 258

rt:=b.rectable
rt[].data++:=0
rt[].table[]--:="B"

ENDPROC

The ++ and -- operators apply to first thing in the selection (i.e., rt in
both the last two assignments in the example above), and may only occur
after all the selections. Notice that object selection and array indexing
can be repeated as much as necessary (but only as the types of the
elements allow). As a simple example, consider the third assignment:

b.subrec.tag:=1

This selects the subrec element from the bigrec object b, and then sets
the tag element of this rec object to 1. Now, consider one of the later
assignments:

b.rectable[0].table[0]:="A"

This selects the rectable element from b, which is an array of rec objects.
The first element of this array is selected, and then the table element of
the rec object is selected. Finally, the first character of the table is
set to the ASCII value of character A.

As you can probably tell, it is important to give the elements of
objects appropriate types if you want to do multiple selection in this way.
However, this is not always possible or the best way of doing some things,
so there is a way of giving a different type to pointers (this is called
explicit pointer typing--see the ‘Reference Manual’ for more details).

Here’s a quite simple example which uses an array of objects:

OBJECT rec
tag, check
table[8]:ARRAY
data:LONG

ENDOBJECT

PROC main()
DEF a[10]:ARRAY OF rec, p:PTR TO rec, i
p:=a
FOR i:=0 TO 9

a[i].tag:=i
p.check++:=i

ENDFOR
FOR i:=0 TO 9

IF a[i].tag<>a[i].check
WriteF(’Whoops, a[\d] went wrong...\n’, i)

ENDIF
ENDFOR

ENDPROC

If you think about it for long enough you’ll see that a[0].tag is the same
as a.tag. That’s because a is a pointer to the first element of the
array, and the elements of the array are objects. Therefore, a is a
pointer to an object (the first object in the array).



beginner 60 / 258

1.77 beginner.guide/Amiga system objects

Amiga system objects
--------------------

There are many different Amiga system objects. For instance, there’s
one which contains the information needed to make a gadget (like the
‘close’ gadget on most windows), and one which contains all the
information about a process or task. These objects are vitally important
and so are supplied with E in the form of ‘modules’. Each module is
specific to a certain area of the Amiga system and contains object and
other definitions. Modules are discussed in more detail later (see

Modules
).

1.78 beginner.guide/LIST and STRING Types

LIST and STRING Types
=====================

Arrays are common to many computer languages. However, they can be a
bit of a pain because you always need to make sure you haven’t run off the
end of the array when you’re writing to it. This is where the STRING and
LIST types come in. STRING is very much like ARRAY OF CHAR and LIST is
like ARRAY OF LONG. However, each has a set of E (built-in) functions
which safely manipulate variables of these types without exceeding their
bounds.

Normal strings and E-strings

String functions

Lists and E-lists

List functions

Complex types

Typed lists

Static data



beginner 61 / 258

1.79 beginner.guide/Normal strings and E-strings

Normal strings and E-strings
----------------------------

Normal strings are common to most programming languages. They are
simply an array of characters, with the end of the string marked by a null
character (ASCII zero). We’ve already met normal strings (see

Strings
).

The ones we used were constant strings contained in ’ characters, and they
denote pointers to the memory where the string data is stored. Therefore,
you can assign a string constant to a pointer (to CHAR), and you’ve got an
array with ready-filled elements, i.e., an initialised array.

DEF s:PTR TO CHAR
s:=’This is a string constant’
/* Now s[] is T and s[2] is i */

Remember that LONG is actually PTR TO CHAR so this code is precisely the
same as:

DEF s
s:=’This is a string constant’

The following diagram illustrates the above assignment to s. The first
two characters s[0] and s[1]) are T and h, and the last character (before
the terminating null, or zero) is t. Memory marked as ‘Unknown’ is not
part of the string constant.

+--------+
|Variable|
| ’s’ |
|--------|
|Address +----*
+--------+ \

\
\

+-------+ +--\----+ +-------+ +-------+ +-------+ +-------+
|Unknown| | s[0] | | s[1] | | s[24] | | s[25] | |Unknown|

Memory: |+-----+| |+-----+| |+-----+|...|+-----+| |+-----+| |+-----+|
|| XXX || || "T" || || "h" || || "t" || || 0 || || XXX ||
+=======+ +=======+ +=======+ +=======+ +=======+ +=======+

E-strings are very similar to normal strings and, in fact, an
E-string can be used wherever a normal string can. However, the reverse
is not true, so if something requires an E-string you cannot use a normal
string instead. The difference between a normal string and an E-string
was hinted at in the introduction to this section: E-strings can be safely
altered without exceeding their bounds. A normal string is just an array
so you need to be careful not to exceed its bounds. However, an E-string
knows what its bounds are, and so any of the string manipulation functions
can alter them safely.

An E-string (STRING type) variable is declared as in the following
example, with the maximum size of the E-string given just like an array



beginner 62 / 258

declaration.

DEF s[30]:STRING

As with an array declaration, the variable s is actually a pointer to the
string data. To initialise an E-string you need to use the function
StrCopy as we shall see.

There are some worked examples in Part Three (see

String Handling and I-O
) which show how to use normal strings and

E-strings.

1.80 beginner.guide/String functions

String functions
----------------

There are a number of useful built-in functions which manipulate
strings. Remember that if an E-string can be used wherever a normal
string can, but normal strings cannot be used where an E-string is
required. If a parameter is marked as string then a normal or E-string
can be passed as that parameter, but if it is marked as e-string then
only an E-string may be used. Some of these functions have default
arguments, which means you don’t need to specify some parameters to get
the default values (see

Default Arguments
). (You can, of course, ignore

the defaults and always give all parameters.)

String(maxsize)
Allocates memory for an E-string of maximum size maxsize and
returns a pointer to the string data. It is used to make space for a
new E-string, like a STRING declaration does. The following code
fragments are practically equivalent:

DEF s[37]:STRING

DEF s:PTR TO CHAR
s:=String(37)

The slight difference is that there may not be enough memory left to
hold the E-string when the String function is used. In that case the
special value NIL (a constant) is returned. Your program must check
that the value returned is not NIL before you use it as an E-string
(or dereference it). The memory for the declaration version is
allocated when the program is run, so your program won’t run if there
isn’t enough memory. The String version is often called dynamic
allocation because it happens only when the program is running; the
declaration version has allocation done by the E compiler. The
memory allocated using String is deallocated using DisposeLink (see



beginner 63 / 258

System support functions
).

StrCmp(string1,string2,length=ALL)
Compares string1 with string2 (they can both be normal or
E-strings). Returns TRUE if the first length characters of the
strings match, and FALSE otherwise. The length defaults to the
special constant ALL which means that the strings must agree on every
character. For example, the following comparisons all return TRUE:

StrCmp(’ABC’, ’ABC’)
StrCmp(’ABC’, ’ABC’, ALL)
StrCmp(’ABCd’, ’ABC’, 3)
StrCmp(’ABCde’,’ABCxxjs’,3)

And the following return FALSE (notice the case of the letters):

StrCmp(’ABC’, ’ABc’)
StrCmp(’ABC’, ’ABc’, ALL)
StrCmp(’ABCd’, ’ABC’, ALL)

StrCopy(e-string,string,length=ALL)
Copies the contents of string to e-string, and also returns a
pointer to the resulting E-string (for convenience). Only length
characters are copied from the source string, but the special
constant ALL can be used to indicate that the whole of the source
string is to be copied (and this is the default value for length).
Remember that E-strings are safely manipulated, so the following code
fragment results in s becoming More th, since its maximum size is
(from its declaration) seven characters.

DEF s[7]:STRING
StrCopy(s, ’More than seven characters’, ALL)

A declaration using STRING (or ARRAY) reserves a small part of
memory, and stores a pointer to this memory in the variable being
declared. So to get data into this memory you need to copy it there,
using StrCopy. If you’re familiar with very high-level languages
like BASIC you should take care, because you might think you can
assign a string to an array or an E-string variable. In E (and
languages like C and Assembly) you must explicitly copy data into
arrays and E-strings. You should not do the following:

/* You don’t want to do things like this! */
DEF s[80]:STRING
s:=’This is a string constant’

This is fairly disastrous: it throws away the pointer to reserved
memory that was stored in s and replaces it by a pointer to the
string constant. s is then no longer an E-string, and cannot be
repaired using SetStr. If you want s to contain the above string you
must use StrCopy:

DEF s[80]:STRING
StrCopy(s,’This is a string constant’)

The moral is: remember when you are using pointers to data and when



beginner 64 / 258

you need to copy data. Also, remember that assignment does not copy
large arrays of data, it only copies pointers to data, so if you want
to store some data in an ARRAY or STRING type variable you need to
copy it there.

StrAdd(e-string,string,length=ALL)
This does the same as StrCopy but the source string is copied onto
the end of the destination E-string. The following code fragment
results in s becoming This is a string and a half.

DEF s[30]:STRING
StrCopy(s, ’This is a string’, ALL)
StrAdd(s, ’ and a half’)

StrLen(string)
Returns the length of string. This assumes that the string is
terminated by a null character (i.e., ASCII zero), which is true for
any strings made from E-strings and string constants. However, you
can make a string constant look short if you use the null character
(the special sequence \0) in it. For instance, these calls all
return three:

StrLen(’abc’)
StrLen(’abc\0def’)

In fact, most of the string functions assume strings are
null-terminated, so you shouldn’t use null characters in your strings
unless you really know what you’re doing.

For E-strings StrLen is less efficient than the EstrLen function.

EstrLen(e-string)
Returns the length of e-string (remember this can only be an
E-string). This is much more efficient than StrLen since E-strings
know their length and it doesn’t need to search the string for a null
character.

StrMax(e-string)
Returns the maximum length of e-string. This is not necessarily
the current length of the E-string, rather it is the size used in the
declaration with STRING or the call to String.

RightStr(e-string1,e-string2,length)
This is like StrCopy but it copies the right-most characters from
e-string2 to e-string1 and both strings must be E-strings. At
most length characters are copied, and the special constant ALL
cannot be used (to copy all the string you should, of course, use
StrCopy). For instance, a value of one for length means the last
character of e-string2 is copied to e-string1.

MidStr(e-string,string,index,length=ALL)
Copies the contents of string starting at index (which is an
index just like an array index) to e-string. At most length
characters are copied, and the special constant ALL can be used if
all the remaining characters in string should be copied (this is
the default value for length). For example, the following two
calls to MidStr result in s becoming four:



beginner 65 / 258

DEF s[30]:STRING
MidStr(s, ’Just four’, 5)
MidStr(s, ’Just four apples’, 5, 4)

InStr(string1,string2,startindex=0)
Returns the index of the first occurrence of string2 in string1
starting at startindex (in string1). startindex defaults to
zero. If string2 could not be found then -1 is returned.

TrimStr(string)
Returns the address of (i.e., a pointer to) the first non-whitespace
character in string. For instance, the following code fragment
results in s becoming 12345.

DEF s:PTR TO CHAR
s:=TrimStr(’ \n \t 12345’)

LowerStr(string)
Converts all uppercase letters in string to lowercase. This change
is made in-place, i.e., the contents of the string are directly
affected. The string is returned for convenience.

UpperStr(string)
Converts all lowercase letters in string to uppercase. Again, this
change is made in-place and the string is returned for convenience.

SetStr(e-string,length)
Sets the length of e-string to length. E-strings know how long
they are, so if you alter an E-string (without using an E-string
function) and change its size you need to set its length using this
function before you can use it as an E-string again. For instance,
if you’ve used an E-string like an array (which you can do) and
written characters to it directly you must set its length before you
can treat it as anything other than an array/string:

DEF s[10]:STRING
s[0]:="a" /* Remember that "a" is a character value. */
s[1]:="b"
s[2]:="c"
s[3]:="d" /* At this point s is just an array of CHAR. */
SetStr(s, 4) /* Now, s can be used as an E-string again. */
SetStr(s, 2) /* s is a bit shorter, but still an E-string.*/

Notice that this function can be used to shorten an E-string (but you
cannot lengthen it this way).

Val(string,address=NIL)
What this function does is straight-forward but how you use it is a
bit complicated. Basically, it converts string to a LONG integer.
Leading whitespace is ignored, and a leading % or $ means that the
string denotes a binary or hexadecimal integer (in the same way they
do for numeric constants). The decoded integer is returned as the
regular return value (see

Multiple Return Values
). The number of

characters of string that were read to make the integer is stored



beginner 66 / 258

at address, which is usually a variable address (from using
{var }), and is returned as the first
optional return value. If address is the special constant NIL (or zero)
then this number is not stored (this is the default value for
address). You can use this number to calculate the
position in the string which was not part of the integer in the
string. If an integer could not be decoded from the string then zero
is returned and zero is stored at address.

Follow the comments in this example, and pay special attention to the
use of the pointer p.

DEF s[30]:STRING, value, chars, p:PTR TO CHAR
StrCopy(s, ’ \t \n 10 \t $3F -%0101010’)
value, chars:=Val(’abcde 10 20’) -> Two return values...

/* After the above line, value and chars will both be zero */
value:=Val(s, {chars}) -> Use address of chars

/* Now value will be 10, chars will be 7 */
p:=s+chars

/* p now points to the space after the 10 in s */
value, chars:=Val(p)

/* Now value will be $3F (63), chars will be 6 */
p:=p+chars

/* p now points to the space after the $3F in s */
value, chars:=Val(p)

/* Now value will be -%0101010 (-42), chars will be 10 */

Notice the two different ways of finding the number of characters
read: a multiple-assignment and using the address of a variable.

There’s a couple of other string functions (ReadStr and StringF) which
will be discussed later (see

Input and output functions
).

1.81 beginner.guide/Lists and E-lists

Lists and E-lists
-----------------

Lists are just like strings with LONG elements rather than CHAR
elements (so they are very much like ARRAY OF LONG). The list equivalent
of an E-string is something called an E-list. It has the same
properties as an E-string, except the elements are LONG (so could be
pointers). Normal lists are most like string constants, except that the
elements can be built from variables and so do not have to be constants.
Just as strings are not true E-strings, (normal) lists are not true
E-lists.

Lists are written using [ and ] to delimit comma separated elements.
Like string constants a list returns the address of the memory which
contains the elements.



beginner 67 / 258

For example the following code fragment:

DEF list:PTR TO LONG, number
number:=22
list:=[1,2,3,number]

is equivalent to:

DEF list[4]:ARRAY OF LONG, number
number:=22
list[0]:=1
list[1]:=2
list[2]:=3
list[3]:=number

Now, which of these two versions would you rather write? As you can see,
lists are pretty useful for making your program easier to write and much
easier to read.

E-list variables are like E-string variables and are declared in much
the same way. The following code fragment declares lt to be an E-list of
maximum size 30. As ever, lt is then a pointer (to LONG), and it points
to the memory allocated by the declaration.

DEF lt[30]:LIST

Lists are most useful for writing tag lists, which are increasingly
used in important Amiga system functions. A tag list is a list where the
elements are thought of in pairs. The first element of a pair is the tag,
and the second is some data for that tag. See the ‘Rom Kernel Reference
Manual (Libraries)’ for more details.

1.82 beginner.guide/List functions

List functions
--------------

There are a number of list functions which are very similar to the
string functions (see

String functions
). Remember that E-lists are the

list equivalents of E-strings, i.e., they can be altered and extended
safely without exceeding their bounds. As with E-strings, E-lists are
downwardly compatible with lists. Therefore, if a function requires a
list as a parameter you can supply a list or an E-list. But if a function
requires an E-list you cannot use a list in its place.

List(maxsize)
Allocates memory for an E-list of maximum size maxsize and returns
a pointer to the list data. It is used to make space for a new
E-list, like a LIST declaration does. The following code fragments
are (as with String) practically equivalent:

DEF lt[46]:LIST



beginner 68 / 258

DEF lt:PTR TO LONG
lt:=List(46)

Remember that you need to check that the return value from List is
not NIL before you use it as an E-list. Like String, the memory
allocated using List is deallocated using DisposeLink (see

System support functions
).

ListCmp(list1,list2,length=ALL)
Compares list1 with list2 (they can both be normal or E-lists).
Works just like StrCmp does for E-strings, so, for example, the
following comparisons all return TRUE:

ListCmp([1,2,3,4], [1,2,3,4])
ListCmp([1,2,3,4], [1,2,3,7], 3)
ListCmp([1,2,3,4,5], [1,2,3], 3)

ListCopy(e-list,list,length=ALL)
Works just like StrCopy, and the following example shows how to
initialise an E-list:

DEF lt[7]:LIST, x
x:=4
ListCopy(lt, [1,2,3,x])

As with StrCopy, an E-list cannot be over-filled using ListCopy.

ListAdd(e-list,list,length=ALL)
Works just like StrAdd, so this next code fragment results in the
E-list lt becoming the E-list version of [1,2,3,4,5,6,7,8].

DEF lt[30]:LIST
ListCopy(lt, [1,2,3,4])
ListAdd(lt, [5,6,7,8])

ListLen(list)
Works just like StrLen, returning the length of list. There is no
E-list specific length function.

ListMax(e-list)
Works just like StrMax, returning the maximum length of the e-list.

SetList(e-list,length)
Works just like SetStr, setting the length of e-list to length.

ListItem(list,index)
Returns the element of list at index. For example, if lt is an
E-list then ListItem(lt,n) is the same as lt[n]. This function is
most useful when the list is not an E-list. For example, the
following two code fragments are equivalent:

WriteF(ListItem([’Fred’,’Barney’,’Wilma’,’Betty’], name))

DEF lt:PTR TO LONG



beginner 69 / 258

lt:=[’Fred’,’Barney’,’Wilma’,’Betty’]
WriteF(lt[name])

1.83 beginner.guide/Complex types

Complex types
-------------

In E the STRING and LIST types are called complex types. Complex
typed variables can also be created using the String and List functions as
we’ve seen in the previous sections.

1.84 beginner.guide/Typed lists

Typed lists
-----------

Normal lists contain LONG elements, so you can write initialised arrays
of LONG elements. What about other kinds of array? Well, that’s what
typed lists are for. You specify the type of the elements of a list
using :type after the closing ]. The allowable types are CHAR, INT,
LONG and any object type. There is a subtle difference between a normal,
LONG list and a typed list (even a LONG typed list): only normal lists can
be used with the list functions (see

List functions
). For this reason,

the term ‘list’ tends to refer only to normal lists.

The following code fragment uses the object rec defined earlier (see

Example object
) and gives a couple of examples of typed lists:

DEF ints:PTR TO INT, objects:PTR TO rec, p:PTR TO CHAR
ints:=[1,2,3,4]:INT
p:=’fred’
objects:=[1,2,p,4,

300,301,’barney’,303]:rec

It is equivalent to:

DEF ints[4]:ARRAY OF INT, objects[2]:ARRAY OF rec, p:PTR TO CHAR
ints[0]:=1
ints[1]:=2
ints[2]:=3
ints[3]:=4
p:=’fred’
objects[0].tag:=1
objects[0].check:=2



beginner 70 / 258

objects[0].table:=p
objects[0].data:=4
objects[1].table:=’barney’
objects[1].tag:=300
objects[1].data:=303
objects[1].check:=301

The last group of assignments to objects[1] have deliberately been
shuffled in order to emphasise that the order of the elements in the
definition of the object rec is significant. Each of the elements of the
list corresponds to an element in the object, and the order of elements in
the list corresponds to the order in the object definition. In the
example, the (object) list assignment line was broken after the end of the
first object (the fourth element) to make it a bit more readable. The
last object in the list need not be completely defined, so, for instance,
the second line of the assignment could have contained only three elements.
This makes an object-typed list slightly different from the corresponding
array of objects, since an array always defines a whole number of objects.
With an object-typed list you must be careful not to access the undefined
elements of a partially defined trailing object.

1.85 beginner.guide/Static data

Static data
-----------

String constants (e.g., fred), lists (e.g., [1,2,3]) and typed lists
(e.g., [1,2,3]:INT) are static data. This means that the address of the
(initialised) data is fixed when the program is run. Normally you don’t
need to worry about this, but, for instance, if you want to have a series
of lists as initialised arrays you might be tempted to use some kind of
loop:

PROC main()
DEF i, a[10]:ARRAY OF LONG, p:PTR TO LONG
FOR i:=0 TO 9

a[i]:=[1, i, i*i]
/* This assignment is probably not what you want! */

ENDFOR
FOR i:=0 TO 9

p:=a[i]
WriteF(’a[\d] is an array at address \d\n’, i, p)
WriteF(’ and the second element is \d\n’, p[1])

ENDFOR
ENDPROC

The array a is an array of pointers to initialised arrays (which are all
three elements long). But, as the comment suggests and the program shows,
this probably doesn’t do what was intended, since the list is static.
That means the address of the list is fixed, so each element of a gets the
same address (i.e., the same array). Since i is used in the list the
contents of that part of memory varies slightly as the first FOR loop is
processed. But after this loop the contents remain fixed, and the second



beginner 71 / 258

element of each of the ten arrays is always nine. This is an example of
the output that will be generated (the ... represents a number of similar
lines):

a[0] is an array at address 4021144
and the second element is 9

a[1] is an array at address 4021144
and the second element is 9

...
a[9] is an array at address 4021144

and the second element is 9

One solution is to use the dynamic typed-allocation operator NEW (see

NEW and END Operators
). Another solution is to use the function List and

copy the normal list into the new E-list using ListCopy:

PROC main()
DEF i, a[10]:ARRAY OF LONG, p:PTR TO LONG
FOR i:=0 TO 9

a[i]:=List(3)
/* Must check that the allocation succeeded before copying */
IF a[i]<>NIL THEN ListCopy(a[i], [1, i, i*i], ALL)

ENDFOR
FOR i:=0 TO 9

p:=a[i]
IF p=NIL

WriteF(’Could not allocate memory for a[\d]\n’, i)
ELSE

WriteF(’a[\d] is an array at address \d\n’, i, p)
WriteF(’ and the second element is \d\n’, p[1])

ENDIF
ENDFOR

ENDPROC

The problem is not so bad with string constants, since the contents are
fixed. However, if you alter the contents explicitly, you will need to
take care not to run into the same problem, as this next example shows.

PROC main()
DEF i, strings[10]:ARRAY OF LONG, s:PTR TO CHAR
FOR i:=0 TO 9

strings[i]:=’Hello World\n’
/* This assignment is probably not what you want! */

ENDFOR
s:=strings[4]
s[5]:="X"
FOR i:=0 TO 9

WriteF(’strings[\d] is ’, i)
WriteF(strings[i])

ENDFOR
ENDPROC

This is an example of the output that will be generated (again, the ...
represents a number of similar lines)::



beginner 72 / 258

strings[0] is HelloXWorld
strings[1] is HelloXWorld
...
strings[9] is HelloXWorld

Again, the solution is to use dynamic allocation. The functions String
and StrCopy should be used in the same way that List and ListCopy were
used above.

1.86 beginner.guide/Linked Lists

Linked Lists
============

E-lists and E-strings have a useful extension: they can be used to make
linked lists. These are like the lists we’ve seen already, except the
list elements do not occupy a contiguous block of memory. Instead, each
element has an extra piece of data: a pointer to the next element in the
list. This means that each element can be anywhere in memory. (Normally,
the next element of a list is in the next position in memory.) The end of
a linked list has been reached when the pointer to the next element is the
special value NIL (a constant). You need to be very careful to check that
the pointer is not NIL because if you dereference a NIL pointer the
program will most definitely crash.

The elements of a linked list are E-lists or E-strings (i.e., the
elements are complex typed). So, you can link E-lists to get a ‘linked
list of E-lists’ (or, more simply, a ‘list of lists’). Similarly, linking
E-strings gives ‘linked list of E-strings’, or a ‘list of strings’. You
don’t have to stick to these two kinds of linked lists, though: you can
use a mixture of E-lists and E-strings in the same linked list. To link
one complex typed element to another you use the Link function and to find
subsequent elements in a linked list you use the Next or Forward functions.

Link(complex1,complex2)
Links complex1 to complex2. Both must be an E-list or an
E-string, with the exception that complex2 can be the special
constant NIL to indicate that complex1 is the end of the linked
list. The value complex1 is returned by the function, which isn’t
always useful so, usually, calls to Link will be used as statements
rather than functions. The effect of Link is that complex1 will
point to complex2 as the next element in the linked list (so
complex1 is the head of the list, and complex2 is the tail).
For both E-lists and E-strings the pointer to the next element is
initially NIL, so you will only need to use Link with a NIL parameter
when you want to make a linked list shorter (by losing the tail).

Next(complex)
Returns the pointer to the next element in the linked list. This may
be the special constant NIL if complex is the last element in the
linked list. Be careful to check that the value isn’t NIL before you
dereference it! Follow the comments in the example below:



beginner 73 / 258

DEF s[23]:STRING, t[7]:STRING, lt[41]:LIST, lnk
/* The next two lines set up the linked list "lnk" */
lnk:=Link(lt,t) /* lnk list starts at lt and is lt->t */
lnk:=Link(s,lt) /* Now it starts at s and is s->lt->t */
/* The next three lines follow the links in "lnk" */
lnk:=Next(lnk) /* Now it starts at lt and is lt->t */
lnk:=Next(lnk) /* Now it starts at t and is t */
lnk:=Next(lnk) /* Now lnk is NIL so the list has ended */

You may safely call Next with a NIL parameter, and in this case it
will return NIL.

Forward(complex,expression)
Returns a pointer to the element which is expression number of
links down the linked list complex. If expression represents the
value one a pointer to the next element is returned (just like using
Next). If it’s two a pointer to the element after that is returned.

If expression represents a number which is greater than the number
of links in the list the special value NIL is returned.

Since the link in a linked list is a pointer to the next element you
can only look through the list from beginning to end. Technically this is
a singly linked list (a doubly linked list would also have a pointer
to the previous element in the list, enabling backwards searching through
the list).

Linked lists are useful for building lists that can grow quite large.
This is because it’s much better to have lots of small bits of memory than
a large lump. However, you only need to worry about these things when
you’re playing with quite big lists (as a rough guide, ones with over
100,000 elements are big!).

1.87 beginner.guide/More About Statements and Expressions

More About Statements and Expressions

*************************************

This chapter details various E statements and expressions that were not
covered in Part One. It also completes some of the partial descriptions
given in Part One.

Turning an Expression into a Statement

Initialised Declarations

Assignments

More Expressions

More Statements



beginner 74 / 258

Unification

Quoted Expressions

Assembly Statements

1.88 beginner.guide/Turning an Expression into a Statement

Turning an Expression into a Statement
======================================

The VOID operator converts an expression to a statement. It does this
by evaluating the expression and then throwing the result away. This may
not seem very useful, but in fact we’ve done it a lot already. We didn’t
use VOID explicitly because E does this automatically if it finds an
expression where it was expecting a statement (normally when it is on a
line by itself). Some of the expressions we’ve turned into statements
were the procedure calls (to WriteF and fred) and the use of ++. Remember
that all procedure calls denote values because they’re really functions
that, by default, return zero (see

Functions
).

For example, the following code fragments are equivalent:

VOID WriteF(’Hello world\n’)
VOID x++

WriteF(’Hello world\n’)
x++

Since E automatically uses VOID it’s a bit of a waste of time writing it
in, although there may be occasions where you want to use it to make this
voiding process more explicit (to the reader). The important thing is the
fact that expressions can validly be used as statements in E.

1.89 beginner.guide/Initialised Declarations

Initialised Declarations
========================

Some variables can be initialised using constants in their declarations.
The variables you cannot initialise in this way are array and complex type
variables (and procedure parameters, obviously). All the other kinds can
be initialised, whether they are local or global. An initialised
declaration looks very much like a constant definition, with the value
following the variable name and a = character joining them. The following
example illustrates initialised declarations:



beginner 75 / 258

SET ENGLISH, FRENCH, GERMAN, JAPANESE, RUSSIAN

CONST FREDLANGS=ENGLISH OR FRENCH OR GERMAN

DEF fredspeak=FREDLANGS,
p=NIL:PTR TO LONG, q=0:PTR TO rec

PROC fred()
DEF x=1, y=88
/* Rest of procedure */

ENDPROC

Notice how the constant FREDLANGS needs to be defined in order to
initialise the declaration of fredspeak to something mildly complicated.
Also, notice the initialisation of the pointers p and q, and the position
of the type information.

Of course, if you want to initialise variables with anything more
complicated than a constant you can use assignments at the start of the
code. Generally, you should always initialise your variables (using
either method) so that they are guaranteed to have a sensible value when
you use them. Using the value of a variable that you haven’t initialised
in some way will probably get you in to a lot of trouble, because the
value will just be some random value that happened to be in the memory
used by the variable. There are rules for how E initialises some kinds of
variables (see the ‘Reference Manual’, but it’s wise to explicitly
initialise even those, as (strangely enough!) this will make your program
more readable.

1.90 beginner.guide/Assignments

Assignments
===========

We’ve already seen some assignments--these were assignment statements.
Assignment expressions are similar except (as you’ve guessed) they can be
used in expressions. This is because they return the value on the
right-hand side of the assignment as well as performing the assignment.
This is useful for efficiently checking that the value that’s been
assigned is sensible. For instance, the following code fragments are
equivalent, but the first uses an assignment expression instead of a
normal assignment statement.

IF (x:=y*z)=0
WriteF(’Error: y*z is zero (and x is zero)\n’)

ELSE
WriteF(’OK: y*z is not zero (and x is y*z)\n’)

ENDIF

x:=y*z
IF x=0

WriteF(’Error: y*z is zero (and x is zero)\n’)
ELSE

WriteF(’OK: y*z is not zero (and x is y*z)\n’)



beginner 76 / 258

ENDIF

You can easily tell the assignment expression: it’s in parentheses and not
on a line by itself. Notice the use of parentheses to group the
assignment expression. Technically, the assignment operator has a very
low precedence. Less technically, it will take as much as it can of the
right-hand side to form the value to be assigned, so you need to use
parentheses to stop x getting the value ((y*z)=0) (which will be TRUE or
FALSE, i.e., -1 or zero).

Assignment expressions, however, don’t allow as rich a left-hand side
as assignment statements. The only thing allowed on the left-hand side of
an assignment expression is a variable name, whereas the statement form
allows:

var
var [ expression ]
var . obj_element_name
^ var

(With as many repetitions of object element selection and/or array
indexing as the elements’ types allow.) Each of these may end with ++ or
--. Therefore, the following are all valid assignments (the last
three use assignment expressions):

x:=2
x--:=1
x[a*b]:=rubble
x.apple++:=3
x[22].apple:=y*z
x[].banana.basket[6]:=3+full(9)
x[].pear--:=fred(2,4)

x.pear:=(y:=2)
x[y*z].table[1].orange:=(IF (y:=z)=2 THEN 77 ELSE 33)
WriteF(’x is now \d\n’, x:=1+(y:=(z:=fred(3,5)/2)*8))

You may be wondering what the ++ or -- affect. Well, it’s very simple:
they only affect the var, which is x in all of the examples above.
Notice that x[].pear-- is the same as x.pear--, for the same reasons
mentioned earlier (see

Element selection and element types
).

1.91 beginner.guide/More Expressions

More Expressions
================

This section discusses side-effects, details two new operators (BUT and
SIZEOF) and completes the description of the AND and OR operators.



beginner 77 / 258

Side-effects

BUT expression

Bitwise AND and OR

SIZEOF expression

1.92 beginner.guide/Side-effects

Side-effects
------------

If evaluating an expression causes the contents of variables to change
then that expression is said to have side-effects. An assignment
expression is a simple example of an expression with side-effects. Less
obvious ones involve function calls with pointers to variables.
Generally, expressions with side-effects should be avoided unless it is
really obvious what is happening. This is because it can be difficult to
find problems with your program’s code if subtleties are buried in
complicated expressions. On the other hand, side-effecting expressions
are concise and often very elegant. They are also useful for obfuscating
your code (i.e., making it difficult to understand--a form of copy
protection!).

1.93 beginner.guide/BUT expression

BUT expression
--------------

BUT is used to sequence two expressions. exp1 BUT exp2 evaluates
exp1, and then evaluates and returns the value of exp2. This may not
seem very useful at first sight, but if the first expression is an
assignment it allows for a more general assignment expression. For
example, the following code fragments are equivalent:

fred((x:=12*3) BUT x+y)

x:=12*3
fred(x+y)

Notice that parentheses need to be used around the assignment expression
(in the first fragment) for the reasons given earlier (see

Assignments
).



beginner 78 / 258

1.94 beginner.guide/Bitwise AND and OR

Bitwise AND and OR
------------------

As hinted in the earlier chapters, the operators AND and OR are not
simply logical operators. In fact, they are both bit-wise operators,
where a bit is a binary digit (i.e., the zeroes or ones in the binary
form of a number). So, to see how they work we should look at what
happens to zeroes and ones:

x y x OR y x AND y
------------------------
1 1 1 1
1 0 1 0
0 1 1 0
0 0 0 0

Now, when you AND or OR two numbers the corresponding bits (binary
digits) of the numbers are compared individually, according to the above
table. So if x were %0111010 and y were %1010010 then x AND y would be
%0010010 and x OR y would be %1111010:

%0111010 %0111010
AND OR

%1010010 %1010010
------- -------

%0010010 %1111010

The numbers (in binary form) are lined up above each other, just like you
do additions with normal numbers (i.e., starting with the right-hand
digits, and maybe padding with zeroes on the left-hand side). The two
bits in each column are AND-ed or OR-ed to give the result below the line.

So, how does this work for TRUE and FALSE and logic operations? Well,
FALSE is the number zero, so all the bits of FALSE are zeroes, and TRUE is
-1, which is has all 32 bits as ones (these numbers are LONG so they are
32-bit quantities). So AND-ing and OR-ing these values always gives
numbers which have all zero bits (i.e., FALSE) or all one bits (i.e.,
TRUE), as appropriate. It’s only when you start mixing numbers that
aren’t zero or -1 that you can muck up the logic. The non-zero numbers
one and four are (by themselves) considered to be TRUE, but 4 AND 1 is
%100 AND %001 which is zero (i.e., FALSE). So when you use AND as the
logical operator it’s not strictly true that all non-zero numbers
represent TRUE. OR does not give such problems so all non-zero numbers
are treated as TRUE. Run this example to see why you should be careful:

PROC main()
test(TRUE, ’TRUE\t\t’)
test(FALSE, ’FALSE\t\t’)
test(1, ’1\t\t’)
test(4, ’4\t\t’)
test(TRUE OR TRUE, ’TRUE OR TRUE\t’)
test(TRUE AND TRUE, ’TRUE AND TRUE\t’)
test(1 OR 4, ’1 OR 4\t\t’)
test(1 AND 4, ’1 AND 4\t\t’)



beginner 79 / 258

ENDPROC

PROC test(x, title)
WriteF(title)
WriteF(IF x THEN ’ is TRUE\n’ ELSE ’ is FALSE\n’)

ENDPROC

Here’s the output that should be generated:

TRUE is TRUE
FALSE is FALSE
1 is TRUE
4 is TRUE
TRUE OR TRUE is TRUE
TRUE AND TRUE is TRUE
1 OR 4 is TRUE
1 AND 4 is FALSE

So, AND and OR are primarily bit-wise operators, and they can be used
as logical operators under most circumstances, with zero representing
false and all other numbers representing true. Care must be taken when
using AND with some pairs of non-zero numbers, since the bit-wise AND of
such numbers does not always give a non-zero (or true) result.

