
e

e ii

COLLABORATORS

TITLE :

e

ACTION NAME DATE SIGNATURE

WRITTEN BY January 9, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

e iii

Contents

1 e 1

1.1 main . 1

1.2 ch_0a . 6

1.3 ch_0b . 6

1.4 ch_0c . 7

1.5 ch_0d . 11

1.6 ch_0e . 12

1.7 ch_0f . 15

1.8 ch_1a . 16

1.9 ch_1b . 16

1.10 ch_1c . 17

1.11 ch_2a . 17

1.12 ch_2b . 18

1.13 ch_2c . 18

1.14 ch_2d . 18

1.15 ch_2e . 18

1.16 ch_2f . 18

1.17 ch_2g . 19

1.18 ch_2h . 20

1.19 ch_3a . 20

1.20 ch_3b . 21

1.21 ch_3c . 21

1.22 ch_3d . 21

1.23 ch_4a . 22

1.24 ch_4b . 22

1.25 ch_4c . 22

1.26 ch_4d . 22

1.27 ch_4e . 23

1.28 ch_4f . 23

1.29 ch_4g . 24

e iv

1.30 ch_4h . 24

1.31 ch_4i . 24

1.32 ch_4j . 25

1.33 ch_4k . 25

1.34 ch_4l . 27

1.35 ch_4m . 28

1.36 ch_5a . 29

1.37 ch_5b . 30

1.38 ch_5c . 30

1.39 ch_5d . 30

1.40 ch_5e . 31

1.41 ch_5f . 31

1.42 ch_5g . 32

1.43 ch_5h . 32

1.44 ch_5i . 32

1.45 ch_5j . 33

1.46 ch_5k . 34

1.47 ch_5l . 34

1.48 ch_5m . 34

1.49 ch_6a . 35

1.50 ch_6b . 36

1.51 ch_6c . 37

1.52 ch_6d . 37

1.53 ch_6e . 37

1.54 ch_6f . 38

1.55 ch_6g . 39

1.56 ch_6h . 39

1.57 ch_7a . 40

1.58 ch_7b . 40

1.59 ch_7c . 41

1.60 ch_7d . 41

1.61 ch_8a . 42

1.62 ch_8b . 42

1.63 ch_8c . 43

1.64 ch_8d . 43

1.65 ch_8e . 43

1.66 ch_8f . 44

1.67 ch_8g . 45

1.68 ch_8h . 46

e v

1.69 ch_9a . 48

1.70 ch_9b . 49

1.71 ch_9c . 52

1.72 ch_9d . 54

1.73 ch_9e . 56

1.74 ch_9f . 58

1.75 ch_9g . 60

1.76 ch_9h . 61

1.77 ch_9i . 62

1.78 ch_10a . 65

1.79 ch_10b . 65

1.80 ch_10c . 66

1.81 ch_10d . 68

1.82 ch_11a . 69

1.83 ch_11b . 69

1.84 ch_11c . 70

1.85 ch_12a . 71

1.86 ch_12b . 72

1.87 ch_12c . 73

1.88 ch_12d . 74

1.89 ch_13a . 75

1.90 ch_13b . 75

1.91 ch_13c . 76

1.92 ch_13d . 78

1.93 ch_14a . 80

1.94 ch_14b . 80

1.95 ch_14c . 81

1.96 ch_14d . 82

1.97 ch_14e . 85

1.98 ch_15a . 86

1.99 ch_15b . 87

1.100ch_15c . 87

1.101ch_15d . 88

1.102ch_15e . 88

1.103ch_16a . 89

1.104ch_16b . 90

1.105ch_16c . 90

1.106ch_16d . 91

1.107ch_16e . 92

e vi

1.108ch_16f . 99

1.109ch_16g . 99

1.110ch_17a . 101

1.111ch_17b . 101

1.112ch_17c . 101

1.113ch_17d . 103

1.114ch_17e . 103

1.115ch_17f . 104

1.116ch_17g . 105

1.117ch_17h . 106

1.118ch_17i . 106

1.119ch_17j . 109

1.120ch_17k . 109

1.121ch_17l . 111

1.122ch_17m . 112

1.123ch_18a . 115

1.124ch_18b . 117

1.125ch_18c . 118

1.126ch_18d . 123

e 1 / 129

Chapter 1

e

1.1 main

+---+
| |
| Amiga E v3.2a |
| Compiler for The E Language |
| By Wouter van Oortmerssen |
| |
+---+

Contents:

0. compiler and introduction

A. introduction

B. the distribution

C. demo restrictions, registration and sites

D. using the compiler

E. changes / history / new features

F. additional information
1. format

A. tabs,lf etc.

B. comments

C. identifiers and types
2. immediate values

A. decimal (1)

B. hexadecimal ($1)

C. binary (%1)

e 2 / 129

D. float (1.0)

E. character

F. strings (’bla’)

G. lists ([1,2,3]) and typed lists

H. lisp-cells (<a|b>)
3. expressions

A. format

B. precedence and grouping

C. types of expressions

D. function calls
4. operators

A. math (+ - * /)

B. comparison (= <> > < >= <=)

C. logical and bitwise (AND OR)

D. unary (SIZEOF ‘ ^ {} ++ -- -)

E. triple (IF THEN ELSE)

F. structure (.)

G. array ([])

H. float operator (!)

I. assignments expressions (:=)

J. sequencing (BUT)

K. dynamic memory allocation (NEW)

L. unification (<=>)

M. pointer typing (::)
5. statements

A. format (;)

B. statement labels and gotos (JUMP)

C. assignment (:=)

D. assembly mnemonics

E. conditional statement (IF)

e 3 / 129

F. for-statement (FOR)

G. while-statement (WHILE)

H. repeat-statement (REPEAT)

I. loop-statement (LOOP)

J. select-case-statement (SELECT)

K. increase statement (INC/DEC)

L. void expressions (VOID)

M. memory deallocation (END)
6. function definitions and declarations

A. proc definition and arguments (PROC)

B. local and global definitions: scope (DEF)

C. endproc/return

D. the ‘main’ function

E. built-in system variables

F. default arguments to functions

G. multiple return values

H. function values
7. declaration of constants

A. const (CONST)

B. enumerations (ENUM)

C. sets (SET)

D. built-in constants
8. types

A. about the ‘type’ system

B. the basic type (LONG/PTR)

C. the simple type (CHAR/INT/LONG)

D. the array type (ARRAY)

E. the complex type (STRING/LIST)

F. the compound type (OBJECT)

G. initialisation

e 4 / 129

H. the essentials of the E typesystem
9. built-in functions

A. io functions

B. strings and string functions

C. lists and list functions

D. intuition support functions

E. graphics support functions

F. system support functions

G. math and other functions

H. string and list linking functions

I. lisp-cells and cell functions
10. library functions and modules

A. built-in library calls

B. interfacing to the amiga system with the v40 modules

C. compiling own modules

D. the modulecache
11. quoted expressions

A. quoting and scope

B. Eval()

C. built-in functions
12. floating point support

A. float values

B. computing with floats

C. builtin float functions

D. float implementation issues
13. Exception handling

A. defining exception handlers (HANDLE/EXCEPT)

B. using the Raise() function

C. defining exceptions for built-in functions (RAISE/IF)

D. use of exception-ID’s
14. OO programming

e 5 / 129

A. OO features in E

B. object inheritance

C. data hiding (EXPORT/PRIVATE/PUBLIC)

D. methods and virtual methods

E. Constructors, Destructors and Super-Methods (NEW,END,SUPER)
15. inline assembly

A. identifier sharing

B. the inline assembler compared to a macro assembler

C. ways using binary data (INCBIN/CHAR..)

D. OPT ASM

E. Inline asm and register variables
16. technical and implementation issues

A. the OPT keyword

B. small/large model

C. stack organisation

D. hardcoded limits

E. error messages, warnings and the unreferenced check

F. compiler buffer organisation and allocation

G. register allocation
17. Essential E Utilities / Applications

A. ShowModule

B. ShowHunk

C. Pragma2Module / Iconvert

D. ShowCache / FlushCache

E. ecompile.rexx

F. o2m

G. E-Yacc

H. SrcGen

I. EBuild

J. EE / Aprof

e 6 / 129

K. EDBG

L. EC PreProcessor

M. EC Library mode
18. Appendices

A. E Grammar description

B. Tutorial

C. Mapping E to C/C++/Pascal/Ada/Lisp etc.

D. Amiga E FAQ

1.2 ch_0a

0A. introduction

E is an object oriented / procedural / unpure functional higher programming
language, mainly influenced by languages such as C++, Ada, Lisp etc. It is a
general-purpose programming language, and the Amiga implementation is
specifically targeted at programming system applications. The number of
features of the language is really too great to sum up entirely, and include:
speed of >20000 lines/minute on a 7 Mhz amiga, inline assembler and linker
integrated into compiler, large set of integrated functions, great module
concept with v39 includes as modules, flexible type-system, quoted
expressions, immediate and typed lists, parametric and inclusion polymorphism,
exception handling, inheritance, data-hiding, methods, multiple return values,
default arguments, register allocation, fast memory management, unification,
LISP-Cells, gui-toolkit, (macro-) preprocessor, very intuitive and powerful
source-level debugger, easy .library linking, and much more...

This is what ’HelloWorld’ looks like in E:

/* nominated for Most Boring Example */

PROC main()
WriteF(’Hello, World!\n’)

ENDPROC

1.3 ch_0b

0B. the distribution

The distribution includes:

Bin/ contains the compiler EC and the support utilities
Modules/ directory containing all Amiga v40 E modules and

useful tools as linkable modules

e 7 / 129

Docs/ documentation on E
Src/ example sources in E

The extras archive includes:

RkrmSrc/ example sources from the RKRMs, in E
ModuleSrc/ sources to the module files, for reference
Tools/ optional tools for use with E
PdSrc/ a collection of E sources from the PD
Rexx/ scripts for various editors
Fonts/ fonts

This distribution of Amiga E v3.0 including the demo version of the compiler
is FreeWare, and may be freely copied. The compiler archive some of you may
have received together with this archive, however, is NOT FreeWare and should
NOT be copied for anyone but yourself.

Distributing copies of E for more than the price of disk+postage (generally
<3$), or any other way of distribution with only the slightest aim of making
profit, is not allowed. I explicitly forbid Serge Hammouche or his company
"France Festival Distribution" to distribute E in any shape or form. He has
done so in the past without my permission, misusing my name and stealing money
from me on the backs of french E programmers. If you paid him money, claim
it back and spread the word. A french translation of this document authorized
by me (made by Olivier Anh) is available on aminet.

This distribution should always be distributed as a whole, i.e. in the form
of the original .lha archive. No additions, modifications, translations,
partial distributions or whatever are allowed without my explicit permission.

No guarantees, no warranty. If you manage to drown your pet goldfish using E,
or E fails to be suitable for ordering pizzas, that’s entirely your problem.
Whatever happens, don’t blame it on me.

Fred Fish has special permission to distribute E on his CD-ROM’s, distribution
on Aminet CDROMs is also permitted.

1.4 ch_0c

0C. demo restrictions, registration and sites

The Amiga E distribution is PD, and contains the demo version of the compiler.
registered programmers obtain the full compiler as a separate archive, with
only "EC" in it.

If you have received the registered EC already, you may wish to put it in the
bin directory. The distribution archive may be freely copied for anyone (see
0B on that), but please make sure you do not distribute your registered copy
of EC to anyone, not even to friends. I haven’t serialised these copies
because of the confidence I have in my registered users, so don’t break it.
Registration is very affordable, and v2.1b is still available, so there’s no
excuse left for pirating E.

So what’s "demo" about the included compiler? The compiler will only spit out

e 8 / 129

executables <8k, above that it will present you with a "workspace full" error.
Other than that it’s fully functional.

You are allowed to evaluate this demo for _two weeks_, after which you decide
either to register or quit using this demo version, even if you only write
programs <8k. [this used to be 12k, yes. Guess why it changed.]

updates.
distribution updates can be found in the PD as normal, and updates to the
registered EC will be distributed as patches, also in the PD.

ordering a copy.
The basic price is, was, and will always be 65 dutch guilders. This used to
be equivalent to 40$, now its more like 45$.
- subtract 5 guilders if you are prepared to receive your registered EC per

uuencoded E-mail instead of on disk. This is the fastest way to receive
a registered version.

- add 10 guilders for each major update you wish to receive (if they are
released). This is only for people living in Siberia or similar, since
updates are available in the PD.

- contact me for large quantity orders.

I will allow payment in some other currencies as well, to simplify
payment for some people. No rare currencies please.
If you send money in your currency, make sure it’s well above 65
guilders, according to _current_ exchange rates.

Getting the money to me.
This is not simple, since most banks charge a lot for foreign money
transfers. Some options:

- Sending cash (preferred). This may sound spooky, but it actually
is the most succesful way of getting money across. Changing your
money to dutch paper-money is always a good idea. If you feel insecure
about mailing money, most post-offices offer a service that will
report back to you that everything safely arrived at my place.
[65 guilders]

- Send a "Mandat de poste international". This has worked from
for example France and Italy without problems
[65 guilders]

- within Europe, send a EuroCheque (in guilders). I believe there are
no costs for this, but check locally. [make sure you mark "DFL" as
currency!]
[65 guilders]

- Transferring directly to my bank account:
427875951, ABN-AMRO bank, the netherlands

or my post-giro account:
6030387, PostBank, the netherlands

make sure you cover any transfer costs your bank may charge you,
and/or may charge me. for example postbank transfer from outside
the netherlands costs 7 guilders, bank transfers can be up to 22
guilders.
[75 to 90, netherlands 65 guilders]

e 9 / 129

- Do **NOT** send CHEQUES, MONEY ORDERs or similar methods of payment.
Cheques (other than the EuroCheques above) banks here ask 25 guilders
tranfer costs for to cash (if I can cash them at all).
[90 guilders]

You may choose any (other) method, but in general realise that it’s YOUR task
to make sure I am able to cash the full amount of money _easily_. If you do
not take transfer costs into account and the final amount is less than 65
guilders, you’ll have to do yet another transfer before you can get your
registered version.

Make sure you send as complete info with the money as possible, i.e. full
address, internet E-mail, maybe even Amiga-config etc. I’m not going to write
out one of those silly registration forms here :-)

my address: (see
0F

)

You can also register at one of the authorized E registration sites in:

Australia: Rob Nottage
England: Jason R. Hulance
U.S.A.: Barry Wills
Germany: Jörg Wach
Italy: Mirko Lalli/AET
Sweden: Jonas Tehler

Below is some information from the various sites, for more info contact them
personally. Residents in nearby countries may choose at their option to
registrate at these sites as well. Note that generally the same rules go for
sites as well: whatever your method of payment, make sure the correct amount
is received by the site.