1.95 beginner.guide/SIZEOF expression

SIZEOF expression
-----------------

SIZEOF returns the size, in bytes, of an object or a built-in type
(like LONG). This can be useful for determining storage requirements.
For instance, the following code fragment prints the size of the object
rec:

OBJECT rec
tag, check
table[8]:ARRAY
data:LONG

ENDOBJECT

PROC main()
WriteF(’Size of rec object is \d bytes\n’, SIZEOF rec)

ENDPROC

You may think that SIZEOF is unnecessary because you can easily
calculate the size of an object just by looking at the sizes of the
elements. Whilst this is generally true (it was for the rec object),
there is one thing to be careful about: alignment. This means that ARRAY,
INT, LONG and object typed elements must start at an even memory address.
Normally this isn’t a problem, but if you have an odd number of
consecutive CHAR typed elements or an odd sized ARRAY OF CHAR, an extra,
pad byte is introduced into the object so that the following element is
aligned properly. This pad byte can be considered part of an ARRAY OF
CHAR, so in effect this means array sizes are rounded up to the



beginner 80 / 258

nearest even number. Otherwise, pad bytes are just an unusable part of an
object, and their presence means the object size is not quite what you’d
expect. Try the following program:

OBJECT rec2
tag, check
table[7]:ARRAY
data:LONG

ENDOBJECT

PROC main()
WriteF(’Size of rec2 object is \d bytes\n’, SIZEOF rec2)

ENDPROC

The only difference between the rec and rec2 objects is that the array
size is seven in rec2. If you run the program you’ll see that the size of
the object has not changed. We might just as well have declared the table
element to be a slightly bigger array (i.e., have eight elements).

1.96 beginner.guide/More Statements

More Statements
===============

This section details five new statements (INC, DEC, JUMP, EXIT and
LOOP) and describes the use of labelling.

INC and DEC statements

Labelling and the JUMP statement

EXIT statement

LOOP block

1.97 beginner.guide/INC and DEC statements

INC and DEC statements
----------------------

INC x is the same as the statement x:=x+1. However, because it doesn’t
do an addition it’s a bit more efficient. Similarly, DEC x is the same as
x:=x-1.

The observant reader may think that INC and DEC are the same as ++ and
--. But there’s one important difference: INC x always increases x by
one, whereas x++ may increase x by more than one depending on the type to
which x points. For example, if x were a pointer to INT then x++ would



beginner 81 / 258

increase x by two (INT is 16-bit, which is two bytes).

1.98 beginner.guide/Labelling and the JUMP statement

Labelling and the JUMP statement
--------------------------------

A label names a position in a program, and these names are global
(they can be used in any procedure). The most common use of label is with
the JUMP statement, but you can also use labels to mark the position of
some data (see

Assembly Statements
). To define a label you write a name

followed by a colon immediately before the position you want to mark.
This must be just before the beginning of a statement, either on the
previous line (by itself) or the start of the same line.

The JUMP statement makes execution continue from the position marked by
a label. This position must be in the same procedure, but it can be, for
instance, outside of a loop (and the JUMP will then have terminated that
loop). For example, the following code fragments are equivalent:

x:=1
y:=2
JUMP rubble
x:=9999
y:=1234

rubble:
z:=88

x:=1
y:=2
z:=88

As you can see the JUMP statement has caused the second group of
assignments to x and y to be skipped. A more useful example uses JUMP to
help terminate a loop:

x:=1
y:=2
WHILE x<10

IF y<10
WriteF(’x is \d, y is \d\n’, x, y)

ELSE
JUMP end

ENDIF
x:=x+2
y:=y+2

ENDWHILE
end:

WriteF(’Finished!\n’)

This loop terminates if x is not less than ten (the WHILE check), or if y
is not less than ten (the JUMP in the IF block). This may seem pretty



beginner 82 / 258

familiar, because it’s practically the same as an example earlier (see

WHILE loop
). In fact, it’s equivalent to:

x:=1
y:=2
WHILE (x<10) AND (y<10)

WriteF(’x is \d, y is \d\n’, x, y)
x:=x+2
y:=y+2

ENDWHILE
WriteF(’Finished!\n’)

1.99 beginner.guide/EXIT statement

EXIT statement
--------------

As noted above, you can use the JUMP statement and labelling to break
out of a loop prematurely. However, a much nicer mechanism exists for
WHILE and FOR loops: the EXIT statement. This statement will terminate
the closest one of these loops (of which it is part) if the supplied
expression evaluates to true (i.e., a non-zero value). Any loop using
EXIT can be re-written without it, but sometimes at the expense of
readability.

The following fragments of code are equivalent:

FOR x:=1 TO 10
y:=f(x)

EXIT y=-1
WriteF(’x=\d, f(x)=\d\n’, x, y)

ENDFOR

FOR x:=1 TO 10
y:=f(x)
IF y=-1 THEN JUMP end
WriteF(’x=\d, f(x)=\d\n’, x, y)

ENDFOR
end:

This example shows a situation which is arguably more readable using
something like EXIT. It can be rewritten using a WHILE loop, as below,
but the code is a bit less clear.

going:=TRUE
x:=1
WHILE going AND (x<=10)

y:=f(x)
IF y=-1

going:=FALSE
ELSE



beginner 83 / 258

WriteF(’x=\d, f(x)=\d\n’, x, y)
INC x

ENDIF
ENDWHILE

1.100 beginner.guide/LOOP block

LOOP block
----------

A LOOP block is a multi-line statement. It’s the general form of loops
like the WHILE loop, and it builds a loop with no check. So, this kind of
loop would normally never end. However, as we now know, you can terminate
a LOOP block using the JUMP statement. As an example, the following two
code fragments are equivalent:

x:=0
LOOP

IF x<100
WriteF(’x is \d\n’, x++)

ELSE
JUMP end

ENDIF
ENDLOOP

end:
WriteF(’Finished\n’)

x:=0
WHILE x<100

WriteF(’x is \d\n’, x++)
ENDWHILE
WriteF(’Finished\n’)

1.101 beginner.guide/Unification

Unification
===========

In E, unification is a way of doing complicated, conditional
assignments. It may also be referred to as pattern matching because
that is what it does: it matches patterns and tries to fits values to the
variables mentioned in those patterns. The result of a unification is
true or false, depending on whether the pattern was successfully matched.

The basic form of a unification expression is:

expression <=> pattern

The only things that can be used in a pattern are constants and variable
names, and lists of patterns. (Strictly speaking, lisp-cells are also



beginner 84 / 258

allowed, but this variant of unification is beyond the scope of this
Guide.) The pattern is matched against the expression as follows:

* If pattern is a constant then the match succeeds only if
expression evaluates to the same value. So, the simple
unification expression x<=>1 is similar to an equality check x=1.

* If pattern is a variable name then the match is successful and the
variable is assigned the value of expression. So, the simple
unification expression 1<=>x is similar to an assignment x:=1.

* If pattern is a list then expression is assumed to be a list, and
each element of pattern is taken to be a pattern to be
(recursively) matched against the corresponding element (by index) of
the expression list. The match succeeds only if the pattern list
and the expression list are the same length and all the elements
match. (It is a serious programming error if pattern is a list but
expression does not represent a list. In this case, strange things
may happen and the program may crash.)

So, the things in pattern that control whether a match succeeds are the
constants and the lists.

If a match succeeds then all variables mentioned in the pattern will
be assigned the appropriate values. However, if a match fails you should
consider all variables involved in the pattern to have undefined values
(so you may need to initialise them to safely their values again). This
is because the actual way that unification is implemented may not follow
the rules above in the obvious way, but will have the same effect in the
successful case and will affect only the variables mentioned in the
pattern if the match fails.

For example, the following program shows a couple of simple unification
expressions in use:

PROC main()
DEF x, lt
x:=0
WriteF(’x is \d\n’, x)
lt:=[9,-1,7,4]

/* The next line uses unification */
IF lt <=> [9,-1,x,4]

WriteF(’First match succeeded\n’)
WriteF(’1) x is now \d\n’, x)

ELSE
WriteF(’First match failed\n’)
/* To be safe, reset x */
x:=0

ENDIF

/* The next line uses unification */
IF lt <=> [1,x,6,4]

WriteF(’Second match succeeded\n’)
WriteF(’2) x is now \d\n’, x)

ELSE
WriteF(’Second match failed\n’)



beginner 85 / 258

/* To be safe, reset x */
x:=0

ENDIF
ENDPROC

The first match will succeed in this example, and there will be a
side-effect of assigning seven to x. The second match will not succeed
because, for instance, the first element of lt is not one.

We can rewrite the above example without using the unification operator
(to show why unification is so useful). This code follows the rules in
one particular way, so is not guaranteed to have the same effect as the
unification version if any of the matches fail.

PROC main()
DEF x, lt, match
x:=0
WriteF(’x is \d\n’, x)
lt:=[9,-1,7,4]

/* The next lines mimic: lt <=> [9,-1,x,4] */
match:=FALSE
IF ListLen(lt)=4

IF ListItem(lt, 0)=9
IF ListItem(lt, 1)=-1
x:=ListItem(lt,2)
IF ListItem(lt, 3)=4

match:=TRUE
ENDIF

ENDIF
ENDIF

ENDIF
IF match

WriteF(’First match succeeded\n’)
WriteF(’1) x is now \d\n’, x)

ELSE
WriteF(’First match failed\n’)
/* To be safe, reset x */
x:=0

ENDIF

/* The next lines mimic: lt <=> [1,x,6,4] */
match:=FALSE
IF ListLen(lt)=4

IF ListItem(lt, 0)=1
x:=ListItem(lt, 1)
IF ListItem(lt, 2)=6
IF ListItem(lt, 3)=4

match:=TRUE
ENDIF

ENDIF
ENDIF

ENDIF
IF match

WriteF(’Second match succeeded\n’)
WriteF(’2) x is now \d\n’, x)

ELSE



beginner 86 / 258

WriteF(’Second match failed\n’)
/* To be safe, reset x */
x:=0

ENDIF
ENDPROC

Here’s a slightly more complicated example, which shows how you might
use patterns made up of nested lists. Remember that if the pattern is a
list then the expression to be matched must be a list. If this is not the
case (e.g., if the expression represents NIL) then your program could
behave strangely or even crash your computer. A similar, but less
disastrous, problem is if the converse happens: the pattern is not a list
but the expression to be matched is a list. In this case the pointer (to
the list) is matched against the pattern constant or assigned to the
pattern variable.

PROC main()
DEF x=10, y=-3, p=NIL:PTR TO LONG, lt, i
WriteF(’x is \d, y is \d\n’, x, y)
lt:=[[23,x],y]

/* This basically swaps x and y */
IF lt <=> [[23,y],x]

WriteF(’First match succeeded\n’)
WriteF(’1) Now x is \d, y is \d\n’, x, y)

ELSE
WriteF(’First match failed\n’)
/* To be safe, reset x and y */
x:=10; y:=-3

ENDIF

/* This will make p point to the sub-list of lt */
IF lt <=> [p,-3]

WriteF(’Second match succeeded\n’)
WriteF(’2) p is now $\h (a pointer to a list)\n’, p)
FOR i:=0 TO ListLen(p)-1

WriteF(’ Element \d of the list p is \d\n’, i, p[i])
ENDFOR

ELSE
WriteF(’First match failed\n’)
/* To be safe, reset p */
p:=NIL

ENDIF
ENDPROC

1.102 beginner.guide/Quoted Expressions

Quoted Expressions
==================

Quoted expressions are a powerful feature of the E language, and they
require quite a bit of advanced knowledge. Basically, you can quote any
expression by starting it with the back-quote character ‘ (be careful not
to get it mixed up with the quote character ’ which is used for strings).



beginner 87 / 258

This quoting action does not evaluate the expression, instead the address
of the code for the expression is returned. This address can be used just
like any other address, so you can, for instance, store it in a variable
and pass it to procedures. Of course, at some point you will use the
address to execute the code and get the value of the expression.

The idea of quoted expressions was borrowed from the functional
programming language Lisp. Also borrowed were some powerful functions
which combine lists with quoted expressions to give very concise and
readable statements.

Evaluation

Quotable expressions

Lists and quoted expressions

1.103 beginner.guide/Evaluation

Evaluation
----------

When you’ve quoted an expression you have the address of the code which
calculates the value of the expression. To evaluate the expression you
pass this address to the Eval function. So now we have a round-about way
of calculating the value of an expression. (If you have a GB keyboard you
can get the ‘ character by holding down the ALT key and pressing the ’
key, which is in the corner just below the ESC key. On a US and most
European keyboards it’s on the same key but you don’t have to press the
ALT key at the same time.)

PROC main()
DEF adr, x, y
x:=0; y:=0
adr:=‘1+(fred(x,1)*8)-y
x:=2; y:=7
WriteF(’The value is \d\n’, Eval(adr))
x:=1; y:=100
WriteF(’The value is now \d\n’, Eval(adr))

ENDPROC

PROC fred(a,b) RETURN (a+b)*a+20

This is the output that should be generated:

The value is 202
The value is now 77

This example shows a quite complicated expression being quoted. The
address of the expression is stored in the variable adr, and the
expression is evaluated using Eval in the calls to WriteF. The values of
the variables x and y when the expression is quoted are irrelevant--only



beginner 88 / 258

their values each time Eval is used are significant. Therefore, when Eval
is used in the second call to WriteF the values of x and y have changed so
the resulting value is different.

Repeatedly evaluating the same expression is the most obvious use of
quoted expressions. Another common use is when you want to do the same
thing for a variety of different expressions. For example, if you wanted
to discover the amount of time it takes to calculate the results of
various expressions it would be best to use quoted expressions, something
like this:

DEF x,y

PROC main()
x:=999; y:=173
time(‘x+y, ’Addition’)
time(‘x*y, ’Multiplication’)
time(‘fred(x), ’Procedure call’)

ENDPROC

PROC time(exp, message)
WriteF(message)
/* Find current time */
Eval(exp)
/* Find new time and calculate difference, t */
WriteF(’: time taken \d\n’, t)

ENDPROC

This is just the outline of a program--it’s not complete so don’t bother
running it. The complete version is given as a worked example later (see

Timing Expressions
).

1.104 beginner.guide/Quotable expressions

Quotable expressions
--------------------

There is no restriction on the kinds of expression you can quote,
except that you need to be careful about variable scoping. If you use
local variables in a quoted expression you can only Eval it within the
same procedure (so the variables are in scope). However, if you use only
global variables you can Eval it in any procedure. Therefore, if you are
going to pass a quoted expression to a procedure and do something with it,
you should use only global variables.

A word of warning: Eval does not check to see if the address it’s been
given is really the address of an expression. You can therefore get in a
real mess if you pass it, say, the address of a variable using {var }.
You need to check all uses of things like Eval yourself, because the E
compiler lets you write things like Eval(x+9), where you probably meant to
write Eval(‘x+9). That’s because you might want the address you pass to



beginner 89 / 258

Eval to be the result of complicated expressions. So you may have meant
to pass x+9 as the parameter!

1.105 beginner.guide/Lists and quoted expressions

Lists and quoted expressions
----------------------------

There are several E built-in functions which use lists and quoted
expressions in powerful ways. These functions are similar to functional
programming constructs and, basically, they allow for very readable code,
which otherwise would require iterative algorithms (i.e., loops).

MapList(address,list,e-list,quoted-exp)
The address is the address of a variable (e.g., {x}), list is a
list or E-list (the source), e-list is an E-list variable (the
destination), and quoted-exp is the address of an expression which
involves the addressed variable (e.g., ‘x+2). The effect of the
function is to take, in turn, a value from list, store it at
address, evaluate the quoted expression and store the result in the
destination list. The resulting list is also returned (for
convenience).

For example:

MapList({y}, [1,2,3,a,99,1+c], lt, ‘y*y)

results in lt taking the value:

[1,4,9,a*a,9801,(1+c)*(1+c)]

Functional programmers would say that MapList mapped the function
(the quoted expression) across the (source) list.

ForAll(address,list,quoted-exp)
Works just like MapList except that the resulting list is not stored.
Instead, ForAll returns TRUE if every element of the resulting list is
TRUE (i.e., non-zero), and FALSE otherwise. In this way it
decides whether the quoted expression is TRUE for all elements of
the source list. For example, the following are TRUE:

ForAll({x}, [1,2,-13,8,0], ‘x<10)
ForAll({x}, [1,2,-13,8,0], ‘x<=8)
ForAll({x}, [1,2,-13,8,0], ‘x>-20)

and these are FALSE:

ForAll({x}, [1,2,-13,8,0], ‘x OR x)
ForAll({x}, [1,2,-13,8,0], ‘x=2)
ForAll({x}, [1,2,-13,8,0], ‘x<>2)

Exists(address,list,quoted-exp)
Works just like ForAll except it returns TRUE if the quoted
expression is TRUE (i.e., non-zero) for at least one of the source



beginner 90 / 258

list elements and FALSE otherwise. For example, the following are
TRUE:

Exists({x}, [1,2,-13,8,0], ‘x<10)
Exists({x}, [1,2,-13,8,0], ‘x=2)
Exists({x}, [1,2,-13,8,0], ‘x>0)

and these are FALSE:

Exists({x}, [1,2,-13,8,0], ‘x<-20)
Exists({x}, [1,2,-13,8,0], ‘x=4)
Exists({x}, [1,2,-13,8,0], ‘x>8)

SelectList(address,list,e-list,quoted-exp)
Works just like MapList except the quoted-exp is used to decide
which elements from list are copied to e-list. Only the elements
for which quoted-exp evaluates to a non-zero (i.e., true) value are
copied. The resulting list is also returned (for convenience).

For example:

SelectList({y}, [99,6,1,2,7,1,1,6,6], lt, ‘y>5)

results in lt taking the value:

[99,6,7,6,6]

1.106 beginner.guide/Assembly Statements

Assembly Statements
===================

The E language incorporates an assembler so you can write Assembly
mnemonics as E statements. You can even write complete Assembly programs
and compile them using the E compiler. More powerfully, you can use E
variables as part of the mnemonics, so you can really mix Assembly
statements with normal E statements.

This is not really the place to discuss Assembly programming, so if you
plan to use this feature of E you should get yourself a good book,
preferably on Amiga Assembly. Remember that the Amiga uses the Motorola
68000 CPU, so you need to learn the Assembly language for that CPU. More
powerful and newer Amigas use more advanced CPUs (such as the 68020) which
have extra mnemonics. Programs written using just 68000 CPU mnemonics
will work on all Amigas.

If you don’t know 68000 Assembly language you ought to skip this
section and just bear in mind that E statements you don’t recognise are
probably Assembly mnemonics.

Assembly and the E language



beginner 91 / 258

Static memory

Things to watch out for

1.107 beginner.guide/Assembly and the E language

Assembly and the E language
---------------------------

You can reference E variables simply by using them in an operand.
Follow the comments in the next example (the comments are on the same
lines as the Assembly mnemonics, the other lines are normal E statements):

PROC main()
DEF x
x:=1
MOVE.L x, D0 /* Copy the value in x to register D0 */
ADD.L D0, D0 /* Double the value in D0 */
MOVE.L D0, x /* Copy the value in D0 back to variable x */
WriteF(’x is now \d\n’, x)

ENDPROC

Constants can also be referenced but you need to precede the constant with
a #.

CONST APPLE=2

PROC main()
DEF x
MOVE.L #APPLE, D0 /* Copy the constant APPLE to register D0 */
ADD.L D0, D0 /* Double the value in D0 */
MOVE.L D0, x /* Copy the value in D0 to variable x */
WriteF(’x is now \d\n’, x)

ENDPROC

Labels and procedures can similarly be referenced, but these are
PC-relative so you can only address them in this way. The following
example illustrates this, but doesn’t do anything useful:

PROC main()
DEF x
LEA main(PC), A0 /* Copy the address of main to register A0 */
MOVE.L A0, x /* Copy the value in A0 to variable x */
WriteF(’x is now \d\n’, x)

ENDPROC

You can call Amiga system functions in the same way as you would normally
in Assembly. You need to load the A6 register with the appropriate
library base, load the other registers with appropriate data and then JSR
to the system routine. This next example uses the E built-in variable
intuitionbase and the Intuition library routine DisplayBeep. When you run
it the screen flashes (or, with Workbench 2.1 and above, you might get a
beep or a sampled sound, depending on your Workbench setup).



beginner 92 / 258

PROC main()
MOVE.L #NIL, A0
MOVE.L intuitionbase, A6
JSR DisplayBeep(A6)

ENDPROC

1.108 beginner.guide/Static memory

Static memory
-------------

Assembly programs reserve static memory for things like strings using
DC mnemonics. However, these aren’t real mnemonics. They are, in
fact, compiler directives and they can vary from compiler to compiler.
The E versions are LONG, INT and CHAR (the type names), which take a list
of values, reserve the appropriate amount of static memory and fill in
this memory with the supplied values. The CHAR form also allows a list of
characters to be supplied more easily as a string. In this case, the
string will automatically be aligned to an even memory location, although
you are responsible for null-terminating it. You can also include a whole
file as static data using INCBIN (and the file named using this statement
must exist when the program is compiled). To get at the data you mark it
with a label.

This next example is a bit contrived, but illustrates some static data:

PROC main()
DEF x:PTR TO CHAR
LEA datatable(PC), A0
MOVE.L A0, x
WriteF(x)

ENDPROC

datatable:
CHAR ’Hello world\n’, 0

moredata:
LONG 1,5,-999,0; INT -1,222
INCBIN ’file.data’; CHAR 0,7,-8

The Assembly stuff to get the label address is not really necessary, so
the example could have been just:

PROC main()
WriteF({datatable})

ENDPROC

datatable:
CHAR ’Hello world\n’, 0

1.109 beginner.guide/Things to watch out for



beginner 93 / 258

Things to watch out for
-----------------------

There are a few things to be aware of when using Assembly with E:

* All mnemonics and registers must be in uppercase, whilst, of course,
E variables etc., follow the normal E rules.

* Most standard Assemblers use ; to mark the rest of the line as a
comment. In E you can use -> for the same effect, or you can use the
/* and */ delimiters.

* Registers A4 and A5 are used internally by E, so should not be messed
with if you are mixing E and Assembly code. Other registers might
also be used, especially if you’ve used the REG keyword. Refer to
the ‘Reference Manual’ for more details.

* E function calls like WriteF can affect registers. Refer to the
‘Reference Manual’ for more details.

1.110 beginner.guide/E Built-In Constants Variables and Functions

E Built-In Constants, Variables and Functions

*********************************************

This chapter describes the constants, variables and functions which are
built-in to the E language. You can add more by using modules, but that’s
a more advanced topic (see

Modules
).

Built-In Constants

Built-In Variables

Built-In Functions

1.111 beginner.guide/Built-In Constants

Built-In Constants
==================

We’ve already met several built-in constants. Here’s the complete list:

TRUE, FALSE
The boolean constants. As numbers, TRUE is -1 and FALSE is zero.



beginner 94 / 258

NIL
The bad pointer value. Several functions produce this value for a
pointer if an error occurred. As a number, NIL is zero.

ALL
Used with string and list functions to indicate that all the string
or list is to be used. As a number, ALL is -1.

GADGETSIZE
The minimum number of bytes required to hold all the data for one
gadget. See

Intuition support functions
.

OLDFILE, NEWFILE
Used with Open to open an old or new file. See the ‘AmigaDOS Manual’
for more details.

STRLEN
The length of the last string constant used. Remember that a string
constant is something between ’ characters, so, for example, the
following program prints the string s and then its length:

PROC main()
DEF s:PTR TO CHAR, len
s:=’12345678’
len:=STRLEN
WriteF(s)
WriteF(’\nis \d characters long\n’, len)

ENDPROC

1.112 beginner.guide/Built-In Variables

Built-In Variables
==================

The following variables are built-in to E and are called system
variables. They are global so can be accessed from any procedure.

arg
This is a string which contains the command line arguments passed
your program when it was run (from the Shell or CLI). For instance,
if your program were called fred and you ran it like this:

fred file.txt "a big file" another

then arg would the string:

file.txt "a big file" another

If you have AmigaDOS 2.0 (or greater) you can use the system routine
ReadArgs to parse the command line in a much more versatile way.
There is a worked example on argument parsing in Part Three (see



beginner 95 / 258

Argument Parsing
).

wbmessage
This contains NIL if your program was started from the Shell/CLI,
otherwise it’s a pointer to the Workbench message which contains
information about the icons selected when you started the program
from Workbench. So, if you started the program from Workbench
wbmessage will not be NIL and it will contain the Workbench
arguments, but if you started the program from the Shell/CLI
wbmessage will be NIL and the argments will be in arg (or via
ReadArgs). There is a worked example on argument parsing in Part
Three (see

Argument Parsing
).

stdin, stdout, conout
The stdin and stdout variables contain the standard input and output
filehandles. If your program was started from the Shell/CLI they
will be filehandles on the Shell/CLI window (and conout will be NIL).
However, if your program was started from Workbench these will both
be NIL, and in this case the first call to WriteF will open an output
CON: window and store the file handle for the window in stdout and
conout. The file handle stored in conout when the program terminates
will be closed using Close, so you can set up your own CON: window or
file for use by the output functions and have it automatically closed.
See

Input and output functions
.

stdrast
The raster port used by E built-in graphics functions such as Box and
Plot. This can be changed so that these functions draw on different
screens etc. See

Graphics functions
.

dosbase, execbase, gfxbase, intuitionbase
These are pointers to the appropriate library base, and are
initialised by the E startup code, i.e., the Dos, Exec, Graphics and
Intuition libraries are all opened by E so you don’t need to do it
yourself. These libraries are also automatically closed by E, so you
shouldn’t close them yourself. However, you must explicitly open and
close all other Amiga system libraries that you want to use. The
other library base variables are defined in the accompanying module
(see

Modules
). Consult the ‘Reference Manual’ for details about the

library base variable mathbase.

1.113 beginner.guide/Built-In Functions



beginner 96 / 258

Built-In Functions
==================

There are many built-in functions in E. We’ve already seen a lot of
string and list functions, and we’ve used WriteF for printing. The
remaining functions are, generally, simplifications of complex Amiga
system functions, or E versions of support functions found in languages
like C and Pascal.

To understand the graphics and Intuition support functions completely
you really need to get something like the ‘Rom Kernel Reference Manual
(Libraries)’. However, if you don’t want to do anything too complicated
you can just about get by.

Input and output functions

Intuition support functions

Graphics functions

Maths and logic functions

System support functions

1.114 beginner.guide/Input and output functions

Input and output functions
--------------------------

WriteF(string,param1,param2,...)
Writes a string to the standard output and returns the number of
characters written. If place-holders are used in the string then the
appropriate number of parameters must be supplied after the string in
the order they are to be printed as part of the string. So far we’ve
only met the \d place-holder for decimal numbers. The complete list
is:

Place-Holder Parameter Type Prints
-------------------------------------------------

\c Number Character
\d Number Decimal number
\h Number Hexadecimal number
\s String String

So to print a string you use the \s place-holder in the string and
supply the string (e.g., a PTR TO CHAR) as a parameter. Try the
following program (remember \a prints an apostrophe character):

PROC main()
DEF s[30]:STRING
StrCopy(s, ’Hello world’, ALL)



beginner 97 / 258

WriteF(’The third element of s is "\c"\n’, s[2])
WriteF(’or \d (decimal)\n’, s[2])
WriteF(’or \h (hexadecimal)\n’, s[2])
WriteF(’and s itself is \a\s\a\n’, s)

ENDPROC

This is the output it generates:

The third element of s is "l"
or 108 (decimal)
or 6C (hexadecimal)
and s itself is ’Hello world’

You can control how the parameter is formatted in the \d, \h and \s
fields using another collection of special character sequences before
the place-holder and size specifiers after it. If no size is
specified the field will be as big as the data requires. A fixed
field size can be specified using [number] after the place-holder.
For strings you can also use the size specifier (min,max) which
specifies the minimum and maximum sizes of the field. By default the
data is right justified in the field and the left part of the field
is filled, if necessary, with spaces. The following sequences before
the place-holder can change this:

Sequence Meaning
-----------------------------------

\l Left justify in field
\r Right justify in field
\z Set fill character to "0"

See how these formatting controls affect this example:

PROC main()
DEF s[30]:STRING
StrCopy(s, ’Hello world’, ALL)
WriteF(’The third element of s is "\c"\n’, s[2])
WriteF(’or \d[4] (decimal)\n’, s[2])
WriteF(’or \z\h[4] (hexadecimal)\n’, s[2])
WriteF(’\a\s[5]\a are the first five elements of s \n’, s)
WriteF(’and s in a very big field \a\s[20]\a\n’, s)
WriteF(’and s left justified in it \a\l\s[20]\a\n’, s)

ENDPROC

Here’s the output it should generate:

The third element of s is "l"
or 108 (decimal)
or 006C (hexadecimal)
’Hello’ are the first five elements of s
and s in a very big field ’ Hello world’
and s left justified in it ’Hello world ’

WriteF uses the standard output, and this file handle is stored in
the stdout variable. If your program is started from Workbench this
variable will contain NIL. In this case, the first call to WriteF
will open a special output window and put the file handle in the
variables stdout and conout, as outlined above.



beginner 98 / 258

PrintF(string,param1,param2,...)
PrintF works just like WriteF except it uses the more efficient,
buffered output routines only available if your Amiga is using
Kickstart version 37 or greater (i.e., AmigaDOS 2.04 and above).

StringF(e-string,string,arg1,arg2,...)
The same as WriteF except that the result is written to e-string
instead of being printed. For example, the following code fragment
sets s to 00123 is a (since the E-string is not long enough for the
whole string):

DEF s[10]:STRING
StringF(s, ’\z\d[5] is a number’, 123)

Out(filehandle,char)
Outputs a single character, char, to the file or console window
denoted by filehandle, and returns -1 to indicate success (so any
other return value means an error occurred). For instance,
filehandle could be stdout, in which case the character is written
to the standard output. (You need to make sure stdout is not NIL,
and you can do this by using a WriteF(’’) call.)

Inp(filehandle)
Reads and returns a single character from filehandle. If -1 is
returned then the end of the file (EOF) was reached, or there was an
error.

ReadStr(filehandle,e-string)
Reads a whole string from filehandle and returns -1 if EOF was
reached or an error occurred. Characters are read up to a linefeed
or the size of the string, which ever is sooner. Therefore, the
resulting string may be only a partial line. If -1 is returned then
EOF was reached or an error occurred, and in either case the string
so far is still valid. So, you still need to check the string even
if -1 is returned. (This will most commonly happen with files that
do not end with a linefeed.) The string will be empty (i.e., of zero
length) if nothing more had been read from the file when the error or
EOF happened.

This next little program reads continually from its input until an
error occurs or the user types quit. It echoes the lines that it
reads in uppercase. If you type a line longer than ten characters
you’ll see it reads it in more than one go. Because of the way
normal console windows work, you need to type a return before a line
gets read by the program (but this allows you to edit the line before
the program sees it). If the program is started from Workbench then
stdin would be NIL, so WriteF(’’) is used to force stdout to be
valid, and in this case it will be a new console window which can be
used to accept input! (To make the compiled program into a Workbench
program you simply need to create a tool icon for it. A quick way of
doing this is to copy an existing tool’s icon.)

PROC main()
DEF s[10]:STRING, fh
WriteF(’’)
fh:=IF stdin THEN stdin ELSE stdout



beginner 99 / 258

WHILE ReadStr(fh, s)<>-1
UpperStr(s)

EXIT StrCmp(s, ’QUIT’, ALL)
WriteF(’Read: \a\s\a\n’, s)

ENDWHILE
WriteF(’Finished\n’)

ENDPROC

There are some worked examples in Part Three (see

String Handling and I-O
) which also show how to use ReadStr.

FileLength(string)
Returns the length of the file named in string, or -1 if the file
doesn’t exist or an error occurred. Notice that you don’t need to
Open the file or have a filehandle, you just supply the filename.
There is a worked example in Part Three (see

String Handling and I-O
)

which shows how to use this function.

SetStdIn(filehandle)
Returns the value of stdin before setting it to filehandle.
Therefore, the following code fragments are equivalent:

oldstdin:=SetStdIn(newstdin)

oldstdin:=stdin
stdin:=newstdin

SetStdOut(filehandle)
Returns the value of stdout before setting it to filehandle, and is
otherwise just like SetStdIn.

1.115 beginner.guide/Intuition support functions

Intuition support functions
---------------------------

The functions in this section are simplified versions of Amiga system
functions (in the Intuition library, as the title suggests). To make best
use of them you are probably going to need something like the ‘Rom Kernel
Reference Manual (Libraries)’, especially if you want to understand the
Amiga specific things like IDCMP and raster ports.

The descriptions given here vary slightly in style from the previous
descriptions. All function parameters can be expressions which represent
numbers or addresses, as appropriate. Because many of the functions take
several parameters they have been named (fairly descriptively) so they can
be more easily referenced.

OpenW(x,y,wid,hgt,idcmp,wflgs,title,scrn,sflgs,gads,tags=NIL)



beginner 100 / 258

Opens and returns a pointer to a window with the supplied properties.
If for some reason the window could not be opened NIL is returned.

x, y
The position on the screen where the window will appear.

wid, hgt
The width and height of the window.

idcmp, wflgs
The IDCMP and window specific flags.

title
The window title (a string) which appears on the title bar of
the window.

scrn, sflgs
The screen on which the window should open. If sflgs is 1 the
window will be opened on Workbench, and scrn is ignored (so it
can be NIL). If sflgs is $F (i.e., 15) the window will open
on the custom screen pointed to by scrn (which must then be
valid). See OpenS to see how to open a custom screen and get a
screen pointer.

gads
A pointer to a gadget list, or NIL if you don’t want any gadgets.
These are not the standard window gadgets, since they are
specified using the window flags. A gadget list can be created
using the Gadget function.

tags
A tag-list of other options available under Kickstart version 37
or greater. This can normally be omitted since it defaults to
NIL. See the ‘Rom Kernel Reference Manual (Libraries)’ for
details about the available tags and their meanings.

There’s not enough space to describe all the fine details about
windows and IDCMP (see the ‘Rom Kernel Reference Manual (Libraries)’
for complete details), but a brief description in terms of flags
might be useful. Here’s a small table of common IDCMP flags:

IDCMP Flag Value
--------------------------
IDCMP_NEWSIZE $2
IDCMP_REFRESHWINDOW $4
IDCMP_MOUSEBUTTONS $8
IDCMP_MOUSEMOVE $10
IDCMP_GADGETDOWN $20
IDCMP_GADGETUP $40
IDCMP_MENUPICK $100
IDCMP_CLOSEWINDOW $200
IDCMP_RAWKEY $400
IDCMP_DISKINSERTED $8000
IDCMP_DISKREMOVED $10000

Here’s a table of useful window flags:



beginner 101 / 258

Window Flag Value
--------------------------
WFLG_SIZEGADGET $1
WFLG_DRAGBAR $2
WFLG_DEPTHGADGET $4
WFLG_CLOSEGADGET $8
WFLG_SIZEBRIGHT $10
WFLG_SIZEBBOTTOM $20
WFLG_SMART_REFRESH 0
WFLG_SIMPLE_REFRESH $40
WFLG_SUPER_BITMAP $80
WFLG_BACKDROP $100
WFLG_REPORTMOUSE $200
WFLG_GIMMEZEROZERO $400
WFLG_BORDERLESS $800
WFLG_ACTIVATE $1000

All these flags are defined in the module intuition/intuition, so if
you use that module you can use the constants rather than having to
write the less descriptive value (see

Modules
). Of course, you can

always define your own constants for the values that you use.

You use the flags by OR-ing the ones you want together, in similar
way to using sets (see

Sets
). However, you should supply only IDCMP

flags as part of the idcmp parameter, and you should supply only
window flags as part of the wflgs parameter. So, to get IDCMP
messages when a disk is inserted and when the close gadget is clicked
you specify both of the flags IDCMP_DISKINSERTED and
IDCMP_CLOSEWINDOW for the idcmp parameter, either by OR-ing the
constants or (less readably) by using the calculated value $8200.

Some of the window flags require some of IDCMP flags to be used as
well, if an effect is to be complete. For example, if you want your
window to have a close gadget (a standard window gadget) you need to
use WFLG_CLOSEGADGET as one of the window flags. If you want that
gadget to be useful then you need to get an IDCMP message when the
gadget is clicked. You therefore need to use IDCMP_CLOSEWINDOW as
one of the IDCMP flags. So the full effect requires both a window
and an IDCMP flag (a gadget is pretty useless if you can’t tell when
it’s been clicked). The worked example in Part Three illustrates how
to use these flags in this way (see

Gadgets
).

If you only want to output text to a window (and maybe do some input
from a window), it may be better to use a console window. These
provide a text based input and output window, and are opened using
the Dos library function Open with the appropriate CON: file name.
See the ‘AmigaDOS Manual’ for more details about console windows.

CloseW(winptr)
Closes the window which is pointed to by winptr. It’s safe to give
NIL for winptr, but in this case, of course, no window will be



beginner 102 / 258

closed! The window pointer is usually a pointer returned by a
matching call to OpenW. You must remember to close any windows you
may have opened before terminating your program.

OpenS(wid,hgt,depth,scrnres,title,tags=NIL)
Opens and returns a pointer to a custom screen with the supplied
properties. If for some reason the screen could not be opened NIL is
returned.

wid, hgt
The width and height of the screen.

depth
The depth of the screen, i.e., the number of bit-planes. This
can be a number in the range 1-8 for AGA machines, or 1-6 for
pre-AGA machines. A screen with depth 3 will be able to show 2
to the power 3 (i.e., 8) different colours, since it will have 2
to the power 3 different pens (or colour registers) available.
You can set the colours of pens using the SetColour function.

scrnres
The screen resolution flags.

title
The screen title (a string) which appears on the title bar of
the screen.

tags
A tag-list of other options available under Kickstart version 37
or greater. See the ‘Rom Kernel Reference Manual (Libraries)’
for more details.

The screen resolution flags control the screen mode. The following
(common) values are taken from the module graphics/view (see

Modules
).

You can, if you want, define your own constants for the values that
you use. Either way it’s best to use descriptive constants rather
than directly using the values.

Mode Flag Value
------------------------
V_LACE $4
V_SUPERHIRES $20
V_PFBA $40
V_EXTRA_HALFBRITE $80
V_DUALPF $400
V_HAM $800
V_HIRES $8000

So, to get a hires, interlaced screen you specify both of the flags
V_HIRES and V_LACE, either by OR-ing the constants or (less readably)
by using calculated value $8004. There is a worked example using
this function in Part Three (see

Screens
).



beginner 103 / 258

CloseS(scrnptr)
Closes the screen which is pointed to by scrnptr. It’s safe to
give NIL for scrnptr, but in this case, of course, no screen will
be closed! The screen pointer is usually a pointer returned by a
matching call to OpenS. You must remember to close any screens you
may have opened before terminating your program. Also, you must
close all windows that you opened on your screen before you can close
the screen.

Gadget(buf,glist,id,flags,x,y,width,text)
Creates a new gadget with the supplied properties and returns a
pointer to the next position in the (memory) buffer which can be used
for a gadget.

buf
This is the memory buffer, i.e., a chunk of allocated memory.
The best way of allocating this memory is to declare an array of
size n*GADGETSIZE, where n is the number of gadgets which
are going to be created. The first call to Gadget will use the
array as the buffer, and subsequent calls use the result of the
previous call as the buffer (since this function returns the
next free position in the buffer).

glist
This is a pointer to the gadget list that is being created,
i.e., the array used as the buffer. When you create the first
gadget in the list using an array a, this parameter should be
NIL. For all other gadgets in the list this parameter
should be the array a.

id
A number which identifies the gadget. It is best to give a
unique number for each gadget, that way you can easily identify
them. This number is the only way you can identify which gadget
has been clicked.

flags
The type of gadget to be created. Zero represents a normal
gadget, one a boolean gadget (a toggle) and three a boolean that
starts selected.

x, y
The position of the gadget, relative to the top, left-hand
corner of the window.

width
The width of the gadget (in pixels, not characters).

text
The text (a string) which will centred in the gadget, so the
width must be big enough to hold this text.

Once a gadget list has been created by possibly several calls to this
function the list can be passed as the gads parameter to OpenW.
There is a worked example using this function in Part Three (see

Gadgets



beginner 104 / 258

).

Mouse()
Returns the state of the mouse buttons (including the middle mouse
button if you have a three-button mouse). This is a set of flags,
and the individual flag values are:

Button Pressed Value
----------------------
Left %001
Right %010
Middle %100

So, if this function returns %001 you know the left button is being
pressed, and if it returns %110 you know the middle and right buttons
are both being pressed.

This mouse function is not strictly the proper way to do things. It
is suggested you use this function only for small tests or demo-like
programs. The proper way of getting mouse details is to use the
appropriate IDCMP flags for your window, wait for events and decode
the information.

MouseX(winptr)
Returns the x coordinate of the mouse pointer, relative to the
window pointed to by winptr.

This mouse function is not strictly the proper way to do things. It
is suggested you use this function only for small tests or demo-like
programs. The proper way of getting mouse details is to use the
appropriate IDCMP flags for your window, wait for events and decode
the information.

MouseY(winptr)
Returns the y coordinate of the mouse pointer, relative to the
window pointed to by winptr.

This mouse function is not strictly the proper way to do things. It
is suggested you use this function only for small tests or demo-like
programs. The proper way of getting mouse details is to use the
appropriate IDCMP flags for your window, wait for events and decode
the information.

LeftMouse(winptr)
Returns TRUE if left mouse button has been clicked in the window
pointed to by winptr, and FALSE otherwise. In order for this to
work sensibly the window must have the IDCMP flag IDCMP_MOUSEBUTTONS
set (see above).

This function does things in a proper, Intuition-friendly manner and
so is a good alternative to the Mouse function.

WaitIMessage(winptr)
This function waits for a message from Intuition for the window
pointed to by winptr and returns the class of the message (which is
an IDCMP flag). If you did not specify any IDCMP flags when the
window was opened, or the specified messages could never happen



beginner 105 / 258

(e.g., you asked only for gadget messages and you have no gadgets),
then this function may wait forever. When you’ve got a message you
can use the MsgXXX functions to get some more information about the
message. See the ‘Rom Kernel Reference Manual (Libraries)’ for more
details on Intuition and IDCMP. There is a worked example using this
function in Part Three (see

IDCMP Messages
).

This function is basically equivalent to the following function,
except that the MsgXXX functions can also access the message data
held in the variables code, qual and iaddr.

PROC waitimessage(win:PTR TO window)
DEF port,msg:PTR TO intuimessage,class,code,qual,iaddr
port:=win.userport
IF (msg:=GetMsg(port))=NIL

REPEAT
WaitPort(port)

UNTIL (msg:=GetMsg(port))<>NIL
ENDIF
class:=msg.class
code:=msg.code
qual:=msg.qualifier
iaddr:=msg.iaddress
ReplyMsg(msg)

ENDPROC class

MsgCode()
Returns the code part of the message returned by WaitIMessage.

MsgIaddr()
Returns the iaddr part of the message returned by WaitIMessage.
There is a worked example using this function in Part Three (see

IDCMP Messages
).

MsgQualifier()
Returns the qual part of the message returned by WaitIMessage.

WaitLeftMouse(winptr)
This function waits for the left mouse button to be clicked in the
window pointed to by winptr. It is advisable to have the IDCMP
flag IDCMP_MOUSEBUTTONS set for the window (see above).

This function does things in a proper, Intuition-friendly manner and
so is a good alternative to the Mouse function.

1.116 beginner.guide/Graphics functions

Graphics functions
------------------



beginner 106 / 258

The functions in this section use the standard raster port, the address
of which is held in the variable stdrast. Most of the time you don’t need
to worry about this because the E functions which open windows and screens
set up this variable (see

Intuition support functions
). So, by default,

these functions affect the last window or screen opened. When you close a
window or screen, stdrast becomes NIL and calls to these functions have no
effect. There is a worked example using these functions in Part Three
(see

Graphics
).

The descriptions in this section follow the same style as the previous
section.

Plot(x,y,pen=1)
Plots a single point (x,y) in the specified pen colour. The
position is relative to the top, left-hand corner of the window or
screen that is the current raster port (normally the last screen or
window to be opened). The range of pen values available depend on
the screen setup, but are at best 0-255 on AGA machines and 0-31 on
pre-AGA machines. As a guide, the background colour is usually pen
zero, and the main foreground colour is pen one (and this is the
default pen). You can set the colours of pens using the SetColour
function.

Line(x1,y1,x2,y2,pen=1)
Draws the line (x1,y1) to (x2,y2) in the specified pen colour.

Box(x1,y1,x2,y2,pen=1)
Draws the (filled) box with vertices (x1,y1), (x2,y1),
(x1,y2) and (x2,y2) in the
specified pen colour.

Colour(fore-pen,back-pen=0)
Sets the foreground and background pen colours. As mentioned above,
the background colour is normally pen zero and the main foreground is
pen one. You can change these defaults with this function, and if
you stick to having the background pen as pen zero then calling this
function with one argument changes just the foreground pen.

TextF(x,y,format-string,arg1,arg2,...)
This works just like WriteF except the resulting string is written
starting at point (x,y). Also, don’t use any line-feed, carriage
return, tab or escape characters in the string--they don’t behave
like they do in WriteF.

SetColour(scrnptr,pen,r,g,b)
Sets the colour of colour register pen for the screen pointed to by
scrnptr to be the appropriate RGB value (i.e., red value r, green
value g and blue value b). The pen can be anything up to 255,
depending on the screen depth. Regardless of the chipset being used,
r, g and b are taken from the range zero to 255, so 24-bit
colours are always specified. In operation, though, the values are
scaled to 12-bit colour for non-AGA machines.



beginner 107 / 258

SetStdRast(newrast)
Returns the value of stdrast before setting it to the new value. The
following code fragments are equivalent:

oldstdrast:=SetStdRast(newstdrast)

oldstdrast:=stdrast
stdrast:=newstdrast

SetTopaz(size=8)
Sets the text font for the current raster port to Topaz at the
specified size, which defaults to the standard size eight.

1.117 beginner.guide/Maths and logic functions

Maths and logic functions
-------------------------

We’ve already seen the standard arithmetic operators. The addition, +,
and subtraction, -, operators use full 32-bit integers, but, for
efficiency, multiplication, *, and division, /, use restricted values.
You can only use * to multiply 16-bit integers, and the result will be a
32-bit integer. Similarly, you can only use / to divide a 32-bit integer
by a 16-bit integer, and the result will be a 16-bit integer. The
restrictions do not affect most calculations, but if you really need to
use all 32-bit integers (and you can cope with overflows etc.) you can use
the Mul and Div functions. Mul(a,b) corresponds to a*b, and Div(a,b)
corresponds to a/b.

We’ve also met the logic operators AND and OR, which we know are really
bit-wise operators. You can also use the functions And and Or to do
exactly the same as AND and OR (respectively). So, for instance, And(a,b)
is the same as a AND b. The reason for these functions is because there
are Not and Eor (bit-wise) functions, too (and there aren’t operators for
these). Not(a) swaps one and zero bits, so, for instance, Not(TRUE) is
FALSE and Not(FALSE) is TRUE. Eor(a,b) is the exclusive version of Or and
does almost the same, except that Eor(1,1) is 0 whereas Or(1,1) is 1 (and
this extends to all the bits). So, basically, Eor tells you which bits
are different, or, logically, if the truth values are different.
Therefore, Eor(TRUE,TRUE) is FALSE and Eor(TRUE,FALSE) is TRUE.

There’s a collection of other functions related to maths, logic or
numbers in general:

Abs(expression)
Returns the absolute value of expression. The absolute value of a
number is that number made positive if necessary. So, Abs(9) is 9,
and Abs(-9) is also 9.

Sign(expression)
Returns the sign of expression, which is the value one if it is
(strictly) positive, -1 if it is (strictly) negative and zero if it



beginner 108 / 258

is zero.

Even(expression)
Returns TRUE if expression represents an even number, and FALSE
otherwise. Obviously, a number is either odd or even!

Odd(expression)
Returns TRUE if expression represents an odd number, and FALSE
otherwise.

Max(exp1, exp2)
Returns the maximum of exp1 and exp2.

Min(exp1, exp2)
Returns the minimum of exp1 and exp2.

Bounds(exp, minexp, maxexp)
Returns the value of exp bounded to the limits minexp (minimum
bound) and maxexp (maximum bound). That is, if exp lies between
the bounds then exp is returned, but if it is less than minexp
then minexp is returned or if it is greater than maxexp then
maxexp is returned. This is useful for, say, constraining a
calculated value to be a valid (integer) percentage (i.e., a value
between zero and one hundred).

The following code fragments are equivalent:

y:=Bounds(x, min, max)

y:=IF x<min THEN min ELSE IF x>max THEN max ELSE x

Mod(exp1,exp2)
Returns the 16-bit remainder (or modulus) of the division of the
32-bit exp1 by the 16-bit exp2 as the regular return value (see

Multiple Return Values
), and the 16-bit result of the division as the

first optional return value. For example, the first assignment in
the following code sets a to 5 (since 26=(7*3)+5), b to 3, c to -5
and d to -3. It is important to notice that if exp1 is negative
then the modulus will also be negative. This is because of the way
integer division works: it simply discards fractional parts rather
rounding.

a,b:=Mod(26,7)
c,d:=Mod(-26,7)

Rnd(expression)
Returns a random number in the range 0 to (n-1), where expression
represents the value n. These numbers are pseudo-random, so although
you appear to get a random value from each call, the sequence of
numbers you get will probably be the same each time you run your
program. Before you use Rnd for the first time in your program you
should call it with a negative number. This decides the starting
point for the pseudo-random numbers.

RndQ(expression)



beginner 109 / 258

Returns a random 32-bit value, based on the seed expression. This
function is quicker than Rnd, but returns values in the 32-bit range,
not a specified range. The seed value is used to select different
sequences of pseudo-random numbers, and the first call to RndQ should
use a large value for the seed.

Shl(exp1,exp2)
Returns the value represented by exp1 shifted exp2 bits to the
left. For example, Shl(%0001110,2) is %0111000 and Shl(%0001011,3)
is %1011000. Shifting a number one bit to the left is generally the
same as multiplying it by two (although this isn’t true when you
shift large positive or large negative values). (The new bits
shifted in at the right are always zeroes.)

Shr(exp1,exp2)
Returns the value represented by exp1 shifted exp2 bits to the
right. For example, Shr(%0001110,2) is %0000011 and Shr(%1011010,3)
is %0001011. Shifting a number one bit to the right is generally the
same as dividing it by two. (The new bits shifted in at the left are
always zeroes.)

Long(addr), Int(addr), Char(addr)
Returns the LONG, INT or CHAR value at the address addr. These
functions should be used only when setting up a pointer and
dereferencing it in the normal way would make your program cluttered
and less readable. Use of functions like these is often called
peeking memory (especially in dialects of the BASIC language).

PutLong(addr,exp), PutInt(addr,exp), PutChar(addr,exp)
Writes the LONG, INT or CHAR value represented by exp to the
address addr. Again, these functions should be used only when
really necessary. Use of functions like these is often called
poking memory.

1.118 beginner.guide/System support functions

System support functions
------------------------

New(bytes)
Returns a pointer to a newly allocated chunk of memory, which is
bytes number of bytes. If the memory could not be allocated NIL is
returned. The memory is initialised to zero in each byte, and taken
from any available store (Fast or Chip memory, in that order of
preference). When you’ve finished with this memory you can use
Dispose to free it for use elsewhere in your program. You don’t have
to Dispose with memory you allocated with New because your program
will automatically free it when it terminates. This is not true for
memory allocated using the normal Amiga system routines.

NewR(bytes)
The same as New except that if the memory could not be allocated then
the exception "MEM" is raised (and so, in this case, the function



beginner 110 / 258

does not return). See
Exception Handling
.

NewM(bytes,type)
The same as NewR except that the type of memory (Fast or Chip) to
be allocated can be specified using flags. The flags are defined in
the module exec/memory (see

Amiga System Modules
). See the ‘Rom

Kernel Reference Manual (Libraries)’ for details about the system
function AllocMem which uses these flags in the same way. As useful
example, here’s a small program which allocates some cleared (i.e.,
zeroed) Chip memory.

MODULE ’exec/memory’

PROC main()
DEF m
m:=NewM(20, MEMF_CHIP OR MEMF_CLEAR)
WriteF(’Allocation succeeded, m = $\h\n’, m)

EXCEPT
IF exception="NEW" THEN WriteF(’Failed\n’)

ENDPROC

Dispose(address)
Used to free memory allocated with New, NewR or NewM. You should
rarely need to use this function because the memory is automatically
freed when the program terminates.

DisposeLink(complex)
Used to free the memory allocated String (see

String functions
) and

List (see
List functions
). Again, you should rarely need to use this

function because the memory is automatically freed when the program
terminates.

FastNew(bytes)
The same as NewR except it uses a very fast, recycling method of
allocating memory. The memory allocated using FastNew is, as ever,
deallocated automatically at the end of a program, and can be
deallocated before then using FastDispose. Note that only
FastDispose can be used and that it differs slightly from the
Dispose and DisposeLink functions (you have to specify the number of
bytes originally allocated when deallocating).

FastDispose(address,bytes)
Used to free the memory allocated using FastNew. The bytes
parameter must be the same as the bytes used when allocating with
FastNew, but the benefit is much faster allocation and deallocation
and generally more efficient use of memory.

CleanUp(expression=0)
Terminates the program at this point, and does the normal things an E



beginner 111 / 258

program does when it finishes. The value denoted by expression is
returned as the error code for the program. It is the replacement
for the AmigaDOS Exit routine which should never be used in an E
program. This is the only safe way of terminating a program, other
than reaching the (logical) end of the main procedure (which is by
far the most common way!).

CtrlC()
Returns TRUE if control-C has been pressed since the last call, and
FALSE otherwise. This is only sensible for programs started from the
Shell/CLI.

FreeStack()
Returns the current amount of free stack space for the program. Only
complicated programs need worry about things like stack. Recursion
is the main thing that eats a lot of stack space.

KickVersion(expression)
Returns TRUE if your Kickstart revision is at least that given by
expression, and FALSE otherwise. For instance, KickVersion(37)
checks whether you’re running with Kickstart version 37 or greater
(i.e., AmigaDOS 2.04 and above).

1.119 beginner.guide/Modules

Modules

*******

A module is the E equivalent of a C header file and an Assembly
include file. It can contain various object and constant definitions, and
also library function offsets and library base variables. This information is
necessary for the correct use of a library.

Using Modules

Amiga System Modules

Non-Standard Modules

Example Module Use

Code Modules

1.120 beginner.guide/Using Modules

Using Modules
=============



beginner 112 / 258

To use the definitions in a particular module you use the MODULE
statement at the beginning of your program (before the first procedure
definition). You follow the MODULE keyword by a comma-separated list of
strings, each of which is the filename (or path if necessary) of a module
without the .m extension (every module file ends with .m). The filenames
(and paths) are all relative to the logical volume Emodules:, which is
set-up using an assign as described in the ‘Reference Manual’, unless the
first character of the string is *. In this case the files are relative
to the directory of the current source file. For instance, the statement:

MODULE ’fred’, ’dir/barney’, ’*mymod’

will try to load the files Emodules:fred.m, Emodules:dir/barney.m and
mymod.m. If it can’t find these files or they aren’t proper modules the E
compiler will complain.

All the definitions in the modules included in this way are available
to every procedure in the program. To see what a module contains you can
use the showmodule program that comes with the Amiga E distribution.

1.121 beginner.guide/Amiga System Modules

Amiga System Modules
====================

Amiga E comes with the standard Amiga system include files as E modules.
The AmigaDOS 2.04 modules are supplied with E version 2.1, and the
AmigaDOS 3.0 modules are supplied with E version 3.0. However, modules
are much more useful in E version 3.0 (see

Code Modules
). If you want to

use any of the standard Amiga libraries properly you will need to
investigate the modules for that library. The top-level .m files in
Emodules: contain the library function offsets, and those in directories
in Emodules: contain constant and object definitions for the appropriate
library. For instance, the module asl (i.e., the file Emodules:asl.m)
contains the ASL library function offsets and libraries/asl contains the
ASL library constants and objects.

If you are going to use, say, the ASL library then you need to open the
library using the OpenLibrary function (an Amiga system function) before
you can use any of the library functions. You also need to define the
library function offsets by using the MODULE statement. However, the DOS,
Exec, Graphics and Intuition libraries don’t need to be opened and their
function offsets are built in to E. That’s why you won’t find, for
example, a dos.m file in Emodules:. The constants and objects for these
libraries still need to be included via modules (they are not built in to
E).



beginner 113 / 258

1.122 beginner.guide/Non-Standard Modules

Non-Standard Modules
====================

Several non-standard library modules are also supplied with Amiga E. To
make your own modules you need the pragma2module and iconvert programs.
These convert standard format C header files and Assembly include files to
modules. The C header file should contain pragmas for function offsets,
and the Assembly include file should contain constant and structure
definitions (the Assembly structures will be converted to objects).
However, unless you’re trying to do really advanced things you probably
don’t need to worry about any of this!

1.123 beginner.guide/Example Module Use

Example Module Use
==================

The gadget example program in Part Three shows how to use constants
from the module intuition/intuition (see

Gadgets
), and the IDCMP example

program shows the object gadget from that module being used (see

IDCMP Messages
). The following program uses the modules for the Reqtools

library, which is not a standard Amiga system library but a commonly used
one, and the appropriate modules are supplied with Amiga E. To run this
program, you will, of course, need the reqtools.library in Libs:.

MODULE ’reqtools’

PROC main()
DEF col
IF (reqtoolsbase:=OpenLibrary(’reqtools.library’,37))<>NIL

IF (col:=RtPaletteRequestA(’Select a colour’, 0,0))<>-1
RtEZRequestA(’You picked colour \d’,

’I did|I can\at remember’,0,[col],0)
ENDIF
CloseLibrary(reqtoolsbase)

ELSE
WriteF(’Could not open reqtools.library, version 37+\n’)

ENDIF
ENDPROC

The reqtoolsbase variable is the library base variable for the Reqtools
library. This is defined in the module reqtools and you must store the
result of the OpenLibrary call in this variable if you are going to use
any of the functions from the Reqtools library. (You can find out which
variable to use for other libraries by running the showmodule program on
the library module for the library.) The two functions the program uses
are RtPaletteRequestA and RtEZRequestA. Without the inclusion of the



beginner 114 / 258

reqtools module and the setting up of the reqtoolsbase variable you would
not be able to use these functions. In fact, if you didn’t have the
MODULE line you wouldn’t even be able to compile the program because
the compiler wouldn’t know where the functions came from and would
complain bitterly.

Notice that the Reqtools library is closed before the program
terminates (if it had been successfully opened). This is always
necessary: if you succeed in opening a library you must close it when
you’re finished with it.

1.124 beginner.guide/Code Modules

Code Modules
============

You can also make modules containing procedure definitions and some
global variables. These are called code modules and can be extremely
useful. This section briefly outlines their construction and use. For
in-depth details see the ‘Reference Manual’.

Code modules can be made by using the E compiler as you would to make
an executable, except you put the statement OPT MODULE at the start of the
code. Also, all definitions that are to be accessed from outside the
module need to be marked with the EXPORT keyword. Alternatively, all
definitions can be exported using OPT EXPORT at the start of the code.
You include the definitions from this module (and use the exported ones)
in your program using MODULE in the normal way.

The following code is an example of a small module:

OPT MODULE

EXPORT CONST MAX_LEN=20

EXPORT OBJECT fullname
firstname, surname

ENDOBJECT

EXPORT PROC printname(p:PTR TO fullname)
IF short(p.surname)

WriteF(’Hello, \s \s\n’, p.firstname, p.surname)
ELSE

WriteF(’Gosh, you have a long name\n’)
ENDIF

ENDPROC

PROC short(s)
RETURN StrLen(s)<MAX_LEN

ENDPROC

Everything is exported except the short procedure. Therefore, this can be
accessed only in the module. In fact, the printname procedure uses it



beginner 115 / 258

(rather artificially) to check the length of the surname. It’s not of
much use or interest apart from in the module, so that’s why it isn’t
exported. In effect, we’ve hidden the fact that printname uses short from
the user of the module.

Assuming the above code was compiled to module mymods/name, here’s how
it could be used:

MODULE ’mymods/name’

PROC main()
DEF fred:PTR TO fullname, bigname
fred.firstname:=’Fred’
fred.surname:=’Flintstone’
printname(fred)
bigname:=[’Peter’, ’Extremelybiglongprehistoricname’]
printname(bigname)

ENDPROC

Global variables in a module are a bit more problematic than the other
kinds of definitions. You cannot initialise them in the declaration or
make them reserve chunks memory. So you can’t have ARRAY, OBJECT, STRING
or LIST declarations. However, you can have pointers so this isn’t a big
problem. The reason for this limitation is that exported global variables
with the same name in a module and the main program are taken to be the
same variable, and the values are shared. So you can have an array
declaration in the main program:

DEF a[80]:ARRAY OF INT

and the appropriate pointer declaration in the module:

EXPORT DEF a:PTR TO INT

The array from the main program can then be accessed in the module! For
this reason you also need to be pretty careful about the names of your
exported variables so you don’t get unwanted sharing. Global variables
which are not exported are private to the module, so will not clash with
variables in the main program or other modules.

1.125 beginner.guide/Exception Handling

Exception Handling

******************

Often your program has to check the results of functions and do
different things if errors have occurred. For instance, if you try to
open a window (using OpenW), you may get a NIL pointer returned which
shows that the window could not be opened for some reason. In this case
you normally can’t continue with the program, so you must tidy up and
terminate. Tidying up can sometimes involve closing windows, screens and
libraries, so sometimes your error cases can make your program cluttered
and messy. This is where exceptions come in--an exception is simply an
error case, and exception handling is dealing with error cases. The



beginner 116 / 258

exception handling in E neatly separates error specific code from the real
code of your program.

Procedures with Exception Handlers

Raising an Exception

Automatic Exceptions

Raise within an Exception Handler

1.126 beginner.guide/Procedures with Exception Handlers

Procedures with Exception Handlers
==================================

A procedure with an exception handler looks like this:

PROC fred(params...) HANDLE
/* Main, real code */

EXCEPT
/* Error handling code */

ENDPROC

This is very similar to a normal procedure, apart from the HANDLE and
EXCEPT keywords. The HANDLE keyword means the procedure is going to have
an exception handler, and the EXCEPT keyword marks the end of the normal
code and the start of the exception handling code. The procedure works
just as normal, executing the code in the part before the EXCEPT, but when
an error happens you can pass control to the exception handler (i.e., the
code after the EXCEPT is executed).

1.127 beginner.guide/Raising an Exception

Raising an Exception
====================

When an error occurs (and you want to handle it), you raise an
exception using either the Raise or Throw function. You call Raise with a
number which identifies the kind of error that occurred. The code in the
exception handler is responsible for decoding the number and then doing
the appropriate thing. Throw is very similar to Raise, and the following
description of Raise also applies to Throw. The difference is that Throw
takes a second argument which can be used to pass extra information to a
handler (usually a string). The terms ‘raising’ and ‘throwing’ an
exception can be used interchangeably.

When Raise is called it immediately stops the execution of the current



beginner 117 / 258

procedure code and passes control to the exception handler of most recent
procedure which has a handler (which may be the current procedure). This
is a bit complicated, but you can stick to raising exceptions and handling
them in the same procedure, as in the next example:

CONST BIG_AMOUNT = 100000

ENUM ERR_MEM=1

PROC main() HANDLE
DEF block
block:=New(BIG_AMOUNT)
IF block=NIL THEN Raise(ERR_MEM)
WriteF(’Got enough memory\n’)

EXCEPT
IF exception=ERR_MEM

WriteF(’Not enough memory\n’)
ELSE

WriteF(’Unknown exception\n’)
ENDIF

ENDPROC

This uses an exception handler to print a message saying there wasn’t
enough memory if the call to New returns NIL. The parameter to Raise is
stored in the special variable exception in the exception handler part of
the code, so if Raise is called with a number other than ERR_MEM a message
saying "Unknown exception" will be printed.

Try running this program with a really large BIG_AMOUNT constant, so
that the New can’t allocate the memory. Notice that the "Got enough
memory" is not printed if Raise is called. That’s because the execution
of the normal procedure code stops when Raise is called, and control
passes to the appropriate exception handler. When the end of the
exception handler is reached the procedure is finished, and in this case
the program terminates because the procedure was the main procedure.

If Throw is used instead of Raise then, in the handler, the special
variable exceptioninfo will contain the value of the second parameter.
This can be used in conjunction with exception to provide the handler with
more information about the error. Here’s the above example re-written to
use Throw:

CONST BIG_AMOUNT = 100000

ENUM ERR_MEM=1

PROC main() HANDLE
DEF block
block:=New(BIG_AMOUNT)
IF block=NIL THEN Throw(ERR_MEM, ’Not enough memory\n’)
WriteF(’Got enough memory\n’)

EXCEPT
IF exception=ERR_MEM

WriteF(exceptioninfo)
ELSE

WriteF(’Unknown exception\n’)
ENDIF



beginner 118 / 258

ENDPROC

An enumeration (using ENUM) is a good way of getting different
constants for various exceptions. It’s always a good idea to use
constants for the parameter to Raise and in the exception handler, because
it makes everything a lot more readable: Raise(ERR_MEM) is much clearer
than Raise(1). The enumeration starts at one because zero is a special
exception: it usually means that no error occurred. This is useful when
the handler does the same cleaning up that would normally be done when the
program terminates successfully. For this reason there is a special form
of EXCEPT which automatically raises a zero exception when the code in the
procedure successfully terminates. This is EXCEPT DO, with the DO
suggesting to the reader that the exception handler is called even if no
error occurs. Also, the argument to the Raise function defaults to zero
(see

Default Arguments
) if it is omitted.

So, what happens if you call Raise in a procedure without an exception
handler? Well, this is where the real power of the handling mechanism
comes to light. In this case, control passes to the exception handler of
the most recent procedure with a handler. If none are found then the
program terminates. Recent means one of the procedures involved in
calling your procedure. So, if the procedure fred calls barney, then when
barney is being executed fred is a recent procedure. Because the main
procedure is where the program starts it is a recent procedure for every
other procedure in the program. This means, in practice:

* If you define fred to be a procedure with an exception handler then
any procedures called by fred will have their exceptions handled by
the handler in fred if they don’t have their own handler.

* If you define main to be a procedure with an exception handler then
any exceptions that are raised will always be dealt with by some
exception handling code (i.e., the handler of main or some other
procedure).

Here’s a more complicated example:

ENUM FRED=1, BARNEY

PROC main()
WriteF(’Hello from main\n’)
fred()
barney()
WriteF(’Goodbye from main\n’)

ENDPROC

PROC fred() HANDLE
WriteF(’ Hello from fred\n’)
Raise(FRED)
WriteF(’ Goodbye from fred\n’)

EXCEPT
WriteF(’ Handler fred: \d\n’, exception)

ENDPROC

PROC barney()



beginner 119 / 258

WriteF(’ Hello from barney\n’)
Raise(BARNEY)
WriteF(’ Goodbye from barney\n’)

ENDPROC

When you run this program you get the following output:

Hello from main
Hello from fred
Handler fred: 1
Hello from barney

This is because the fred procedure is terminated by the Raise(FRED) call,
and the whole program is terminated by the Raise(BARNEY) call (since
barney and main do not have handlers).

Now try this:

ENUM FRED=1, BARNEY

PROC main()
WriteF(’Hello from main\n’)
fred()
WriteF(’Goodbye from main\n’)

ENDPROC

PROC fred() HANDLE
WriteF(’ Hello from fred\n’)
barney()
Raise(FRED)
WriteF(’ Goodbye from fred\n’)

EXCEPT
WriteF(’ Handler fred: \d\n’, exception)

ENDPROC

PROC barney()
WriteF(’ Hello from barney\n’)
Raise(BARNEY)
WriteF(’ Goodbye from barney\n’)

ENDPROC

When you run this you get the following output:

Hello from main
Hello from fred
Hello from barney
Handler fred: 2

Goodbye from main

Now the fred procedure calls barney, so main and fred are recent
procedures when Raise(BARNEY) is executed, and therefore the fred
exception handler is called. When this handler finishes the call to fred
in main is finished, so the main procedure is completed and we see the
‘Goodbye’ message. In the previous program the Raise(BARNEY) call did not
get handled and the whole program terminated at that point.



beginner 120 / 258

1.128 beginner.guide/Automatic Exceptions

Automatic Exceptions
====================

In the previous section we saw an example of raising an exception when
a call to New returned NIL. We can re-write this example to use
automatic exception raising:

CONST BIG_AMOUNT = 100000

ENUM ERR_MEM=1

RAISE ERR_MEM IF New()=NIL

PROC main() HANDLE
DEF block
block:=New(BIG_AMOUNT)
WriteF(’Got enough memory\n’)

EXCEPT
IF exception=ERR_MEM

WriteF(’Not enough memory\n’)
ELSE

WriteF(’Unknown exception\n’)
ENDIF

ENDPROC

The only difference is the removal of the IF which checked the value of
block, and the addition of a RAISE part. This RAISE part means that
whenever the New function is called in the program, the exception ERR_MEM
will be raised if it returns NIL (i.e., the exception ERR_MEM is
automatically raised). This unclutters the program by removing a lot of
error checking IF statements.

The precise form of the RAISE part is:

RAISE exception IF function() compare value ,
exception2 IF function2() compare2 value2 ,
...

The exception is a constant (or number) which represents the exception
to be raised, function is the E built-in or system function to be
automatically checked, value is the return value to be checked against,
and compare is the method of checking (i.e., =, <>, <, <=, > or >=).
This mechanism only exists for built-in or library functions because they
would otherwise have no way of raising exceptions. The procedures you
define yourself can, of course, use Raise to raise exceptions in a much
more flexible way.



beginner 121 / 258

1.129 beginner.guide/Raise within an Exception Handler

Raise within an Exception Handler
=================================

If you call Raise within an exception handler then control passes to
the next most recent handler. In this way you can write procedures which
have handlers that perform local tidying up. By using Raise at the end of
the handler code you can invoke the next layer of tidying up.