AUSTRALIA

name: Rob Nottage
address: 10 Chilver Street, Kewdale, Western Australia, 6105
Fax: (09) 458 0154
FidoNet: 3:690/662.0
AmigaNet: 41:616/662.0
Internet: robbage@cougar.multiline.com.au
BBS: (09) 351 8401 v.32, v.42bis.
price: AUS$ 55 (postage or fidonet crashmail), AUS$ 50 (internet

or fidonet email), depending on current exchange rates
payment: - Postal or money order (preferred)

- personal or bank cheque (you pay the cost)
- direct transfer to bank account (National Australia Bank,

fill out a deposite slip for the correct amount, account#
086131 435770223, ’Robert K. Nottage’)

- Sending cash (your risk)

ENGLAND

e 10 / 129

name: Jason R. Hulance (Dept. E)
address: Formal Systems (Europe) Ltd, 3 Alfred Street, Oxford OX1 4EH, ENGLAND
telephone: (0869) 324350, out of office hours.
email: m88jrh@ecs.ox.ac.uk
price: 26 UK pounds (on disk) or 23 UK pounds (via E-mail)

"Beginner’s Guide to Amiga E" (182 pages) is available in AmigaGuide, TeX,
PostScript and printed forms with a large index. This costs 5 UK pounds
(non-printed forms) or 10 UK pounds (printed form).

payment: For safety, please make payment by cheque (payable to "Jason Hulance"),
although postal orders/cash/bank transfers will also be accepted

U.S.A.

name: Barry Wills
address: 5528D Pryor Dr., SAFB, IL 62225
email: el269@cleveland.freenet.edu, bwills@picard.ike.safb.af.mil
price: 40$ (US mail), 35$ (internet email)
payment: - money order or cashier check: preferred method.

- cash - Okay, but AT YOUR OWN RISK.
- personal check: Okay, but expect delays of up to 3 weeks for

shipment of your registered compiler.

GERMANY

name: Jörg Wach
address: Waitzstr. 75, 24105 Kiel, Deutschland/Germany
email: JCL_POWER@freeway.shnet.org
price: 60dm postal delivery, 54dm via email

ITALY

name: Mirko Lalli / AET
address: via Vecchia Aretina 64, 52020 Montalto Pergine Valdarno, Arezzo
phone: 0575-899798
price: 70.000 lire, depending on exchange rates
payment: C/C postale n. 11794526

SWEDEN

name: Jonas Tehler
address: Avagen 1, 191 77 Sollentuna
internet: jegt@algonet.se
phone: +46-(0)8-7542434
BBS: +46-(0)8-7546400, v32bis, v42bis, 24h
price: 300skr (smail), 260skr (email, netmail or BBS),

depending on current exchange rates
payment: - PostGiro nr 6106998-5 (preferred)

- Sending cash (at your risk)

e 11 / 129

1.5 ch_0d

0D. using the compiler

To install Amiga E on your system, just copy the whole distribution to
some place in your system, extend your path to the BIN directory, and
assign EMODULES: to the ‘Modules’ directory.

syntax of the compiler (2.04+):

SOURCE/A,REG=NUMREGALLOC/N/K,LARGE/S,SYM=SYMBOLHUNK/S,NOWARN/S,
QUIET/S,ASM/S,ERRLINE/S,ERRBYTE/S,SHOWBUF/S,ADDBUF/N/K,IGNORECACHE/S,
HOLD/S,WB/S,LINEDEBUG/S,OPTI/S,DEBUG/S,NILCHECK/S:

for 1.2 to 2.03:

EC [-opts] <sourcefile>

As an example we’ll compile the program ’HelloWorld.e’. The compiler will
produce an executable ’HelloWorld’.

1> cd e:src
E:Src> ec helloworld
Amiga~E~Compiler/Assembler/Linker~v2.4f~(c)~91/92/93~$#%!
lexical analysing ...
parsing and compiling ...
no errors
E:Src> helloworld
Hello, World!
E:Src> list
HelloWorld.e 89 ----rwed Oggi 17:37:00
helloworld 656 ----rwed Oggi 17:37:00
2 files - 4 blocks used
E:Src>

note: the compiler cannot be made resident

Options.
These are standard AmigaDos options. You can see them at any time by typing
’EC ?’. For 1.2 options the old unix-like switches are used (need to be
written together, preceded by a "-"):

LARGE -l compiles with large code/data model (see
16A

, OPT LARGE).
ASM -a puts EC into assembler mode (see

15D
, OPT ASM).

NOWARN -n suppresses warnings (see
16A

, OPT NOWARN)
SYM -s adds a symbolhunk to the executable, for use with

profilers, debuggers, disassemblers etc.
LINEDEBUG -L adds a "LINE" debughunk to the executable, for use

with profilers, debuggers etc. (see

e 12 / 129

17K
).

REG=N -rN uses N regs per PROC for register-allocation.
(default is 0 for the time being, read elsewhere
about how to use this!)

QUIET -q if there are no errors or warnings, EC won’t output
anything.

WB -w puts wb to front (for scripts)
SHOWBUF -b shows buffer memory usage information
ADDBUF=X -mX forces EC to allocate more memory for its buffers.

X ranges 1..9, the minimum number of 100k blocks to allocate.
default is 1 (never needed).

ERRLINE -e give the line# the error was on as returnvalue
ERRBYTE -E give the byte-offset in the file the error was on

as returnvalue
IGNORECACHE -c don’t use the module-cache in any way
HOLD -h wait for a <return> on the commandline before

exiting EC.
OPTI enable all optimisations (currently equals REG=5)
DEBUG attach debug infos to executable/module (see

17K
)

NILCHECK insert code at every "." or "[]" dereference to check
for a NIL pointer. Will throw an exception of the form
Throw("NIL",source_line_number)

example: ec large blabla
compiles blabla.e with large model.
NOTE: in most standard cases you won’t need to use any of these options

1.6 ch_0e

0E. changes / history / new features

New features in v3.2a:
- EC can now output .library files!!! (see

17M
)

- new EDBG with a massive amount of new features! (see
17K

)
- enhanced EasyGUI (have a look)
- NEW and END now work on subobjects as well (see

4K
).

- NILCHECK/S, will insert code to check all "." and "[]" dereferences for
NIL pointers (see

0D
)

- v40 emodules, with types!
- new modules (Src/Class/ScrollWin/ and others)
- new docs / beginners guide

e 13 / 129

- extended distribution with Jason’s RKRM examples etc.

Bugs fixed in v3.2a:
- IGNORECACHE was broken
- silly bug in /2
- asm -xx(Ax,Dx.w) addressing mode assembled wrong
- a-- where a:PTR TO o where SIZEOF o>8 translated into ADDI ipv SUBI
- globals in modules used in inline asm were not exported / offsets adjusted
- exp*globvar in module not compiled ok
- macros of other module would be saved again in current module
- and quite a few smaller ones...

New features in v3.1a:
- SourceLevel debugging!!! option DEBUG/S and external debugger EDBG (see
- Built-in preprocessor!!! (conditional compilation & macro preprocessing),
Mac2E and Cpp compatible (see

17L
)

- The SUPER keyword allows calling of superclass methods (see
14E

)
- Some new example sources, new tool modules (FilledVector, EasyGUI etc.)
- new versions of Aprof and EE
- docs updated: new features, FAQ etc...

New features in v3.0a:
- compilation to modules [!] (see

10C
)

- oo: object inheritance, private/public, methods etc. (see
14A

)
- default arguments for PROCs (see

6F
) (and some builtins, too).

- multiple return values (see
6G

)
- register variables / allocation (see

16G
, 15E, ...).

- builtin REALs (see
- NEW operator (see

4K
), and END (see 5M) (with superfast memory manegement)

- powerful syntactic variation of SELECT (see
5J

)
- unification (see

4L
)

- allows for more complex types in OBJECTs, PTR TO <type> etc. (see
8F

)
together with more powerful dereferencing (see

4F
, x.y[a].z etc.)

e 14 / 129

- garbage collected Lisp-Cells (see
9I

)
- function values (call ptrs to PROCs) (see

6H
)

- module caching (see
17D

, showcache)
- error reconstruction: pinpoint error at exact spot in line
- whole bunch of new builtin functions (see

9A
,...)

- whole bunch of useful modules (will get loads more soon)
- various compiler optimisations to make EC significantly faster
- several code optimisations
- intelligent linker / module system (see

10C
, amongst others)

- compiler uses a lot less memory.
- symbol and linedebug hunks (see

0D
above for switches).

- various utilities, such as EE (Barry Wills great E Editor),
Build (a make), o2m (converts assembly .o files to modules), E-Yacc etc.

- new docs, GREAT tutorial by Jason Hulance (known as ’The Guide’).
- pointertyping "::" operator (see

4M
)

- EXCEPT DO: continue at handler (see
13C

)
- EXIT <boolexp> in WHILE/FOR (see

5F
)

- single line comments (see
1B

)
- for some: os v39 modules.
- character constants may contain "\n\t\e\a" "\0\\b\q" now. (\q = ")
- warning for flakey "assignments" now with linenum.
- dereferencing a PTR TO <object> with a just a [] results

in a pointer now (for example x[1] = next object)
- variety of smaller code-optimisations.
- a lot of string/list/io functions now return useful returnvalues (see

9A
,...).

- EC’s command line is now ReadArgs() style for 2.04+ users (see
0D

).
- better line-endings (see

5A
)

- several new builtins (see
9A

,...)
- expressions with *2 *4 /2 and /4 get optimized into adds and shifts.

e 15 / 129

Hint for users of older versions: do a diff over both versions of reference.doc

a version history:

vers date EC k comment

v0.3 sep 91 5 first version that outputs executables
v1.0 may 92 20 builtins and library calls, usable for small tools
v2.0 okt 92 38 v37 modules usable, language pretty "complete"
v2.1a jan 93 44 first public release
v2.1b apr 93 45 bug fix, few new features. current version for >1 year
v3.0a jul 94 82 enormous amount of new features. E gets a price tag.
v3.0b sep 94 82 bug fix
v3.0e nov 94 83 bug fix
v3.1a dec 94 85 EDBG, preprocessor etc.
v3.2a jul 95 85 .library mode, new EDBG etc.

1.7 ch_0f

0F. additional information

The Amiga E Compiler was developed over the course of more than four years,
after the author’s idea of a good programming language, and a quality amiga
specific compiler for it. It started out as quite a small project and evolved
over the years into the large development environment it is now. EC was
programmed (as you might have guessed) in 100% assembly, using the AsmOne
assembler v1.02. All other support programs and tools (such as EDBG) were
written in E itself.

Special thanks go to the following people:

Jason Hulance - for ’The Beginners Guide’, modules/examples and betatesting.
Barry Wills - for EE and being such a good betatester.
Rob Verver - for comments/inspiration.
Jörg Wach - for EPD and general support

I also would like to thank the following people for various reasons
(no particular order):

Raymond Hoving, Erwin van Breemen, Michael Zucchi, James Cooper, Jens Gelhar,
Paolo Silvera, Sergio Ruocco, Jeroen Vermeulen, Jan van den Baard, Joerg Wach,
Norman Kraft, Urban Mueller, Charles McCreary, Olivier Anh, Lionel Vintenat,
Rob Nottage, Mirko Lalli, Jonas Tehler, Paul Nolan, Antonio J. Gomez Glez and
many more...

This compiler was programmed with great care towards reliability, and even
more so the code it generates, additionally it has been tested and debugged
for a long period. However, it is not impossible that it contains bugs. if

e 16 / 129

you happen to find one, or have other comments/questions, write me at the
address below: I _strongly_ prefer E-mail above conventional mail.

NOTE WELL: due to the immense popularity (?) of Amiga E, I get an almost
unreplyable amount of Email, some of which (>90%) are questions that would not
have been necessary if people read all the docs carefully. What I mean to say
is that I like to receive Email, and I don’t mind answering questions and
helping people out with programming problems, but be sure to check all other
information at your disposal (like the Amiga E docs or the RKRM’s) to see if
your question is relevant, before mailing me. Especially questions that are
not E specific but Amiga specific should not be directed to me. And try and
be gentle on me with comments like "I think E should have feature X..." (see
18D, the FAQ)

registrations (see
0C

) and donations are welcome at the following address:

Wouter van Oortmerssen
Levendaal 87
2311 JG Leiden
HOLLAND

or better if you have access to Email:

wouter@mars.let.uva.nl (main account)
w.v.oortmerssen@let.uva.nl (if mars bounces)
wouter@alf.let.uva.nl (bound to dissapear in a while)
wvo95v@louis.ecs.soton.ac.uk (read only occasionally)

1.8 ch_1a

1A. tabs,lf etc.

E-sources are pure ascii format files, with the linefeed <lf> and
semicolon ";" being the separators for two statements. Statements
that have particularly many arguments, may be spread over several lines
by ending a line with a comma (or any other lexical element that can
normally never occur at the end of a line), thus ignoring the following
<lf> (see

5A
for line endings). Any lexical element in a source code

file may be separated from another by any number of spaces, tabs etc.

1.9 ch_1b

e 17 / 129

1B. comments

comments may be placed anywhere in a source file where normally a space
would have been correct. They start with ’/*’ and end with ’*/’
and may be nested infinitely. The same goes for one-line comments,
which start with a ’->’ and end at the first <lf>.

/* this, is a comment */
-> this one too.

1.10 ch_1c

1C. identifiers and types

identifiers are strings that the programmer uses to denote certain
objects, in most cases variables, or even keywords or function names
predefined by the compiler. An identifier may consist of:

- upper and lowercase characters
- "0" .. "9" (except as first character)
- "_" (the underscore)

All characters are significant, but the compiler just looks at the
first two to identify the type of identifier it is dealing with:

both uppercase: - keyword like IF, PROC etc.
- constant, like MAX_LENGTH
- assembly mnemonic, like MOVE

first lowercase: - identifier of variable/label/object etc.
first upper and second lower: - E system function like: WriteF()

- library call: OpenWindow()

Note that all identifiers obey this syntax, for example:
WBenchToFront() becomes WbenchToFront()

Immediate values in E all evaluate to a 32bit result; the only
difference among these values (A-G) is either their internal
representation, or the fact that they return a pointer rather than
a value.