As an example we’ll use the Amiga system functions AllocMem and FreeMem
which are like the built-in function New and Dispose, but the memory
allocated by AllocMem must be deallocated (using FreeMem) when it’s
finished with, before the end of the program.

CONST SMALL=100, BIG=123456789

ENUM ERR_MEM=1

RAISE ERR_MEM IF AllocMem()=NIL

PROC main()
allocate()

ENDPROC

PROC allocate() HANDLE
DEF mem=NIL
mem:=AllocMem(SMALL, 0)
morealloc()
FreeMem(mem, SMALL)

EXCEPT
IF mem THEN FreeMem(mem, SMALL)
WriteF(’Handler: deallocating "allocate" local memory\n’)

ENDPROC

PROC morealloc() HANDLE
DEF more=NIL, andmore=NIL
more:=AllocMem(SMALL, 0)
andmore:=AllocMem(BIG, 0)
WriteF(’Allocated all the memory!\n’)
FreeMem(andmore, BIG)
FreeMem(more, SMALL)

EXCEPT
IF andmore THEN FreeMem(andmore, BIG)
IF more THEN FreeMem(more, SMALL)
WriteF(’Handler: deallocating "morealloc" local memory\n’)
Raise(ERR_MEM)

ENDPROC

The calls to AllocMem are automatically checked, and if NIL is returned
the exception ERR_MEM is raised. The handler in the allocate procedure
checks to see if it needs to free the memory pointed to by mem, and the
handler in the morealloc checks andmore and more. At the end of the
morealloc handler is the call Raise(ERR_MEM). This passes control to the
exception handler of the allocate procedure, since allocate called
morealloc.



beginner 122 / 258

There’s a couple of subtle points to notice about this example.
Firstly, the memory variables are all initialised to NIL. This is because
the automatic exception raising on AllocMem will result in the variables
not being assigned if the call returns NIL (i.e., the exception is raised
before the assignment takes place), and the handler needs them to be NIL
if AllocMem fails. Of course, if AllocMem does not return NIL the
assignments work as normal.

Secondly, the IF statements in the handlers check the memory pointer
variables do not contain NIL by using their values as truth values. Since
NIL is actually zero, a non-NIL pointer will be non-zero, i.e., true in
the IF check. This shorthand is often used, and so you should be aware of
it.

It is quite common that an exception handler will want to raise the
same exception after it has done its processing. The function ReThrow
(which has no arguments) can be used for this purpose. It will re-raise
the exception, but only if the exception is not zero (since this special
value means that no error occurred). If the exception is zero then this
function has no effect. In fact, the following code fragments (within a
handler) are equivalent:

ReThrow()

IF exception THEN Throw(exception, exceptioninfo)

There are two examples, in Part Three, of how to use an exception
handler to make a program more readable: one deals with using data files
(see

String Handling and I-O
) and the other deals with opening screens and

windows (see
Screens
).

1.130 beginner.guide/Memory Allocation

Memory Allocation

*****************

When a program is running memory is being used in various different
ways. In order to use any memory it must first be allocated, which is
simply a way of marking memory as being ‘in use’. This is to prevent the
same piece of memory being used for different data storage (e.g., by
different programs), and so helps prevent corruption of the data stored
there. There are two general ways in which memory can be allocated:
dynamically and statically.

Static Allocation



beginner 123 / 258

Deallocation of Memory

Dynamic Allocation

NEW and END Operators

1.131 beginner.guide/Static Allocation

Static Allocation
=================

Statically allocated memory is memory allocated by the program for
variables and static data like string constants, lists and typed lists
(see

Static data
). Every variable in a program requires some memory in

which to store its value. Variables declared to be of type ARRAY, LIST,
STRING or any object require two lots of memory: one to hold the value of
the pointer and one to hold the large amount of data (e.g., the elements
in an ARRAY). In fact, such declarations are merely PTR TO type
declarations together with an initialisation of the pointer to the address
of some (statically) allocated memory to hold the data. The following
example shows very similar declarations, with the difference being that in
the second case (using PTR) only memory to hold the pointer values is
allocated. The first case also allocates memory to hold the appropriate
size of array, object and E-string.

DEF a[20]:ARRAY, m:myobj, s[10]:STRING

DEF a:PTR TO CHAR, m:PTR TO myobj, s:PTR TO CHAR

The pointers in the second case are not initialised by the declaration
and, therefore, they are not valid pointers. This means that they should
not be dereferenced in any way, until they have been initialised to the
address of some allocated memory. This usually involves dynamic
allocation of memory (see

Dynamic Allocation
).

1.132 beginner.guide/Deallocation of Memory

Deallocation of Memory
======================

When memory is allocated it is, conceptually, marked as being ‘in use’.
This means that this piece of memory cannot be allocated again, so a
different piece will be allocated (if any is available) when the program
wants to allocate some more. In this way, variables are allocated
different pieces of memory, and so their values can be distinct. But



beginner 124 / 258

there is only a certain amount of memory available, and if it could not be
marked as ‘not in use’ again it would soon run out (and the program would
come to a nasty end). This is what deallocation does: it marks
previously allocated memory as being ‘not in use’ and so makes it
available for allocation again. However, memory should be deallocated
only when it is actually no longer in use, and this is where things get a
bit complicated.

Memory is such a vital resource in every computer that it is important
to use as little of it as necessary and to deallocate it whenever possible.
This is why a programming language like E handles most of the memory
allocation for variables. The memory allocated for variables can be
automatically deallocated when it is no longer possible for the program to
use that variable. However, this automatic deallocation is not useful for
global variables, since they can be used from any procedure and so can be
deallocated only when the program terminates. A procedure’s local
variables, on the other hand, are allocated when the procedure is called
but cannot be used after the procedure returns. They can, therefore, be
deallocated when the procedure returns.

Pointers, as always, can cause big problems. The following example
shows why you need to be careful when using pointers as the return value
of a procedure.

/* This is an example of what *NOT* to do */
PROC fullname(first, last)

DEF full[40]:STRING
StrCopy(full, first)
StrAdd(full, ’ ’)
StrAdd(full, last)

ENDPROC full

PROC main()
WriteF(’Name is \s\n’, fullname(’Fred’, ’Flintstone’))

ENDPROC

On first sight this seems fine, and, in fact, it may even work correctly
if you run it once or twice (but be careful: it could crash your machine).
The problem is that the procedure fullname returns the value of the local
variable full, which is a pointer to some statically allocated memory for
the E-string and this memory will be deallocated when the procedure
returns. This means that the return value of any call to fullname is the
address of recently deallocated memory, so it is invalid to dereference it.
But the call to WriteF does just that: it dereferences the result of
fullname in order to print the E-string it points to. This is a very
common problem, because it is such an easy thing to do. The fact that it
may, on many occasions, appear to work makes it much harder to find, too.
The solution, in this case, is to use dynamic allocation (see

Dynamic Allocation
).

If you’re still a bit sceptical that this really is a problem, try the
above fullname procedure definition with either of these replacement main
procedures, but be aware, again, that each one has the potential to crash
your machine.



beginner 125 / 258

/* This might not print the correct string */
PROC main()

DEF f
f:=fullname(’Fred’, ’Flintstone’)
WriteF(’Name is \s\n’, f)

ENDPROC

/* This will definitely print g instead of f */
PROC main()

DEF f, g
f:=fullname(’Fred’, ’Flintstone’)
g:=fullname(’Barney’, ’Rubble’)
WriteF(’Name is \s\n’, f)

ENDPROC

(The reason why things go wrong is outlined above, but the reasons why
each prints what it does is beyond the scope of this Guide.)

1.133 beginner.guide/Dynamic Allocation

Dynamic Allocation
==================

Dynamically allocated memory is any memory that is not statically
allocated. To allocate memory dynamically you can use the List and String
functions, all flavours of New, and the versatile NEW operator. But
because the memory is dynamically allocated it must be explicitly
deallocated when no longer needed. In all the above cases, though, any
memory that is still allocated when the program terminates will be
deallocated automatically.

Another way to allocate memory dynamically is to use the Amiga system
functions based on AllocMem. However, these functions require that the
memory allocated using them be deallocated (using functions like FreeMem)
before the program terminates, or else it will never be deallocated (not
until your machine is rebooted, anyway). It is safer, therefore, to try
to use the E functions for dynamic allocation whenever possible.

There are many reasons why you might want to use dynamic allocation,
and most of them involve initialisation of pointers. For example, the
declarations in the section about static allocation can be extended to
give initialisations for the pointers declared in the second DEF line (see

Static Allocation
).

DEF a[20]:ARRAY, m:myobj, s[10]:STRING

DEF a:PTR TO CHAR, m:PTR TO myobj, s:PTR TO CHAR
a:=New(20)
m:=New(SIZEOF myobj)
s:=String(20)



beginner 126 / 258

These are initialisations to dynamically allocated memory, whereas the
first line of declarations initialise similar pointers to statically
allocated memory. If these sections of code were part of a procedure
then, since they would now be local variables, there would be one other,
significant difference: the dynamically allocated memory would not
automatically be deallocated when the procedure returns, whereas the
statically allocated memory would. This means that we can solve the
deallocation problem (see

Deallocation of Memory
).

/* This is the correct way of doing it */
PROC fullname(first, last)

DEF full
full:=String(40)
StrCopy(full, first)
StrAdd(full, ’ ’)
StrAdd(full, last)

ENDPROC full

PROC main()
DEF f, g
WriteF(’Name is \s\n’, fullname(’Fred’, ’Flintstone’))
f:=fullname(’Fred’, ’Flintstone’)
g:=fullname(’Barney’, ’Rubble’)
WriteF(’Name is \s\n’, f)

ENDPROC

The memory for the E-string pointed to by full is now allocated
dynamically, using String, and is not deallocated until the end of the
program. This means that it is quite valid to pass the value of full as
the result of the procedure fullname, and it is quite valid to dereference
the result by printing it using WriteF. However, this has caused one last
problem: the memory is not deallocated until the end of the program, so is
potentially wasted since it could be used, for example, to hold the
results of subsequent calls. Of course, the memory can be deallocated
only when the data it stores is no longer required. The following
replacement main procedure shows when you might want to deallocate the
E-string (using DisposeLink).

PROC main()
DEF f, g
f:=fullname(’Fred’, ’Flintstone’)
WriteF(’Name is \s, f points to $\h\n’, f, f)

/* Try this with and without the next DisposeLink line */
DisposeLink(f)
g:=fullname(’Barney’, ’Rubble’)
WriteF(’Name is \s, g points to $\h\n’, g, g)
DisposeLink(g)

ENDPROC

If you run this with the DisposeLink(f) line you’ll probably find that
g will be a pointer to the same memory as f. This is because the call
to DisposeLink has deallocated the memory pointed to by f, so it can be
reused to store the E-string pointed to by g. If you comment out (or
delete) the DisposeLink line, then you will find that f and g always point
to different memory.



beginner 127 / 258

In some ways it is best to never do any deallocation, because of the
problems you can get into if you deallocate memory too early (i.e., before
you’ve finished with the data it contains). Of course, it is safe (but
temporarily wasteful) to do this with the E dynamic allocation functions,
but it is very wasteful (and wrong) to do this with the Amiga system
functions like AllocMem.

Another benefit of using dynamic allocation is that the size of the
arrays, E-lists and E-strings that can be created can be the result of any
expression, so is not restricted to constant values. (Remember that the
size given on ARRAY, LIST and STRING declarations must be a constant.)
This means that the fullname procedure can be made more efficient and
allocate only the amount of memory it needs for the E-string it creates.

PROC fullname(first, last)
DEF full
/* The extra +1 is for the added space */
full:=String(StrLen(first)+StrLen(last)+1)
StrCopy(full, first)
StrAdd(full, ’ ’)
StrAdd(full, last)

ENDPROC full

However, it may be very complicated or inefficient to calculate the
correct size. In these cases, a quick, constant estimate might be better,
overall.

The various functions for allocating memory dynamically have
corresponding functions for deallocating that memory. The following table
shows some of the more common pairings.

Allocation Deallocation
------------------------------
New Dispose
NewR Dispose
List DisposeLink
String DisposeLink
NEW END
FastNew FastDispose
AllocMem FreeMem
AllocVec FreeVec
AllocDosObject FreeDosObject

NEW and END are versatile and powerful operators, discussed in the
following section. The functions beginning with Alloc- are Amiga system
functions and are paired with similarly suffixed functions with a Free-
prefix. See the ‘Rom Kernel Reference Manual’ for more details.

1.134 beginner.guide/NEW and END Operators

NEW and END Operators
=====================



beginner 128 / 258

To help deal with dynamic allocation and deallocation of memory there
are two, powerful operators, NEW and END. The NEW operator is very
versatile, and similar in operation to the New family of built-in
functions (see

System support functions
). The END operator is the

deallocating complement of NEW (so it is similar to the Dispose family of
built-in functions). The major difference between NEW and the various
flavours of New is that NEW allocates memory based on the types of its
arguments.

Object and simple typed allocation

Array allocation

List and typed list allocation

OOP object allocation

1.135 beginner.guide/Object and simple typed allocation

Object and simple typed allocation
----------------------------------

The following sections of code are roughly equivalent and serve to show
the function of NEW, and how it is closely related to NewR. (The type
can be any object or simple type.)

DEF p:PTR TO type
NEW p

DEF p:PTR TO type
p:=NewR(SIZEOF type)

Notice that the use of NEW is not like a function call, as there are no
parentheses around the parameter p. This is because NEW is an operator
rather than a function. It works differently from a function, since it
also needs to know the types of its arguments. This means that the
declaration of p is very important, since it governs how much memory is
allocated by NEW. The version using NewR explicitly gives the amount of
memory to be allocated (using the SIZEOF operator), so in this case the
declared type of p is not so important for correct allocation.

The next example shows how NEW can be used to initialise several
pointers at once. The second section of code is roughly equivalent, but
uses NewR. (Remember that the default type of a variable is LONG, which
is actually PTR TO CHAR.)

DEF p:PTR TO LONG, q:PTR TO myobj, r
NEW p, q, r



beginner 129 / 258

DEF p:PTR TO LONG, q:PTR TO myobj, r
p:=NewR(SIZEOF LONG)
q:=NewR(SIZEOF myobj)
r:=NewR(SIZEOF CHAR)

These first two examples have shown the statement form of NEW. There
is also an expression form, which has one parameter and returns the
address of the newly allocated memory as well as initialising the argument
pointer to this address.

DEF p:PTR TO myobj, q:PTR TO myobj
q:=NEW p

DEF p:PTR TO myobj, q:PTR TO myobj
q:=(p:=NewR(SIZEOF type))

This may not seem desperately useful, but it’s also the way that NEW is
used to allocate copies of lists and typed lists (see

List and typed list allocation
).

To deallocate memory allocated using NEW you use the END statement with
the pointers that you want to deallocate. To work properly, END requires
that the type of each pointer matches the type used when it was allocated
with NEW. Failure to do this will result in an incorrect amount of memory
being deallocated, and this can cause many subtle problems in a program.
You must also be careful not to deallocate the same memory twice, and to
this end the pointers given to END are re-initialised to NIL after the
memory they point to is deallocated (it is quite safe to use END with a
pointer which is NIL). This does not catch all problems, however, since
more than one pointer can point to the same piece of memory, as shown in
the example below.

DEF p:PTR TO LONG, q:PTR TO LONG
q:=NEW p
p[]:=-24
q[]:=613
END p
/* p is now NIL, but q is now invalid but not NIL */

The first assignment initialises q to be the same as p (which is
initialised by NEW). Both the next two assignments change the value
pointed to by both p and q. The memory allocated to store this value is
then deallocated, using END, and this also sets p to NIL. However, the
address stored in q is not altered, and still points to the memory that
has just been deallocated. This means that q now has a plausible, but
invalid, pointer value. The only thing that can safely be done with q is
re-initialise it. One of the worst things that could be done is to use it
with END, which would deallocate the same memory again, and potentially
crash your machine. So, in summary, don’t deallocate the same pointer
value more than once, and keep track of which variables point to the same
memory as others.

Just as a use of NEW has a simple (but rough) equivalent using NewR,
END has an equivalent using Dispose, as shown by the following
sections of code.



beginner 130 / 258

END p

IF p
Dispose(p)
p:=NIL

ENDIF

In fact, it’s a tiny bit more complicated than that, since OOP objects are
allocated and deallocated using NEW and END (see

Object Oriented E
).

1.136 beginner.guide/Array allocation

Array allocation
----------------

Arrays can also be allocated using NEW, and this works in a very
similar way to that outlined in the previous section. The difference is
that the size of the array must also be supplied, in both the use of NEW
and END. Of course, the size supplied to END must be the same as the size
supplied to the appropriate use of NEW. All this extra effort also gains
you the ability to create an array of a size which is not a constant
(unlike variables of type ARRAY). This means that the size supplied to
NEW and END can be the result of an arbitrary expression.

DEF a:PTR TO LONG, b:PTR TO myobj, s
NEW a[10] /* A dynamic array of LONG */
s:=my_random(20)
NEW b[s] /* A dynamic array of myobj */
/* ...some other code... */
END a[10], b[s]

The my_random function stands for some arbitrary calculation, to show that
s does not have to be a constant. This form of NEW can also be used as an
expression, as before.

1.137 beginner.guide/List and typed list allocation

List and typed list allocation
------------------------------

Lists and typed lists are usually static data, but NEW can be used to
create dynamically allocated versions. This form of NEW can be used only
as an expression, and it takes the list (or typed list) as its argument
and returns the address of the dynamically allocated copy of the list.
Deallocation of the memory allocated in this way is a bit more complicated
than before, but you can, of course, let it be deallocated automatically



beginner 131 / 258

at the end of the program.

The following example shows how simple it is to use NEW to cure the
static data problem described previously (see

Static data
). The

difference from the original, incorrect program is very subtle.

PROC main()
DEF i, a[10]:ARRAY OF LONG, p:PTR TO LONG
FOR i:=0 TO 9

a[i]:=NEW [1, i, i*i]
/* a[i] is now dynamically allocated */

ENDFOR
FOR i:=0 TO 9

p:=a[i]
WriteF(’a[\d] is an array at address \d\n’, i, p)
WriteF(’ and the second element is \d\n’, p[1])

ENDFOR
ENDPROC

The minor alteration is to prefix the list with NEW, thereby making the
list dynamic. This means that each a[i] is now a different list, rather
than the same, static list of the original version of the program.

Typed lists are allocated in a similar way, and the following example
also shows how to deallocate this memory. Basically, you need to know how
long the new array is (i.e., how many elements there are), since a typed
list is really just an initialised array. You can then deallocate it like
a normal array, remembering to use an appropriately typed pointer.
Object-typed lists are restricted (when used with NEW) to an array of at
most one object, so is useful only for allocating an initialised object
(not really an array). Notice how, in the following code, the pointer q
can be treated both as an object and as an array of one object (see

Element selection and element types
).

OBJECT myobj
x:INT, y:LONG, z:INT

ENDOBJECT

PROC main()
DEF p:PTR TO INT, q:PTR TO myobj
p:=NEW [1, 9, 3, 7, 6]:INT
q:=NEW [1, 2]:myobj
WriteF(’Last element in array p is \d\n’, p[4])
WriteF(’Object q is x=\d, y=\d, z=\d\n’,

q.x, q.y, q.z)
WriteF(’Array q is q[0].x=\d, q[0].y=\d, q[0].z=\d\n’,

q[].x, q[].y, q[].z)
END p[5], q

ENDPROC

The dynamically allocated version of an object-typed list differs from the
static version in another way: it always has memory allocated for a whole
number of objects, so a partially initialised object is padded with zero



beginner 132 / 258

elements. The static version does not allocate this extra padding, so you
must be careful not to access any element beyond those mentioned in the
list.

The deallocation of NEW copies of normal lists can, as ever, be left to
be done automatically at the end of the program. If you want to
deallocate them before this time you must use the function
FastDisposeList, passing the address of the list as the only argument.
You must not use END or any other method of deallocation. FastDisposeList
is the only safe way of deallocating lists allocated using NEW.

1.138 beginner.guide/OOP object allocation

OOP object allocation
---------------------

Currently, the only way to create OOP objects in E is to use NEW and
the only safe way to destroy them is to use END. This is probably the
most common use of NEW and END and is described in detail later (see

Objects in E
).

1.139 beginner.guide/Floating-Point Numbers

Floating-Point Numbers

**********************

Floating-point or real numbers can be used to represent both very
small fractions and very large numbers. However, unlike a LONG which can
hold every integer in a certain range (see

Variable types
), floating-point

numbers have limited accuracy. Be warned, though: using floating-point
arithmetic in E is quite complicated and most problems can be solved
without using floating-point numbers, so you may wish to skip this chapter
until you really need to use them.

Floating-Point Values

Floating-Point Calculations

Floating-Point Functions

Accuracy and Range



beginner 133 / 258

1.140 beginner.guide/Floating-Point Values

Floating-Point Values
=====================

Floating-point values in E are written just like you might expect and
are stored in LONG variables:

DEF x
x:=3.75
x:=-0.0000367
x:=275.0

You must remember to use a decimal point (without any spaces around it) in
the number if you want it to be considered a floating-point number, and
this is why a trailing .0 was used on the number in the last assignment.
At present you can’t express every floating-point value in this way; the
compiler may complain that the value does not fit in 32-bits if you try to
use more than about nine digits in a single number. You can, however, use
the various floating-point maths functions to calculate any value you want
(see

Floating-Point Functions
).

1.141 beginner.guide/Floating-Point Calculations

Floating-Point Calculations
===========================

Since a floating-point number is stored in a LONG variable it would
normally be interpreted as an integer, and this interpretation will
generally not give a number anything like the intended floating-point
number. To use floating-point numbers in expressions you must use the
(rather complicated) floating-point conversion operator, which is the !
character. This converts expressions and the normal maths and comparison
operators to and from floating-point.

All expressions are, by default, integer expressions. That is, they
represent LONG integer values, rather than floating-point values. The
first time a ! occurs in an expression the value of the expression so far
is converted to floating-point and all the operators and variables after
this point are considered floating-point. The next time it occurs the
(floating-point) value of the expression so far is converted to an
integer, and the following operators and variables are considered integer
again. You can use ! as often as necessary within an expression. Parts
of an expression in parentheses are treated as separate expressions, so
are, by default, integer expressions (this, includes function call
arguments).

The integer/floating-point conversions performed by ! are not simple.
They involve rounding and also bounding. Conversion, for example, from
integer to floating-point and back again will generally not result in the



beginner 134 / 258

original integer value.

Here’s a few commented examples, where f always holds a floating-point
number, and i and j always hold integers:

DEF f, i, j
i:=1
f:=1.0
f:=i! -> i converted to floating-point (1.0)
f:=6.2
i:=!f! -> the expression f is floating-point,

-> then converted to integer (6)

In the first assignment, the integer value one is assigned to i. In the
second, the floating-point value 1.0 is assigned to f. The expression on
the right-hand side of third assignment is considered to be an integer
until the ! is met, at which point it is converted to the nearest
floating-point value. So, f is assigned the floating-point value of one
(i.e., 1.0), just like it is by the second assignment. The expression in
the final assignment needs to start off as floating-point in order to
interpret the value stored in f as floating-point. The expression
finishes by converting back to integer. The overall result is to turn the
floating-point value of f into the nearest integer (in this case, six).

The assignments below are more complicated, but should be
straight-forward to follow. Again, f always holds a floating-point
number, and i and j always hold integers.

f:=!f*f -> the whole expression is floating-point,
-> and f is squared (6.2*6.2)

f:=!f*(i!) -> the whole expression is floating-point,
-> i is converted to floating-point and
-> multiplied by f

j:=!f/(i!)! -> the whole division is floating-point,
-> with the result converted to integer

j:=!f!/i -> floating-point f is converted to integer
-> and is (integer) divided by i

IF !f<230.0 THEN RETURN 0 -> floating-point comparison <
IF !f>(i!) THEN RETURN 0 -> i converted to floating-point,

-> then compared to f

If the ! were omitted from the first assignment, then not only would the
value in f be interpreted (incorrectly) as integer, but the multiplication
performed would be integer multiplication, rather than floating-point. In
the second assignment, the parentheses around the expression involving i
are crucial. Without the parentheses the value stored in i would be
interpreted as floating-point. This would be wrong because i actually
stores an integer value, so parentheses are used to start a new expression
(which defaults to being integer). The value of i is then interpreted
correctly, and finally converted to floating-point (by the ! just before
the closing parenthesis). The (floating-point) multiplication then takes
place with two floating-point values, and the result is stored in f. In
the last two assignments (using division), j is assigned roughly the same
value. However, the expression in the first assignment allows for greater
accuracy, since it uses floating-point division. This means the result
will be rounded, whereas it is truncated when integer division is used.



beginner 135 / 258

One important thing to know about floating-point numbers in E is that
the following assignments store the same value in g (again, f stores a
floating-point number). This is because no computation is performed and
no conversion happens: the value in f is simply copied to g. This is
especially important for function calls, as we shall see in the next
section. Strictly speaking, however, the second version is better, since
it shows (to the reader of the code) that the value in f is meant to be
floating-point.

g:=f
g:=!f

1.142 beginner.guide/Floating-Point Functions

Floating-Point Functions
========================

There are functions for formatting floating-point numbers to E-strings
(so that they can be printed) and for decoding floating-point numbers from
strings. There are also a number of built-in, floating-point functions
which compute some of the less common mathematical functions, such as the
various trigonometric functions.

RealVal(string)
This works in a similar way to Val for extracting integers from a
string. The decoded floating-point value is returned as the regular
return value, and the number of characters of string that were read
to make the number is returned as the first optional return value.
If a floating-point value could not be decoded from the string then
zero is returned as the optional return value and the regular return
value will be zero (i.e., 0.0).

RealF(e-string,float,digits)
Converts the floating-point value float into a string which is stored
in e-string. The number of digits to use after the decimal point
is specified by digits, which can be zero to eight. The
floating-point value is rounded to the specified number of digits. A
value of zero for digits gives a result with no fractional part and
no decimal point. The e-string is returned by this function, and
this makes it easy to use with WriteF.

PROC main()
DEF s[20]:STRING, f, i
f:=21.60539
FOR i:=0 TO 8

WriteF(’f is \s (using digits=\d)\n’, RealF(s, f, i), i)
ENDFOR

ENDPROC

Notice that the floating-point argument, f, to RealF does not need a
leading ! because we are simply passing its value and not performing
a computation with it. The program should generate the following
output:



beginner 136 / 258

f is 22 (using digits=0)
f is 21.6 (using digits=1)
f is 21.61 (using digits=2)
f is 21.605 (using digits=3)
f is 21.6054 (using digits=4)
f is 21.60539 (using digits=5)
f is 21.605390 (using digits=6)
f is 21.6053900 (using digits=7)
f is 21.60539000 (using digits=8)

Fsin(float), Fcos(float), Ftan(float)
These compute the sine, cosine and tangent (respectively) of the
supplied float angle, which is specified in radians.

Fabs(float)
Returns the absolute value of float, much like Abs does for
integers.

Ffloor(float), Fceil(float)
The Ffloor function rounds a floating-point value down to the
nearest, whole floating-point value. The Fceil function rounds it up.

Fsqrt(float)
Returns the square root of float.

Fpow(x,y), Fexp(float)
The Fpow function returns the value of x raised to the power of y
(which are both floating-point values). The Fexp function returns
the value of e raised to the power of float, where e is the
mathematically special value (roughly 2.718282). ‘Raising to a
power’ is known as exponentiation.

Flog10(float), Flog(float)
The Flog10 function returns the log to base ten of float (the
common logarithm). The Flog function returns the log to base e of
float (the natural logarithm). Flog10 and Fpow are linked in the
following way (ignoring floating-point inaccuracies):

x = Fpow(10.0, Flog10(x))

Flog and Fexp are similarly related (Fexp could be used again, using
2.718282 as the first argument in place of 10.0).

x = Fexp(Flog(x))

Here’s a small program which uses a few of the above functions, and
shows how to define functions which use and/or return floating-point
values.

DEF f, i, s[20]:STRING

PROC print_float()
WriteF(’\tf is \s\n’, RealF(s, !f, 8))

ENDPROC

PROC print_both()
WriteF(’\ti is \d, ’, i)



beginner 137 / 258

print_float()
ENDPROC

/* Square a float */
PROC square_float(f) IS !f*f

/* Square an integer */
PROC square_integer(i) IS i*i

/* Converts a float to an integer */
PROC convert_to_integer(f) IS Val(RealF(s, !f, 0))

/* Converts an integer to a float */
PROC convert_to_float(i) IS RealVal(StringF(s, ’\d’, i))

/* This should be the same as Ftan */
PROC my_tan(f) IS !Fsin(!f)/Fcos(!f)

/* This should show float inaccuracies */
PROC inaccurate(f) IS Fexp(Flog(!f))

PROC main()
WriteF(’Next 2 lines should be the same\n’)
f:=2.7; i:=!f!
print_both()
f:=2.7; i:=convert_to_integer(!f)
print_both()

WriteF(’Next 2 lines should be the same\n’)
i:=10; f:=i!
print_both()
i:=10; f:=convert_to_float(i)
print_both()

WriteF(’f and i should be the same\n’)
i:=square_integer(i)
f:=square_float(f)
print_both()

WriteF(’Next 2 lines should be the same\n’)
f:=Ftan(.8)
print_float()
f:=my_tan(.8)
print_float()

WriteF(’Next 2 lines should be the same\n’)
f:=.35
print_float()
f:=inaccurate(f)
print_float()

ENDPROC

The convert_to_integer and convert_to_float functions perform similar
conversions to those done by ! when it occurs in an expression. To make
things more explicit, there are a lot of unnecessary uses of !, and these
are when f is passed directly as a parameter to a function (in these
cases, the ! could safely be omitted). All of the examples have the



beginner 138 / 258

potential to give different results where they ought to give the same, and
this is due to the inaccuracy of floating-point numbers. The last example
has been carefully chosen to show this.

1.143 beginner.guide/Accuracy and Range

Accuracy and Range
==================

A floating-point number is just another 32-bit value, so can be stored
in LONG variables. It’s just the interpretation of the 32-bits which
makes them different. A floating-point number can range from numbers as
small as 1.3E-38 to numbers as large as 3.4E+38 (that’s very small and
very large if you don’t understand the scientific notation!). However,
not every number in this range can accurately be represented, since the
number of significant digits is roughly eight.

Accuracy is an important consideration when trying to compare two
floating-point numbers and when combining floating-point values after
dividing them. It is usually best to check that a floating-point value is
in a small range of values, rather than just a particular value. And when
combining values, allow for a small amount of error due to rounding etc.
See the ‘Reference Manual’ for more details about the implementation of
floating-point numbers.

1.144 beginner.guide/Recursion

Recursion

*********

A recursive function is very much like a function which uses a loop.
Basically, a recursive function calls itself (usually after some
manipulation of data) rather than iterating a bit of code using a loop.
There are also recursive types, which are objects with elements which have
the object type (in E these would be pointers to objects). We’ve already
seen a recursive type: linked lists, where each element in the list
contains a pointer to the next element (see

Linked Lists
).

Recursive definitions are normally much more understandable than an
equivalent iterative definition, and it’s usually easier to use recursive
functions to manipulate this data from a recursive type. However,
recursion is by no means a simple topic. Read on at your own peril!

Factorial Example

Mutual Recursion



beginner 139 / 258

Binary Trees

Stack (and Crashing)

Stack and Exceptions

1.145 beginner.guide/Factorial Example

Factorial Example
=================

The normal example for a recursive definition is the factorial
function, so let’s not be different. In school mathematics the symbol !
is used after a number to denote the factorial of that number (and only
positive integers have factorials). n! is n-factorial, which is defined
as follows:

n! = n * (n-1) * (n-2) * ... * 1 (for n >= 1)

So, 4! is 4*3*2*1, which is 24. And, 5! is 5*4*3*2*1, which is 120.

Here’s the iterative definition of a factorial function (we’ll Raise an
exception is the number is not positive, but you can safely leave this
check out if you are sure the function will be called only with positive
numbers):

PROC fact_iter(n)
DEF i, result=1
IF n<=0 THEN Raise("FACT")
FOR i:=1 TO n

result:=result*i
ENDFOR

ENDPROC result

We’ve used a FOR loop to generate the numbers one to n (the parameter to
the fact_iter), and result holds the intermediate and final results. The
final result is returned, so check that fact_iter(4) returns 24 and
fact_iter(5) returns 120 using a main procedure something like this:

PROC main()
WriteF(’4! is \d\n5! is\d\n’, fact_iter(4), fact_iter(5))

ENDPROC

If you’re really observant you might have noticed that 5! is 5*4!, and,
in general, n! is n*(n-1)!. This is our first glimpse of a recursive
definition--we can define the factorial function in terms of itself. The
real definition of factorial is (the reason why this is the real
definition is because the ‘...’ in the previous definition is not
sufficiently precise for a mathematical definition):

1! = 1
n! = n * (n-1)! (for n > 1)



beginner 140 / 258

Notice that there are now two cases to consider. The first case is called
the base case and gives an easily calculated value (i.e., no recursion
is used). The second case is the recursive case and gives a definition
in terms of a number nearer the base case (i.e., (n-1) is nearer 1 than n,
for n>1). The normal problem people get into when using recursion is they
forget the base case. Without the base case the definition is meaningless.
Without a base case in a recursive program the machine is likely to crash!
(See

Stack (and Crashing)
.)

We can now define the recursive version of the fact_iter function
(again, we’ll use a Raise if the number parameter is not positive):

PROC fact_rec(n)
IF n=1

RETURN 1
ELSEIF n>=2

RETURN n*fact_rec(n-1)
ELSE

Raise("FACT")
ENDIF

ENDPROC

Notice how this looks just like the mathematical definition, and is nice
and compact. We can even make a one-line function definition (if we omit
the check on the parameter being positive):

PROC fact_rec2(n) RETURN IF n=1 THEN 1 ELSE n*fact_rec2(n-1)

You might be tempted to omit the base case and write something like this:

/* Don’t do this! */
PROC fact_bad(n) RETURN n*fact_bad(n-1)

The problem is the recursion will never end. The function fact_bad will
be called with every number from n to zero and then all the negative
integers. A value will never be returned, and the machine will crash
after a while. The precise reason why it will crash is given later (see

Stack (and Crashing)
).

1.146 beginner.guide/Mutual Recursion

Mutual Recursion
================

In the previous section we saw the function fact_rec which called
itself. If you have two functions, fun1 and fun2, and fun1 calls fun2,
and fun2 calls fun1, then this pair of functions are mutually recursive.
This extends to any amount of functions linked in this way.



beginner 141 / 258

This is a rather contrived example of a pair of mutually recursive
functions.

PROC f(n)
IF n=1

RETURN 1
ELSEIF n>=2

RETURN n*g(n-1)
ELSE

Raise("F")
ENDIF

ENDPROC

PROC g(n)
IF n=1

RETURN 2*1
ELSEIF n>=2

RETURN 2*n*f(n-1)
ELSE

Raise("G")
ENDIF

ENDPROC

Both functions are very similar to the fact_rec function, but g returns
double the normal values. The overall effect is that every other value in
long version of the multiplication is doubled. So, f(n) computes
n*(2*(n-1))*(n-2)*(2*(n-3))*...*2 which probably isn’t all that
interesting.