1.11 ch_2a

2A. decimal (1)

A decimal value is a sequence of characters "0" .. "9", possibly
preceded by a minus "-" sign to denote negative numbers.
examples: 1, 100, -12, 1024

e 18 / 129

1.12 ch_2b

2B. hexadecimal ($1)

A hexadecimal value uses the additional characters "A" .. "F" (or
"a" .. "f") and is preceded by a "$" character.
Examples: $FC, $DFF180, -$ABCD

1.13 ch_2c

2C. binary (%1)

Binary numbers start with a "%" character and use only "1" and "0"
to form a value.
Examples: %111, %1010100001, -%10101

1.14 ch_2d

2D. float (1.0)

Floats differ only from normal decimal numbers in that they have
a "." to separate their two parts. Either one may be omitted,
not both. Note that floats have a different internal 32bit (IEEE)
representation (see

12A
for more information on floats).

Examples: 3.14159, .1 (=0.1), 1. (=1.0)

1.15 ch_2e

2E. character

The value of a character (enclosed in double "" quotes) is its
ascii value, i.e. "A" = 65. In E, character immediate values
may be a short string up to 4 characters, for example "FORM",
where the first character "F" will be the MSB of the 32bit
representation, and "M" the LSB (least significant byte).

1.16 ch_2f

2F. string (’bla’)

Strings are any ascii representation, enclosed in single ’’ quotes.
The value of such a string is a pointer to the first character of it.
More specific: ’bla’ yields a 32bit pointer to a memory area where
we find the bytes "b", "l" and "a". ALL strings in E are terminated

e 19 / 129

by a zero byte.
Strings may contain format signs introduced by a slash "\", either
to introduce characters to the string that are for some reason
not displayable, or for use with string formatting functions
like WriteF(), TextF() and StringF(), or kick2 Vprintf().

\n a linefeed (ascii 10)
\a or ’’ an apostrophe ’ (the one used for enclosing the string)
\q a doublequote: "
\e escape (ascii 27)
\t tab (ascii 9)
\ a backslash
\0 a zero byte. Of rare use, as ALL strings are 0-terminated
\b a carriage return (ascii 13)

Additionally, when used with formatting functions:

\d print a decimal number
\h print a hexadecimal
\s print a string
\c print a character
\z set fill byte to ’0’ character
\l format to left of field
\r format to right of field (these last two act as toggles)

Field specifiers may follow the \d,\h and \s codes:

[x] specify exact field width x
(x,y) specify minimum x and maximum y (strings only)

Example: print a hexadecimal number with 8 positions and leading zeroes:
WriteF(’\z\h[8]\n’,num)

A string may be extended over several lines by trailing them with a "+"
sign and a <lf>:

’this specifically long string ’ +
’is separated over two lines’

1.17 ch_2g

2G. lists ([1,2,3]) and typed lists

An immediate list is the constant counterpart of the LIST datatype,
just as a ’string’ is the constant counterpart for the STRING or
ARRAY OF CHAR datatype. Example:

[3,2,1,4]

is an expression that has as value a PTR to an already initialised list,
a list as a representation in memory is compatible with an ARRAY OF LONG,
with some extra length information at a negative offset. You may use these
immediate lists anywhere a function expects a PTR to an array of
32bits values, or a list. Examples:

e 20 / 129

[’string’,1.0,2.1]
[WA_FLAGS,1,WA_IDCMP,$200,WA_WIDTH,120,WA_HEIGHT,150,TAG_DONE]

(see
9C
on list-functions for a discussion on typed-immediate

lists and detailed information).

1.18 ch_2h

2H. lisp-cells (<a|b>)

(see

9I
to read about cells in detail)

1.19 ch_3a

3A. format

An expression is a piece of code held together by operators, functions
and parentheses to form a value.
They mostly consist of:

- immediate values (see
2A

,...)
- operators (see

4A
,...)

- function calls (see
3D

)
- parentheses () (see

3B
)

- variables or variable-expressions (see
3C

)

examples of expressions:
1
’hello’
$ABCD+(2*6)+Abs(a)
(a<1) OR (b>=100)

e 21 / 129

1.20 ch_3b

3B. precedence and grouping

The E language has _no_ precedence whatsoever. This means that
expressions are evaluated left to right. You may change
precedence by parenthesizing some (sub-)expression:
1+2*3 /* =9 */ 1+(2*3) /* =7 */ 2*3+1 /* =7 */

1.21 ch_3c

3C. types of expressions

There are three types of expressions that may be used for different
purposes;

- <var>, consisting of just a variable
- <varexp>, consisting of a variable, possibly with unary operators

with it, like "++" (increment) "." (member selection) or [] (array
operator). (see

4D
, 4G). It denotes a modifiable expression, like

Lvalues in C.
Note that those (unary) operators are not part of any precedence.

- <exp>. This includes <var> and <varexp>, and any other expression.

1.22 ch_3d

3D. function calls

A function call is a temporary suspension of the current code for a
jump to a function, this may be either a self-written function (PROC),
or a function provided by the system. The format of a function call
is the name of the function, followed by two parentheses () enclosing
zero to unlimited arguments, separated by commas ",". Note that arguments
to functions are again expressions. (see

6A
) on how to make your own

functions, (see
9A
and 10A)

on built-in functions. Examples:

foo(1,2)
Gadget(buffer,glist,2,0,40,80+offset,100,’Cancel’)
Close(handle)

e 22 / 129

1.23 ch_4a

4A. math (+ - * /)

These infix operators combine an expression with another value
to yield a new value. Examples:

1+2, MAX-1*5

(see
12A
on how to overload these operators for use with floats).

"-" may be used as the first part of an expression, with an implied 0,
i.e. -a or -b+1 is legal.
Note that * and / are by default 16bit operators: (see

9G
, Mul())

1.24 ch_4b

4B. comparison (= <> > < >= <=)

Equal to math operators, with the difference that they result in either
TRUE (32bit value -1), or FALSE. These can also be overloaded for floats.

1.25 ch_4c

4C. logical and bitwise (AND OR)

These operators either combine truth values to new ones, or perform
bitwise AND and OR operations. Examples:
(a>1) AND ((b=2) OR (c>=3)) /* logical */
a:=b AND $FF /* bitwise */

1.26 ch_4d

4D. unary (SIZEOF ^ {} ++ -- ‘)

- SIZEOF <objectident>

simply returns the size of a certain object or CHAR/INT/LONG.
Example: SIZEOF newscreen + SIZEOF INT

- {<var>}
Returns the address of a variable or label. This is the operator
you would use to give a variable as argument to a function by
reference, instead of by value, which is default in E. See "^".
Example: Val(input,{x})

- ^<var>
The counterpart of {}, writes or reads variables that were given by

e 23 / 129

reference, examples: ^a:=1 b:=^a
it may also be used to plainly "peek" or "poke" LONG values from
memory, if <var> is pointer to such a value.
Example for {} and ^: write your own assignment function;

PROC set(var,exp)
^var:=exp

ENDPROC

and call it with: set({a},1) /* equals a:=1 */
- <varexp>++ and <varexp>--

Increases (++) or decreases (--) the pointer that is denoted by
<varexp> by the size of the data it points to. This has the effect
that that pointer points to the next or previous item. When used
on variables that are not pointers, these will simply be changed
by one. Note that ++ always takes effect _after_ the calculation
of <varexp>, -- always _before_. Examples:

a++ /* return value of a, then increase by one */
sp[]-- /* decrease pointer sp by 4 (if it were an array of long),

and read value pointed at by sp */
- ‘<exp>

This is called a quoted expression, from LISP. <exp> is not evaluated,
but instead returns the address of the expression, which can later be
evaluated when required. More on this special feature in chapter 11

1.27 ch_4e

4E. triple (IF THEN ELSE)

The IF operator has quite the same function as the IF statement, only
it selects between two expressions instead of two statements or blocks
of statements. It equals the x?y:z operator in C.

IF <boolexp> THEN <exp1> ELSE <exp2>

returns exp1 or exp2, according to boolexp. For example, instead of:

IF a<1 THEN b:=2 ELSE b:=3
IF x=3 THEN WriteF(’x is 3\n’) ELSE WriteF(’x is something else\n’)

write:

b:=IF a<1 THEN 2 ELSE 3
WriteF(IF x=3 THEN ’x is 3\n’ ELSE ’x is something else\n’)

1.28 ch_4f

4F. structure (.)

<ptr2object>.<memberofobject> builds a <varexp>
The pointer has to be declared as PTR TO <object> or ARRAY OF <object>

e 24 / 129

(see
8D
for these), and the member has to be a legal

object identifier. Note that reading a subobject in an object this
way results in a pointer to that object. Examples:

thistask.userdata:=1
rast:=myscreen.rastport

If the member you select is of type PTR TO <type>, you may use "."
and "[]" to dereference further values. If you select an ARRAY or
substructure in an OBJECT, the result is again a PTR.

1.29 ch_4g

4G. array ([])

<var>[<indexexp>] (is a <varexp>)
This operator reads the value from the array <var> points to, with
index <indexexp>. The index may be just about any expression.
Note1: "[]" is a shortcut for "[0]"
Note2: with an array of n elements, the index is 0 .. n-1
Examples:

a[1]:=10 /* sets second element to 10 */
x:=table[y*4+1] /* reads from array */
x.y[3] /* accesses array in an object */

1.30 ch_4h

4H. float operator (!)

<exp>!<exp>
Converts expressions from integer to float and back, and
overloads operators + - * / = <> < > <= >= with float equivalents.
(see

12A
to read all about floats and this operator).

1.31 ch_4i

4I. assignments expressions (:=)

Assignments (setting a variable to a value) exist as statement
and as expression. The only difference is that the statement
version has the form <varexp>:=<exp> and the expression <var>:=<exp>.
The latter has the value of <exp> as result.
Note that as <var>:= takes on an expression, you will often need

e 25 / 129

parentheses to force correct interpretation, like:

IF mem:=New(100)=NIL THEN error()

is interpreted like:

IF mem:=(New(100)=NIL) THEN error()

which is not what you mean: mem should be a pointer, not a boolean.
but you should write:

IF (mem:=New(100))=NIL THEN error()

it’s a good habit to parenthesize any assignment expression that is
part of another one, if not already disambiguated by other constructs
such as "bla(a:=1)", "b:=a:=1" etc.

1.32 ch_4j

4J. sequencing (BUT)

The sequencing operator "BUT" allows two expressions to be written
in a construction that allows for only one. Often in writing
complex expressions/function calls, it would be nice to do a second
thing on the spot, like an assignment. Syntax:

<exp1> BUT <exp1>

this says: evaluate exp1, but return the value of exp2.
Example:

myfunc((x:=2) BUT x*x)

assign 2 to x and then calls myfunc with x*x. The () around the
assignment are again needed to prevent the := operator from taking
(2 BUT x*x) as an expression.

1.33 ch_4k

4K. dynamic memory allocation (NEW)

the NEW operator is a powerful operator for dynamic memory allocation.
it has various forms:

(assuming DEF p:PTR TO whateverobj, q:PTR TO INT)

NEW p

is an expression that will allocate zero-ised memory for the object-size
p points to. the resulting pointer will be put in p, and is also
the value of the expression. if NEW fails to get memory, it raises
a "NEW" exception. ’NEW p’ is therefore roughly equivalent with:

e 26 / 129

IF (p:=New(SIZEOF whateverobj))=NIL THEN Raise("MEM")

with the difference that p never gets any value if an exception
is raised, and that the former is of course an expression, not
a statement

but there’s more: it’s also possible to allocate an array dynamically:

NEW p[10] /* array of 10 objects */

NEW q[a+1] /* array of INT, size is runtime computed */

(this doesn’t work when instantiating classes)
A problem with list [1,2,3] expressions sometimes is that they are static, and
when using these to build large datastructures they would need to be created
at run-time. The dynamic equivalent to static lists may then be used:

p:=[1,2,3]:whateverobj /* static structure */

p:=NEW [1,2,3]:whateverobj /* dynamicly allocated! */

this works with both lists and typed-lists, and also with arrays:

NEW [1,2,3] /* constant-list, dyn. (note: not a like a listvar!) */
NEW [1,2,3]:obj /* object */
NEW [1,2,3]:INT /* array of INTs */

freeing memory allocated with any variations of NEW is done automatically
at the end of the program, or by hand with END or FastDispose().
(note: the only exception is NEW <list>, use FastDisposeList())

If you use NEW [...]:obj, and the number of fields is less than the one
present in the object, additional 0/NIL/"\0" whatever fields will be added.
this allows extending objects without getting into trouble with allocations
like these. (note that this is different from the static [...]:obj)

when you use NEW as a statement, multiple pointers may follow, i.e.:

NEW a,b.create(),c

is valid.

special forms of NEW and END allow to use a PTR within an object, so you can
write things like

NEW a.b.create()
NEW a.b[50]
END a.b

in the examples, the pointer ‘a’ is not affected, the pointer ‘b’ in the ‘a’
object is used.

(see
5M

, END)
(see

e 27 / 129

9F
for the fast memory allocation functions NEW makes use of)

1.34 ch_4l

4L. unification (<=>)

Unification allows a totally different style of programming
that will be familiar to you if you’re used to either Logic
(ProLog), equational or functional (Miranda/Gofer/Haskell)
programming. Most of us when using structures/arrays whatever
are used to get values from it by selection ("." and "[]"),
in these languages however pattern matching is used.

in E:

exp <=> uni_exp

exp can be any expression, but in v3 it’s only really useful
if it somehow is a pointer to a list. uni_exp is the pattern
that is used to match exp. All constants in uni_exp much
match to values in exp, variables are set to their respective
values. if something doesn’t match, no variables get a value,
and the expression has the result FALSE. otherwise TRUE.
example:

a:=[1,2,3]
...
IF a <=> [1,x,y] THEN ...

this will succeed with x=2 and y=3. If list a were to be another
lenght than 3, the match would fail too. The fact that a is a list
in the first place is something you need to assure by yourself, EC
simply tries to fit the uni_exp on whatever value it gets as exp.
examples of FALSE:

a <=> [1,x] -> wrong list-len
a <=> [1,4,x] -> 4=2 fails
’bla’ <=> [1,2] -> unpredictable result / crash ?

The fun thing with unification is that you can do very complex matches,
and that if you take the first field or so as a constant telling what the
structure is, you have a nice form of dynamic typing. And, all the time
without using PTRs!

a slightly nicer example:

[BLA,[1,’burp’],[’bla’,"bla"]] <=> [BLA,[1,x],y]

binds:

x=’burp’, y=[’bla’,"bla"]

or even:

e 28 / 129

IF myexp <=> [PLUS,[MUL,a,1],[SUBS,[PLUS,c,d],e]] THEN RETURN a+c+d-e

maybe a silly example, but one could imagine doing complex stuff
like this in a compiler’s code-optimizer. it equals this traditional code:

IF ListLen(myexp)=3
IF myexp[]=PLUS

IF ListLen(dummy:=myexp[1])=3
IF (dummy[]=MUL) AND (dummy[2]=1)

a:=dummy[1]
IF ListLen(dummy:=myexp[2])=3

IF dummy[]=SUBS
e:=dummy[2]
IF ListLen(dummy2:=dummy[1])=3

IF dummy2[]=PLUS
c:=dummy2[1]
d:=dummy2[2]
RETURN a+c+d-e

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF
ENDIF

only then a bit more optimal. As you see there’s a lot of expressive
power involved in unification as compared to traditional selection-based
programming.

For now, the only thing allowed in unification are untyped lists,
(integer) constants, variables and LISP-Cells (see

9I
for that).

The future will see this expanded with strings, typed-lists/objects,
and even expressions [!]

1.35 ch_4m

4M. pointer typing (::)

when you write an expression like ’p’ where p is a PTR TO object,
this allows you to dereference it as such. The pointer typing
operator allows you to change such a type on the fly:

DEF p:PTR TO mp -> message port

p.sigbit -> access it
p::ln.name -> access pointer as if it were a node

this is very useful for pointers that can point to different sorts

e 29 / 129

of things or objects that are part of each other, where of course
only one declaration is possible.

A second handy use is in OBJECTs that have members declared as LONG,
which are actually pointers. You may type it on the fly to dereference
it anyway:

mywindow.userport::mp.sigbit

here the window OBJECT has userport defined as LONG, so you wouldn’t
be able to dereference it normally.

1.36 ch_5a

5A. format (;)

As suggested in chapter 1A, a statement generally stands in its
own line, but several of them may be put together on one line
by separating them with semicolon, or one may be spread over
more than one line by ending each line in a comma ",". Examples:

a:=1; WriteF(’hello!\n’)
DEF a,b,c,d, /* too many args for one line (faked) */

e,f,g

statements may be:
- assignments
- conditional statements, for statements and the like, (see

5E
-5K)

- void expressions
- labels
- assembly instructions

The comma is the primary character to show that you do not wish to
end the statement with the next linefeed, but from v3 on, any token
that cannot legally be the end of a line causes the statement to
continue. Furthermore, if not all "[" and "(" occuring in a statement
have been closed off, a statement will continue also.
examples of such tokens:

+ - * / =
< >= <=
:= . <=> ::
{ [(
AND OR BUT THEN IS -> others too, but these are most useful

example of bracketing:

a:=[
[1,2],
[3,4]

e 30 / 129

] -> assignment ends here.

1.37 ch_5b

5B. statement labels and gotos (JUMP)

Labels are global-scoped identifiers with a ’:’ added to them, as in:

mylabel:

they may be used by instructions such as JUMP, and to reference
static data. They may be used to jump out of all types of loops (although
this technique is not encouraged, (see

5F
, EXIT), but not out of

procedures. In normal E programs they are mostly used with inline assembly.
Labels are always globally visible.

Usage of JUMP: JUMP <label>
continues execution at <label>. You are not encouraged to use this
instruction, it’s there for situations that would otherwise increase
the complexity of the program. Example:

IF done THEN JUMP stopnow

/* other parts of program */

stopnow:

1.38 ch_5c

5C. assignment (:=)

The basic format of an assignment is: <var> := <exp>
Examples: a:=1, a:=myfunc(), a:=b*3

In E multiple variables can be assigned at once, when <exp> is
a function that returns multiple returnvalues. (see

6G
)

1.39 ch_5d

5D. assembly mnemonics

In E, inline assembly is a true part of the language, they need not
be enclosed in special "ASM" blocks or the like, as is usual in

e 31 / 129

other languages, nor are separate assemblers necessary to assemble
the code. This also means that it obeys the E syntax rules, etc.
(see

15A
to read all about the inline assembler). Example:

DEF a,b
b:=2
MOVEQ #1,D0 /* just use some assembly statements */
MOVE.L D0,a /* a:=1+b */
ADD.L b,a
WriteF(’a=\d\n’,a) /* a will be 3 */

1.40 ch_5e

5E. conditional statement (IF)

IF, THEN, ELSE, ELSEIF, ENDIF

syntax: IF <exp> THEN <statement> [ELSE <statement>]
or: IF <exp>

<statements>
[ELSEIF <exp> /* multiple elseifs may occur */

<statements>]
[ELSE]

<statements>
ENDIF

builds a conditional block. Note that there are two general forms of
this statement, a single-line and a multiple-line version.

1.41 ch_5f

5F. for-statement (FOR)

FOR, TO, STEP, DO, ENDFOR

syntax: FOR <var> := <exp> TO <exp> STEP <step> DO <statement>
or: FOR <var> := <exp> TO <exp> STEP <step>

<statements>
ENDFOR

builds a for-block, note the two general forms. <step> may be
any positive or negative constant, excluding 0, and is optional. Example:

FOR a:=1 TO 10 DO WriteF(’\d\n’,a)

The body of FOR may contain EXIT statements with the following syntax:

EXIT <boolexp>

e 32 / 129

Which allows you to exit the loop if boolexp is true.

1.42 ch_5g

5G. while-statement (WHILE)

WHILE, DO, ENDWHILE

syntax: WHILE <exp> DO <statement>
or: WHILE <exp>

<statements>
ENDWHILE

builds a while-loop, which is repeated as long as <exp> is TRUE. Note
the one-line/one-statement version and the multiple line version.

WHILE may also contain EXIT statements, like FOR.

1.43 ch_5h

5H. repeat-statement (REPEAT)

REPEAT, UNTIL

syntax: REPEAT
UNTIL <exp>

builds a repeat-until block: it will continue to loop this block until
<exp>=TRUE. Example:

REPEAT
WriteF(’Do you really, really wish to exit this program?\n’)
ReadStr(stdout,s)

UNTIL StrCmp(s,’yes please!’)

1.44 ch_5i

5I. loop-statement (LOOP)

LOOP, ENDLOOP

syntax: LOOP
<statements>

ENDLOOP

builds an infinite loop.

e 33 / 129

1.45 ch_5j

5J. select-case-statement (SELECT)

SELECT, CASE, DEFAULT, ENDSELECT

syntax: SELECT <var>
[CASE <exp>

<statements>]
[CASE <exp>

<statements>] /* any number of these blocks */
[DEFAULT

<statements>]
ENDSELECT

builds a select-case block. Various expressions will be matched against
the variable, and only the first matching block executed. If nothing matches,
a default block may be executed.

SELECT character
CASE 10

WriteF(’Gee, I just found a linefeed\n’)
CASE 9

WriteF(’Wow, this must be a tab!\n’)
DEFAULT

WriteF(’Do you know this one: "\c" ?\n’,character)
ENDSELECT

next to the old SELECT <var> which works on expressions in the CASE
statements, E has a SELECT <maxrange> OF <exp> which works with constants
and or ranges of constants in a CASE. not only is this for many applications
more powerful, it is also much faster for large numbers of cases (>5
usually), or if cases are equally probable. It assumes however, that all
CASEs lie within a small integer range from 0 TO n-1, where n is something
reasonable, for example 10, or 256 for characters.

example:

SELECT 128 OF FgetC(stream)
CASE "\n","\b"

WriteF(’line ending\n’)
CASE "\t"," "

WriteF(’whitepace\n’)
CASE "0" TO "9"

WriteF(’Integer\n’)
CASE "A" TO "Z", "a" TO "z", "_"

WriteF(’Identifier\n’)
DEFAULT

WriteF(’some other character\n’)
ENDSELECT

DEFAULT will be hit not only for those for which there is no CASE,
but also for the chars that fall out of the range, i.e. 128 TO 255

e 34 / 129

(and >255, and <0).
note that speed costs: because this SELECT uses a jump-table
to quickly get at the right CASE, it’ll use 2*<maxrange> bytes,
256 in this case.

1.46 ch_5k

5K. increase statement (INC/DEC)

INC, DEC

syntax: INC <var>
DEC <var>

short for <var>:=<var>+1 and <var>:=<var>-1. Only difference with
var++ and var-- is that these are statements, and do not return a value.

1.47 ch_5l

5L. void expressions (VOID)

VOID

syntax: VOID <exp>

calculates the expression without the result going anywhere. Only useful
for a clearer syntax, as expressions may be used as statements without
VOID in E anyway. This may cause subtle bugs though, as "a:=1" assigns
a the value 1, but "a=1" as a statement will do nothing. E will give you
a warning if this happens.

1.48 ch_5m

5M. memory deallocation (END)

END is the complement to NEW. any pointer obtained should be
deallocated (and only!) with END

END a

or even

END a,b,c

where the arguments are PTRs to some type. END frees the amount of space
that is being pointed to, so if a is PTR TO LONG it will only free 4
bytes. so if you allocated a with NEW a[NUM], free it with

e 35 / 129

END a[NUM]

NIL-pointers may safely be passed to NEW. Pointers are also
nuked to NIL afterwards.
If a is a PTR to an object that is an instance of a class, END
will dynamically get the size to be freed from the class-object,
so if you have an object of class b which is 32 bytes, but the
pointer you’re freeing with is a baseclass pointer (only 24
bytes), END will correctly deallocate 32 bytes. this only works
for classes.

You can imagine END p as a macro for:

IF p
p.end()
FastDispose(p,p.classobject.virtuallen)
p:=NIL

ENDIF

note that the NEW and END make use of the FastNew() and FastDispose()
functions (described elsewhere) which work quite differently from
NewR() and Dispose(). (see

9F
for details).

1.49 ch_6a

6A. proc definition and arguments (PROC)
--

You may use PROC and ENDPROC to collect statements into your own functions.
Such a function may have any number of arguments, and several return values.

PROC, ENDPROC

syntax: PROC <label> (<args> , ...)
ENDPROC <returnvalue>, ...

defines a procedure with any number of arguments. Arguments are of type LONG
or optionally of type PTR TO <type> (see

8B
) and need no further

declaration. The end of a procedure is designated by ENDPROC. If no
return value is given, 0 is returned. Example: write a function that
returns the sum of two arguments:

PROC add(x,y) /* x and y are local variables */
ENDPROC x+y /* return the result */

a short version:

e 36 / 129

PROC add(x,y) IS x+y

1.50 ch_6b

6B. local and global definitions: scope (DEF)

You may define additional local variables besides those which are
arguments with the DEF statement. The easiest way is simply like:

DEF a,b,c

declares the identifiers a, b and c as variables of your function.
Note that such declarations should be at the start of your function.

DEF

syntax: DEF <declarations>,...

declares variables. A declaration has one of the forms:

<var>
<var>:<type> where <type>=LONG,<objectident>,...
<var>[<size>]:<type> where <type>=ARRAY,STRING,LIST

(see
8A
for more examples, as that is where the types are introduced).

For now, we’ll use the <var> form.
Arguments to functions are restricted to basic types; (see

8B
).

A declaration of a basic type can have an initialisation, in the current
version this must be an integer (not an expression):

DEF a=1,b=2

A program consists of a set of functions, called procedures, PROCs. Each
procedure may have Local variables, and the program as a whole may have
Global variables. At least one procedure should be the PROC main(), as
this is the module where execution begins. A simple program could look like:

DEF a, b /* definition of global vars */

PROC main() /* all functions in random order */
bla(1)

ENDPROC

PROC bla(x)
DEF y,z /* possibly with own local vars */

ENDPROC

To summarize, local definitions are the ones you make at the start of
procedures, and which are only visible within that function. Global

e 37 / 129

definitions are made before the first PROC, at the start of your
source code, and they are globally visible. Global and local variables
(and of course local variables of two different functions) may have the
same name, local variables always have priority.

1.51 ch_6c

6C. endproc/return

As stated before, ENDPROC marks the end of a function definition, and may
return a value. Optionally RETURN may be used at any point in the function
to exit, if used in main(), it will exit the program. (see

9F
, CleanUp()).

RETURN [<returnvalue>] /* optional */

Example:

PROC getresources()
/* ... */
IF error THEN RETURN FALSE /* something went wrong, so exit and fail */
/* ... */

ENDPROC TRUE /* we got this far, so return TRUE */

a very short version of a function definition is:

PROC <label> (<arg> , ...) RETURN <exp>

(or "IS" instead of "RETURN")
These are function definitions that only make small computations, like
faculty functions and the like: (one-liners :-)

PROC fac(n) IS IF n=1 THEN 1 ELSE fac(n-1)*n

1.52 ch_6d

6D. the ‘main’ function

The PROC called main is only of importance because it is called as first
function; it behaves exactly the same as other functions, and may also
have local variables. Main has no arguments: the command-line arguments
are supplied in the system-variable "arg", or can be checked with
ReadArgs() (dos.library function)

1.53 ch_6e

e 38 / 129

6E. built-in system variables

Following global variables are always available in you program,
they’re called system variables.

arg As discussed above, contains a pointer to a zero-terminated
string, containing the command-line arguments. Don’t use this
variable if you wish to use ReadArgs() instead.

stdout Contains a file-handle to the standard output (and input).
If your program was started from the workbench, so no
shell-output is available, WriteF() will open a
CON: window for you and put its file handle here.

stdin file-handle of standard input
conout This is where that file handle is kept, and the console

window will be automatically closed upon exit of your
program. (see

9A
, WriteF(), on how to use these two variables

properly).
execbase, These four variables are always provided with their
dosbase, correct values.
gfxbase,
intuitionbase
stdrast Pointer to standard rastport in use with your program,

or NIL. The built-in graphics functions like Line()
make use of this variable.

wbmessage Contains a ptr to a message you got if you started
from wb, else NIL. May be used as a boolean to detect
if you started from workbench, or even check any
arguments that were shift-selected with your icon.
See WbArgs.e in the Src/Args dir how to
make good use of wbmessage.