1.147 beginner.guide/Binary Trees

Binary Trees
============

This is an example of a recursive type and the effect it has on
functions which manipulate this type of data. A binary tree is like a
linked list, but instead of each element containing only one link to
another element there are two links in each element of a binary tree
(which point to smaller trees called branches). The first link points
to the left branch and the second points to the right branch. Each
element of the tree is called a node and there are two kinds of special
node: the start point, called the root of the tree (like the head of a
list), and the nodes which do not have left or right branches (i.e., NIL
pointers for both links), called leaves. Every node of the tree
contains some kind of data (just as the linked lists contained an E-string
or E-list in each element). The following diagram illustrates a small
tree.

+------+
| Root |
+--*---+

/ \
Left / \ Right

/ \



beginner 142 / 258

+------* *------+
| Node | | Node |
+--*---+ +--*---+
/ / \

Left / Left / \ Right
/ / \

+--*---+ +----*-+ +-*----+
| Leaf | | Leaf | | Leaf |
+------+ +------+ +------+

Notice that a node might have only one branch (it doesn’t have to have
both the left and the right). Also, the leaves on the example were all at
the same level, but this doesn’t have to be the case. Any of the leaves
could easily have been a node which had a lot of nodes branching off it.

So, how can a tree structure like this be written as an E object?
Well, the general outline is this:

OBJECT tree
data
left:PTR TO tree, right:PTR TO tree

ENDOBJECT

The left and right elements are pointers to the left and right branches
(which will be tree objects, too). The data element is some data for each
node. This could equally well be a pointer, an ARRAY or a number of
different data elements.

So, what use can be made of such a tree? Well, a common use is for
holding a sorted collection of data that needs to be able to have elements
added quickly. As an example, the data at each node could be an integer,
so a tree of this kind could hold a sorted set of integers. To make the
tree sorted, constraints must be placed on the left and right branches of
a node. The left branch should contain only nodes with data that is less
than the parent node’s data, and, similarly, the right branch should
contain only nodes with data that is greater. Nodes with the same data
could be included in one of the branches, but for our example we’ll
disallow them. We are now ready to write some functions to manipulate our
tree.

The first function is one which starts off a new set of integers (i.e.,
begins a new tree). This should take an integer as a parameter and return
a pointer to the root node of new tree (with the integer as that node’s
data).

PROC new_set(int)
DEF root:PTR TO tree
NEW root
root.data:=int

ENDPROC root

The memory for the new tree element must be allocated dynamically, so this
is a good example of a use of NEW. Since NEW clears the memory it
allocates all elements of the new object will be zero. In particular, the
left and right pointers will be NIL, so the root node will also be a leaf.
If the NEW fails a "MEM" exception is raised; otherwise the data is set to
the supplied value and a pointer to the root node is returned.



beginner 143 / 258

To add a new integer to such a set we need to find the appropriate
position to insert it and set the left and right branches correctly. This
is because if the integer is new to the set it will be added as a new
leaf, and so one of the existing nodes will change its left or right
branch.

PROC add(i, set:PTR TO tree)
IF set=NIL

RETURN new_set(i)
ELSE

IF i<set.data
set.left:=add(i, set.left)

ELSEIF i>set.data
set.right:=add(i, set.right)

ENDIF
RETURN set

ENDIF
ENDPROC

This function returns a pointer to the set to which it added the integer.
If this set was initially empty a new set is created; otherwise the
original pointer is returned. The appropriate branches are corrected as
the search progresses. Only the last assignment to the left or right
branch is significant (all others do not change the value of the pointer),
since it is this assignment that adds the new leaf. Here’s an iterative
version of this function:

PROC add_iter(i, set:PTR TO tree)
DEF node:PTR TO tree
IF set=NIL

RETURN new_set(i)
ELSE

node:=set
LOOP

IF i<node.data
IF node.left=NIL

node.left:=new_set(i)
RETURN set

ELSE
node:=node.left

ENDIF
ELSEIF i>node.data

IF node.right=NIL
node.right:=new_set(i)
RETURN set

ELSE
node:=node.right

ENDIF
ELSE

RETURN set
ENDIF

ENDLOOP
ENDIF

ENDPROC

As you can see, it’s quite a bit messier. Recursive functions work well



beginner 144 / 258

with manipulation of recursive types.

Another really neat example is printing the contents of the set. It’s
deceptively simple:

PROC show(set:PTR TO tree)
IF set<>NIL

show(set.left)
WriteF(’\d ’, set.data)
show(set.right)

ENDIF
ENDPROC

The integers in the nodes will get printed in order (providing they were
added using the add function). The left-hand nodes contain the smallest
elements so the data they contain is printed first, followed by the data
at the current node, and then that in the right-hand nodes. Try writing
an iterative version of this function if you fancy a really tough problem.

Putting everything together, here’s a main procedure which can be used
to test the above functions:

PROC main() HANDLE
DEF s, i, j
Rnd(-999999) /* Initialise seed */
s:=new_set(10) /* Initialise set s to contain the number 10 */
WriteF(’Input:\n’)
FOR i:=1 TO 50 /* Generate 50 random numbers and add them to set s */

j:=Rnd(100)
add(j, s)
WriteF(’\d ’,j)

ENDFOR
WriteF(’\nOutput:\n’)
show(s) /* Show the contents of the (sorted) set s */
WriteF(’\n’)

EXCEPT
IF exception="NEW" THEN WriteF(’Ran out of memory\n’)

ENDPROC

1.148 beginner.guide/Stack (and Crashing)

Stack (and Crashing)
====================

When you call a procedure you use up a bit of the program’s stack.
The stack is used to keep track of procedures in a program which haven’t
finished, and real problems can arise when the stack space runs out.
Normally, the amount of stack available to each program is sufficient,
since the E compiler handles all the fiddly bits quite well. However,
programs which use a lot of recursion can quite easily run out of stack.

For example, the fact_rec(10) will need enough stack for ten calls of
fact_rec, nine of which are recursively called. This is because each call
does not finish until the return value has been computed, so all recursive



beginner 145 / 258

calls up to fact_rec(1) need to be kept on the stack until fact_rec(1)
returns one. Then each procedure will be taken off the stack as they
finish. If you try to compute fact_rec(40000), not only will this take a
long time, but it will probably run out of stack space. When it does run
out of stack, the machine will probably crash or do other weird things.
The iterative version, fact_iter does not have these problems, since it
only takes one procedure call to calculate a factorial using this function.

If there is the possibility of running out of stack space you can use
the FreeStack (built-in) function call (see

System support functions
).

This returns the amount of free stack space. If it drops below about 1KB
then you might like to stop the recursion or whatever else is using up the
stack. Also, you can specify amount of stack your program gets (and
override what the compiler might decide is appropriate) using the OPT
STACK option. See the ‘Reference Manual’ for more details on E’s
stack organisation.

1.149 beginner.guide/Stack and Exceptions

Stack and Exceptions
====================

The concept ‘recent’ used earlier is connected with the stack (see

Raising an Exception
). A recent procedure is one which is on the stack,

the most recent being the current procedure. So, when Raise is called it
looks through the stack until it finds a procedure with an exception
handler. That handler will then be used, and all procedures before the
selected one on the stack are taken off the stack.

Therefore, a recursive function with an exception handler can use Raise
in the handler to call the handler in the previous (recursive) call of the
function. So anything that has been recursively allocated can be
‘recursively’ deallocated by exception handlers. This is a very powerful
and important feature of exception handlers.

1.150 beginner.guide/Object Oriented E

Object Oriented E

*****************

The Object Oriented Programming (OOP) aspects of E are covered in this
chapter. Don’t worry if you don’t know the OOP buzz words like ‘object’,
‘method’ and ‘inheritance’: these terms are explained in the OOP
introduction, below. (For some reason, computer science uses strange



beginner 146 / 258

words to cloak simple concepts in secrecy.)

OOP Introduction

Objects in E

Methods in E

Inheritance in E

Data-Hiding in E

1.151 beginner.guide/OOP Introduction

OOP Introduction
================

‘Object Oriented Programming’ is the name given to a collection of
programming techniques that are meant to speed up development and ease
maintenance of large programs. These techniques have been around for a
long time, but it is only recently that languages that explicitly support
them have become popular. You do not need to use a language that supports
OOP to program in an Object Oriented way; it’s just a bit simpler if you
do!

Classes and methods

Example class

Inheritance

1.152 beginner.guide/Classes and methods

Classes and methods
-------------------

The heart of OOP is the ‘Black Box’ approach to programming. The kind
of black box in question is one where the contents are unknown but there
is a number of wires on the outside which give you some way of interacting
with the stuff on the inside. The black boxes of OOP are actually
collections of data (just like the idea of variables that we’ve already
met) and they are called objects (this is the general term, which is,
coincidentally, connected with the OBJECT type in E). Objects can be
grouped together in classes, like the types for variables, except that a
class also defines what different kinds of wires protrude from the black
box. This extra bit (the wires) is known as the interface to the



beginner 147 / 258

object, and is made up of a number of methods (so a method is analogous
to a wire). Each method is actually just like a procedure. With a real
black box, the wires are the only way of interacting with the box, so the
methods of an object ought to be the only way of creating and using the
object. Of course, the methods themselves normally need to know the
internal workings of the object, just like the way the wires are normally
connected to something inside the black box.

There are two special kinds of methods: constructors and
destructors. A constructor is a method which is used to
initialise the data in an object, and a class may have several different
constructors (allowing for different kinds of initialisation) or it may
have none if no special initialisation is necessary. Constructors are
normally used to allocate the resources (such as memory) that an object
needs. The deallocation of such resources is done by the destructor, of
which there is at most one for each class.

Protecting the contents of an object in the ‘black box’ way is known as
data-hiding (the data in the object is visible only to its methods), and
only allowing the contents of an object to be manipulated via its
interface is known as data abstraction. By using this approach, only
the methods know the structure of the data in an object and so this
structure can be changed without affecting the whole of a program: only
the methods would potentially need recoding. As you might be able to
tell, this simplifies maintenance quite considerably.

1.153 beginner.guide/Example class

Example class
-------------

A good example of a class is the mathematical notion of a set (of
integers). A particular object from this class would represent a
particular set of integers. The interface for the class would probably
include the following methods:

1. Add -- adds an integer to a set object.

2. Member -- tests for membership of an integer in a set object.

3. Empty -- tests for emptiness of a set object.

4. Union -- unions a set object with a set object.

A more complete class would also contain methods for removing elements,
intersecting sets etc. The important thing to notice is that to use this
class you need to know only how to use the methods. The black box
approach means that we don’t (and shouldn’t) know how the set class is
actually implemented, i.e., how data is structured within a set object.
Only the methods themselves need to know how to manipulate the data that
represents a set object.

The benefit of OOP comes when you actually use the classes, so suppose
you implement this set class and then use it in your code for some



beginner 148 / 258

database program. If you found that the set implementation was a bit
inefficient (in terms of memory or speed), then, since you programmed in
this OOP way, you wouldn’t have to recode the whole database program, just
the set class! You can change the way the set data is structured in an
object as much and as often as you like, so long as each implementation
has the same interface (and gives the same results!).

1.154 beginner.guide/Inheritance

Inheritance
-----------

The remaining OOP concept of interest is inheritance. This is a
grand name for a way of building on classes that enables the derived
(i.e., bigger) class to be used as if its objects were really members of
the inherited, or base, class. For example, suppose class D were
derived from class B, so D is the derived class and B is the base class.
In this case, class D inherits the data structure of class B, and may add
extra data to it. It also inherits all the methods of class B, and
objects of class D may be treated as if they were really objects of class
B.

Of course, an inherited method cannot affect the extra data in class D,
only the inherited data. To affect the extra data, class D can have extra
methods defined, or it can make new definitions for the inherited methods. The
latter approach is only really useful if the new definition of an
inherited method is pretty similar to the inherited method, differing only
in how it affects the extra data in class D. This overriding of methods
does not affect the methods in class B (nor those of other classes derived
from B), but only those in class D and the classes derived from D.

1.155 beginner.guide/Objects in E

Objects in E
============

Classes are defined using OBJECT in the same way that we’ve seen before
(see

OBJECT Type
). So, in E, the terms ‘object declaration’ and ‘class’

may be used interchangeably. However, referring to an OBJECT type as a
‘class’ signals the presence of methods in an object.

The following example OBJECT is the basis of a set class, as described
above (see

Example class
). This set implementation is going to be quite

simple and it will be limited to a maximum of 100 elements.

OBJECT set



beginner 149 / 258

elts[100]:ARRAY OF LONG
size

ENDOBJECT

Currently, the only way to allocate an OOP object is to use NEW with an
appropriately typed pointer. The following sections of code all allocate
memory for the data of set, but only the last one allocates an OOP set
object. Each one may use and access the set data, but only the last one
may call the methods of set.

DEF s:set

DEF s:PTR TO set
s:=NewR(SIZEOF set)

DEF s:PTR TO set
s:=NEW s

OOP objects can, of course, be deallocated using END, in which case the
destructor for the corresponding class is also called. Leaving an OOP
object to be deallocated automatically at the end of the program is not
quite as safe as normal, since in this case the destructor will not be
called. Constructors and destructors are described in more detail below.

1.156 beginner.guide/Methods in E

Methods in E
============

The methods of E are very similar to normal procedures, but there is
one, big difference: a method is part of a class, so must somehow be
identified with the other parts of the class. In E this identification is
done by relating all methods to the corresponding OBJECT type for the
class, using the OF keyword after the description of the method’s
parameters. So, the methods of the simple set class would be defined as
outlined below (of course, these examples have omitted the code of
methods).

PROC add(x) OF set
/* code for add method */

ENDPROC

PROC member(x) OF set
/* code for member method */

ENDPROC

PROC empty() OF set
/* code for empty method */

ENDPROC

PROC union(s:PTR TO set) OF set
/* code for union method */

ENDPROC



beginner 150 / 258

At first sight it might seem that the particular set object which would
be manipulated by these methods is missing from the parameters. For
instance, it appears that the empty method should need an extra PTR TO set
parameter, and that would be the set object it tested for emptiness.
However, methods are called in a slightly different way to normal
procedures. A method is a part of a class, and is called in a similar way
to accessing the data elements of the class. That is, the method is
selected using . and acts (implicitly) on the object from which it was
selected. The following example shows the allocation of a set object and
the use of some of the above methods.

DEF s:PTR TO set
NEW s -> Allocate an OOP object
s.add(17)
s.add(-34)
IF s.empty()

WriteF(’Error: the set s should not be empty!\n’)
ELSE

WriteF(’OK: not empty\n’)
ENDIF
IF s.member(0)

WriteF(’Error: how did 0 get in there?\n’)
ELSE

WriteF(’OK: 0 is not a member\n’)
ENDIF
IF s.member(-34)

WriteF(’OK: -34 is a member\n’)
ELSE

WriteF(’Error: where has -34 gone?\n’)
ENDIF
END s -> Finished with s now

This is why the methods do not take that extra PTR TO set argument. If a
method is called then it has been selected from an appropriate object, and
so this must be the object which it affects. The slightly complicated
method is union which adds another set object by unioning it. In this
case, the argument to the method is a PTR TO set, but this is the set to
be added, not the set which is being expanded.

So, how do you refer to the object which is being affected? In other
words, how do you affect it? Well, this is the remaining difference from
normal procedures: every method has a special local variable, self, which
is of type PTR TO class and is initialised to point to the object from
which the method was selected. Using this variable, the data and methods
of object can be accessed and used as normal. For instance, the empty
method has a self local variable of type PTR TO set, and can be defined as
below:

PROC empty() OF set IS self.size=0

Constructors are simply methods which initialise the data of an
object. For this reason they should normally be called only when the
object is allocated. The NEW operator allows OOP objects to call a
constructor at the point at which they are allocated, to make this easier
and more explicit. The constructor will be called after NEW has allocated
the memory for the object. It is wise to give constructors suggestive



beginner 151 / 258

names like create and copy, or the same name as the class. The following
constructors might be defined for the set class:

/* Create empty set */
PROC create() OF set

self.size=0
ENDPROC

/* Copy existing set */
PROC copy(oldset:PTR TO set) OF set

DEF i
FOR i:=0 TO oldset.size-1

self.elements[i]:=oldset.elements[i]
ENDFOR
self.size:=oldset.size

ENDPROC

They would be used as in the code below. Notice that the create
constructor is, in this case, redundant since NEW will initialise the data
elements to zero. If NEW does sufficient initialisation then you do not
have to define any constructors, and even if you do have constructors you
don’t have to use them when allocating objects.

DEF s:PTR TO set, t:PTR TO set, u:PTR TO set
NEW s.create()
IF s.empty THEN WriteF(’s is empty\n’)
END s
NEW t /* This happens to be the same as using create */
IF t.empty THEN WriteF(’t is empty\n’)
t.add(10)
NEW u.copy(t)
IF u.member(10) THEN WriteF(’10 is in u\n’)
END t, u

For each class there is at most one destructor, and this is
responsible for clearing up and deallocating resources. If one is needed
then it must be called end, and (as this might suggest) it is called
automatically when an OOP object is deallocated using END. So, for OOP
objects with a destructor, the (roughly) equivalent code to END using
Dispose is a bit different. Take care to note that the destructor is not
called if END is not used to deallocate an OOP object (i.e., if
deallocation is left to be done automatically at the end of the program).

END p

IF p
p.end() -> Call destructor
Dispose(p)
p:=NIL

ENDIF

The simple implementation of the set class needs no destructor. If,
however, the elements data were a pointer (to LONG), and the array were
allocated based on some size parameter to a constructor, then a destructor
would be useful. In this case the set class would also need a maxsize
data element, which records the maximum, allocated size of the elements
array.



beginner 152 / 258

OBJECT set
elements:PTR TO LONG
size
maxsize

ENDOBJECT

PROC create(sz=100) OF set -> Default to 100
DEF p:PTR TO LONG
self.maxsize:=IF (sz>0) AND (sz<100000) THEN sz ELSE 100
self.elements:=NEW p[self.maxsize]

ENDPROC

PROC end() OF set
DEF p:PTR TO LONG
IF self.maxsize=0

WriteF(’Error: did not create() the set\n’)
ELSE

p:=self.elements
END p[self.maxsize]

ENDIF
ENDPROC

Without the destructor end, the memory allocated for elements would not be
deallocated when END is used, although it would get deallocated at the end
of the program (in this case). However, if AllocMem were used instead of
NEW to allocate the array, then the memory would have to be deallocated
using FreeMem, and this would best be done in the destructor, as above.
(The memory would not be deallocated automatically at the end of the
program if AllocMem is used.) Another solution to this kind of problem
would be to have a special method which called FreeMem, and to remember to
call this method just before deallocating one of these objects, so you can
see that the interaction of END with destructors is quite useful.

Already, the above re-definition of set begins to show the power of OOP.
The actual implementation of the set class is very different, but the
interface can remain the same. The code for the methods would need to
change to take into account the new maxsize element (where before the
fixed size of 100 was used), and also to deal with the possibility the
create constructor had not been used (in which case elements would be NIL
and maxsize zero). But the code which used the set class would not need
to change, except maybe to allocate more sensibly sized sets!

Yet another, different implementation of a set was outlined above (see

Binary Trees
). In fact, remarkably few changes would be needed to convert

the code from that section into another implementation of the set class.
The new_set procedure is like a set constructor which initialises the set
to be a singleton (i.e., to contain one element), and the add procedure is
just like the add method of the set class. The only slight problem is
that empty sets are not modelled by the binary tree implementation, so it
wouldn’t, as it stands, be a complete implementation. It would be
straight-forward (but unduly complicated at this point) to add support for
empty sets to this particular implementation.



beginner 153 / 258

1.157 beginner.guide/Inheritance in E

Inheritance in E
================

One class is derived from another using the OF keyword in the
definition of the derived class OBJECT, in a similar way that OF is used
with methods. For instance, the following code shows how to define the
class d to be derived from class b. The class b is then said to be
inherited by the class d.

OBJECT b
b_data

ENDOBJECT

OBJECT d OF b
extra_d_data

ENDOBJECT

The names b and d have been chosen to be somewhat suggestive, since the
class which is inherited (i.e., b) is known as the base class, whilst
the inheriting class (i.e., d) is known as the derived class.

The definition of d is the same as the following definition of duff,
except for one major difference: with the above derivation the methods of
b are also inherited by d and they become methods of class d. The
definition of duff relates it in no way to b, except at best accidentally
(since any changes to b do not affect duff, whereas they would affect d).

OBJECT duff
b_data
extra_d_data

ENDOBJECT

One property of this derivation applies to the data records built by
OBJECT as well as the OOP classes. The data records of type d or duff may
be used wherever a data record of type b were required (e.g., the argument
to some procedure), and they are, in fact, indistinguishable from records
of type b. Although, if the definition of b were changed (e.g., by
changing the name of the b_data element) then data records of type duff
would not be usable in this way, but those of type d still would.
Therefore, it is wise to use inheritance to show the relationships between
classes or data of OBJECT types. The following example shows how
procedure print_b_data can validly be called in several ways, given the
definitions of b, d and duff above.

PROC print_b_data(p:PTR TO b)
WriteF(’b_data = \d\n’, p.b_data)

ENDPROC

PROC main()
DEF p_b:PTR TO b, p_d:PTR TO d, p_duff:PTR TO duff
NEW p_b, p_d, p_duff



beginner 154 / 258

p_b.b_data:=11
p_d.b_data:=-3
p_duff.b_data:=27
WriteF(’Printing p_b: ’)
print_b_data(p_b)
WriteF(’Printing p_d: ’)
print_b_data(p_d)
WriteF(’Printing p_duff: ’)
print_b_data(p_duff)

ENDPROC

So far, no methods have been defined for b, which means that it is just
an OBJECT type. The procedure print_b_data suggests a useful method of b,
which will be called print.

PROC print() OF b
WriteF(’b_data = \d\n’, self.b_data)

ENDPROC

This definition would also define a print method for d, since d is derived
from b and it inherits all the methods of b. However, duff would, of
course, still be just an OBJECT type, although it could have a similar
print method explicitly defined for it. If b has any methods defined for
it (i.e., if it is a class) then data records of type duff cannot be used
as if they were objects of the class b, and it is not safe to try! In
this case, only objects of derived class d can be used in this manner.
(If b is a class then d is a class, due to inheritance.)

PROC main()
DEF p_b:PTR TO b, p_d:PTR TO d, p_duff:PTR TO duff
NEW p_b, p_d, p_duff
p_b.b_data:=11
p_d.b_data:=-3; p_d.extra_d_data:=3
p_duff.b_data:=7; p_duff.extra_d_data:=-7
WriteF(’Printing p_b: ’)

/* b explicitly has print method */
p_b.print()
WriteF(’Printing p_d: ’)

/* d inherits print method from b */
p_d.print()
WriteF(’No print method for p_duff\n’)

/* Do not try to print p_duff in this way */
/* p_duff.print() */
ENDPROC

Unfortunately, the print method inherited by d only prints the b_data
element (since it is really a method of b, so cannot access the extra data
added in d). However, any inherited method can be overridden by defining
it again, this time for the derived class.

PROC print() OF d
WriteF(’extra_d_data = \d, ’, self.extra_d_data)
WriteF(’b_data = \d\n’, self.b_data)

ENDPROC

With this extra definition, the same main procedure above would now print
all the data of d, but only the b_data element of b. This is because the



beginner 155 / 258

new definition of print affects only class d (and classes derived from d).

Inherited methods are often overridden just to add extra functionality,
as in the case above where we wanted the extra data to be printed as well
as the data derived from b. For this purpose, the SUPER operator can be
used on a method call to force the base class method to be used, where
normally the derived class method would be used. So, the definition of
the print method for class d could call the print method of class b.

PROC print() OF d
WriteF(’extra_d_data = \d, ’, self.extra_d_data)
SUPER self.print()

ENDPROC

Be careful, though, because without the SUPER operator this would involve
a recursive call to the print method of class d, rather than a call to the
base class method.

Just as data records of type d can be used wherever data records of
type b were required, objects of class d can used in place of objects of
class b. The following procedure prints a message and the object data,
using the print method of b. (Of course, only the methods named by class
b can be used in such a procedure, since the pointer p is of type PTR
TO b.)

PROC msg_print(msg, p:PTR TO b)
WriteF(’Printing \s: ’, msg)
p.print()

ENDPROC

PROC main()
DEF p_b:PTR TO b, p_d:PTR TO d
NEW p_b, p_d
p_b.b_data:=11
p_d.b_data:=-3; p_d.extra_d_data:=3
msg_print(’p_b’, p_b)
msg_print(’p_d’, p_d)

ENDPROC

You can’t use duff now, since it is not a class and b is, and msg_print
expects a pointer to class b. The only other objects that can be passed
to msg_print are objects from classes derived from b, and this is why p_d
can be printed using msg_print. If you collect together the code and run
the example you will see that the call to print in msg_print uses the
overridden print method when msg_print is called with p_d as a parameter.
That is, the correct method is called even though the pointer p is not of
type PTR TO d. This is called polymorphism: different implementations
of print may be called depending on the real, dynamic type of p. Here’s
what should be printed:

Printing p_b: b_data = 11
Printing p_d: extra_d_data = 3, b_data = -3

Inheritance is not limited to a single layer: you can derive other
classes from b, you can derive classes from d, and so on. For instance,
if class e is derived from class d then it would inherit all the data of d
and all the methods of d. This means that e would inherit the richer



beginner 156 / 258

version of print, and may even override it yet again. In this case, class
e would have two base classes, b and d, but would be derived directly from
d (and indirectly from b, via d). Class d would therefore be known as the
super class of e, since e is derived directly from d. (The super class
of d is its only base class, b.) So, the SUPER operator is actually used
to call the methods in the super class. In this example, the SUPER
operator can be used in the methods of e to call methods of d.

The binary tree implementation above (see
Binary Trees
) suggests a good

example for a class hierarchy (a collection of classes related by
inheritance). A basic tree structure can be encapsulated in a base class
definition, and then specific kinds of tree (with different data at the
nodes) can be derived from this. In fact, the base class tree defined
below is only useful for inheriting, since a tree is pretty useless
without some data attached to the nodes. Since it is very likely that
objects of class tree will never be useful (but objects of classes derived
from tree would be), the tree class is called an abstract class.

OBJECT tree
left:PTR TO tree, right:PTR TO tree

ENDOBJECT

PROC nodes() OF tree
DEF tot=1
IF self.left THEN tot:=tot+self.left.nodes()
IF self.right THEN tot:=tot+self.right.nodes()

ENDPROC tot

PROC leaves(show=FALSE) OF tree
DEF tot=0
IF self.left

tot:=tot+self.left.leaves(show)
ENDIF
IF self.right

tot:=tot+self.right.leaves(show)
ELSEIF self.left=NIL

IF show THEN self.print_node()
tot++

ENDIF
ENDPROC tot

PROC print_node() OF tree
WriteF(’<NULL> ’)

ENDPROC

PROC print() OF tree
IF self.left THEN self.left.print()
self.print_node()
IF self.right THEN self.right.print()

ENDPROC

The nodes and leaves methods return the number of nodes and leaves of the
tree, respectively, with the leaves method taking a flag to specify
whether the leaves should also be printed. These methods should never
need overriding in a class derived from tree, and neither should print,



beginner 157 / 258

which traverses the tree, printing the nodes from left to right. However,
the print_node method probably should be overridden, as is the case in the
integer tree defined below.

OBJECT integer_tree OF tree
int

ENDOBJECT

PROC create(i) OF integer_tree
self.int:=i

ENDPROC

PROC add(i) OF integer_tree
DEF p:PTR TO integer_tree
IF i < self.int

IF self.left
p:=self.left
p.add(i)

ELSE
self.left:=NEW p.create(i)

ENDIF
ELSEIF i > self.int

IF self.right
p:=self.right
p.add(i)

ELSE
self.right:=NEW p.create(i)

ENDIF
ENDIF

ENDPROC

PROC print_node() OF integer_tree
WriteF(’\d ’, self.int)

ENDPROC

This is a nice example of polymorphism at work: we can implement a tree
which works with integers simply by defining the appropriate methods. The
leaves method (of the tree class) will then automatically call the
integer_tree version of print_node whenever we pass it an integer_tree
object. The definitions of tree and integer_tree can even be in different
modules (see

Data-Hiding in E
), and, using these OOP techniques, the

module containing tree would not need to be recompiled even if a class
like integer_tree is added or changed. This shows why OOP is good for
code-reuse and extensibility: with traditional programming techniques we
would have to adapt the binary tree functions to account for integers, and
again for each new datatype.

Notice that the recursive use of the new method add must be called via
an auxiliary pointer, p, of the derived class. This is because the left
and right elements of tree are pointers to tree objects and add is not a
method of tree (the compiler would reject the code as a syntax error if
you tried to directly access add under these circumstances). Of course,
if the tree class had an add method there would not be this problem, but
what would the code be for such a method?



beginner 158 / 258

An add method does not really make sense for tree, but if almost all
classes derived from tree are going to need such a method it might be nice
to include it in the tree base class. This is the purpose of abstract
methods. An abstract method is one which exists in a base class solely
so that it can be overridden in some derived class. Normally, such
methods have no sensible definition in the base class, so there is a
special keyword, EMPTY, which can be used to define them. For example,
the add method in tree would be defined as below.

PROC add(x) OF tree IS EMPTY

With this definition, the code for the add method for the integer_tree
class could be simplified. (The auxiliary pointer, p, is still needed for
use with NEW, since an expression like self.left is not a pointer
variable.)

PROC add(i) OF integer_tree
DEF p:PTR TO integer_tree
IF i < self.int

IF self.left
self.left.add(i)

ELSE
self.left:=NEW p.create(i)

ENDIF
ELSEIF i > self.int

IF self.right
self.right.add(i)

ELSE
self.right:=NEW p.create(i)

ENDIF
ENDIF

ENDPROC

This, however, is not the best example of an abstract method, since the
add method in every class derived from tree must now take a single LONG
value as an parameter, in order to be compatible. In general, though, a
class representing a tree with node data of type t would really want an
add method to take a single parameter of type t. The fact that a LONG
value can represent a pointer to any type is helpful, here. This means
that the definition of add may not be so limiting, after all.

The print_node method is much more obviously suited to being an
abstract method. The above definition prints something silly, because at
that point we didn’t know about abstract methods and we needed the method
to be defined in the base class. A much better definition would make
print_node abstract.

PROC print_node() OF tree IS EMPTY

It is quite safe to call these abstract methods, even for tree class
objects. If a method is still abstract in any class (i.e., it has not
been overridden), then calling it on objects of that class has the same
effect as calling a function which just returns zero (i.e., it does very
little!).

The integer_tree class could be used like this:



beginner 159 / 258

PROC main()
DEF t:PTR TO integer_tree
NEW t.create(10)
t.add(-10)
t.add(3)
t.add(5)
t.add(-1)
t.add(1)
WriteF(’t has \d nodes, with \d leaves: ’,

t.nodes(), t.leaves())
t.leaves(TRUE)
WriteF(’\n’)
WriteF(’Contents of t: ’)
t.print()
WriteF(’\n’)
END t

ENDPROC

1.158 beginner.guide/Data-Hiding in E

Data-Hiding in E
================

Data-hiding is accomplished in E at the module level. This means,
effectively, that it is wise to define classes in separate modules (or at
least only closely related classes together in a module), taking care to
EXPORT only the definitions that you need to. You can also use the
PRIVATE keyword in the definition of any OBJECT to hide all the
elements following it from code which uses the module (although this does
not affect the code within the module). The PUBLIC keyword can be used in
a similar way to make the elements which follow visible (i.e., accessible)
again, as they are by default. For instance, the following OBJECT
definition makes x, y, a and b private (so only visible to the code within
the same module), and p, q and r public (so visible to code external to
the module, too).

OBJECT rec
p:INT

PRIVATE
x:INT
y

PUBLIC
q
r:PTR TO LONG

PRIVATE
a:PTR TO LONG, b

ENDOBJECT

For the set class you would probably want to make all the data private
and all the methods public. In this way you force programs which use this
module to use the supplied interface, rather than fiddling with the set
data structures themselves. The following example is the complete code
for a simple, inefficient set class, and can be compiled to a module.



beginner 160 / 258

OPT MODULE -> Define class ’set’ in a module
OPT EXPORT -> Export everything

/* The data for the class */
OBJECT set PRIVATE -> Make all the data private

elements:PTR TO LONG
maxsize, size

ENDOBJECT

/* Creation constructor */
/* Minimum size of 1, maximum 100000, default 100 */
PROC create(sz=100) OF set

DEF p:PTR TO LONG
self.maxsize:=IF (sz>0) AND (sz<100000) THEN sz ELSE 100 -> Check size
self.elements:=NEW p[self.maxsize]

ENDPROC

/* Copy constructor */
PROC copy(oldset:PTR TO set) OF set

DEF i
self.create(oldset.maxsize) -> Call create method!
FOR i:=0 TO oldset.size-1 -> Copy elements

self.elements[i]:=oldset.elements[i]
ENDFOR
self.size:=oldset.size

ENDPROC

/* Destructor */
PROC end() OF set

DEF p:PTR TO LONG
IF self.maxsize<>0 -> Check that it was allocated

p:=self.elements
END p[self.maxsize]

ENDIF
ENDPROC

/* Add an element */
PROC add(x) OF set

IF self.member(x)=FALSE -> Is it new? (Call member method!)
IF self.size=self.maxsize

Raise("full") -> The set is already full
ELSE

self.elements[self.size]:=x
self.size:=self.size+1

ENDIF
ENDIF

ENDPROC

/* Test for membership */
PROC member(x) OF set

DEF i
FOR i:=0 TO self.size-1

IF self.elements[i]=x THEN RETURN TRUE
ENDFOR

ENDPROC FALSE



beginner 161 / 258

/* Test for emptiness */
PROC empty() OF set IS self.size=0

/* Union (add) another set */
PROC union(other:PTR TO set) OF set

DEF i
FOR i:=0 TO other.size-1

self.add(other.elements[i]) -> Call add method!
ENDFOR

ENDPROC

/* Print out the contents */
PROC print() OF set

DEF i
WriteF(’{ ’)
FOR i:=0 TO self.size-1

WriteF(’\d ’, self.elements[i])
ENDFOR
WriteF(’}’)

ENDPROC

This class can be used in another module or program, as below:

MODULE ’*set’

PROC main() HANDLE
DEF s=NIL:PTR TO set
NEW s.create(20)
s.add(1)
s.add(-13)
s.add(91)
s.add(42)
s.add(-76)
IF s.member(1) THEN WriteF(’1 is a member\n’)
IF s.member(11) THEN WriteF(’11 is a member\n’)
WriteF(’s = ’)
s.print()
WriteF(’\n’)

EXCEPT DO
END s
SELECT exception
CASE "NEW"

WriteF(’Out of memory\n’)
CASE "full"

WriteF(’Set is full\n’)
ENDSELECT

ENDPROC

1.159 beginner.guide/Introduction to the Examples

Introduction to the Examples

****************************

In this part we shall go through some slightly larger examples than



beginner 162 / 258

those in the previous parts. However, none of them are too big, so they
should still be easy to understand. The note-worthy parts of each example
are described, and you may even find the odd comment in the code. Large,
complicated programs benefit hugely from the odd well-placed and
descriptive comment. This fact can’t be stressed enough.