1.54 ch_6f

6F. default arguments to functions

default arguments allows you to specify for one or more
arguments of a procedure which is the default value, if the
procedure is called with less args than parameters. for example,
a procedure like:

PROC bla(a,b=1,c=NIL)

can be called like: is equivalent with:

bla(a,b,c) bla(a,b,c)
bla(a,b) bla(a,b,NIL)
bla(a) bla(a,1,NIL)

This can be useful and also express something about the
procedures function, i.e. that most of the time one would

e 39 / 129

call it with NIL anyway, so why not leave it out for clarity.
That’s also why you should not overdo it with D.A.: do not
start specifying non-sensical values for procedures
out of pure laziness, if you feel a certain parameter really
has no default value.

to make calls with fewer args unambiguous, D.A. declarations
can only apply to the last 0..n parameters of a PROC of n parameters.

for example, illegal is: PROC bla(a,b=1,c)

(you should then simply reorder the parameters, of course).
arguments supplied in a call are filled in from left to right,
missing arguments are added with D.A.’s as needed.

1.55 ch_6g

6G. multiple return values

In E you can return any number of return values (max 3 in
Amiga E because of implementation reasons). How?

RETURN <exp>,<exp>,<exp> (or ENDPROC, of course)

example:

PROC sincos(rad)
DEF sin,cos
/* whatever computation is needed */

ENDPROC sin,cos

call with:

s,c:=sincos(3.14)
s:=sincos(1.00)

as you can see, there’s a new statement of the form:

<var> , ... := <exp>

where <exp> makes mostly only sense as function call.
note two things:
- you can decide yourself how many values you wish to receive.

this makes sense when the first retval is the main one,
and the second/third optional infos, which might only be
important to some callers.

- this form is a _statement_. this means that when you would
call sincos() as part of another expression, only the
first (the regular) return value is used: fun(sincos(1.0))

1.56 ch_6h

e 40 / 129

6H. function values

With v3, you can also have functions as values, and pass these
freely around. they’re different from quoted expression, since
they’re called just like normal PROCs. example:

fun:={myproc} -> get PROC ptr

...

fun(1,2,3) -> apply to args, just like normal PROC

notes:
- you have to be sure that the PROC you have a ptr to and the

number of args are the same. the compiler can’t check this for you.
- even worse: you have to be sure the ptr is a PROC at all.

there is a compiler warning that may help you with this.

1.57 ch_7a

7A. const (CONST)

syntax: CONST <declarations>,...

Enables you to declare a constant. A declaration looks like:
<ident>=<value>
constants must be uppercase, and will in the rest of the program be
treated as <value>. Example:

CONST MAX_LINES=100, ER_NOMEM=1, ER_NOFILE=2

You cannot declare constants in terms of others that are being
declared in the same CONST statement: put these in the next.

CONST, ENUM and SET declarations are always global, i.e. it is not
possible to declare constants local to a PROC. The best place for
constant declarations is at the top of your source, but EC also
allows you to put them between two PROCs, for example.

1.58 ch_7b

7B. enumerations (ENUM)

Enumerations are a specific type of constant that need not be given values,
as they simply range from 0 .. n, the first being 0. At any given point
in an enumeration, you may use the ’=<value>’ notation to set or reset
the counter value. Example:

ENUM ZERO, ONE, TWO, THREE, MONDAY=1, TUESDAY, WEDNESDAY

e 41 / 129

ENUM ER_NOFILE=100, ER_NOMEM, ER_NOWINDOW

1.59 ch_7c

7C. sets (SET)

Sets are again like enumerations, with the difference that instead of
increasing a value (0,1,2,...) they increase a bitnumber (0,1,2,...) and
thus have values like (1,2,4,8,...). This has the added advantage that
they may be used as sets of flags, as the keyword says.
Suppose a set like the one below to describe properties of a window:

SET SIZEGAD,CLOSEGAD,SCROLLBAR,DEPTH

to initialise a variable to properties DEPTH and SIZEGAD:

winflags:=DEPTH OR SIZEGAD

to set an additional SCROLLBAR flag:

winflags:=winflags OR SCROLLBAR

and to test if either of both of two properties hold:

IF winflags AND (SCROLLBAR OR DEPTH) THEN /* whatever */

1.60 ch_7d

7D. built-in constants

Following are built-in constants that may be used:

TRUE,FALSE Represent the boolean values (-1,0)
NIL (=0), the uninitialised pointer.
ALL Used with string functions like StrCopy() to copy all characters
GADGETSIZE Minimum size in bytes to hold one gadget; (see

9D
, Gadget())

OLDFILE,NEWFILE Mode-parameters for use with Open()
EMPTY used with methods (might be keyword in the future)
STRLEN Always has the value of the length of the last immediate

string used. Example:

Write(handle,’hi folks!’,STRLEN) /* =9 */

e 42 / 129

1.61 ch_8a

8A. about the ‘type’ system

E doesn’t have a rigid type-system like Pascal or Modula2, it’s even more
flexible than C’s type system: you might as well call it a datatype-system.
This goes hand in hand with the philosophy that in E all datatypes are
equal: all basic small values like characters, integers etc. All have
the same 32bit size, and all other datatypes like arrays and strings
are represented by 32bit pointers to them. This way, the e compiler can
generate code in a very polymorphic way.
The (dis)advantages are obvious:

disadvantages of the E-type system
- less compiler checking on silly errors you make

advantages:
- low-level polymorphism, easier to make powerful generic functions.
- flexible way of programming: no problem that some types of return values

don’t match, no superfluous "casts" etc., no unnecessary errormessages.
- no hard to find errors when mixing data of different sizes in expressions

1.62 ch_8b

8B. the basic type (LONG/PTR)

There’s only one basic, non-complex variable type in E, which is the
32bit type LONG. As this is the default type, it may be declared as:

DEF a:LONG or just: DEF a

This variable type may hold what’s known as CHAR/INT/PTR/LONG types in other
languages. A special variation of LONG is the PTR type. This type
is compatible with LONG, with the only difference that it specifies
to what type it is a pointer. By default, the type LONG is specified
as PTR TO CHAR. Syntax:

DEF <var>:PTR TO <type>

where type is either a simple type or a compound type. Example:

DEF x:PTR TO INT, myscreen:PTR TO screen

Note that ’screen’ is the name of an object as defined in intuition/screens.m
For example, if you open your own screen with:

myscreen:=OpenS(... etc.

you may use the pointer myscreen as in ’myscreen.rastport’. However,
if you do not wish to do anything with the variable until you call
CloseS(myscreen), you may simply declare it as

DEF myscreen

e 43 / 129

Variable declarations may have optional initialisations, but only
integer constants, i.e. no full expression:

DEF a=1, b=NIL:PTR TO textfont

1.63 ch_8c

8C. the simple type (CHAR/INT/LONG)

The simple types CHAR (8bit) and INT (16bit) may not be used as types
for a basic (single) variable; the reason for this must be clear by now.
However they may be used as data type to build ARRAYs from, set PTRs to,
use in the definition of OBJECTs etc. See those for examples.

1.64 ch_8d

8D. the array type (ARRAY)

ARRAYs are declared by specifying their length (in elements):

DEF b[100]:ARRAY

this defines an array of 100 bytes. Internally, ’b’ is a variable of
type LONG and a PTR to this memory area.
Default type of an array-element is CHAR, it may be anything by specifying:

DEF x[100]:ARRAY OF LONG
DEF mymenus[10]:ARRAY OF newmenu

where "newmenu" is an example of a structure, called OBJECTs in E.
Array access is very easy with: <var>[<sexp>]

b[1]:="a"
z:=mymenus[a+1].mutualexclude

Note that the index of an array of size n ranges from 0 to n-1,
and not from 1 to n.
Note that ARRAY OF <type> is compatible with PTR TO <type>, with the
only difference that the variable that is an ARRAY is already
initialised.

1.65 ch_8e

8E. the complex type (STRING/LIST)

- STRINGs. Similar to arrays, but different in the respect that they may

e 44 / 129

only be changed by using E string functions, and that they contain
length and maxlength information, so string functions may alter them in a
safe fashion, i.e: the string can never grow bigger than the memory
area it is in. Definition:

DEF s[80]:STRING

The STRING datatype (called an estring) is backwards compatible with
PTR TO CHAR and of course ARRAY OF CHAR, but not the other way around.
(see

9B
on string functions for more details).

- LISTs. These may be interpreted as a mix between a STRING and an ARRAY
OF LONG. I.e: this data structure holds a list of LONG variables which may
be extended and shortened like STRINGs. Definition:

DEF x[100]:LIST

A powerful addition to this datatype is that it also has a ’constant’
equivalent [], like STRINGs have ’’. LIST is backward compatible with
PTR TO LONG and of course ARRAY OF LONG, but not the other way around.
(see

9C
and 2G) for more on this.

1.66 ch_8f

8F. the compound type (OBJECT)

OBJECTs are like a struct/class in C/C++ or a RECORD in pascal. Example:

OBJECT myobj
a:LONG
b:CHAR
c:INT

ENDOBJECT

This defines a data structure consisting of three elements. Syntax:

OBJECT <objname>
<membername> [: <type>] /* any number of these */

ENDOBJECT

where type is one of the following:

CHAR/INT/LONG/<object>
PTR TO CHAR/INT/LONG/<object>
ARRAY OF CHAR/INT/LONG/<object>

(ARRAY is short for ARRAY OF CHAR)

like DEF declarations, omitting the type means :LONG.

e 45 / 129

Note that <membername> need not be a unique identifier,
it may be in other objects too. There are lots of ways to use objects:

DEF x:myobj /* x is a structure */
DEF y:PTR TO myobj /* y is just a pointer to it */
DEF z[10]:ARRAY OF myobj

y:=[-1,"a",100]:myobj /* typed lists */

IF y.b="a" THEN /* ... */

z[4].c:=z[d+1].b++

(see
4F
and other parts of chapter 4 for these)

ARRAYs in objects are always rounded to even sizes, and put on
even offsets:

OBJECT mystring
len:CHAR, data[9]:ARRAY

ENDOBJECT

SIZEOF mystring is 12, and "data" starts at offset 2.

’PTR TO’ is the only type in OBJECTs that may refer to yet undeclared
other objects.

(see
14A
for all other OBJECT features that are somehow OO related)

1.67 ch_8g

8G. initialisation

1. Always initialised to NIL (or else, if explicitly stated)
- global variables

NOTE: for documentation purposes, it’s always nicer if you
write =NIL in the definitions of variables that you expect to be NIL.

2. Initialised to ’’ and [] resp.
- global and local STRINGs
- global and local LISTs

3. Not initialised
- local variables (unless explicitly stated)
- global and local ARRAYs
- global and local OBJECTs

e 46 / 129

1.68 ch_8h

8H. the essentials of the E typesystem

This section tries to explain how the E typesystem works from
another perspective.

Most problems people have while programming in E stem from their incorrect
view of how the E type-system works, Also, many people have an idea how types
work from their previous programming language, and try to apply this to E,
which is often fatal, because E is quite different when it come to types.

The Type System.
but E is in essence a TYPELESS language. Indeed, variables may have a type,
but this is only used as a specification how to dereference a variable when
it is used as a pointer. In almost ALL other language constructions,
variables are treated as all being of the same type, namely the 32bit
typeless value.

In practise this means that for example in expressions with the exception
of the ".", "[]" and "++" operators etc., all operators and functions work
on 32bit values, regardless of whether they represent booleans, integers,
reals or pointers to something.

Pointer Types.
In the E type-system only 4 types exist, PTR TO CHAR, PTR TO INT,
PTR TO LONG and PTR TO <object>, where <object> is a name of a previously
defined OBJECT. When a variable (or an object member, as we’ll see later)
is declared as being of this type, It means that if the variable contains
a value that is a legal pointer, this is how it should be dereferenced.

LONG, ARRAY etc.
All other types one may see in a DEF declaration are not really types, as
they really are only other ways of writing one of the above four. As an
example, ARRAY OF <type> is just another way of writing PTR TO <type>, with
the only difference that the former is automatically assigned the address
of an area of stackspace which is big enough to hold data for the #of
elements specified in square brackets.

Here’s a table that shows all E ’types’ in terms of the basic four:

ARRAY OF CHAR, ARRAY, STRING, LONG (are equal to) PTR TO CHAR
ARRAY OF INT (is equal to) PTR TO INT
ARRAY OF LONG, LIST (are equal to) PTR TO LONG
ARRAY OF <object>, <object> (are equal to) PTR TO <object>

- LONG is for variables that are not intended to be used as a pointer,
i.e integers. Its equivalence with PTR TO CHAR is quite logical, as
conceptually both talk about things that are measured in units of 1.
(for example, "++" has the same effect on both)

- LIST and STRING are the same as their ARRAY equivalents, in respect
to the fact that they’re initialised to a piece of stack-space, but
their stack representation is a little more complex to facilitate
runtime bounds-checking (when used with the correct functions).

- an <object> is equivalent to [1]:ARRAY OF <object>. both represent
an initialised PTR TO <object>.

e 47 / 129

In an OBJECT one can have the same declarations, with the addition of CHAR
and INT (similar to LONG), and the ommission of LIST and STRING, as these
are complex objects in their own right, and cannot be part of an object.

Deferencing.
Given a pointer p of some type,

"[]" may index other elements that are sequentially ordered next to
the element it is currently pointing to. note that this allows for
both positive and negative indices, and also no assumptions are made
about where and how many elements are actually allocated.

"++" sets the pointer to the next element in memory, "--" to the previous
one. note that these operators always operate on the pointer and
never on the the element the pointer is pointing to.

"." works similar to "[]", only now indexes the pointer by name, i.e. the
pointer must be a PTR TO <object>.

"[]" and "." may be concatenated to a pointer p in any sequence, given the
fact that the previous resulting value again is known to be of a "PTR TO"
type.

One does not need to write out a de-reference in total, as in other
languages, e.g. if p is an ARRAY OF obj, instead of having to write
p[index].member you can write just p[index], which logically results
in the address of that object. This also explains why p[].member
is equivalent to p.member, since p[] is the same as p when it points
to an object.

Reference Semantics.
Another type-related issue that makes E somewhat different from other
languages and thus harder to grasp is it’s accent on Reference Semantics
rather than Value Semantics. I’ll try to argue why that’s good here.

Informally, Reference Semantics means that objects in a language (mostly
other than the simple ones like LONGs) are represented by pointers, while
Value Semantics treats these objects as just being themselves. An example
of a language that has only Value Semantics is BASIC, examples of
languages that have them both are the C/C++ and Pascal type-of languages,
and examples of Reference only are newer Object Oriented languages,
functional languages like LISP and of course E.

Using Reference Semantics doesn’t mean being occupied with pointers
all the time, rather you’re worrying about them a lot less then in the
mixed case or the Value-only case, especially since in real life programs
most non-trivial data-structures get allocated dynamically which implies
pointers. The best example of this is LISP, where one programs heavily
with pointers without noticing. In E, one could easily forget STRING
is a pointer, given the easy by which one can pass it around to other
functions; in C often lots of "&" are needed where in the equivalent E
case none are, and the Oberon equivalent of bla(’hallo’) looks like
bla(sys.ADR(’hallo’)) because the string doesn’t represent a pointer,
but a value as a whole...

e 48 / 129

1.69 ch_9a

9A. io functions

WriteF(formatstring,args,...)
PrintF(formatstring,args,...)

prints a string (which may contain formatting codes) to stdout. Zero
to unlimited arguments may be added. Note that, as formatstrings may
be created dynamically, no check on the correct number of arguments
is (can be) made. Examples:

WriteF(’Hello, World!\n’) /* just write a lf terminated string */

WriteF(’a = \d \n’,a) /* writes: "a = 123", if a was 123 */

(see
2F
about strings for more).

NOTE: if stdout=NIL, for example if your program was started from the
Workbench, WriteF() will create an output window, and put the handle
in conout and stdout. This window will automatically be closed on
exit of the program, after the user typed a <return>. WriteF() is the
only function that will open this window, so if you want to do IO
on stdout, and want to be sure stdout<>NIL, perform a "WriteF(’’)"
as first instruction of your program to ensure output. If you want
to open a console window yourself, you may do so by placing the resulting
file handle in the ’stdout’ and ’conout’ variables, as your window will
then be closed automatically upon exit. If you wish to close this window
manually, make sure to set ’conout’ back to NIL, to signal E that there’s
no console window to be closed. PrintF() is the same as WriteF only
uses the v37+ buffered IO.
both return the length of the string that was printed.

Out(filehandle,char) and char:=Inp(filehandle)

Either write or read one single byte to some file or stdout
if char=-1 then an EOF was reached, or an error occurred.
Out returns the number of bytes actually written (<>1 is error).

len:=FileLength(namestring)

lets you determine the length of a file you *may* wish to load, and
also, if it exists (returns -1 upon error/file not found).

ok:=ReadStr(filehandle,estring)

(see
9B

)

oldout:=SetStdOut(newstdout)

e 49 / 129

oldin:=SetStdIn(newstdin)

Sets the standard output variable ’stdout’. Equivalent for:
oldout:=stdout; stdout:=newstdout. Same goes for the stdin
variable.

1.70 ch_9b

9B. strings and string functions

E has a datatype STRING. This is a string, from now on called ’Estring’,
that may be modified and changed in size, as opposed to normal ’strings’,
which will be used here for any zero-terminated sequence. Estrings are
downward compatible with strings, but not the other way around, so if an
argument requests a normal string, it can be either of them. If an Estring
is requested, don’t use normal strings. Example of usage:

DEF s[80]:STRING, n -> s is an estring with a maxlen of 80
ReadStr(stdout,s) -> read input from the console
n:=Val(s) -> get a number out of it

-> etc.

Note that all string functions will handle cases where string tends to
get longer than the maximum length correctly;

DEF s[5]:STRING
StrAdd(s,’this string is longer than 5 characters’,ALL)

s will contain just ’this ’.
A string may also be allocated dynamically from system memory
with the function String(), (note: the pointer returned from this function
must always be checked against NIL)

s:=String(maxlen)

DEF s[80]:STRING is equivalent to DEF s and s:=String(10)

bool:=StrCmp(string,string,len=ALL)

compares two strings. len must be the number of bytes to compare,
or ’ALL’ if the full length is to be compared. Returns TRUE or FALSE
(len is a default argument (see

6F
))

StrCopy(estring,string,len=ALL)

copies the string into the estring. If len=ALL, all will be copied.
returns the estring.

e 50 / 129

StrAdd(estring,string,len=ALL)

same as StrCopy(), only now the string is concatenated to the end.
returns the estring.

len:=StrLen(string)

calculates the length of any zero-terminated string

len:=EstrLen(estring)

returns the length of an estring

max:=StrMax(estring)

returns the maximum length of a estring

StringF(estring,fmtstring,args,...)

similar to WriteF, only now output goes to estring instead of stdout.
example:

StringF(s,’result: \d\n’,123)

’s’ will be ’result: 123\n’
returns the estring, and length as second returnvalue.

RightStr(estring,estring,n)

fills estring with the last n characters of the second estring
returns the estring.

MidStr(estring,string,pos,len=ALL)

copies any number of characters (including all if len=ALL) from
position pos in string to estring
NOTEZ BIEN: in all string related functions where a position in a
string is used, the first character in a string has position 0,
not 1, as is common in languages like BASIC.
returns the estring.

value,read:=Val(string,read=NIL)

finds an integer encoded in ascii out of a string. Leading spaces/tabs
etc. will be skipped, and also hexadecimal numbers (1234567890ABCDEFabcdef)
and binary numbers (01) may be read this way if they are preceded by a
"$" or a "%" sign respectively. A minus "-" may indicate a negative integer.
Val() returns the number of characters read in the second argument, which
must be given by reference (<-!!!), or can be received as second returnvalue.
If "read" returns 0 (value will be 0 too) then the string did not contain an
integer, or the value was too sizy to fit in 32bit. "read" may be NIL.

examples of strings that would be parsed correctly:
’-12345’, ’%10101010’, ’ -$ABcd12’

these would return both as "value" and in read a 0:
’’, ’hello!’

e 51 / 129

foundpos:=InStr(string1,string2,startpos=0)

searches string1 for the occurrence of string2, possibly starting from
another position than 0. Returned is the offset at which the substring
was found, else -1.

newstringadr:=TrimStr(string)

returns the *address* of the first character in a string, i.e., after
leading spaces, tabs etc.

UpperStr(string) and LowerStr(string)

changes the case of a string.
TAKE NOTE: these functions modify the contents of ’string’, so they may
only be used on estrings, and strings that are part of your programs data.
Effectively this means that if you obtain the address of a string through
some amiga-system function, you must first StrCopy() it to a string of
your program, then use these functions.
they return the string.

ok:=ReadStr(filehandle,estring)

will read a string (ending in ascii 10) from any file or stdout.
ok contains -1 if an error occurred, or an EOF was reached.
Note: the contents of the string read so far is still valid.
Also note that, like Inp() Out(), etc. this function makes use
of unbuffered 1.3 style IO, and thus may be slow. The dos.library
Fgets() function forms a nice alternative.

SetStr(estring,newlen)

manually sets the length of a string. This is only handy when you read
data into the estring by a function other then an E string function,
and want to continue using it as an Estring. For example, after
using a function that just puts a zero-terminated string at the
address of estring, use SetStr(mystr,StrLen(mystr)) to make
it manipulatable again. If the string is too long, SetStr does nothing
(this should always be prevented).

AstrCopy(string1,string2,size)

’Array String Copy’ copies string2 into the memory area denoted by string1.
string1 is typically not an estring but an ARRAY. size is the total #of chars
string1 can hold, i.e. if you write 5 and string2=’helloworld’, string1 will
be ’hell’ + 0termination.

order:=OstrCmp(string1,string2,max=ALL)

’Ordered String Compare’ returns 1 if string2>string1, 0 for equal and -1
for less. only max chars are compared.

for string linking functions (see
9H

)

e 52 / 129

1.71 ch_9c

9C. lists and list functions

Lists are like strings, only they consist of LONGs, not CHARs.
They may also be allocated either global, local or dynamic:

DEF mylist[100]:LIST /* local or global */
DEF a
a:=List(10) /* dynamic */

(note that in the latter case, pointer ’a’ may contain NIL)
Just as strings may be represented as constants in expressions, lists
have their constant equivalent:

[1,2,3,4]

The value of such an expression is a pointer to an already initialised list.
Special feature is that they may have dynamic parts, i.e, which will
be filled in at runtime:

a:=3
[1,2,a,4]

moreover, lists may have some other type than the default LONG, like:

[1,2,3]:INT
[65,66,67,0]:CHAR /* equivalent with ’ABC’ */
[’topaz.font’,8,0,0]:textattr
OpenScreenTagList(NIL,[SA_TITLE,’MyScreen’,TAG_DONE])

As shown in the latter examples, lists are extremely useful with
system functions: they are downward compatible with an ARRAY OF LONG,
and object-typed ones can be used wherever a system function needs
a pointer to some structure, or an array of those.
Taglists and vararg functions may also be used this way.
NOTEZ BIEN: all list functions only work with LONG lists, typed-lists
are only convenient in building complex data structures and expressions.

As with strings, a certain hierarchy holds:
list variables -> constant lists -> array of long/ptr to long
When a function needs an array of long you might just as well give a list
as argument, but when a function needs a listvar, or a constant list,
then an array of long won’t do.

It’s important that one understands the power of lists and in particular
typed-lists: these can save you lots of trouble when building just
about any data-structure. Try to use these lists in your own programs,
and see what function they have in the example-programs.

summary:

e 53 / 129

[<item>,<item>,...] immediate list (of LONGs, use with listfuncs)
[<item>,<item>,...]:<type> typed list (just to build data structures)

If <type> is a simple type like INT or CHAR, you’ll just have the
initialised equivalent of ARRAY OF <type>, if <type> is an object-name,
you’ll be building initialised objects, or ARRAY OF <object>, depending
on the length of the list.

If you write [1,2,3]:INT you’ll create a data structure of 6 bytes,
of 3 16bit values to be precise. The value of this expression then
is a pointer to that memory area. Same works if, for example, you have
an object like:

OBJECT myobject
a:LONG, b:CHAR, c:INT

ENDOBJECT

writing [1,2,3]:myobject would then mean creating a data structure
in memory of 8 bytes, with the first four bytes being a LONG with value 1,
the following byte a CHAR with value 2, then a pad byte, and the last
two bytes an INT (2 bytes) with value 3. you could also write:

[1,2,3,4,5,6,7,8,9]:myobject

you would be creating an ARRAY OF myobject with size 3. Note that such
lists don’t have to be complete (3,6,9 and so on elements), you may
create partial objects with lists of any size

One last note on data size: on the amiga, you may rely on the fact that
a structure like ’myobject’ has size 8, and that it has a pad byte
to have word (16bit) alignment. It is however very likely that an
E-compiler for 80x86 architectures will not use the pad byte and make
it a 7byte structure, and that an E-compiler for a sun-sparc architecture
(if I’m not mistaken) will try to align on 32bit boundaries, thus make
it a 10 or 12 byte structure. Some microprocessors (they are rare, but
they exist) even use (36:18:9) as numbers of bits for their types
(LONG:INT:CHAR), instead of (32:16:8) as we’re used to. So don’t make too
great an assumption on the structure of OBJECTs and LISTs if you want to
write code that stands a chance of being portable or doesn’t rely on side
effects.

ListCopy(listvar,list,num=ALL)

Copies num elements from list to listvar. example:
DEF mylist[10]:LIST
ListCopy(mylist,[1,2,3,4,5],ALL)
returns listvar.

ListAdd(listvar,list,num=ALL)

Copies num items of list to the tail of listvar.
returns listvar.

ListCmp(list,list,num=ALL)

Compares two lists, or some part of them.

e 54 / 129

len:=ListLen(list)

Returns length of list, like ListLen([a,b,c]) would return 3

max:=ListMax(listvar)

returns maximum possible length of a listvar.

value:=ListItem(list,index)

functions as value:=list[index] with the difference that
list may also be a constant value instead of a pointer. This is
very useful in situations like this where we directly want to
use a list of values:

WriteF(ListItem([’ok!’,’no mem!’,’no file!’],error))

this prints an errormessage according to "error". it’s similar to:

DEF dummy:PTR TO LONG
dummy:=[’ok!’,’no mem!’,’no file!’]
WriteF(dummy[error])

SetList(listvar,newlen)

manually sets the length of a list. This will only be useful when you read
data into the list by a function other then a list-specific function,
and want to continue using it as a true list.

for list functions that make use of quoted expressions (see
11C

).
for list linking functions (see

9H
).

1.72 ch_9d

9D. intuition support functions

wptr:=OpenW(x,y,width,height,IDCMP,wflags,title,
screen,sflags,gadgets,taglist=NIL)

creates a window where wflags are flags for window layout
(like BACKDROP, SIMPLEREFRESH e.d, usually $F) and sflags are
for specifying the type of screen to open on (1=wb,15=custom).
screen must only be valid if sflags=15, else NIL will do.
gadgets may point to a glist structure, which you can easily
create with the Gadget() function, else NIL.

CloseW(wptr)

e 55 / 129

closes that screen again. Only difference from CloseWindow()
is that it accepts NIL-pointers and sets stdrast back to NIL.

sptr:=OpenS(width,height,depth,sflags,title,taglist=NIL)

opens a custom screen for you. depth is number of bitplanes (1-6, 1-8 AGA).