All the examples will run on a standard Amiga, except for the one which
uses ReadArgs (an AmigaDOS 2.0 function). It is really worth upgrading
your system to AmigaDOS 2.0 (or above) if you are still using previous
versions. The ReadArgs example can only hint at the power and
friendliness of the newer system functions. If you are fortunate enough
to have an A4000 or an accelerated machine, then the timing example will
give better (i.e., quicker) results.

Supplied with this Guide should be a directory of sources of most of
the examples. Here’s a complete catalogue:

simple.e
The simple program from the introduction. See

A Simple Program
.

while.e
The slightly complicated WHILE loop. See

WHILE loop
.

address.e
The program which prints the addresses of some variables. See

Finding addresses (making pointers)
.

static.e
The static data problem. See

Static data
.

static2.e
The first solution to the static data problem. See

Static data
.

except.e
An exception handler example. See

Raising an Exception
.

except2.e
Another exception handler example. See

Raising an Exception
.

static3.e
The second solution to the static data problem, using NEW. See

List and typed list allocation



beginner 163 / 258

.

float.e
The floating-point example program. See

Floating-Point Functions
.

bintree.e
The binary tree example. See

Binary Trees
.

tree.e
The tree and integer_tree classes, as a module. See

Inheritance in E
.

tree-use.e
A program to use the integer_tree class. See

Inheritance in E
.

set.e
The simple, inefficient set class, as a module. See

Data-Hiding in E
.

set-use.e
A program to use the set class. See

Data-Hiding in E
.

csv-estr.e
The CSV reading program using E-strings. See

String Handling and I-O
.

csv-norm.e
The CSV reading program using normal strings. See

String Handling and I-O
.

csv-buff.e
The CSV reading program using normal strings and a large buffer. See

String Handling and I-O
.

csv.e
The CSV reading program using normal strings, a large buffer, and an
exception handler. See

String Handling and I-O
.

timing.e
The timing example. See



beginner 164 / 258

Timing Expressions
.

args.e
The argument parsing example for any AmigaDOS. See

Any AmigaDOS
.

args20.e
The argument parsing example for any AmigaDOS 2.0 and above. See

AmigaDOS 2.0 (and above)
.

gadgets.e
The gadgets example. See

Gadgets
.

idcmp.e
The IDCMP and gadgets example. See

IDCMP Messages
.

graphics.e
The graphics example. See

Graphics
.

screens.e
The screens example, without an exception handler. See

Screens
.

screens2.e
The screens example again, but this time with an exception handler.
See

Screens
.

dragon.e
The dragon curve recursion example. See

Recursion Example
.

1.160 beginner.guide/String Handling and I-O

String Handling and I/O

***********************

This chapter shows how to use normal strings and E-strings, and also
how to read data from a file. The programs use a number of the string
functions and make effective (but different) use of memory where possible.



beginner 165 / 258

The key points to understand are:

* The difference between normal strings and E-strings.

* The two methods of reading data from a file (line-by-line or all at
once).

* The necessary allocation of memory for E-strings.

* The unnecessary, but advisable, deallocation of the E-string memory
once it is no longer needed. The deallocation could be left to the
automatic deallocation at the end of the program, but that would
waste an increasing amount of memory whilst the program was running.
If the input data was large then memory could easily be exhausted.

* The way in which sections of an E-string (or a normal string, for
that matter) can easily be turned into normal strings.

* The way exception handlers can tidy up programs.

The problem to solve is reading of a CSV (comma separated variables)
file, which is a standard format file for databases and spreadsheets. The
format is very simple: each record is a line (i.e., terminated with a
line-feed) and each field in a record is separated by a comma. To make
this example a lot simpler, we will forbid a field to contain a comma
(normally this would require the field to be quoted). So, a typical input
file would look like this:

Field1,Field2,Field3
10,19,-3
fred,barney,wilma
,,last
first,,

In this example all records have three fields, as is well illustrated by
the first line (i.e., the first record). The last two records may seem a
bit strange, but they just show how fields can be blank. In the last
record all but the first field are blank, and in the previous record all
but the last are blank.

So now we know the format of the file to be read. To operate on a file
we must first open it using the Open function (from the dos.library), and
to read the lines from the file we will use the ReadStr (built-in)
function. There will be four versions of a program to read a CSV file:
two of which read data line-by-line and two which read all the file at
once. Of the two which read line-by-line, one manipulates the read lines
as E-strings and the other uses normal strings. The use of normal strings
is arguably more advanced than the use of E-strings, since cunning tricks
are employed to make effective use of memory. However, the programs are
not meant to show that E-strings are better than normal strings (or vice
versa), rather they are meant to show how to use strings properly.

/* A suitably large size for the record buffer */
CONST BUFFERSIZE=512

PROC main()
DEF filehandle, status, buffer[BUFFERSIZE]:STRING, filename



beginner 166 / 258

filename:=’datafile’
IF filehandle:=Open(filename, OLDFILE)

REPEAT
status:=ReadStr(filehandle, buffer)
/* This is the way to check ReadStr() actually read something */
IF buffer[] OR (status<>-1) THEN process_record(buffer)

UNTIL status=-1
/* If Open() succeeded then we must Close() the file */
Close(filehandle)

ELSE
WriteF(’Error: Failed to open "\s"\n’, filename)

ENDIF
ENDPROC

PROC process_record(line)
DEF i=1, start=0, end, len, s
/* Show the whole line being processed */
WriteF(’Processing record: "\s"\n’, line)
REPEAT

/* Find the index of a comma after the start index */
end:=InStr(line, ’,’, start)
/* Length is end index minus start index */
len:=(IF end<>-1 THEN end ELSE EstrLen(line))-start
IF len>0

/* Allocate an E-string of the correct length */
IF s:=String(len)

/* Copy the portion of the line to the E-string s */
MidStr(s, line, start, len)
/* At this point we could do something useful... */
WriteF(’\t\d) "\s"\n’, i, s)
/* We’ve finished with the E-string so deallocate it */
DisposeLink(s)

ELSE
/* It’s a non-fatal error if the String() call fails */
WriteF(’\t\d) Memory exhausted! (len=\d)\n’, len)

ENDIF
ELSE

WriteF(’\t\d) Empty Field\n’, i)
ENDIF
/* The new start is after the end we found */
start:=end+1
INC i

/* Once a comma is not found we’ve finished */
UNTIL end=-1

ENDPROC

There are a couple of points worth noting about this program:

* A large E-string, buffer, is used to hold each line before it is
processed. If a record exceeds the size of this E-string then
ReadStr will only read a partial record, and the next ReadStr
will read some more this record. However, the program considers each
call to ReadStr to read a whole record, so it will get the records
slightly wrong in this case. This is a limitation of the program and
it should be documented so that users know to constrain themselves to
datafiles without long lines.



beginner 167 / 258

* The file name is ‘hard-wired’ to be datafile. A more flexible
program would allow this to be passed as an argument (see

Argument Parsing
).

* ReadStr may return -1 to indicate an error (usually when the end
of the file has been reached), but the E-string read so far may still
be valid. The check on the E-string and error value is the proper
way of deciding whether ReadStr actually read anything from the file.

* Look carefully at the manipulation of the string indexes start and
end, and the calculation of the length of a portion of a string.

* MidStr is used to copy a field from a record, so an E-string must
be used to hold the field.

* The E-string s is only valid between the successful allocation by
string and the DisposeLink. It would be incorrect to try to, for
instance, print it at any other point. On the other hand, a more
complicated program may want to store up all the data, and so it may
be inappropriate to deallocate the E-string at this point. In this
case, the pointer to the E-string could be stored and it might be
valid for the rest of the program.

* The allocation using String is very closely followed by deallocation
using DisposeLink. This suggests that a single E-string could be
allocated and used repeatedly (like buffer is), due to the simple
nature of this example.

To change this to use normal strings (in a very memory efficient way),
we need to alter only the process_record procedure. Some note-worthy
differences are:

* Small parts of the E-string buffer are turned into normal strings by
terminating them with NIL when necessary. This involves changing a
comma that is found.

* No new memory is allocated, rather the buffer memory is reused (as
described above). This is fine for this example, although if the
fields were needed after a record had been processed they would need
to be copied, since the contents of buffer are changed by ReadStr.

PROC process_record(line)
DEF i=1, start=0, end, s
/* Show the whole line being processed */
WriteF(’Processing record: "\s"\n’, line)
REPEAT

/* Find the index of a comma after the start index */
end:=InStr(line, ’,’, start)
/* If a comma was found then terminate with a NIL */
IF end<>-1 THEN line[end]:=NIL
/* Point to the start of the field */
s:=line+start
IF s[]

/* At this point we could do something useful... */
WriteF(’\t\d) "\s"\n’, i, s)



beginner 168 / 258

ELSE
WriteF(’\t\d) Empty Field\n’, i)

ENDIF
/* The new start is after the end we found */
start:=end+1
INC i

/* Once a comma is not found we’ve finished */
UNTIL end=-1

ENDPROC

The next two versions of the program are basically the same: they both
read the whole file into one large, dynamically allocated buffer and then
process the data. The second of the two versions also uses exceptions to
make the program much more readable. The differences from the above
version which uses normal strings are:

* The main procedure calculates the length of the data in the file and
then uses New to dynamically allocate some memory to hold it.

* The read data is terminated with a NIL so that it can safely be
treated as a (very long) normal string.

* The process_buffer procedure splits the read data up into lots of
normal strings, one for each line of data.

PROC main()
DEF buffer, filehandle, len, filename
filename:=’datafile’
/* Get the length of data in the file */
IF 0<(len:=FileLength(filename))

/* Allocate just enough room for the data + a terminating NIL */
IF buffer:=New(len+1)

IF filehandle:=Open(filename, OLDFILE)
/* Read whole file, checking amount read */
IF len=Read(filehandle, buffer, len)

/* Terminate buffer with a NIL just in case... */
buffer[len]:=NIL
process_buffer(buffer, len)

ELSE
WriteF(’Error: File reading error\n’)

ENDIF
/* If Open() succeeded then we must Close() the file */
Close(filehandle)

ELSE
WriteF(’Error: Failed to open "\s"\n’, filename)

ENDIF
/* Deallocate buffer (not really necessary in this example) */
Dispose(buffer)

ELSE
WriteF(’Error: Insufficient memory to load file\n’)

ENDIF
ELSE

WriteF(’Error: "\s" is an empty file\n’, filename)
ENDIF

ENDPROC

/* buffer is like a normal string since it’s NIL-terminated */



beginner 169 / 258

PROC process_buffer(buffer, len)
DEF start=0, end
REPEAT

/* Find the index of a linefeed after the start index */
end:=InStr(buffer, ’\n’, start)
/* If a linefeed was found then terminate with a NIL */
IF end<>-1 THEN buffer[end]:=NIL
process_record(buffer+start)
start:=end+1

/* We’ve finished if at the end or no more linefeeds */
UNTIL (start>=len) OR (end=-1)

ENDPROC

PROC process_record(line)
DEF i=1, start=0, end, s
/* Show the whole line being processed */
WriteF(’Processing record: "\s"\n’, line)
REPEAT

/* Find the index of a comma after the start index */
end:=InStr(line, ’,’, start)
/* If a comma was found then terminate with a NIL */
IF end<>-1 THEN line[end]:=NIL
/* Point to the start of the field */
s:=line+start
IF s[]

/* At this point we could do something useful... */
WriteF(’\t\d) "\s"\n’, i, s)

ELSE
WriteF(’\t\d) Empty Field\n’, i)

ENDIF
/* The new start is after the end we found */
start:=end+1
INC i

/* Once a comma is not found we’ve finished */
UNTIL end=-1

ENDPROC

The program is now quite messy, with many error cases in the main
procedure. We can very simply change this by using an exception handler
and a few automatic exceptions.

/* Some constants for exceptions (ERR_NONE is zero: no error) */
ENUM ERR_NONE, ERR_LEN, ERR_NEW, ERR_OPEN, ERR_READ

/* Make some exceptions automatic */
RAISE ERR_LEN IF FileLength()<=0,

ERR_NEW IF New()=NIL,
ERR_OPEN IF Open()=NIL

PROC main() HANDLE
/* Note the careful initialisation of buffer and filehandle */
DEF buffer=NIL, filehandle=NIL, len, filename
filename:=’datafile’
/* Get the length of data in the file */
len:=FileLength(filename)
/* Allocate just enough room for the data + a terminating NIL */
buffer:=New(len+1)



beginner 170 / 258

filehandle:=Open(filename, OLDFILE)
/* Read whole file, checking amount read */
IF len<>Read(filehandle, buffer, len) THEN Raise(ERR_READ)
/* Terminate buffer with a NIL just in case... */
buffer[len]:=NIL
process_buffer(buffer, len)

EXCEPT DO
/* Both of these are safe thanks to the initialisations */
IF buffer THEN Dispose(buffer)
IF filehandle THEN Close(filehandle)
/* Report error (if there was one) */
SELECT exception
CASE ERR_LEN; WriteF(’Error: "\s" is an empty file\n’, filename)
CASE ERR_NEW; WriteF(’Error: Insufficient memory to load file\n’)
CASE ERR_OPEN; WriteF(’Error: Failed to open "\s"\n’, filename)
CASE ERR_READ; WriteF(’Error: File reading error\n’)
ENDSELECT

ENDPROC

The code is now much clearer, and the majority of errors can be caught
automatically. Notice that the exception handler is called even if the
program succeeds (thanks to the DO after the EXCEPT). This is because
when the program terminates it needs to deallocate the resources it
allocated in every case (successful or otherwise), so the code is the same.
Conditional deallocation (of the buffer, for example) is made safe by an
appropriate initialisation.

If you feel like a small exercise, try to write a similar program but
this time using the tools/file module which comes in the standard Amiga E
distribution. Of course, you’ll first need to read the accompanying
documentation, but you should find that this module makes file interaction
very simple.

1.161 beginner.guide/Timing Expressions

Timing Expressions

******************

You may recall the outline of a timing procedure in Part Two (see

Evaluation
). This chapter gives the complete version of this example.

The information missing from the outline was how to determine the system
time and use this to calculate the time taken by calls to Eval. So the
things to notice about this example are:

* Use of the Amiga system function DateStamp (from the dos.library).
(You really need the ‘Rom Kernel Reference Manuals’ and the ‘AmigaDOS
Manual’ to understand the system functions.)

* Use of the module dos/dos to include the definitions of the object
datestamp and the constant TICKS_PER_SECOND. (There are fifty ticks
per second.)



beginner 171 / 258

* Use of the repeat procedure to do Eval a decent number of times for
each expression (so that some time is taken up by the calls!).

* The timing of the evaluation of 0, to calculate the overhead of the
procedure calls and loop. This value is stored in the variable
offset the first time the test procedure is called. The
expression 0 should take a negligible amount of time, so the number
of ticks timed is actually the time taken by the procedure calls and
loop calculations. Subtracting this time from the other times gives
a fair view of how long the expressions take, relative to one another.
(Thanks to Wouter for this offset idea.)

* Use of Forbid and Permit to turn off multi-tasking temporarily,
making the CPU calculate only the expressions (rather than dealing
with screen output, other programs, etc.).

* Use of CtrlC and CleanUp to allow the user to stop the program if it
gets too boring...

* Use of the option LARGE (using OPT) to produce an executable that
uses the large data and code model. This seems to help make the
timings less susceptible variations due to, for instance,
optimisations, and so better for comparison. See the ‘Reference
Manual’ for more details.

Also supplied are some example outputs. The first was from an A1200
with 2MB Chip RAM and 4MB Fast RAM. The second was from an A500Plus with
2MB Chip RAM. Both used the constant LOTS_OF_TIMES as 500,000, but you
might need to increase this number to compare, for instance, an A4000/040
to an A4000/030. However, 500,000 gives a pretty long wait for results on
the A500.

MODULE ’dos/dos’

CONST TICKS_PER_MINUTE=TICKS_PER_SECOND*60, LOTS_OF_TIMES=500000

DEF x, y, offset

PROC fred(n)
DEF i
i:=n+x

ENDPROC

/* Repeat evaluation of an expression */
PROC repeat(exp)

DEF i
FOR i:=0 TO LOTS_OF_TIMES

Eval(exp) /* Evaluate the expression */
ENDFOR

ENDPROC

/* Time an expression, and set-up offset if not done already */
PROC test(exp, message)

DEF t
IF offset=0 THEN offset:=time(‘0) /* Calculate offset */
t:=time(exp)



beginner 172 / 258

WriteF(’\s:\t\d ticks\n’, message, t-offset)
ENDPROC

/* Time the repeated calls, and calculate number of ticks */
PROC time(x)

DEF ds1:datestamp, ds2:datestamp
Forbid()
DateStamp(ds1)
repeat(x)
DateStamp(ds2)
Permit()
IF CtrlC() THEN CleanUp(1)

ENDPROC ((ds2.minute-ds1.minute)*TICKS_PER_MINUTE)+ds2.tick-ds1.tick

PROC main()
x:=9999
y:=1717
test(‘x+y, ’Addition’)
test(‘y-x, ’Subtraction’)
test(‘x*y, ’Multiplication’)
test(‘x/y, ’Division’)
test(‘x OR y, ’Bitwise OR’)
test(‘x AND y, ’Bitwise AND’)
test(‘x=y, ’Equality’)
test(‘x<y, ’Less than’)
test(‘x<=y, ’Less than or equal’)
test(‘y:=1, ’Assignment of 1’)
test(‘y:=x, ’Assignment of x’)
test(‘y++, ’Increment’)
test(‘IF FALSE THEN y ELSE x, ’IF FALSE’)
test(‘IF TRUE THEN y ELSE x, ’IF TRUE’)
test(‘IF x THEN y ELSE x, ’IF x’)
test(‘fred(2), ’fred(2)’)

ENDPROC

Here’s the output from the A1200:

Addition: 22 ticks
Subtraction: 22 ticks
Multiplication: 69 ticks
Division: 123 ticks
Bitwise OR: 33 ticks
Bitwise AND: 27 ticks
Equality: 44 ticks
Less than: 43 ticks
Less than or equal: 70 ticks
Assignment of 1: 9 ticks
Assignment of x: 38 ticks
Increment: 23 ticks
IF FALSE: 27 ticks
IF TRUE: 38 ticks
IF x: 44 ticks
fred(2): 121 ticks

Compare this to the output from the A500Plus:

Addition: 118 ticks



beginner 173 / 258

Subtraction: 117 ticks
Multiplication: 297 ticks
Division: 643 ticks
Bitwise OR: 118 ticks
Bitwise AND: 117 ticks
Equality: 164 ticks
Less than: 164 ticks
Less than or equal: 164 ticks
Assignment of 1: 60 ticks
Assignment of x: 102 ticks
Increment: 134 ticks
IF FALSE: 118 ticks
IF TRUE: 164 ticks
IF x: 193 ticks
fred(2): 523 ticks

Evidence, if it were needed, that the A1200 is roughly five times faster
than an A500, and that’s not using the special 68020 CPU instructions!

1.162 beginner.guide/Argument Parsing

Argument Parsing

****************

There are two examples in this chapter. One is for any AmigaDOS and
the other is for AmigaDOS 2.0 and above. They both illustrate how to
parse the arguments to your program. If your program is started from the
Shell/CLI the arguments follow the command name on the command line, but
if it was started from Workbench (i.e., you double-clicked on an icon for
the program) then the arguments are those icons that were also selected at
that time (see your Workbench manual for more details).

Any AmigaDOS

AmigaDOS 2.0 (and above)

1.163 beginner.guide/Any AmigaDOS

Any AmigaDOS
============

This first example works with any AmigaDOS. The first thing that is
done is the assignment of wbmessage to a correctly typed pointer. At the
same time we can check to see if it is NIL (i.e., whether the program was
started from Workbench or not). If it was not started from Workbench the
arguments in arg are printed. Otherwise we need to use the fact that
wbmessage is really a pointer to a wbstartup object (defined in module



beginner 174 / 258

workbench/startup), so we can get at the argument list. Then for each
argument in the list we need to check the lock supplied with the argument.
If it’s a proper lock it will be a lock on the directory containing the
argument file. The name in the argument is just a filename, not a
complete path, so to read the file we need to change the current directory
to the lock directory. Once we’ve got a valid lock and we’ve changed
directory to there, we can find the length of the file (using FileLength)
and print it. If there was no lock or the file did not exist, the name of
the file and an appropriate error message is printed.

MODULE ’workbench/startup’

PROC main()
DEF startup:PTR TO wbstartup, args:PTR TO wbarg, i, oldlock, len
IF (startup:=wbmessage)=NIL

WriteF(’Started from Shell/CLI\n Arguments: "\s"\n’, arg)
ELSE

WriteF(’Started from Workbench\n’)
args:=startup.arglist
FOR i:=1 TO startup.numargs /* Loop through the arguments */
IF args[].lock=NIL

WriteF(’ Argument \d: "\s" (no lock)\n’, i, args[].name)
ELSE

oldlock:=CurrentDir(args[].lock)
len:=FileLength(args[].name) /* Do something with file */
IF len=-1

WriteF(’ Argument \d: "\s" (file does not exist)\n’,
i, args[].name)

ELSE
WriteF(’ Argument \d: "\s", file length is \d bytes\n’,

i, args[].name, len)
ENDIF
CurrentDir(oldlock) /* Important: restore current dir */

ENDIF
args++

ENDFOR
ENDIF

ENDPROC

When you run this program you’ll notice a slight difference between arg
and the Workbench message: arg does not contain the program name, just the
arguments, whereas the first argument in the Workbench argument list is
the program. You can simply ignore the first Workbench argument in the
list if you want.

1.164 beginner.guide/AmigaDOS 2.0 (and above)

AmigaDOS 2.0 (and above)
========================

This second program can be used as the Shell/CLI part of the previous
program to provide much better command line parsing. It can only be used
with AmigaDOS 2.0 and above (i.e., OSVERSION which is 37 or more). The
template FILE/M used with ReadArgs gives command line parsing similar to



beginner 175 / 258

C’s argv array. The template can be much more interesting than this, but
for more details you need the ‘AmigaDOS Manual’.

OPT OSVERSION=37

PROC main()
DEF templ, rdargs, args=NIL:PTR TO LONG, i
IF wbmessage=NIL

WriteF(’Started from Shell/CLI\n’)
templ:=’FILE/M’
rdargs:=ReadArgs(templ,{args},NIL)
IF rdargs

IF args
i:=0
WHILE args[i] /* Loop through arguments */

WriteF(’ Argument \d: "\s"\n’, i, args[i])
i++

ENDWHILE
ENDIF
FreeArgs(rdargs)

ENDIF
ENDIF

ENDPROC

As you can see the result of the ReadArgs call with this template is an
array of filenames. The special quoting of filenames is dealt with
correctly (i.e., when you use " around a filename that contains spaces).
You need to do all this kind of work yourself if you use the arg method.

1.165 beginner.guide/Gadgets IDCMP and Graphics

Gadgets, IDCMP and Graphics

***************************

There are three examples in this chapter. The first shows how to open
a window and put some gadgets on it. The second shows how to decipher
Intuition messages that arrive via IDCMP. The third draws things with the
graphics functions.

Gadgets

IDCMP Messages

Graphics

Screens

1.166 beginner.guide/Gadgets



beginner 176 / 258

Gadgets
=======

The following program illustrates how to create a gadget list and use
it:

MODULE ’intuition/intuition’

CONST GADGETBUFSIZE = 4 * GADGETSIZE

PROC main()
DEF buf[GADGETBUFSIZE]:ARRAY, next, wptr
next:=Gadget(buf, NIL, 1, 0, 10, 30, 50, ’Hello’)
next:=Gadget(next, buf, 2, 3, 70, 30, 50, ’World’)
next:=Gadget(next, buf, 3, 1, 10, 50, 50, ’from’)
next:=Gadget(next, buf, 4, 0, 70, 50, 70, ’gadgets’)
wptr:=OpenW(20,50,200,100, 0, WFLG_ACTIVATE,

’Gadgets in a window’,NIL,1,buf)
IF wptr /* Check to see we opened a window */

Delay(500) /* Wait a bit */
CloseW(wptr) /* Close the window */

ELSE
WriteF(’Error -- could not open window!’)

ENDIF
ENDPROC

Four gadgets are created using an appropriately sized array as the buffer.
These gadgets are passed to OpenW (the last parameter). If the window
could be opened a small delay is used so that the window is visible before
the program closes it and terminates. Delay is an Amiga system function
from the DOS library, and Delay(n) waits n/50 seconds. Therefore, the
window stays up for 10 seconds, which is enough time to play with the
gadgets and see what the different types are. The next example will show
a better way of deciding when to terminate the program (using the standard
close gadget).

1.167 beginner.guide/IDCMP Messages

IDCMP Messages
==============

This next program shows how to use WaitIMessage with a gadget.

MODULE ’intuition/intuition’

CONST GADGETBUFSIZE = GADGETSIZE, OURGADGET = 1

PROC main()
DEF buf[GADGETBUFSIZE]:ARRAY, wptr, class, gad:PTR TO gadget
Gadget(buf, NIL, OURGADGET, 1, 10, 30, 100, ’Press Me’)
wptr:=OpenW(20,50,200,100,

IDCMP_CLOSEWINDOW OR IDCMP_GADGETUP,
WFLG_CLOSEGADGET OR WFLG_ACTIVATE,



beginner 177 / 258

’Gadget message window’,NIL,1,buf)
IF wptr /* Check to see we opened a window */

WHILE (class:=WaitIMessage(wptr))<>IDCMP_CLOSEWINDOW
gad:=MsgIaddr() /* Our gadget clicked? */
IF (class=IDCMP_GADGETUP) AND (gad.userdata=OURGADGET)

TextF(10,60,
IF gad.flags=0 THEN ’Gadget off ’ ELSE ’Gadget on ’)

ENDIF
ENDWHILE
CloseW(wptr) /* Close the window */

ELSE
WriteF(’Error -- could not open window!’)

ENDIF
ENDPROC

The gadget reports its state when you click on it, using the TextF
function (see

Graphics functions
). The only way to quit the program is

using the close gadget of the window. The gadget object is defined in the
module intuition/intuition and the iaddr part of the IDCMP message is a
pointer to our gadget if the message was a gadget message. The userdata
element of the gadget identifies the gadget that was clicked, and the
flags element is zero if the boolean gadget is off (unselected) or
non-zero if the boolean gadget is on (selected).

1.168 beginner.guide/Graphics

Graphics
========

The following program illustrates how to use the various graphics
functions.

MODULE ’intuition/intuition’

PROC main()
DEF wptr, i
wptr:=OpenW(20,50,200,100,IDCMP_CLOSEWINDOW,

WFLG_CLOSEGADGET OR WFLG_ACTIVATE,
’Graphics demo window’,NIL,1,NIL)

IF wptr /* Check to see we opened a window */
Colour(1,3)
TextF(20,30,’Hello World’)
SetTopaz(11)
TextF(20,60,’Hello World’)
FOR i:=10 TO 150 STEP 8 /* Plot a few points */
Plot(i,40,2)

ENDFOR
Line(160,40,160,70,3)
Line(160,70,170,40,2)
Box(10,75,160,85,1)
WHILE WaitIMessage(wptr)<>IDCMP_CLOSEWINDOW



beginner 178 / 258

ENDWHILE
CloseW(wptr)

ELSE
WriteF(’Error -- could not open window!\n’)

ENDIF
ENDPROC

First of all a small window is opened with a close gadget and activated
(so it is the selected window). Clicks on the close gadget will be
reported via IDCMP, and this is the only way to quit the program. The
graphics functions are used as follows:

* Colour is used to set the foreground colour to pen one and the
background colour to pen three. This will make the text nicely
highlighted.

* Text is output in the standard font.

* The font is set to Topaz 11.

* More text is output (probably now in a different font).

* The FOR loop plots a dotted line in pen two.

* A vertical line in pen three is drawn.

* A diagonal line in pen two is drawn. This and the previous line
together produce a vee shape.

* A filled box is drawn in pen one.

1.169 beginner.guide/Screens

Screens
=======

This next example uses parts of the previous example, but also opens a
custom screen. Basically, it draws coloured lines and boxes in a big
window opened on a 16 colour, high resolution screen.

MODULE ’intuition/intuition’, ’graphics/view’

PROC main()
DEF sptr=NIL, wptr=NIL, i
sptr:=OpenS(640,200,4,V_HIRES,’Screen demo’)
IF sptr

wptr:=OpenW(0,20,640,180,IDCMP_CLOSEWINDOW,
WFLG_CLOSEGADGET OR WFLG_ACTIVATE,
’Graphics demo window’,sptr,$F,NIL)

IF wptr
TextF(20,20,’Hello World’)
FOR i:=0 TO 15 /* Draw a line and box in each colour */
Line(20,30,620,30+(7*i),i)
Box(10+(40*i),140,30+(40*i),170,1)



beginner 179 / 258

Box(11+(40*i),141,29+(40*i),169,i)
ENDFOR
WHILE WaitIMessage(wptr)<>IDCMP_CLOSEWINDOW
ENDWHILE
WriteF(’Program finished successfully\n’)

ELSE
WriteF(’Could not open window\n’)

ENDIF
ELSE

WriteF(’Could not open screen\n’)
ENDIF
IF wptr THEN CloseW(wptr)
IF sptr THEN CloseS(sptr)

ENDPROC

As you can see, the error-checking IF blocks can make the program hard to
read. Here’s the same example written with an exception handler:

MODULE ’intuition/intuition’, ’graphics/view’

ENUM WIN=1, SCRN

RAISE WIN IF OpenW()=NIL,
SCRN IF OpenS()=NIL

PROC main() HANDLE
DEF sptr=NIL, wptr=NIL, i
sptr:=OpenS(640,200,4,V_HIRES,’Screen demo’)
wptr:=OpenW(0,20,640,180,IDCMP_CLOSEWINDOW,

WFLG_CLOSEGADGET OR WFLG_ACTIVATE,
’Graphics demo window’,sptr,$F,NIL)

TextF(20,20,’Hello World’)
FOR i:=0 TO 15 /* Draw a line and box in each colour */

Line(20,30,620,30+(7*i),i)
Box(10+(40*i),140,30+(40*i),170,1)
Box(11+(40*i),141,29+(40*i),169,i)

ENDFOR
WHILE WaitIMessage(wptr)<>IDCMP_CLOSEWINDOW
ENDWHILE

EXCEPT DO
IF wptr THEN CloseW(wptr)
IF sptr THEN CloseS(sptr)
SELECT exception
CASE 0

WriteF(’Program finished successfully\n’)
CASE WIN

WriteF(’Could not open window\n’)
CASE SCRN

WriteF(’Could not open screen\n’)
ENDSELECT

ENDPROC

It’s much easier to see what’s going on here. The real part of the
program (the bit before the EXCEPT) is no longer cluttered with error
checking, and it’s easy to see what happens if an error occurs. Notice
that if the program successfully finishes it still has to close the screen
and window properly, so it’s often sensible to use EXCEPT DO to raise a



beginner 180 / 258

zero exception and deal with all the tidying up in the handler.

1.170 beginner.guide/Recursion Example

Recursion Example

*****************

This next example uses a pair of mutually recursive procedures to draw
what is known as a dragon curve (a pretty, space-filling pattern).

MODULE ’intuition/intuition’, ’graphics/view’

/* Screen size, use SIZEY=512 for a PAL screen */
CONST SIZEX=640, SIZEY=400

/* Exception values */
ENUM WIN=1, SCRN, STK, BRK

/* Directions (DIRECTIONS gives number of directions) */
ENUM NORTH, EAST, SOUTH, WEST, DIRECTIONS

RAISE WIN IF OpenW()=NIL,
SCRN IF OpenS()=NIL

/* Start off pointing WEST */
DEF state=WEST, x, y, t

/* Face left */
PROC left()

state:=Mod(state-1+DIRECTIONS, DIRECTIONS)
ENDPROC

/* Move right, changing the state */
PROC right()

state:=Mod(state+1, DIRECTIONS)
ENDPROC

/* Move in the direction we’re facing */
PROC move()

SELECT state
CASE NORTH; draw(0,t)
CASE EAST; draw(t,0)
CASE SOUTH; draw(0,-t)
CASE WEST; draw(-t,0)
ENDSELECT

ENDPROC

/* Draw and move to specified relative position */
PROC draw(dx, dy)

/* Check the line will be drawn within the window bounds */
IF (x>=Abs(dx)) AND (x<=SIZEX-Abs(dx)) AND

(y>=Abs(dy)) AND (y<=SIZEY-10-Abs(dy))
Line(x, y, x+dx, y+dy, 2)

ENDIF



beginner 181 / 258

x:=x+dx
y:=y+dy

ENDPROC

PROC main() HANDLE
DEF sptr=NIL, wptr=NIL, i, m
/* Read arguments: [m [t [x [y]]]] */
/* so you can say: dragon 16 */
/* or: dragon 16 1 */
/* or: dragon 16 1 450 */
/* or: dragon 16 1 450 100 */
/* m is depth of dragon, t is length of lines */
/* (x,y) is the start position */
m:=Val(arg, {i})
t:=Val(arg:=arg+i, {i})
x:=Val(arg:=arg+i, {i})
y:=Val(arg:=arg+i, {i})
/* If m or t is zero use a more sensible default */
IF m=0 THEN m:=5
IF t=0 THEN t:=5
sptr:=OpenS(SIZEX,SIZEY,4,V_HIRES OR V_LACE,’Dragon Curve Screen’)
wptr:=OpenW(0,10,SIZEX,SIZEY-10,

IDCMP_CLOSEWINDOW,WFLG_CLOSEGADGET,
’Dragon Curve Window’,sptr,$F,NIL)

/* Draw the dragon curve */
dragon(m)
WHILE WaitIMessage(wptr)<>IDCMP_CLOSEWINDOW
ENDWHILE

EXCEPT DO
IF wptr THEN CloseW(wptr)
IF sptr THEN CloseS(sptr)
SELECT exception
CASE 0

WriteF(’Program finished successfully\n’)
CASE WIN

WriteF(’Could not open window\n’)
CASE SCRN

WriteF(’Could not open screen\n’)
CASE STK

WriteF(’Ran out of stack in recursion\n’)
CASE BRK

WriteF(’User aborted\n’)
ENDSELECT

ENDPROC

/* Draw the dragon curve (with left) */
PROC dragon(m)

/* Check stack and ctrl-C before recursing */
IF FreeStack()<1000 THEN Raise(STK)
IF CtrlC() THEN Raise(BRK)
IF m>0

dragon(m-1)
left()
nogard(m-1)

ELSE
move()

ENDIF



beginner 182 / 258

ENDPROC

/* Draw the dragon curve (with right) */
PROC nogard(m)

IF m>0
dragon(m-1)
right()
nogard(m-1)

ELSE
move()

ENDIF
ENDPROC

If you write this to the file dragon.e and compile it to the executable
dragon then some good things to try are:

dragon 5 9 300 100
dragon 10 4 250 250
dragon 11 3 250 250
dragon 15 1 300 100
dragon 16 1 400 150

If you want to understand how the program works you need to study the
recursive parts. Here’s an overview of the program, outlining the
important aspects:

* The constants SIZEX and SIZEY are the width and height (respectively)
of the custom screen (and window). As the comment suggests, change
SIZEY to 512 if you want a bigger screen and you have a PAL Amiga.