CloseS(sptr)

as CloseW(), now for screens.

nextbuffer:=Gadget(buffer,glist,id,flags,x,y,width,string)

[warning: this function is a bit out of date]
This function creates a list of gadgets, which can then be put in your
window by giving them as an argument to OpenW(), or afterwards with
intuition functions like AddGlist().
buffer is mostly an ARRAY of at least GADGETSIZE bytes to hold all the
structures associated with one gadget, id is any number that may help you
remember which gadget was pressed when an IntuiMessage arrives.
Flags are: 0=normal gadget, 1=boolean gadget, 3=boolean gadget that is
selected. Width is width in pixels, that should be large enough to hold
the string, which will be auto-centered. glist should be NIL for the first
gadget, and glistvar for all others, so E may link all gadgets.
The function returns a pointer to the next buffer (=buffer+GADGETSIZE).
Example for three gadgets:

CONST MAXGADGETS=GADGETSIZE*3

DEF buf[MAXGADGETS]:ARRAY, next, wptr

next:=Gadget(buf,NIL,1,0,10,20,80,’bla’) /* the 1st gadget */
next:=Gadget(next,buf,...)
next:=Gadget(next,buf,...) /* any amount linked 2 1st */

wptr:=OpenW(...,buf)

code:=Mouse()

gives you the current state of all 2 or 3 mouse buttons; left=1,
right=2 and middle=4. If for example code=3 then left and right were
pressed together.
NOTEZ BIEN: this is not a real intuition function, if you want to
know about mouse-events the proper way, you’ll have to check the
intuimessages that your window receives. This is the only E
function that directly checks the hardware, and thus only useful
in demo-like programs and for testing. (DO NOT USE THIS FUNCTION
IN PROGRAMS THAT ARE SUPPOSED TO WORK UNDER THE OS)

bool:=LeftMouse(win) WaitLeftMouse(win)

intuition Mouse() alternatives for programs that only want to test for
a mouseclick.

x:=MouseX(win) y:=MouseY(win)

e 56 / 129

enables you to read the mouse coordinates. win is the window
they need to be relative to.

class:=WaitIMessage(window)

This function makes it easier to just wait for a window event. It simply
waits until a intuimessage arrives, and returns the class of the event.
It stores other variables like code and qualifiers as private global
variables, for access with functions described below.
WaitIMessage() represents the following code:

PROC waitimessage(win:PTR TO window)
DEF port,mes:PTR TO intuimessage,class,code,qual,iaddr
port:=win.userport
IF (mes:=GetMsg(port))=NIL

REPEAT
WaitPort(port)

UNTIL (mes:=GetMsg(port))<>NIL
ENDIF
class:=mes.class
code:=mes.code /* stored internally */
qual:=mes.qualifier
iaddr:=mes.iaddress
ReplyMsg(mes)

ENDPROC class

as you see, it gets exactly one message, and does not forget about
multiple messages arriving in one event, if called more than once.
For example, say you opened a window that displays something and just
waits for a closegadget (you specified IDCMP_CLOSEWINDOW only):

WaitIMessage(mywindow)

or, you have a program that waits for more types of events, handles
them in a loop, and ends on a closewindow event:

WHILE (class:=WaitIMessage(win))<>IDCMP_CLOSEWINDOW
/* handle other classes */

ENDWHILE

code:=MsgCode() qual:=MsgQualifier() iaddr:=MsgIaddr()

These all supply you with the private global variables as mentioned
before. the values returned are all defined by the most recent call
to WaitIMessage(). Example:

IF class:=IDCMP_GADGETUP
mygadget:=MsgIaddr()
IF mygadget.userdata=1 THEN /* ... user pressed gadget #1 */

ENDIF

1.73 ch_9e

e 57 / 129

9E. graphics support functions

All graphics support functions that do not explicitly ask for a rastport,
make use of the system-variable ’stdrast’. It is automatically defined by
the last call to OpenW() or OpenS(), and is set to NIL by CloseW() and
CloseS(). Calling these routines while stdrast is still NIL is legal.
stdrast may be manually set by SetStdRast() or stdrast:=myrast

Plot(x,y,colour=1)

Draws a single dot on your screen/window in one of the colours available.
colour ranges from 0-255, or 0-31 on pre-AGA machines.

Line(x1,y1,x2,y2,colour=1)

Draws a line

Box(x1,y1,x2,y2,colour=1)

Draws a box

Colour(foreground,background=0)

sets the colours for all graphics functions (from the library) that
do not take a colour as argument. This is the colour *register*
(i.e 0-31) and not colour *value*
NOTE: functions that have "colour" as an argument, change the Apen
of stdrast.

TextF(x,y,formatstring,args,...)

exactly the same function as WriteF(), only outputs to some (x,y) on
your stdrast, instead of stdout. (see

9A
, WriteF() and strings in the language

reference). returns the length of the resulting string.

oldrast:=SetStdRast(newrast)

changes the output rastport of the E graphics functions

SetTopaz(size=8)

lets you set the font of the rastport "stdrast" to topaz, just to be sure
that some custom system font of the user won’t screw up your window layout.
size is of course 8 or 9. Only to be used as last resort if you can’t
support font-sensitivity.

SetColour(screen,colourreg,r,g,b)

set colour register (0..255) of screen to certain RGB values.
each rgb value has a range of 0..255, i.e. 24bit colour. this
function will automatically rescale to 12bit colour if no AGA
is present, and also use the correct function.

e 58 / 129

1.74 ch_9f

9F. system support functions

bool:=KickVersion(vers)

Will give TRUE if the kickstart in the machine your program is running
on is equal or higher than vers, else FALSE

mem:=New(n)

This dynamically creates an array (or memory area, if you wish) of
n bytes. Difference with AllocMem() is that it is called automatically
with flags $10000 (i.e cleared mem, any type) and that no calls to
Dispose() are necessary, as it is linked to a memory list that is
automatically de-allocated upon exit of your program.
(see

4K
, also)

mem:=NewR(n)

same as New(), only now automatically raises the "MEM" exception
instead of return if no memory could be allocated.

mem:=NewM(n,flags)

same as NewR(), but also allows you to specify flags (MEMF_CHIP etc.)

Dispose(mem)

Frees any mem allocated by New(). You only have to use this function
if you explicitly wish to free memory _during_ your program, as all
is freed at the end anyway.

CleanUp(returnvalue=0)

Exits the program from any point. It is the replacement for the DOS
call Exit(): never use it! instead use CleanUp(), which allows
for the deallocation of memory, closing libraries correctly etc.
The return value will be given to dos as returncode.
Cleanup() is ONLY necessary if you have to exit at a point different
from ENDPROC in main.

amount:=FreeStack()

returns the amount of free stack space left. This should always be 1000 or
more. (see

16C
on how E organizes its stack. If you don’t do heavy recursion,

you need not worry about your free stack space.

e 59 / 129

bool:=CtrlC()

Returns TRUE if Ctrl-C was pressed since you last checked, else FALSE.
This only works for programs running on a console, i.e. cli-programs.

Example of how these last three functions may be used:

/* calculate faculty from command-line argument */

OPT STACK=100000

PROC main()
DEF num,r
num:=Val(arg,{r})
IF r=0 THEN WriteF(’bad args.\n’) ELSE WriteF(’result: \d\n’,fac(num))

ENDPROC

PROC fac(n)
DEF r
IF FreeStack()<1000 OR CtrlC() THEN CleanUp(5) /* xtra check */
IF n=1 THEN r:=1 ELSE r:=fac(n-1)*n

ENDPROC r

Of course, this recursion will hardly run out of stack space, and when it
does, it’s halted by FreeStack() so fast you won’t have time to press
CtrlC, but it’s the idea that counts here.
A definition of fac(n) like:

PROC fac(n) IS IF n=1 THEN 1 ELSE fac(n-1)*n

would be less safe.

mem:=FastNew(size) FastDispose(mem,size) FastDisposeList(list)

FastNew() and FastDispose() are replacements for NewR(size) and
Dispose(ptr) (they are used by NEW and END). this is what they have
in common:
- "NEW" exceptions may be Raised
- memory is always cleared
- auto-dealloc at end of program
- NIL accepted in deallocation
but the following differences should be noted (positive):
- they are varying from 10 to 50 times faster (!)
- they use way less memory for small objects
- they do not fragment memory
[all this is for objects <=256 bytes, for bigger ones NewR() and
Dispose() are used].

negative:
- they do not free mem, but recycle it.
- FastDispose() needs exact size of allocation. END also.

List allocated with NEW need the function FastDisposeList(). Because
Lists have a length, the size parameter isn’t needed.

e 60 / 129

1.75 ch_9g

9G. math and other functions

a:=And(b,c) a:=Or(b,c) a:=Not(b)
a:=Eor(b,c)

These work with the usual operations, boolean as well as arithmetic.
Note that for And() and Or() an operator exists.

a:=Mul(b,c) a:=Div(a,b)

Performs the same operation as the ’*’ and ’/’ operators, but now in
full 32bit. For speed reasons, normal operations are 16bit*16bit=32bit
and 32bit/16bit=16bit. This is sufficient for nearly all calculations,
and where it’s not, you may use Mul() and Div(). NOTE: in the Div
case, a is divided by b, not b by a.

bool:=Odd(x) bool:=Even(x)

Return TRUE or FALSE if some expression is Odd or Even

Min(a,b) Max(a,b)

compute min and max of the two given ints.

randnum:=Rnd(max) seed:=RndQ(seed)

Rnd() computes a random number from an internal seed in range 0 .. max-1.
For example, Rnd(1000) returns an integer from 0..999
To initialise the internal seed, call Rnd() with a negative value;
the Abs() of that value will be the initial seed.

RndQ() computes a random number "Q"uicker than Rnd() does, but returns
only full range 32bit random numbers. Use the result as the seed for
the next call, and for startseed, use any large value, like $A6F87EC1

absvalue:=Abs(value)

computes the absolute value.

s:=Sign(v)

computes the sign of v, i.e. returns -1,0,1

a,b:=Mod(c,d)

Divides 32bit c by 16bit d and returns 16bit modulo a and optionally
a 16bit result of the division b. If these 16bit limits are exceeded,
Mod() will not give correct results.

x:=Shl(y,num) x:=Shr(y,num)

shifts y num bits to left or right (set new bits to 0).

e 61 / 129

a:=Long(adr) a:=Int(adr) a:=Char(adr)

peeks into memory at some address, and returns the value found. This
works with 32, 16 and 8 bit values respectively. Note that the compiler does
not check if ’adr’ is valid. These functions are available in E for
those cases where reading and writing in memory with PTR TO <type>
would only make a program more complex or less efficient. You are _not_
encouraged to use these functions.

PutLong(adr,a) PutInt(adr,a) PutChar(adr,a)

Pokes value ’a’ into memory. See: Long()

y:=Bounds(x,a,b)

makes sure x lies between bounds a and b, and adjust acordingly if necessary.
It equals: y:=IF x<a THEN a ELSE IF x>b THEN b ELSE x

1.76 ch_9h

9H. string and list linking functions

E provides for a set of functions that allows the creation of
linked list with the STRING and LIST datatype, or strings and lists
that were created with String() and List() respectively. As you may
know by now, strings and lists, complex datatypes, are pointers
to their respective data, and have extra fields to a negative offset
of that pointer specifying their current length and maxlength. the
offsets of these fields are PRIVATE. as an addition to those two,
any complex datatype has a ’next’ field, which is set to NIL by
default, which may be used to build linked list of strings, for example.
in the following, I will use ’complex’ to denote a ptr to a STRING
or LIST, and ’tail’ to denote another such pointer, or one that already
has other strings linked to it. ’tail’ may also be a NIL pointer,
denoting the end of a linked list.
[note: these String-list functions have nothing to do with E-lists or
Lisp-Cell lists]

The following functions may be used:

complex:=Link(complex,tail)

puts the value tail into the ’next’ field of complex. returns again complex.
example:

DEF s[10]:STRING, t[10]:STRING
Link(s,t)

creates a linked list like: s --> t --> NIL

tail:=Next(complex)

reads the ’next’ field of var complex. this may of course be NIL, or
a complete linked list. Calling Next(NIL) will result in NIL, so it’s
safe to call Next when you’re not sure if you’re at the end of a linked list.

e 62 / 129

tail:=Forward(complex,num)

same as Next(), only goes forward num links, instead of one, thus:

Next(c) = Forward(c,1)

You may safely call Forward() with a num that is way too large;
Forward will stop if it encounters NIL while searching links, and
will return NIL.

DisposeLink(complex)

same as Dispose(), with two differences: it’s only for strings and
lists allocated with String() or List(), and will automatically
de-allocate the tail of complex too. Note that large linked lists
containing strings allocated with String() as well as some allocated
locally or globally with STRING may also be de-allocated this way.

For a good example of how linked lists of strings may be put to
good use in real-life programs, see Src/Utils/D.e

1.77 ch_9i

9I. lisp-cells and cell functions

yep. that’s right. you thought LISP was fun, then try E now.
[or: the story about why E is a better LISP than LISP itself :-)]

Starting from v3, E has the cell datatype, almost identical to cells
in the LISP language. more technically, E has:

‘Conservative Mark and Sweep Garbage-Collected Lisp-Cells’

basically this amounts to being able to allocate LISP-cells,
which are pairs of two values:

x:=<a|b>

which is much like NEW [a,b]:LONG, only now E will automatically
deallocate the 8 bytes in question itself when it finds out it needs
memory and no pointers are pointing to the cell. In practise this
means that you can freely have functions create cells as temporaries,
without worrying about freeing them. And any LISP-programmer will
be able to explain to you that with cells you can build any
data-structure (most notably trees and lists). [note: this text
does not thorougly explain how to make full use of cells, since
dozens of LISP books have been written about this]

Selecting the values can easily be done using Car(x) and Cdr(x),
two LISP-functions which select head and tail (first and second)
element of the cell. if x is a PTR TO LONG, even x[0] and x[1]
are allowed.

e 63 / 129

One can also write lists of cells:

<a,b,c>

(note the commas) as short for

<a|<b|<c|NIL>>>

An alternative for selection with Car/Cdr is E’s unification:

x <=> <a,b|c>
a+b+c

instead of:

Car(x)+Car(Cdr(x))+Cdr(Cdr(x))

lisp-cell unification resembles E-list unification (see
4L

). for
example:

x <=> <1,2|a>

equals:

IF Car(x)=1
IF Car(Cdr(x))=2

a:=Cdr(Cdr(x))
...

A lisp-nil value is available "<>", which equals NIL and 0.

some functions are available (note that Cons() is _only_ available
through <...>)

h:=Car(c) t:=Cdr(c)

fix the head and the tail value of a cell c

bool:=Cell(c)

gives a bool for whether or not c points at a cell, so Cell(<1>)=TRUE,
and Cell(3.14)=FALSE. This is not a fast function.

n:=FreeCells()

tell you about the amount of free cells available. very slow function.
there should be no need to call this function other than curiosity.

SetChunkSize(k)

Sets the chunksize to allocate for cells to k kilobyte. default is 128k.
This function can only be called once, and only before the first cons
(<..>) allocation takes place. Thereafter it has no effect.

e 64 / 129

In general, get a good book about lisp to understand more about
programming with cells.

One can write any LISP-functions in E, with exactly the same functionality:

PROC append(x,y) IS IF x THEN <Car(x)|append(Cdr(x),y)> ELSE y
PROC nrev(x) IS IF x THEN append(nrev(Cdr(x)),<Car(x)>) ELSE NIL
PROC sum(x) IS IF x THEN Car(x)+sum(Cdr(x)) ELSE 0

using a destructive implementation for functions like these is
also allowed.

techy stuff:
E’s garbage collector implements a conservative mark and sweep algorithm
that was tested to be 5 to 25 times faster than several logical and
functional language implementations on the Amiga. Conservative
means that in case of doubt, the GC will not deallocate a cell. this
is necessary since in a typeless language such as E, the GC can
easily bump into a value that is not a valid pointer etc.