* The state variable holds the current direction (north, south, east or
west).

* The left and right procedures turn the current direction to the left
and right (respectively) by using some modulo arithmetic trickery.

* The move procedure uses the draw procedure to draw a line (of length
t) in the current direction from the current point (stored in x
and y).

* The draw procedure draws a line relative to the current point, but
only if it fits within the boundaries of the window. The current
point is moved to the end of the line (even if it isn’t drawn).

* The main procedure reads the command line arguments into the
variables m, t, x and y. The depth/size of the dragon is given by m
(the first argument) and the length of each line making up the dragon
is given by t (the second argument). The starting point is given by
x and y (the final two arguments). The defaults are five for m
and t, and zero for x and y.

* The main procedure also opens the screen and window, and sets the
dragon drawing.

* The dragon and nogard procedures are very similar, and these are
responsible for creating the dragon curve by calling the left, right
and move procedures.



beginner 183 / 258

* The dragon procedure contains a couple of checks to see if the user
has pressed Control-C or if the program has run out of stack space,
raising an appropriate exception if necessary. These exceptions are
handled by the main procedure.

Notice the use of Val and the exception handling. Also, the important
base case of the recursion is when m reaches zero (or becomes negative,
but that shouldn’t happen). If you start off a big dragon and want to
stop it you can press Control-C and the program tidies up nicely. If it
has finished drawing you simply click the close gadget on the window.

1.171 beginner.guide/Common Problems

Common Problems

***************

If you are new to programming or the Amiga E language then you might
appreciate some help locating problems (or bugs) in your programs. This
Appendix details some of the most common mistakes people make.

Assignment and Copying

Pointers and Memory Allocation

String and List Misuse

Initialising Data

Freeing Resources

Pointers and Dereferencing

Mathematics Functions

Signed and Unsigned Values

1.172 beginner.guide/Assignment and Copying

Assignment and Copying
======================

This is probably the most common problem encountered by people who are
used to languages like BASIC. Strings, lists, arrays and objects cannot
be initialised using an assignment statement: data must be copied. Unlike
BASIC, this kind of data is represented by a pointer (see

PTR Type
), so



beginner 184 / 258

only the pointer would be copied by an assignment statement, not the data
it points to. The following examples all copy a pointer rather than the
data, and so the memory for the data is shared (and this is probably not
what was intended).

DEF s[30]:STRING, t[30]:STRING,
l[10]:LIST, m[10]:LIST,
x:myobj, y:myobj,
a[25]:ARRAY OF INT, b[25]:ARRAY OF INT

/* You probably don’t want to do any of these */
s:=’Some text in a string’
l:=[-6,4,-9]
x:=[1,2,3]:myobj
a:=[1,-3,8,7]:INT

t:=s
m:=l
y:=x
b:=a

All the declarations allocate memory for the appropriate data. The first
four assignments replace the pointers to this memory with pointers to some
statically allocated memory. The memory allocated by the declarations is
probably now unreachable, because the only pointers to it have been
over-written. BASIC programmers might expect, say, the assignment to s to
have copied the string into the memory allocated for s by its declaration,
but this is not the case (only the pointer to the string is copied).

For the E-string, s, and E-list, l, there is another, disastrous
side-effect. The assignment to s, for example, means that s will point to
a normal string, not an E-string. So, s can no longer be used with any of
the E-string functions. The same applies to the E-list, l.

The final four assignments also copy only the pointers. This means
that s and t will point to exactly the same memory. So they will
represent exactly the same string, and any change to one of them (by a
StrAdd, for example) will appear to change both (of course, only one lump
of memory is being changed, but there are two references to it). This is
called memory sharing, and is only a problem if you didn’t intend to do
it!

To get the result that a BASIC programmer might have intended you need
to copy the appropriate data. For E-strings and E-lists the functions to
use are, respectively, StrCopy and ListCopy. All other data must be
copied using a function like CopyMem (an Amiga system function from the
Exec library). (Normal strings can be copied using AstrCopy built-in
function, see the ‘Reference Manual’.) Here’s the revised forms of the
above assignments:

DEF s[30]:STRING, t[30]:STRING,
l[10]:LIST, m[10]:LIST,
x:myobj, y:myobj,
a[25]:ARRAY OF INT, b[25]:ARRAY OF INT

StrCopy(s, ’Some text in a string’) /* Defaults to ALL */
ListCopy(l, [-6,4,-9]) /* Defaults to ALL */



beginner 185 / 258

CopyMem([1,2,3]:myobj, x, SIZEOF myobj)
CopyMem([1,-3,8,7]:INT, a, 4*SIZEOF INT)

StrCopy(t, s) /* Defaults to ALL */
ListCopy(m, l) /* Defaults to ALL */
CopyMem(x, y, SIZEOF myobj)
CopyMem(a, b, 4*SIZEOF INT)

Notice that you need to supply the size (in bytes) of the data being
copied when you use CopyMem. The parameters are also given in a slightly
different order to the E-string and E-list copying functions (i.e., the
source must be the first parameter and the destination the second). The
CopyMem function does a byte-by-byte copy, something like this:

PROC copymem(src, dest, size)
DEF i
FOR i:=1 TO size DO dest[]++:=src[]++

ENDPROC

Of course, you can use string constants and lists to give initialised
arrays, but in this case you should be initialising an appropriately typed
pointer. You must also be careful not to run into a static data problem
(see

Static data
).

DEF s:PTR TO CHAR, l:PTR TO LONG, x:PTR TO myobj, a:PTR TO INT
s:=’Some text in a string’
l:=[-6,4,-9]
x:=[1,2,3]:myobj
a:=[1,-3,8,7]:INT

1.173 beginner.guide/Pointers and Memory Allocation

Pointers and Memory Allocation
==============================

Another common error is to declare a pointer (usually a pointer to an
object) and then use it without the memory for the target data being
allocated.

/* You don’t want to do this */
DEF p:PTR TO object
p.element:=99

There are two ways of correcting this: either dynamically allocate the
memory using NEW or, more simply, let an appropriate declaration allocate
it. See

Memory Allocation
.

DEF p:PTR TO object
NEW p



beginner 186 / 258

p.element:=99

DEF p:object
p.element:=99

1.174 beginner.guide/String and List Misuse

String and List Misuse
======================

Some of the string functions can only be used with E-strings.
Generally, these are the ones that might extend the string. If you use a
normal string instead you can run into some serious (but subtle) problems.
Commonly misused functions are ReadStr, MidStr and RightStr. Similar
problems can arise by using a list when an E-list is required by a list
function.

String constants and normal lists are static data, so you shouldn’t try
to alter their contents unless you know what you’re doing (see

Static data
).

1.175 beginner.guide/Initialising Data

Initialising Data
=================

Probably one of the most common mistakes that even seasoned programmers
make is to forget to initialise variables (especially pointers). The
rules in the ‘Reference Manual’ state which declarations initialise
variables to zero values, but it is often wise to make even these explicit
(using initialised declarations). Variable initialisation becomes even
more important when using automatic exceptions.

1.176 beginner.guide/Freeing Resources

Freeing Resources
=================

Unlike a Unix operating system, the Amiga operating system requires the
programmer to release or free any resources used by a program. In
practice, this means that all windows, screens, libraries, etc., that are
successfully opened must be closed before the program terminates. Amiga E
provides some help, though: the four most commonly used libraries (Dos,



beginner 187 / 258

Exec, Graphics and Intuition) are opened before the start of an E program
and closed at the end (or when CleanUp is called). Also, memory allocated
using New, List and String is automatically freed at the end of a program.

1.177 beginner.guide/Pointers and Dereferencing

Pointers and Dereferencing
==========================

C programmers may think that the ^var and {var } expressions
are the direct equivalent of C’s &var and *var expressions.
However, in E dereferencing is normally achieved using array and object
element selection, and pointers to large amounts of data (like E-strings
or objects) are made by declarations. This means that the ^var and
{var } expressions are rarely used, whilst var[] is very
common.

1.178 beginner.guide/Mathematics Functions

Mathematics Functions
=====================

The standard mathematical operators / and * do not use full 32-bit
values in their calculations, as noted previously (see

Maths and logic functions
). A common problem is to forget this and use

them where the values will exceed the 16-bit limit. A typical example is
the position calculations used with proportional gadgets. See

Signed and Unsigned Values
.

1.179 beginner.guide/Signed and Unsigned Values

Signed and Unsigned Values
==========================

This is a quite advanced topic, but might be the cause of some strange
bugs in your programs. Basically, E does not have a way of
differentiating signed and unsigned values from, say, the LONG type. That
is, all values from the 32-bit, LONG type are considered to be signed
values, so the range of values is from -2,147,483,648 to 2,147,483,647.
If the values from this type were taken to be unsigned then no negative
values would be allowed but more positive values would be possible (i.e.,
the range of values would be from zero to 4,294,967,295). This



beginner 188 / 258

distinction would also affect the mathematical operators.

In practice, though, it is not the LONG type that can cause problems.
Instead, it is the 16-bit, INT type, which again is considered to be
signed. This means that the range of values is -32,768 to 32,767.
However, the Amiga system objects contain a number of 16-bit, INT elements
which are actually interpreted as unsigned, ranging from zero to 65,535.
A prominent example is the proportional gadget which forms a part of a
scroll-bar on a window (for example, a drawer window on Workbench). This
works with unsigned 16-bit values, which is at odds with the INT type in E.
These values are commonly used in calculations to determine the position
of something displayed in a window, and if the INT type is used without
taking into account this signed/unsigned problem the results can be quite
wrong. Luckily it is quite simple to convert the signed INT values into
unsigned values if they are part of some expression, since the value of
any expression is taken from the LONG type (and unsigned INT values fit
well within the range of even signed LONG values).

PROC unsigned_int(x) IS x AND $FFFF

The function unsigned_int, above, is very specific to the way the Amiga
handles values internally, so to understand how it works is beyond the
scope of this Guide. It should be used wherever an unsigned 16-bit value
is stored in an INT element of, say, an Amiga system object. For example,
the position of the top of a (vertical) proportional gadget as a
percentage (zero to one hundred) of its size can be calculated like this:

/* propinfo is from the module ’intuition/intuition’ */
DEF gad:PTR TO propinfo, pct
/* Set up gad... */
/* Calculate percentage (MAXPOT is from ’intuition/intuition’) */
pct:=Div(Mul(100,unsigned_int(gad.vertpot)),MAXPOT)

Notice that the full 32-bit functions Div and Mul need to be used since
the arithmetic may be well over the normal 16-bits used in the / and *
operators.

The remaining type, CHAR, is not, in practice, a problem. It is the
only unsigned type, with a range of values from zero to 255. There is a
fairly simple way to convert these values to signed values (and again this
is particular to the way the Amiga stores values internally). One good
example of a signed CHAR value is the priority value associated with a
node of an Amiga list (i.e., the pri element of an ln object from the
module exec/nodes).

PROC signed_char(x) IS IF x<128 THEN x ELSE x-256

1.180 beginner.guide/Other Information

Other Information

*****************

This Appendix contains some useful, miscellaneous information.



beginner 189 / 258

Amiga E Versions

Further Reading

Amiga E Author

Guide Author

1.181 beginner.guide/Amiga E Versions

Amiga E Versions
================

As I write, the current version of Amiga E is version 3.1a (which is
major update of v3.0e). This edition of the Guide is based primarily on
that version, but the majority still applies to the older versions,
including the last Public Domain version (v2.1b). Version 3.2 is
imminent, and this Guide is hopefully included with this major update.
See the ‘Reference Manual’ for details of the new features and changes.

Please note that, as of v3.0a, Amiga E is a commercial product so you
must pay a fee to get a version of the full compiler (which will be
registered to you). The Public Domain distribution contains only a
demonstration version of the compiler, with limited functionality. See
the ‘Reference Manual’ for more details.

1.182 beginner.guide/Further Reading

Further Reading
===============

‘Amiga E Language Reference’
Referred to as the ‘Reference Manual’ in this Guide. This is one of
the documents that comes with the Amiga E package, and is essential
reading since it was written by Wouter (the author of Amiga E). It
contains a lot of extra information.

‘Rom Kernel Reference Manual’ (Addison-Wesley)
This is the official Commodore documentation on the Amiga system
functions and is a must if you want to use these functions properly.
At the time of writing the Third Edition is the most current and it
covers the Amiga system functions up to Release 2 (i.e., AmigaDOS
2.04 and KickStart 37). Because there is so much information it
comes in three separate volumes: ‘Libraries’, ‘Includes and
Autodocs’, and ‘Devices’. The ‘Libraries’ volume is probably the
most useful as it contains many examples and a lot of tutorial
material. However, the examples are written mainly in C (the
remainder are in Assembly). To alleviate this problem I have



beginner 190 / 258

undertaken to re-code them in E, and Part One of this effort should
be available from the same place you got this Guide (the archive name
will be something like JRH-RKRM-1).

‘The AmigaDOS Manual’ (Bantam Books)
This is the companion to the ‘Rom Kernel Reference Manual’ and is the
official Commodore book on AmigaDOS (both the AmigaDOS programs and
the DOS library functions). Again, the Third Edition is the most
current.

Example sources
Amiga E comes with a large collection of example programs. When
you’re familiar with the language you should be able to learn quite a
bit from these. There are a lot of small, tutorial programs and a
few large, complicated programs.

1.183 beginner.guide/Amiga E Author

Amiga E Author
==============

In case you didn’t know the author and creator of Amiga E is Wouter van
Oortmerssen (or $#%!). You can reach him by normal mail at the following
address:

Wouter van Oortmerssen ($#%!)
Levendaal 87
2311 JG Leiden
HOLLAND

However, he much prefers to chat by E-mail, and you can reach him at the
following addresses:

Wouter@alf.let.uva.nl (E-programming support)
Wouter@mars.let.uva.nl (personal)
Oortmers@gene.fwi.uva.nl (other)

Better still, if your problem or enquiry is of general interest to Amiga E
users you may find it useful joining the Amiga E mailing list. Wouter
regularly contributes to this list and there are a number of good
programmers who are at hand to help or discuss problems. To join send a
message to:

amigae-request@bkhouse.cts.com

Once you’re subscribed, you will receive a copy of each message mailed to
the list. You will also receive a message telling you how you can
contribute (i.e., ask questions!).

1.184 beginner.guide/Guide Author



beginner 191 / 258

Guide Author
============

This Guide was written by Jason Hulance, with a lot of help and
guidance from Wouter. The original aim was to produce something that
might be a useful introduction to Amiga E for beginners, so that the
language could (rightly) become more widespread. The hidden agenda was to
free Wouter from such a task so that he could concentrate his efforts on
improving Amiga E.

You can reach me by normal mail most easily at the following (work)
address:

Jason R. Hulance
Formal Systems (Europe) Ltd.
3 Alfred Street
Oxford
OX1 4EH
ENGLAND

Alternatively, you can find me on the Amiga E mailing list, or E-mail me
directly at one of the following addresses:

jason@fsel.com
m88jrh@uk.ac.oxford.ecs

If you have any changes or additions you’d like to see then I’d be very
happy to consider them. Criticism of the text is also welcome, especially
if you can suggest a better way of explaining things. I am also keen to
hear from people who can highlight areas that are particularly confusing
or badly worded!

Also, for a small fee you get a printable version of this Guide, in
either DVI or PostScript form. This includes a huge index, several
pictures and many nice tables, and costs only 5 pounds for UK residents, or
8 pounds for non-UK residents (prices include disk and postage costs). I
can also make printed versions (including proper binding if required) for
an extra cost. Please feel free to E-mail or write to me at the above
addresses if you’d like more details.

1.185 beginner.guide/E Language Index

E Language Index

****************

This index should be used to find detailed information about the
keywords, functions, variables and constants which are part of the Amiga E
language. There is a separate index which deals with concepts etc. (see

Main Index
).



beginner 192 / 258

Symbol, close curly brace
Finding addresses (making pointers)

Symbol, double-quote
Numeric Constants

Symbol, open curly brace
Finding addresses (making pointers)

Symbol, !
Floating-Point Calculations

Symbol, $
Numeric Constants

Symbol, %
Numeric Constants

Symbol, ’ .. ’ (string)
Normal strings and E-strings

Symbol, *
Mathematics

Symbol, +
Mathematics

Symbol, + (strings)
Statements

Symbol, ++
Point to other elements

Symbol, -
Mathematics

Symbol, --
Point to other elements

Symbol, ->
Comments

Symbol, /
Mathematics

Symbol, /* .. */
Comments

Symbol, :
Labelling and the JUMP statement

Symbol, :=
Assignment

Symbol, ;



beginner 193 / 258

Statements

Symbol, <
Logic and comparison

Symbol, <=
Logic and comparison

Symbol, <=>
Unification

Symbol, <>
Logic and comparison

Symbol, =
Logic and comparison

Symbol, >
Logic and comparison

Symbol, >=
Logic and comparison

Symbol, [ .. , .. ] (list)
Lists and E-lists

Symbol, [ .. , .. ]:type (typed list)
Typed lists

Symbol, [ .. ] (array)
Tables of data

Symbol, [] (array)
Accessing array data

Symbol, \0
String Constants Special Character ←↩

Sequences

Symbol, \a
String Constants Special Character ←↩

Sequences

Symbol, \b
String Constants Special Character ←↩

Sequences

Symbol, \c
Input and output functions

Symbol, \d
Input and output functions

Symbol, \d
Changing the example

Symbol, \e



beginner 194 / 258

String Constants Special Character ←↩
Sequences

Symbol, \h
Input and output functions

Symbol, \l
Input and output functions

Symbol, \n
Strings

Symbol, \n
String Constants Special Character ←↩

Sequences

Symbol, \q
String Constants Special Character ←↩

Sequences

Symbol, \r
Input and output functions

Symbol, \s
Input and output functions

Symbol, \t
String Constants Special Character ←↩

Sequences

Symbol, \z
Input and output functions

Symbol, \\
String Constants Special Character ←↩

Sequences

Symbol, ^
Extracting data (dereferencing ←↩

pointers)

Symbol, ‘ (backquote)
Quoted Expressions

Abs
Maths and logic functions

ALL
Built-In Constants

AND
Bitwise AND and OR

And
Maths and logic functions

arg



beginner 195 / 258

Built-In Variables

ARRAY
Tables of data

ARRAY OF type
Tables of data

Bounds
Maths and logic functions

Box
Graphics functions

BUT
BUT expression

CASE
SELECT..OF block

CASE
SELECT block

CASE ..TO..
SELECT..OF block

Char
Maths and logic functions

CHAR
Static memory

CHAR
Indirect types

CleanUp
System support functions

CloseS
Intuition support functions

CloseW
Intuition support functions

Colour
Graphics functions

conout
Built-In Variables

CONST
Named Constants

CtrlC
System support functions

DEC



beginner 196 / 258

INC and DEC statements

DEF
Variable declaration

DEFAULT
SELECT block

DEFAULT
SELECT..OF block

Dispose
System support functions

DisposeLink
System support functions

Div
Maths and logic functions

DO, (FOR loop)
FOR loop

DO, (WHILE loop)
WHILE loop

dosbase
Built-In Variables

ELSE
IF block

ELSEIF
IF block

EMPTY
Inheritance in E

end
Methods in E

END
NEW and END Operators

ENDFOR
FOR loop

ENDIF
IF block

ENDLOOP
LOOP block

ENDOBJECT
Example object

ENDPROC



beginner 197 / 258

Procedure Definition

ENDPROC value
Functions

ENDSELECT
SELECT..OF block

ENDSELECT
SELECT block

ENDWHILE
WHILE loop

ENUM
Enumerations

Eor
Maths and logic functions

EstrLen
String functions

Eval
Evaluation

Even
Maths and logic functions

EXCEPT
Procedures with Exception Handlers

EXCEPT DO
Raising an Exception

exception
Raising an Exception

exceptioninfo
Raising an Exception

execbase
Built-In Variables

Exists
Lists and quoted expressions

EXIT
EXIT statement

Fabs
Floating-Point Functions

FALSE
Built-In Constants

FALSE



beginner 198 / 258

Logic and comparison

FastDispose
System support functions

FastDisposeList
List and typed list allocation

FastNew
System support functions

Fceil
Floating-Point Functions

Fcos
Floating-Point Functions

Fexp
Floating-Point Functions

Ffloor
Floating-Point Functions

FileLength
Input and output functions

Flog
Floating-Point Functions

Flog10
Floating-Point Functions

FOR
FOR loop

ForAll
Lists and quoted expressions

Forward
Linked Lists

Fpow
Floating-Point Functions

FreeStack
System support functions

Fsin
Floating-Point Functions

Fsqrt
Floating-Point Functions

Ftan
Floating-Point Functions

Gadget



beginner 199 / 258

Intuition support functions

GADGETSIZE
Built-In Constants

gfxbase
Built-In Variables

HANDLE
Procedures with Exception Handlers

IF
IF block

IF, (expression)
IF expression

INC
INC and DEC statements

INCBIN
Static memory

Inp
Input and output functions

InStr
String functions

INT
Indirect types

INT
Static memory

Int
Maths and logic functions

intuitionbase
Built-In Variables

IS
One-Line Functions

JUMP
Labelling and the JUMP statement

KickVersion
System support functions

LeftMouse
Intuition support functions

Line
Graphics functions

Link



beginner 200 / 258

Linked Lists

LIST
Lists and E-lists

List
List functions

ListAdd
List functions

ListCmp
List functions

ListCopy
List functions

ListItem
List functions

ListLen
List functions

ListMax
List functions

LONG
Static memory

Long
Maths and logic functions

LONG
LONG Type

LONG, preliminary
Variable types

LOOP
LOOP block

LowerStr
String functions

main
Procedures

MapList
Lists and quoted expressions

Max
Maths and logic functions

MidStr
String functions

Min



beginner 201 / 258

Maths and logic functions

Mod
Maths and logic functions

MODULE
Using Modules

Mouse
Intuition support functions

MouseX
Intuition support functions

MouseY
Intuition support functions

MsgCode
Intuition support functions

Mul
Maths and logic functions

NEW
NEW and END Operators

New
System support functions

NEWFILE
Built-In Constants

NewM
System support functions

NewR
System support functions

Next
Linked Lists

NIL
Built-In Constants

Not
Maths and logic functions

OBJECT
Example object

OBJECT..OF
Inheritance in E

Odd
Maths and logic functions

OLDFILE



beginner 202 / 258

Built-In Constants

OpenS
Intuition support functions

OpenW
Intuition support functions

Or
Maths and logic functions

OR
Bitwise AND and OR

Out
Input and output functions

Plot
Graphics functions

PrintF
Input and output functions

PRIVATE
Data-Hiding in E

PROC
Procedure Definition

PROC..OF
Methods in E

PTR TO type
PTR Type

PUBLIC
Data-Hiding in E

PutChar
Maths and logic functions

PutInt
Maths and logic functions

PutLong
Maths and logic functions

RAISE
Automatic Exceptions

Raise
Raising an Exception

ReadStr
Input and output functions

RealF



beginner 203 / 258

Floating-Point Functions

RealVal
Floating-Point Functions

REPEAT
REPEAT..UNTIL loop

RETURN
Functions

RightStr
String functions

Rnd
Maths and logic functions

RndQ
Maths and logic functions

SELECT
SELECT..OF block

SELECT
SELECT block

SELECT..OF
SELECT..OF block

SelectList
Lists and quoted expressions

self
Methods in E

SET
Sets

SetColour
Graphics functions

SetList
List functions

SetStdIn
Input and output functions

SetStdOut
Input and output functions

SetStdRast
Graphics functions

SetStr
String functions

SetTopaz



beginner 204 / 258

Graphics functions

Shl
Maths and logic functions

Shr
Maths and logic functions

Sign
Maths and logic functions

SIZEOF
SIZEOF expression

stdin
Built-In Variables

stdout
Built-In Variables

stdrast
Built-In Variables

STEP
FOR loop

StrAdd
String functions

StrCmp
String functions

StrCopy
String functions

STRING
Normal strings and E-strings

String
String functions

StringF
Input and output functions

StrLen
String functions

STRLEN
Built-In Constants

StrMax
String functions

SUPER
Inheritance in E

TextF



beginner 205 / 258

Graphics functions

THEN
IF block

Throw
Raising an Exception

TO
FOR loop

TO, (CASE range)
SELECT..OF block

TO, (FOR loop)
FOR loop

TrimStr
String functions

TRUE
Logic and comparison

TRUE
Built-In Constants

UNTIL
REPEAT..UNTIL loop

UpperStr
String functions

Val
String functions

VOID
Turning an Expression into a ←↩

Statement

WaitIMessage
Intuition support functions

WaitLeftMouse
Intuition support functions

wbmessage
Built-In Variables

WHILE
WHILE loop

WriteF
Input and output functions



beginner 206 / 258

1.186 beginner.guide/Main Index

Main Index

**********

This index should be used to find detailed information about particular
concepts. There is a separate index which deals with the keywords,
variables, functions and constants which are part of Amiga E (see

E Language Index
).

A4 register
Things to watch out for

A5 register
Things to watch out for

Absolute value
Maths and logic functions

Absolute value (floating-point)
Floating-Point Functions

Abstract class
Inheritance in E

Abstract method
Inheritance in E

Access array outside bounds
Accessing array data

Accessing array data
Accessing array data

Accuracy of floating-point numbers
Accuracy and Range

Addition
Mathematics

Address
Addresses

Address
Memory addresses

Address, finding
Finding addresses (making pointers)

Algebra
Variables and Expressions

Alignment



beginner 207 / 258

SIZEOF expression

Allocating an object
Objects in E

Allocating memory
System support functions

Allocation, dynamic memory
Dynamic Allocation

Allocation, memory
Memory Allocation

Allocation, static memory
Static Allocation

Allocation, typed memory dynamically
NEW and END Operators

Allowable assignment left-hand sides
Assignments

Amiga E author
Amiga E Author

Amiga system module
Amiga System Modules

Amiga system objects
Amiga system objects

Analogy, pointers
Addresses

And
Maths and logic functions

AND, bit-wise
Bitwise AND and OR

AND-ing flags
Sets

Apostrophe
String Constants Special Character ←↩

Sequences

Append to a list
List functions

Append to an E-string
String functions

arg, using
Any AmigaDOS



beginner 208 / 258

Argument
Parameters

Argument parsing
Argument Parsing

Argument, default
Default Arguments

Array
Tables of data

Array and array pointer declaration
Array pointers

Array diagram
Array pointers

Array pointer, decrementing
Point to other elements

Array pointer, incrementing
Point to other elements

Array pointer, next element
Point to other elements

Array pointer, previous element
Point to other elements

Array size
Tables of data

Array, access outside bounds
Accessing array data

Array, accessing data
Accessing array data

Array, first element short-hand
Accessing array data

Array, initialised
Typed lists

Array, pointer
Array pointers

Array, procedure parameter
Array procedure parameters

ASCII character constant
Numeric Constants

Assembly and E constants
Assembly and the E language



beginner 209 / 258

Assembly and E variables
Assembly and the E language

Assembly and labels
Assembly and the E language

Assembly and procedures
Assembly and the E language

Assembly and static memory
Static memory

Assembly statements
Assembly Statements

Assembly, calling system functions
Assembly and the E language

Assembly, potential problems
Things to watch out for

Assignment expression
Assignments

Assignment versus copying
String functions

Assignment, :=
Assignment

Assignment, allowable left-hand sides
Assignments

Assignment, Emodules:
Using Modules

Assignment, multiple
Multiple Return Values

Automatic exceptions
Automatic Exceptions

Automatic exceptions and initialisation
Raise within an Exception Handler

Automatic voiding
Turning an Expression into a Statement

Background pen, setting colour
Graphics functions

Backslash
String Constants Special Character ←↩

Sequences

Base case
Factorial Example



beginner 210 / 258

Base class
Inheritance

Beginner’s Guide author
Guide Author

Binary constant
Numeric Constants

Binary tree
Binary Trees

Bit shift left
Maths and logic functions

Bit shift right
Maths and logic functions

Bit-wise AND and OR
Bitwise AND and OR

Black box
Classes and methods

Block, conditional
Conditional Block

Block, IF
IF block

Block, SELECT
SELECT block

Block, SELECT..OF
SELECT..OF block

Books, further reading
Further Reading

Bounding a value
Maths and logic functions

Box drawing
Graphics functions

Box, black
Classes and methods

Bracketing expressions
Precedence and grouping

Branch
Binary Trees

Breaking a string over several lines
Statements



beginner 211 / 258

Breaking statements over several lines
Statements

Bug, finding
Common Problems

Built-in constants
Built-In Constants

Built-in functions
Built-In Functions

Built-in functions, floating-point
Floating-Point Functions

Built-in functions, linked list
Linked Lists

Built-in functions, list and E-list
List functions

Built-in functions, string and E-string
String functions

Built-in variables
Built-In Variables

BUT expression
BUT expression

Button click, left
Intuition support functions

Button click, left (wait)
Intuition support functions

Buttons state
Intuition support functions

Calculating with floating-point numbers
Floating-Point Calculations

Calling a method
Methods in E

Calling a procedure
Procedures

Calling a procedure
Procedure Execution

Calling system functions from Assembly
Assembly and the E language

Carriage return
String Constants Special Character Sequences



beginner 212 / 258

Case of characters in identifiers
Identifiers

Case, base
Factorial Example

Case, recursive
Factorial Example

Ceiling of a floating-point value
Floating-Point Functions

Changing stdin
Input and output functions

Changing stdout
Input and output functions

Changing stdrast
Graphics functions

Changing the value of a variable
Assignment

Character constant
Numeric Constants

Character, apostrophe
String Constants Special Character Sequences

Character, backslash
String Constants Special Character Sequences

Character, carriage return
String Constants Special Character Sequences

Character, double quote
String Constants Special Character Sequences

Character, escape
String Constants Special Character Sequences

Character, linefeed
String Constants Special Character Sequences

Character, null
String Constants Special Character Sequences

Character, printing
Input and output functions

Character, read from a file
Input and output functions

Character, tab



beginner 213 / 258

String Constants Special Character ←↩
Sequences

Character, write to file
Input and output functions

Choice, conditional block
Conditional Block

Class (OOP)
Classes and methods

Class hierarchy
Inheritance in E

Class, abstract
Inheritance in E

Class, base
Inheritance

Class, derived
Inheritance

Class, super
Inheritance in E

Classes and modules
Data-Hiding in E

Clean-up, program termination
System support functions

Close screen
Intuition support functions

Close window
Intuition support functions

Code fragment
Conditional Block

Code modules
Code Modules

code part of Intuition message
Intuition support functions

Code, reuse
Style Reuse and Readability

Code, style
Style Reuse and Readability

Colour, setting
Graphics functions



beginner 214 / 258

Colour, setting foreground and background pen
Graphics functions

Command line argument parsing
Argument Parsing

Comment, nested
Comments

Comments
Comments

Common logarithm
Floating-Point Functions

Common problems
Common Problems

Common use of pointers
Extracting data (dereferencing pointers)

Comparison of lists
List functions

Comparison of strings
String functions

Comparison operators
Logic and comparison

Compiler, ec
Compilation

Complex memory, deallocate
System support functions

Complex memory, free
System support functions

Complex types
Complex types

Conditional block
Conditional Block

Constant
Constants

Constant string
Normal strings and E-strings

Constant, binary
Numeric Constants

Constant, built-in
Built-In Constants



beginner 215 / 258

Constant, character
Numeric Constants

Constant, decimal
Numeric Constants

Constant, enumeration
Enumerations

Constant, hexadecimal
Numeric Constants

Constant, named
Named Constants

Constant, numeric
Numeric Constants

Constant, set
Sets

Constant, use in Assembly
Assembly and the E language

Constructor
Classes and methods

Constructor, names
Methods in E

Control-C testing
System support functions

Controlling program flow
Program Flow Control

Conversion of floating-point numbers
Floating-Point Calculations

Convert an expression to a statement
Turning an Expression into a Statement

Convert header file to module
Non-Standard Modules

Convert include file to module
Non-Standard Modules

Convert pragma file to module
Non-Standard Modules

Converting floating-point numbers from a string
Floating-Point Functions

Converting strings to numbers
String functions



beginner 216 / 258

Copy middle part of a string
String functions

Copy right-hand part of an E-string
String functions

Copying a list
List functions

Copying a string
String functions

Copying versus assignment
String functions

Cosine function
Floating-Point Functions

Crash, avoiding stack problems
Stack (and Crashing)

Crash, running out of stack
Stack (and Crashing)

Create gadget
Intuition support functions

Cure for linefeed problem
Strings

Data, extracting from a pointer
Extracting data (dereferencing pointers)

Data, input
The Simple Program

Data, manipulation
The Simple Program

Data, named
Variables and Expressions

Data, output
The Simple Program

Data, static
Static data

Data, storage
Variable types

Data-abstraction
Classes and methods

Data-hiding
Classes and methods



beginner 217 / 258

Deallocating an object
Objects in E

Deallocating complex memory
System support functions

Deallocating memory
System support functions

Deallocation of memory
Deallocation of Memory

Deallocation, potential problems
Deallocation of Memory

Decimal constant
Numeric Constants

Decimal number, printing
Input and output functions

Decision, conditional block
Conditional Block

Declaration, array and array pointer
Array pointers

Declaration, illegal
Indirect types

Declaration, initialised
Initialised Declarations

Declaration, variable type
Default type

Declaring a variable
Variable declaration

Decrementing a variable
INC and DEC statements

Decrementing array pointer
Point to other elements

Default arguments
Default Arguments

Default type
Default type

Definition of a procedure with parameters
Global and local variables

Dereferencing a pointer
Extracting data (dereferencing pointers)



beginner 218 / 258

Derivation (OOP)
Inheritance

Derived class
Inheritance

Descoping a global variable
Global and local variables

Destructor
Classes and methods

Destructor, end
Methods in E

Direct type
Indirect types

Division
Mathematics

Division, 32-bit
Maths and logic functions

Double quote
String Constants Special Character ←↩

Sequences

Doubly linked list
Linked Lists

Dragon curve
Recursion Example

Drawing, box
Graphics functions

Drawing, line
Graphics functions

Drawing, text
Graphics functions

Dynamic (typed) memory allocation
NEW and END Operators

Dynamic E-list allocation
List functions

Dynamic E-string allocation
String functions

Dynamic memory allocation
Dynamic Allocation

Dynamic type
Inheritance in E



beginner 219 / 258

E author
Amiga E Author

E-list
Lists and E-lists

E-list functions
List functions

E-list, append
List functions

E-list, comparison
List functions

E-list, copying
List functions

E-list, dynamic allocation
List functions

E-list, length
List functions

E-list, maximum length
List functions

E-list, setting the length
List functions

E-string
Normal strings and E-strings

E-string functions
String functions

E-string handling example
String Handling and I-O

E-string, append
String functions

E-string, comparison
String functions

E-string, copying
String functions

E-string, dynamic allocation
String functions

E-string, format text to
Input and output functions

E-string, length
String functions



beginner 220 / 258

E-string, lowercase
String functions

E-string, maximum length
String functions

E-string, middle copy
String functions

E-string, reading from a file
Input and output functions

E-string, right-hand copy
String functions

E-string, set length
String functions

E-string, trim leading whitespace
String functions

E-string, uppercase
String functions

Early termination of a function
Functions

ec compiler
Compilation

Element selection
Element selection and element types

Element types
Element selection and element types

Elements of a linked list
Linked Lists

Elements of an array
Accessing array data

Elements of an object
OBJECT Type

Emodules: assignment
Using Modules

end destructor
Methods in E

End of file
Input and output functions

Enumeration
Enumerations



beginner 221 / 258

EOF
Input and output functions

Error handling
Exception Handling

Escape character
String Constants Special Character Sequences

Evaluation of quoted expressions
Evaluation

Even number
Maths and logic functions

Example module use
Example Module Use

Examples, altering
Tinkering with the example

Examples, tinkering
Tinkering with the example

Exception
Exception Handling

Exception handler in a procedure
Procedures with Exception Handlers

Exception handling
Exception Handling

Exception, automatic
Automatic Exceptions

Exception, raising
Raising an Exception

Exception, raising from a handler
Raise within an Exception Handler

Exception, recursive handling
Stack and Exceptions

Exception, throwing
Raising an Exception

Exception, use of stack
Stack and Exceptions

Exception, zero
Raising an Exception

Exceptions and initialisation
Raise within an Exception Handler



beginner 222 / 258

Exclusive or
Maths and logic functions

Executing a procedure
Procedure Execution

Execution
Execution

Execution, jumping to a label
Labelling and the JUMP statement

Exists a list element
Lists and quoted expressions

EXIT statement
EXIT statement

Exiting a loop
EXIT statement

Exponentiation
Floating-Point Functions

Expression
Variables and Expressions

Expression
Expressions

Expression in parentheses
Precedence and grouping

Expression, assignment
Assignments

Expression, bad grouping
Precedence and grouping

Expression, bracketing
Precedence and grouping

Expression, BUT
BUT expression

Expression, conversion to a statement
Turning an Expression into a Statement

Expression, grouping
Precedence and grouping

Expression, IF
IF expression

Expression, quotable
Quotable expressions



beginner 223 / 258

Expression, quoted
Quoted Expressions

Expression, sequence
BUT expression

Expression, side-effects
Side-effects

Expression, timing example
Timing Expressions

Expression, voiding
Turning an Expression into a Statement

Extracting data from a pointer
Extracting data (dereferencing pointers)

Extracting floating-point numbers from a string
Floating-Point Functions

Extracting numbers from a string
String functions

Factorial function
Factorial Example

Field formatting
Input and output functions

Field size
Input and output functions

Field, left-justify
Input and output functions

Field, right-justify
Input and output functions

Field, zero fill
Input and output functions

File length
Input and output functions

Filtering a list
Lists and quoted expressions

Find sub-string in a string
String functions

Finding addresses
Finding addresses (making pointers)

Finding bugs
Common Problems



beginner 224 / 258

First element of an array
Accessing array data

Flag, AND-ing
Sets

Flag, IDCMP
Intuition support functions

Flag, mouse button
Intuition support functions

Flag, OR-ing
Sets

Flag, screen resolution
Intuition support functions

Flag, set constant
Sets

Flag, window
Intuition support functions

Floating-point conversion operator
Floating-Point Calculations

Floating-point functions
Floating-Point Functions

Floating-point number
Floating-Point Numbers

Floating-point number, extracting from a string
Floating-Point Functions

Floor of a floating-point value
Floating-Point Functions

Flow control
Program Flow Control

Following elements in a linked list
Linked Lists

Font, setting Topaz
Graphics functions

For all list elements
Lists and quoted expressions

FOR loop
FOR loop

Foreground pen, setting colour
Graphics functions



beginner 225 / 258

Format rules
Format and Layout

Format text to an E-string
Input and output functions

Forward through a linked list
Linked Lists

Fragment, code
Conditional Block

Free stack space
System support functions

Freeing complex memory
System support functions

Freeing memory
System support functions

Function
Procedures and Functions

Function, built-in
Built-In Functions

Function, early termination
Functions

Function, factorial
Factorial Example

Function, graphics
Graphics functions

Function, input
Input and output functions

Function, Intuition support
Intuition support functions

Function, logic
Maths and logic functions

Function, maths
Maths and logic functions

Function, one-line
One-Line Functions

Function, output
Input and output functions

Function, recursive
Recursion



beginner 226 / 258

Function, return value
Functions

Function, system support
System support functions

Functions, floating-point
Floating-Point Functions

Functions, linked list
Linked Lists

Functions, list and E-list
List functions

Functions, string and E-string
String functions

Further reading
Further Reading

Gadget and IDCMP example
IDCMP Messages

Gadget, create
Intuition support functions

Gadgets example
Gadgets

General loop
LOOP block

Global variable
Global and local variables

Global variable, descoping
Global and local variables

Graphics example
Graphics

Graphics functions
Graphics functions

Grouping expressions
Precedence and grouping

Grouping, bad
Precedence and grouping

Guide author
Guide Author

Handler in a procedure
Procedures with Exception Handlers



beginner 227 / 258

Handler raising an exception
Raise within an Exception Handler

Handler, recursive
Stack and Exceptions

Handling exceptions
Exception Handling

Head of a linked list
Linked Lists

Header file, convert to module
Non-Standard Modules

Hexadecimal constant
Numeric Constants

Hexadecimal number, printing
Input and output functions

Hierarchy, class
Inheritance in E

Horizontal FOR loop
FOR loop

Horizontal function definition
One-Line Functions

Horizontal IF block
IF block

Horizontal WHILE loop
WHILE loop

I/O example
String Handling and I-O

I/O example, with handler
String Handling and I-O

iaddr part of Intuition message
Intuition support functions

IDCMP and gadget example
IDCMP Messages

IDCMP flags
Intuition support functions

IDCMP message, code part
Intuition support functions

IDCMP message, iaddr part
Intuition support functions



beginner 228 / 258

IDCMP message, qual part
Intuition support functions

IDCMP message, waiting for
Intuition support functions

Identifier
Identifiers

Identifier, case of characters
Identifiers

IF block
IF block

IF block, nested
IF block

IF block, overlapping conditions
IF block

IF expression
IF expression

Illegal declaration
Indirect types

Include file, convert to module
Non-Standard Modules

Incrementing a variable
INC and DEC statements

Incrementing array pointer
Point to other elements

Indentation
Spacing and Separators

Indirect type
Indirect types

Inheritance (OOP)
Inheritance

Inheritance, OBJECT..OF
Inheritance in E

Initialisation and automatic exceptions
Raise within an Exception Handler

Initialised array
Typed lists

Initialised declaration
Initialised Declarations



beginner 229 / 258

Inlining procedures
Style Reuse and Readability

Input a character
Input and output functions

Input a string
Input and output functions

Input functions
Input and output functions

Input/output example
String Handling and I-O

Input/output example, with handler
String Handling and I-O

Interface
Classes and methods

Intuition message flags
Intuition support functions

Intuition message, code part
Intuition support functions

Intuition message, iaddr part
Intuition support functions

Intuition message, qual part
Intuition support functions

Intuition message, waiting for
Intuition support functions

Intuition support functions
Intuition support functions

Iteration
Loops

Jumping out of a loop
Labelling and the JUMP statement

Jumping to a label
Labelling and the JUMP statement

Kickstart version
System support functions

Label
Labelling and the JUMP statement

Label, use in Assembly
Assembly and the E language



beginner 230 / 258

Languages
Introduction to Amiga E

Layout rules
Format and Layout

Leaf
Binary Trees

Left mouse button click
Intuition support functions

Left mouse button click (wait)
Intuition support functions

Left shift
Maths and logic functions

Left-hand side of an assignment, allowable
Assignments

Left-justify field
Input and output functions

Length (maximum) of an E-list
List functions

Length (maximum) of an E-string
String functions

Length of a file
Input and output functions

Length of a list
List functions

Length of a string
String functions

Length of an E-list, setting
List functions

Length of an E-string
String functions

Length of an E-string, setting
String functions

Line drawing
Graphics functions

Linefeed
String Constants Special Character ←↩

Sequences

Linefeed problem



beginner 231 / 258

Execution

Linefeed problem, cure
Strings

Linefeed, \n
Strings

Linked list
Linked Lists

Linked list, doubly
Linked Lists

Linked list, elements
Linked Lists

Linked list, following elements
Linked Lists

Linked list, functions
Linked Lists

Linked list, head
Linked Lists

Linked list, linking
Linked Lists

Linked list, next element
Linked Lists

Linked list, singly
Linked Lists

Linking a linked list
Linked Lists

List
Lists and E-lists

List functions
List functions

List, append
List functions

List, comparison
List functions

List, copying
List functions

List, filtering
Lists and quoted expressions

List, for all elements



beginner 232 / 258

Lists and quoted expressions

List, length
List functions

List, linked
Linked Lists

List, mapping a quoted expression
Lists and quoted expressions

List, normal
Lists and E-lists

List, selecting an element
List functions

List, tag
Lists and E-lists

List, there exists an element
Lists and quoted expressions

List, typed
Typed lists

Lists and quoted expressions
Lists and quoted expressions

Local variable
Global and local variables

Local variable, same names
Global and local variables

Local variable, self
Methods in E

Local variables in a quoted expression
Quotable expressions

Locate sub-string in a string
String functions

Location, memory
Addresses

Location, memory
Memory addresses

Logarithm, common
Floating-Point Functions

Logarithm, natural
Floating-Point Functions

Logic



beginner 233 / 258

Logic and comparison

Logic functions
Maths and logic functions

Logic operators
Logic and comparison

Logic, and
Maths and logic functions

Logic, exclusive or
Maths and logic functions

Logic, not
Maths and logic functions

Logic, or
Maths and logic functions

LONG type
LONG Type

LONG type, definition
Indirect types

Loop
Loops

LOOP block
LOOP block

Loop check, REPEAT..UNTIL
REPEAT..UNTIL loop

Loop check, WHILE
WHILE loop

Loop termination
WHILE loop

Loop, EXIT
EXIT statement

Loop, exiting
EXIT statement

Loop, FOR
FOR loop

Loop, general
LOOP block

Loop, LOOP
LOOP block

Loop, REPEAT..UNTIL



beginner 234 / 258

REPEAT..UNTIL loop

Loop, terminate by jumping to a label
Labelling and the JUMP statement

Loop, WHILE
WHILE loop

Lowercase a string
String functions

main procedure
Procedures

Making pointers
Finding addresses (making pointers)

Manipulation, safe
LIST and STRING Types

Mapping a quoted expression over a list
Lists and quoted expressions

Matching patterns
Unification

Mathematical operators
Mathematics

Maths functions
Maths and logic functions

Maximum
Maths and logic functions

Maximum length of an E-list
List functions

Maximum length of an E-string
String functions

Memory address
Addresses

Memory address
Memory addresses

Memory, allocating
System support functions

Memory, allocation
Memory Allocation

Memory, deallocate
System support functions

Memory, deallocate complex



beginner 235 / 258

System support functions

Memory, deallocation
Deallocation of Memory

Memory, dynamic (typed) allocation
NEW and END Operators

Memory, dynamic allocation
Dynamic Allocation

Memory, free
System support functions

Memory, free complex
System support functions

Memory, reading
Maths and logic functions

Memory, sharing
Assignment and Copying

Memory, static allocation
Static Allocation

Memory, writing
Maths and logic functions

Method (OOP)
Classes and methods

Method, abstract
Inheritance in E

Method, calling
Methods in E

Method, constructor
Classes and methods

Method, destructor
Classes and methods

Method, end
Methods in E

Method, overriding
Inheritance in E

Method, PROC..OF
Methods in E

Method, self local variable
Methods in E

Middle copy of a string



beginner 236 / 258

String functions

Minimum
Maths and logic functions

Mnemonics, Assembly
Assembly Statements

Module
Modules

Module, Amiga system
Amiga System Modules

Module, code
Code Modules

Module, convert from include, header or pragma file
Non-Standard Modules

Module, example use
Example Module Use

Module, non-standard
Non-Standard Modules

Module, using
Using Modules

Module, view contents
Using Modules

Modules and classes
Data-Hiding in E

Modulus
Maths and logic functions

Mouse button flags
Intuition support functions

Mouse buttons state
Intuition support functions

Mouse click, left button
Intuition support functions

Mouse click, left button (wait)
Intuition support functions

Mouse x-coordinate
Intuition support functions

Mouse y-coordinate
Intuition support functions

Multiple return values



beginner 237 / 258

Multiple Return Values

Multiple-assignment
Multiple Return Values

Multiplication
Mathematics

Multiplication, 32-bit
Maths and logic functions

Mutual recursion
Mutual Recursion

Named constant
Named Constants

Named data
Variables and Expressions

Named elements
OBJECT Type

Names of constructors
Methods in E

Names of local variables
Global and local variables

Natural logarithm
Floating-Point Functions

Nested comment
Comments

Nested IF blocks
IF block

Next element of a linked list
Linked Lists

Node
Binary Trees

Non-standard module
Non-Standard Modules

Normal list
Lists and E-lists

Normal list, selecting an element
List functions

Normal string
Normal strings and E-strings

Not



beginner 238 / 258

Maths and logic functions

Null character
String Constants Special Character ←↩

Sequences

Number, even
Maths and logic functions

Number, extracting from a string
String functions

Number, floating-point
Floating-Point Numbers

Number, odd
Maths and logic functions

Number, printing
Input and output functions

Number, printing (simple)
Changing the example

Number, quick random
Maths and logic functions

Number, random
Maths and logic functions

Number, real
Floating-Point Numbers

Number, signed or unsigned
Signed and Unsigned Values

Numbered elements of an array
Accessing array data

Numeric constant
Numeric Constants

Object
OBJECT Type

Object (OOP)
Classes and methods

Object element types
Element selection and element types

Object elements, private
Data-Hiding in E

Object elements, public
Data-Hiding in E



beginner 239 / 258

Object pointer
Element selection and element types

Object selection, use of ++ and -
Element selection and element types

Object, allocation
Objects in E

Object, Amiga system
Amiga system objects

Object, deallocation
Objects in E

Object, element selection
Element selection and element types

Object, named elements
OBJECT Type

Object, size
SIZEOF expression

OBJECT..OF, inheritance
Inheritance in E

Odd number
Maths and logic functions

One-line function
One-Line Functions

OOP, class
Classes and methods

OOP, derivation
Inheritance

OOP, inheritance
Inheritance

OOP, method
Classes and methods

OOP, object
Classes and methods

Open screen
Intuition support functions

Open window
Intuition support functions

Operator precedence
Precedence and grouping



beginner 240 / 258

Operator, SUPER
Inheritance in E

Operators, comparison
Logic and comparison

Operators, logic
Logic and comparison

Operators, mathematical
Mathematics

Option, set constant
Sets

Optional return values
Multiple Return Values

Or
Maths and logic functions

OR, bit-wise
Bitwise AND and OR

Or, exclusive
Maths and logic functions

OR-ing flags
Sets

Output a character
Input and output functions

Output functions
Input and output functions

Output text
Input and output functions

Output window
Built-In Variables

Overlapping conditions
IF block

Overriding methods
Inheritance in E

Pad byte
SIZEOF expression

Parameter
Parameters

Parameter variable
Global and local variables



beginner 241 / 258

Parameter, default
Default Arguments

Parameter, procedure local variables
Global and local variables

Parentheses and expressions
Precedence and grouping

Parsing command line arguments
Argument Parsing

Pattern matching
Unification

Peeking memory
Maths and logic functions

Pen colour, setting
Graphics functions

Pen, setting foreground and background colour
Graphics functions

Place-holder, decimal \d
Changing the example

Place-holder, field formatting
Input and output functions

Place-holder, field size
Input and output functions

Place-holders
Input and output functions

Plot a point
Graphics functions

Point, plot
Graphics functions

Pointer
PTR Type

Pointer (array) and array declaration
Array pointers

Pointer analogy
Addresses

Pointer diagram
Addresses

Pointer type
PTR Type



beginner 242 / 258

Pointer, array
Array pointers

Pointer, common use
Extracting data (dereferencing pointers)

Pointer, dereference
Extracting data (dereferencing pointers)

Pointer, making
Finding addresses (making pointers)

Pointer, object
Element selection and element types

Pointer, sharing memory
Assignment and Copying

Poking memory
Maths and logic functions

Polymorphism
Inheritance in E

Potential problems using Assembly
Things to watch out for

Pragma file, convert to module
Non-Standard Modules

Precedence, operators
Precedence and grouping

Printing characters
Input and output functions

Printing decimal numbers
Input and output functions

Printing hexadecimal numbers
Input and output functions

Printing numbers
Changing the example

Printing strings
Input and output functions

Printing text
Input and output functions

Printing to an E-string
Input and output functions

Private, object elements
Data-Hiding in E



beginner 243 / 258

Problems, common
Common Problems

PROC..OF, method
Methods in E

Procedure
Procedures

Procedure argument
Parameters

Procedure parameter
Parameters

Procedure parameter local variables
Global and local variables

Procedure parameter types
Procedure parameters

Procedure parameter variable
Global and local variables

Procedure parameter, array
Array procedure parameters

Procedure parameter, default
Default Arguments

Procedure with parameters, definition
Global and local variables

Procedure, calling
Procedure Execution

Procedure, calling
Procedures

Procedure, definition
Procedure Definition

Procedure, early termination
Functions

Procedure, exception handler
Procedures with Exception Handlers

Procedure, execution
Procedure Execution

Procedure, inlining
Style Reuse and Readability

Procedure, recent
Raising an Exception



beginner 244 / 258

Procedure, return value
Functions

Procedure, reuse
Style Reuse and Readability

Procedure, running
Procedures

Procedure, running
Procedure Execution

Procedure, style
Style Reuse and Readability

Procedure, use in Assembly
Assembly and the E language

Program flow control
Program Flow Control

Program termination
System support functions

Program, finish
Procedures

Program, running
Execution

Program, start
Procedures

Pseudo-random number
Maths and logic functions

Public, object elements
Data-Hiding in E

qual part of Intuition message
Intuition support functions

Quick random number
Maths and logic functions

Quotable expressions
Quotable expressions

Quoted expression
Quoted Expressions

Quoted expression, evaluation
Evaluation

Quoted expression, for all list elements
Lists and quoted expressions



beginner 245 / 258

Quoted expression, local variables
Quotable expressions

Quoted expression, mapping over a list
Lists and quoted expressions

Quoted expression, there exists a list element
Lists and quoted expressions

Quoted expressions and lists
Lists and quoted expressions

Raising an exception
Raising an Exception

Raising an exception from a handler
Raise within an Exception Handler

Raising to a power
Floating-Point Functions

Random number
Maths and logic functions

Random number, quick
Maths and logic functions

Range of floating-point numbers
Accuracy and Range

ReadArgs, using
AmigaDOS 2.0 (and above)

Reading a character from a file
Input and output functions

Reading a string from a file
Input and output functions

Reading from memory
Maths and logic functions

Reading, further
Further Reading

Real number
Floating-Point Numbers

Recent procedure
Raising an Exception

Recursion
Recursion

Recursion example
Recursion Example



beginner 246 / 258

Recursion, mutual
Mutual Recursion

Recursive case
Factorial Example

Recursive exception handling
Stack and Exceptions

Recursive function
Recursion

Recursive type
Recursion

Registers, A4 and A5
Things to watch out for

Regular return value
Multiple Return Values

Remainder
Maths and logic functions

REPEAT..UNTIL loop
REPEAT..UNTIL loop

REPEAT..UNTIL loop check
REPEAT..UNTIL loop

REPEAT..UNTIL loop version of a FOR loop
REPEAT..UNTIL loop

Repeated execution
Loops

Resolution flags
Intuition support functions

Return value of a function
Functions

Return value, optional
Multiple Return Values

Return value, regular
Multiple Return Values

Return values, multiple
Multiple Return Values

Reusing code
Style Reuse and Readability

Reusing procedures
Style Reuse and Readability



beginner 247 / 258

Revision, Kickstart
System support functions

Rewriting a FOR loop as a REPEAT..UNTIL loop
REPEAT..UNTIL loop

Rewriting a FOR loop as a WHILE loop
WHILE loop

Rewriting SELECT block as IF block
SELECT block

Rewriting SELECT..OF block as IF block
SELECT..OF block

Right shift
Maths and logic functions

Right-hand copy of an E-string
String functions

Right-justify field
Input and output functions

Root
Binary Trees

Rounding a floating-point value
Floating-Point Functions

Rules, format and layout
Format and Layout

Running a method
Methods in E

Running a procedure
Procedures

Running a program
Execution

Safe manipulation
LIST and STRING Types

Same names of local variables
Global and local variables

Screen example, with handler
Screens

Screen example, without handler
Screens

Screen resolution flags
Intuition support functions



beginner 248 / 258

Screen, close
Intuition support functions

Screen, open
Intuition support functions

Seed of a random sequence
Maths and logic functions

SELECT block
SELECT block

SELECT block, rewriting as IF block
SELECT block

SELECT..OF block
SELECT..OF block

SELECT..OF block, rewriting as IF block
SELECT..OF block

SELECT..OF block, speed versus size
SELECT..OF block

Selecting an element of a normal list
List functions

Selecting an element of an object
Element selection and element types

Selection, use of ++ and -
Element selection and element types

self, method local variable
Methods in E

Separators
Spacing and Separators

Sequencing expressions
BUT expression

Sequential composition
Statements

Set
Sets

Set length of an E-string
String functions

Setting foreground and background pen colours
Graphics functions

Setting pen colours
Graphics functions



beginner 249 / 258

Setting stdin
Input and output functions

Setting stdout
Input and output functions

Setting stdrast
Graphics functions

Setting the length of an E-list
List functions

Setting Topaz font
Graphics functions

Sharing memory
Assignment and Copying

Shift left
Maths and logic functions

Shift right
Maths and logic functions

Short-hand for first element of an array
Accessing array data

Show module contents
Using Modules

Side-effects
Side-effects

Sign of a number
Maths and logic functions

Signed and unsigned values
Signed and Unsigned Values

Sine function
Floating-Point Functions

Singly linked list
Linked Lists

Size of an array
Tables of data

Size of an object
SIZEOF expression

Size versus speed, SELECT..OF block
SELECT..OF block

Spacing
Spacing and Separators



beginner 250 / 258

Special character sequences
String Constants Special Character Sequences

Speed versus size, SELECT..OF block
SELECT..OF block

Splitting a string over several lines
Statements

Splitting statements over several lines
Statements

Square root
Floating-Point Functions

Stack and crashing
Stack (and Crashing)

Stack and exceptions
Stack and Exceptions

Stack space, free
System support functions

Stack, avoiding crashes
Stack (and Crashing)

State of mouse buttons
Intuition support functions

Statement
Statements

Statement, Assembly
Assembly Statements

Statement, breaking
Statements

Statement, conversion from an expression
Turning an Expression into a Statement

Statement, several on one line
Statements

Statement, splitting
Statements

Static data
Static data

Static data, potential problems
Static data

Static memory allocation
Static Allocation



beginner 251 / 258

Static memory, use in Assembly
Static memory

stdin, setting
Input and output functions

stdout, setting
Input and output functions

stdrast, setting
Graphics functions

String
Normal strings and E-strings

String
Strings

String diagram
Normal strings and E-strings

String functions
String functions

String handling example
String Handling and I-O

String handling example, with handler
String Handling and I-O

STRING type
Normal strings and E-strings

String, append
String functions

String, breaking
Statements

String, comparison
String functions

String, constant
Normal strings and E-strings

String, converting to floating-point number
Floating-Point Functions

String, converting to numbers
String functions

String, copying
String functions

String, find sub-string
String functions



beginner 252 / 258

String, length
String functions

String, lowercase
String functions

String, middle copy
String functions

String, printing
Input and output functions

String, right-hand copy
String functions

String, special character sequence
String Constants Special Character Sequences

String, splitting
Statements

String, trim leading whitespace
String functions

String, uppercase
String functions

Structure
OBJECT Type

Sub-string location in a string
String functions

Subtraction
Mathematics

Successful, zero exception
Raising an Exception

Summary of Part One
Summary

Super class
Inheritance in E

SUPER, operator
Inheritance in E

System function, calling from Assembly
Assembly and the E language

System module
Amiga System Modules

System objects
Amiga system objects



beginner 253 / 258

System support functions
System support functions

System variables
Built-In Variables

Tab character
String Constants Special Character ←↩

Sequences

Table of data
Tables of data

Tag list
Lists and E-lists

Tail of a linked list
Linked Lists

Tangent function
Floating-Point Functions

Terminating loops
WHILE loop

Termination, program
System support functions

Test for control-C
System support functions

Test for even number
Maths and logic functions

Test for odd number
Maths and logic functions

Text drawing
Graphics functions

Text, printing
Input and output functions

There exists a list element
Lists and quoted expressions

Throwing an exception
Raising an Exception

Timing expressions example
Timing Expressions

Tinkering
Tinkering with the example

Topaz, setting font
Graphics functions



beginner 254 / 258

Tree, binary
Binary Trees

Tree, branch
Binary Trees

Tree, leaf
Binary Trees

Tree, node
Binary Trees

Tree, root
Binary Trees

Trigonometry functions
Floating-Point Functions

Trim leading whitespace from a string
String functions

Trouble-shooting
Common Problems

Truth values as numbers
Logic and comparison

Turn an expression into a statement
Turning an Expression into a Statement

Type
Types

Type of a variable
Variable types

Type, 16-bit
Indirect types

Type, 32-bit
Default type

Type, 8-bit
Indirect types

Type, address
Addresses

Type, array
Tables of data

Type, complex
Complex types

Type, default
Default type



beginner 255 / 258

Type, direct
Indirect types

Type, dynamic
Inheritance in E

Type, E-list
Lists and E-lists

Type, indirect
Indirect types

Type, list
Lists and E-lists

Type, LONG
LONG Type

Type, LONG (definition)
Indirect types

Type, object
OBJECT Type

Type, object elements
Element selection and element types

Type, pointer
PTR Type

Type, procedure parameters
Procedure parameters

Type, recursive
Recursion

Type, STRING
Normal strings and E-strings

Type, variable declaration
Default type

Typed list
Typed lists

Unification
Unification

Unsigned and signed values
Signed and Unsigned Values

Uppercase a string
String functions

Using a module
Using Modules



beginner 256 / 258

Using arg
Any AmigaDOS

Using modules, example
Example Module Use

Using ReadArgs
AmigaDOS 2.0 (and above)

Using wbmessage
Any AmigaDOS

van Oortmerssen, Wouter
Amiga E Author

Variable
Variables and Expressions

Variable initialisation and automatic exceptions
Raise within an Exception Handler

Variable type
Default type

Variable, built-in
Built-In Variables

Variable, changing value
Assignment

Variable, declaration
Variable declaration

Variable, decrement
INC and DEC statements

Variable, global
Global and local variables

Variable, increment
INC and DEC statements

Variable, local
Global and local variables

Variable, procedure parameter
Global and local variables

Variable, same global and local names
Global and local variables

Variable, same local names
Global and local variables

Variable, system
Built-In Variables



beginner 257 / 258

Variable, type
Variable types

Variable, use in Assembly statements
Assembly and the E language

Version, Kickstart
System support functions

Vertical FOR loop
FOR loop

Vertical IF block
IF block

Vertical WHILE loop
WHILE loop

View module contents
Using Modules

Voiding an expression
Turning an Expression into a Statement

Voiding, automatic
Turning an Expression into a Statement

Wait for left mouse button click
Intuition support functions

Waiting for Intuition messages
Intuition support functions

wbmessage, using
Any AmigaDOS

WHILE loop
WHILE loop

WHILE loop check
WHILE loop

WHILE loop version of a FOR loop
WHILE loop

Whitespace
Spacing and Separators

Whitespace, trim from a string
String functions

Window flags
Intuition support functions

Window, close
Intuition support functions



beginner 258 / 258

Window, open
Intuition support functions

Window, output
Built-In Variables

Wouter van Oortmerssen
Amiga E Author

Writing a character to file
Input and output functions

Writing to memory
Maths and logic functions

X-coordinate, mouse
Intuition support functions

Y-coordinate, mouse
Intuition support functions

Zero exception (success)
Raising an Exception

Zero fill field
Input and output functions


	beginner
	beginner.guide
	beginner.guide/Introduction to Amiga E
	beginner.guide/A Simple Program
	beginner.guide/The code
	beginner.guide/Compilation
	beginner.guide/Execution
	beginner.guide/Understanding a Simple Program
	beginner.guide/Changing the Message
	beginner.guide/Tinkering with the example
	beginner.guide/Brief overview
	beginner.guide/Procedures
	beginner.guide/Procedure Definition
	beginner.guide/Procedure Execution
	beginner.guide/Extending the example
	beginner.guide/Parameters
	beginner.guide/Strings
	beginner.guide/Style Reuse and Readability
	beginner.guide/The Simple Program
	beginner.guide/Variables and Expressions
	beginner.guide/Variables
	beginner.guide/Variable types
	beginner.guide/Variable declaration
	beginner.guide/Assignment
	beginner.guide/Global and local variables
	beginner.guide/Changing the example
	beginner.guide/Expressions
	beginner.guide/Mathematics
	beginner.guide/Logic and comparison
	beginner.guide/Precedence and grouping
	beginner.guide/Program Flow Control
	beginner.guide/Conditional Block
	beginner.guide/IF block
	beginner.guide/IF expression
	beginner.guide/SELECT block
	beginner.guide/SELECT..OF block
	beginner.guide/Loops
	beginner.guide/FOR loop
	beginner.guide/WHILE loop
	beginner.guide/REPEAT..UNTIL loop
	beginner.guide/Summary
	beginner.guide/Format and Layout
	beginner.guide/Identifiers
	beginner.guide/Statements
	beginner.guide/Spacing and Separators
	beginner.guide/Comments
	beginner.guide/Procedures and Functions
	beginner.guide/Functions
	beginner.guide/One-Line Functions
	beginner.guide/Default Arguments
	beginner.guide/Multiple Return Values
	beginner.guide/Constants
	beginner.guide/Numeric Constants
	beginner.guide/String Constants Special Character Sequences
	beginner.guide/Named Constants
	beginner.guide/Enumerations
	beginner.guide/Sets
	beginner.guide/Types
	beginner.guide/LONG Type
	beginner.guide/Default type
	beginner.guide/Memory addresses
	beginner.guide/PTR Type
	beginner.guide/Addresses
	beginner.guide/Pointers
	beginner.guide/Indirect types
	beginner.guide/Finding addresses (making pointers)
	beginner.guide/Extracting data (dereferencing pointers)
	beginner.guide/Procedure parameters
	beginner.guide/ARRAY Type
	beginner.guide/Tables of data
	beginner.guide/Accessing array data
	beginner.guide/Array pointers
	beginner.guide/Point to other elements
	beginner.guide/Array procedure parameters
	beginner.guide/OBJECT Type
	beginner.guide/Example object
	beginner.guide/Element selection and element types
	beginner.guide/Amiga system objects
	beginner.guide/LIST and STRING Types
	beginner.guide/Normal strings and E-strings
	beginner.guide/String functions
	beginner.guide/Lists and E-lists
	beginner.guide/List functions
	beginner.guide/Complex types
	beginner.guide/Typed lists
	beginner.guide/Static data
	beginner.guide/Linked Lists
	beginner.guide/More About Statements and Expressions
	beginner.guide/Turning an Expression into a Statement
	beginner.guide/Initialised Declarations
	beginner.guide/Assignments
	beginner.guide/More Expressions
	beginner.guide/Side-effects
	beginner.guide/BUT expression
	beginner.guide/Bitwise AND and OR
	beginner.guide/SIZEOF expression
	beginner.guide/More Statements
	beginner.guide/INC and DEC statements
	beginner.guide/Labelling and the JUMP statement
	beginner.guide/EXIT statement
	beginner.guide/LOOP block
	beginner.guide/Unification
	beginner.guide/Quoted Expressions
	beginner.guide/Evaluation
	beginner.guide/Quotable expressions
	beginner.guide/Lists and quoted expressions
	beginner.guide/Assembly Statements
	beginner.guide/Assembly and the E language
	beginner.guide/Static memory
	beginner.guide/Things to watch out for
	beginner.guide/E Built-In Constants Variables and Functions
	beginner.guide/Built-In Constants
	beginner.guide/Built-In Variables
	beginner.guide/Built-In Functions
	beginner.guide/Input and output functions
	beginner.guide/Intuition support functions
	beginner.guide/Graphics functions
	beginner.guide/Maths and logic functions
	beginner.guide/System support functions
	beginner.guide/Modules
	beginner.guide/Using Modules
	beginner.guide/Amiga System Modules
	beginner.guide/Non-Standard Modules
	beginner.guide/Example Module Use
	beginner.guide/Code Modules
	beginner.guide/Exception Handling
	beginner.guide/Procedures with Exception Handlers
	beginner.guide/Raising an Exception
	beginner.guide/Automatic Exceptions
	beginner.guide/Raise within an Exception Handler
	beginner.guide/Memory Allocation
	beginner.guide/Static Allocation
	beginner.guide/Deallocation of Memory
	beginner.guide/Dynamic Allocation
	beginner.guide/NEW and END Operators
	beginner.guide/Object and simple typed allocation
	beginner.guide/Array allocation
	beginner.guide/List and typed list allocation
	beginner.guide/OOP object allocation
	beginner.guide/Floating-Point Numbers
	beginner.guide/Floating-Point Values
	beginner.guide/Floating-Point Calculations
	beginner.guide/Floating-Point Functions
	beginner.guide/Accuracy and Range
	beginner.guide/Recursion
	beginner.guide/Factorial Example
	beginner.guide/Mutual Recursion
	beginner.guide/Binary Trees
	beginner.guide/Stack (and Crashing)
	beginner.guide/Stack and Exceptions
	beginner.guide/Object Oriented E
	beginner.guide/OOP Introduction
	beginner.guide/Classes and methods
	beginner.guide/Example class
	beginner.guide/Inheritance
	beginner.guide/Objects in E
	beginner.guide/Methods in E
	beginner.guide/Inheritance in E
	beginner.guide/Data-Hiding in E
	beginner.guide/Introduction to the Examples
	beginner.guide/String Handling and I-O
	beginner.guide/Timing Expressions
	beginner.guide/Argument Parsing
	beginner.guide/Any AmigaDOS
	beginner.guide/AmigaDOS 2.0 (and above)
	beginner.guide/Gadgets IDCMP and Graphics
	beginner.guide/Gadgets
	beginner.guide/IDCMP Messages
	beginner.guide/Graphics
	beginner.guide/Screens
	beginner.guide/Recursion Example
	beginner.guide/Common Problems
	beginner.guide/Assignment and Copying
	beginner.guide/Pointers and Memory Allocation
	beginner.guide/String and List Misuse
	beginner.guide/Initialising Data
	beginner.guide/Freeing Resources
	beginner.guide/Pointers and Dereferencing
	beginner.guide/Mathematics Functions
	beginner.guide/Signed and Unsigned Values
	beginner.guide/Other Information
	beginner.guide/Amiga E Versions
	beginner.guide/Further Reading
	beginner.guide/Amiga E Author
	beginner.guide/Guide Author
	beginner.guide/E Language Index
	beginner.guide/Main Index