The GC allocates big chunks (default 128k), in which it allocates
cells. if out of cells, it will collect garbage by scanning the
stack and registers for pointers into the cellspace, and recursively
mark them. after that, all unmarked cells are reused, and if the
gain after a collection was only small, a new chunk is allocated
(if this fails, "NEW" is raised).

interaction with other E values:
- storing other values in cells is no problem whatsoever. objects,

strings, floats, anything can be put into a cell without confusing
the GC too much.

- storing cells in other values, for example a ptr to a cell in a
dynamic object, is problematic, since the GC won’t be able to find
it there. a solution for this will be provided. However I think this
case will seldom occur.
ptrs to cells can safely be stored in global and local variables,
even registers, and any stack datastructures.
[and most importantly, in other cells!]

caveats:
- The GC currently can’t collect cells that have a Car-list >1000

long or so, i.e. <<<NIL:a>:b>:c>, but then 1000 instead of 3
entries. this will hardly ever occur since lists like this
are usually formed as Cdr-lists, which the GC can handle into
infinity. (it will raise "STCK" if this fails")

- inline assembly code should never push stuff on the stack that
is not LONG aligned. this was already necessary in v2.1b,
but now is even more essential.

There’s a trade off in chunk-size between time and space.
Allocating small chunks obviously is nice since you won’t waste
any memory, however, when collecting garbage, the effort for
each pointer to trace is almost proportional to the number of
spaces. therefore:
- if speed is most important tune the chunkspacesize such that

that only one space is needed. if the top cell-memory usage at a
certain time is 50k, a chunkspace of 100k or 150k will give

e 65 / 129

optimal performance.
- if memory usage is more important, in the example above a

chunksize of 20k or 30k will be quite optimal for memory.
In general, time a heavy usage of your cell-algorithm with
different sizes to see what trade-off suits you best.

1.78 ch_10a

10A. built-in library calls

As you may have noticed from previous sections, the piece of code
automatically linked to the start of your code, called the "initialisation code",
always opens the three libraries intuition, dos, graphics and (and sometimes
mathieeesingbas), and because of this, the compiler has all the calls to those
four libraries (including exec) integrated in the compiler (there are a few ←↩

hundred
of them). These are up to AmigaDos v3.00 (v39). To call Open() from the dos ←↩

library,
simply say:

handle:=Open(’myfile’,OLDFILE)

or AddDisplayInfo() from the graphics library:

AddDisplayInfo(mydispinfo)

it’s as simple as that.

1.79 ch_10b

10B. interfacing to the amiga system with the v40 modules
--
To use any other library than the five in the previous section, you’ll
need to resort to modules. Also, if you wish to use some OBJECT or CONST
definition from the Amiga includes as is usual in C or assembler,
you’ll need modules. Modules are binary files which may include constant,
object, library and function (code) definitions. The fact that they’re
binary has the advantage over ascii (as in C and assembly), that they
need not be compiled over and over again, each time your program is
compiled. The disadvantage is that they cannot simply be viewed; they
need a utility like ShowModule (see

17A
) to make their contents

visible. The modules that contain the library definitions (i.e the calls)
are in the root of emodules: (the modules dir in the distribution), the
constant/object definitions are in the subdirectories, structured just
like the originals from Commodore.

e 66 / 129

MODULE

syntax: MODULE <modulenames>,...

Loads a module. A module is a binary file containing information on libraries,
constants, and sometimes functions. Using modules enables you to use
libraries and functions previously unknown to the compiler.

Now for an example, below is a short version of the source/examples/asldemo.e
source that uses modules to put up a filerequester from the 2.0 Asl.library.

MODULE ’Asl’, ’libraries/Asl’

PROC main()
DEF req:PTR TO filerequester
IF aslbase:=OpenLibrary(’asl.library’,37)

IF req:=AllocFileRequest()
IF RequestFile(req) THEN WriteF(’File: "\s" in "\s"\n’,req.file,req.drawer)
FreeFileRequest(req)

ENDIF
CloseLibrary(aslbase)

ENDIF
ENDPROC

From the modules ’asl’, the compiler takes asl-function definitions like
RequestFile(), and the global variable ’aslbase’, which only needs to
be initialised by the programmer. From ’libraries/Asl’, it takes
the definition of the filerequester object, which we use to read the
file the user picked. Well, that wasn’t all that hard: did you think
it was that easy to program a filerequester in E?

1.80 ch_10c

10C. compiling own modules

with v3, you can gather all PROCs, CONSTs, OBJECTs and to
some extent also global variables that you feel somehow belong
together in one source, write "OPT MODULE" to signal EC that
this is supposed to be a module, and then compile all to a
.m file to be used in the main program, just like you used to
do with the old modules.

by default, all elements in a module are PRIVATE, i.e. not accessable
to the code that imports the .m file. to show which elememts
you wish to be visible in the module, simply write EXPORT
before it:

EXPORT ENUM TESTING,ONE,TWO,THREE,FOUR

EXPORT DEF important_glob_var, bla:PTR TO x

EXPORT OBJECT x

e 67 / 129

next, index, term
ENDOBJECT

EXPORT PROC burp()
/* whatever */

ENDPROC

EXPORT lab:

"EXPORT" is useful in making a distinction between private and
public, especially when all functions of an OBJECT can be accessed
via PROCs, you may wish to keep OBJECT private as an effective
method of data hiding. more on this topic, (see

14C
)

[EXPORT can be written on any line, doesn’t affect everything though.]

If in a module _all_ elememts need to be exported (for example
one with only constants), a ’OPT EXPORT’ will export all, without
the need for individual EXPORT keywords.

global variables require extra attention:
- try to avoid lots of global variables. having lot of globals

in modules makes projects messy and error-prone
- globs in a module cannot have initialisations directly

in the DEF statement (reason for this will become clear
below). for example:
DEF a not DEF a=1
DEF a:PTR TO x not DEF a[10]:ARRAY OF x

- globals in a module which are not exported function as
local for the module, i.e. they’ll never clash with globals
in other modules. those who _are_ exported though, are
combined with the others, i.e. if in both the main program
and in a module a variable with the same name are used,
this will be one and the same variable. that’s why
one can write DEF a[10]:ARRAY OF x in the main program,
and EXPORT DEF a:PTR TO x in the module, to share the
array. Also, if both use for example ’gadtools.m’,
only one of the two needs to initialise ’gadtoolsbase’
for both to be able to make calls to the library.
If you do not want librarybases to be shared (i.e. you
want to have a local, private library base), simply
redeclare it in a DEF in the module that is not EXPORTed.
If you export a variable in a general purpose
module, make sure to give it a pretty unique name.

- using globals in modules which provide general purpose
datatypes needs special attention, as the module may be
in use from more than one other module, in which case
it may be unclear who is responsable for resources.
take good care of this.

Using modules in modules

This requires little extra attention. If the module (B) you include
in your own module (A) is one that only declares CONSTs, LIBRARYs and
OBJECTs (without code) nothing special happens, however if B includes
PROCs, then it’s obvious this code needs to be linked later to the

e 68 / 129

main program when A is linked. Therefore if a main program uses A,
B will need to be present for compilation. The fact that A needs
B is stored in A, and can be viewed with ShowModule. This chain
of uses may grow out to a tree of dependencies, which has the result
that if you use just one module in your program, a lot of others
are automatically linked to it. Thus, E’s module system automatically
keeps track of dependancies that other languages need makefiles for.
EC also allows for circular inclusions, and loads/links modules at most
once (i.e. doesn’t link unused modules). One thing E’s module system
doesn’t automatically do for you is recompile dependant modules. If
you change B, it is often necessary to recompile A too, since it
might be referring to offsets etc. in the old version of B, which
might cause code to crash. If this gets too complex in your project,
use a utility such as E-Build (see

17I
).

Try out the new ShowModule (see
17A

) to see what EC puts in modules.

Including modules from other directories.

By default, a module name is prefixed by ’emodules:’ to obtain
the actual file. Now you can prefix the name with a ’*’ to
denote the directory the source is in, so:

MODULE ’bla’, ’*bla’

if this statement would be in source ’WORK:E/burp.e’, these two
modules would be ’emodules:bla.m’ and ’WORK:E/bla.m’.

This is naturally the way to include components of your app into
other parts. If you write modules that you use in many of your programs
it would be handy to store them in the emodules hierarchy, and the
place for this is the ’emodules:other/’ dir.

1.81 ch_10d

10D. the modulecache

(see

17D
, ShowCache/FlushCache about this).

e 69 / 129

1.82 ch_11a

11A. quoting and scope

Quoted expressions start with a backquote. The value of a quoted
expression is not the result from the computation of the expression,
but the address of the code. This result may then be passed on as
a normal variable, or as an argument to certain functions.
example:

myfunc:=‘x*x*x

myfunc is now a pointer to a ‘function’ that computes x^3 when evaluated.
These pointers to functions are very different from normal PROCs, and
you should never mix the two up. The biggest differences are that a
quoted expression is just a simple expression, and thus cannot have its
own local variables. In our example, "x" is just a local or global variable.
That’s where we have to be cautious:
if we evaluate myfunc somewhat later in the same PROC, x may be local,
but if myfunc is given as parameter to another PROC, and then evaluated,
x needs of course to be global. There’s no scope checking on this.

1.83 ch_11b

11B. Eval()

Eval(func)

simply evaluates a quoted expression (exp = Eval(‘exp)).

NOTE: because E is a somewhat typeless language, accidentally writing
"Eval(x*x)" instead of "Eval(‘x*x)" will go unnoticed by the
compiler, and will give you big runtime problems: the value of x*x
will be used as a pointer to code.

To understand why ’quoted expressions’ is a powerful feature think of the
following cases: if you were to perform a set of actions on a set of different
variables, you’d normally write a function, and call that function with
different arguments. But what happens when the element that you want to give
as argument is a piece of code? in traditional languages this would not be
possible, so you would have to ’copy’ the blocks of code representing your
function, and put the expression in it. Not in E. say you wanted to write
a program that times the execution time of different expressions. In E you
would simply write:

PROC timing(func,title)
/* do all sorts of things to initialise time */
Eval(func)
/* and the rest */
WriteF(’time measured for \s was \d\n’,title,t)

ENDPROC

and then call it with:

e 70 / 129

timing(‘x*x*x,’multiplication’)
timing(‘sizycalc(),’large calculation’)

in any other imperative language, you would have to write out
copies of timing() for every call to it, or you would have to
put each expression in a separate function. This is just a simple
example: think about what you could do with data structures (LISTs)
filled with unevaluated code:

drawfuncs:=[‘Plot(x,y,c),‘Line(x,y,x+10,y+10,c),‘Box(x,y,x+20,y+20,c)]

Note that this idea of functions as normal variables/values is not new
in E, quoted expressions are literally from LISP, which also has the
somewhat more powerful so-called Lambda function, which can also be
given as argument to functions; E’s quoted expressions can also be
seen as parameterless (or global parameter only) lambdas.

1.84 ch_11c

11C. built-in functions

MapList(varadr,list,listvar,func)

performs some function on all elements of list and returns all
results in listvar. func must be a quoted expression (see

11A
),

and var (which ranges over the list) must be given by reference. Example:

MapList({x},[1,2,3,4,5],r,‘x*x) results r in: [1,4,9,16,25]

returns listvar.

ForAll(varadr,list,func)

Returns TRUE if for all elements in the list the function (quoted
expression) evaluates to TRUE, else FALSE. May also be used to perform
a certain function for all elements of a list:

ForAll({x},[’one’,’two’,’three’],‘WriteF(’example: \s\n’,x))

Exists(varadr,list,func)

As ForAll(), only this one returns TRUE if for any element the function
evaluates to TRUE (<>0). note that ForAll() always evaluates all elements,
but Exists() possibly does not.

SelectList(v,list,listvar,quotedexp)

Much like MapList(), only now doesn’t store the result from quotedexp,
it uses it as a boolean value, and only those values for which it is
true are stored in listvar (which should be capable of holding

e 71 / 129

the same amount of elements as list. example:

SelectList({x},[1,2,0,3,NIl],r,‘x<>0)

results in r being [1,2,3].
returns length of listvar.

Example of how to use these functions in a practical fashion:
we allocate different sizes of memory in one statement, check them
all together at once, and free them all, but still only those that
succeeded. (example is v37+)

PROC main()
DEF mem[4]:LIST,x
MapList({x},[200,80,10,2500],mem,‘AllocVec(x,0)) -> alloc some
WriteF(IF ForAll({x},mem,‘x) THEN ’Yes!\n’ ELSE ’No!\n’) -> suxxes ?
ForAll({x},mem,‘IF x THEN FreeVec(x) ELSE NIL) -> free only those <>NIL

ENDPROC

Note the absence of iteration in this code. Just try to rewrite this
example in any other language to see why this is special.

REALs (or FLOATs, whatever) are very different in E than in other
languages. This mainly has to do with the fact that E doesn’t
really discriminate between types of values. One is advised to
understand this chapter _well_ before attempting to use floats.

1.85 ch_12a

12A. float values

In E, a float is just another 32bit value. The E compiler treats
them just like integers or pointers, with the difference that
their bit representation means something different. The E float
format is the IEEEsingle standard.

A float value looks like an integer value with the exception that
somewhere a "." is present. for example, the following are valid
floats:

3.14159 .1 1. -12345.6

these aren’t:

. 1234

(i.e. atleast one "." and one "0-9" char must be present).

e 72 / 129

You can use these values at almost all places where LONG values
are legal, i.e. if you have have a function or datastructure that
handles arbitrary LONG values, it will also handle floats.

DEF f=3.14
myobj.x:=.1
fun(f,2.73)

1.86 ch_12b

12B. computing with floats

Because to E a float will seem like just another LONG, it will happily
apply integer math to it when used in an expression, which is mostly
not what you want. Also, one would like to be able to convert to
integer and vice-versa. The float operator "!" handles all this.

assume in the following examples that a,b,c contain integer values,
and x,y,z float values.

By default, an expression in E is considered an integer expression.
what the "!" does when it occurs in an expression is the following:
- changes the expression from int to float. any operators following

(+ * - / = <> > < >= <=) will be float operations. "!" may occur
any number of times in an expression, changing from and to float
again and again.

- the expression that did occur before the "!", if any, is converted
to the appropriate type.

examples:

x:=a!

converts "a" to float, and stores the result in x. "a" is an integer exp,
which is then toggled to float, which implies a conversion.

a:=!x!

converts "x" to integer and stores the result in a.

x:=y

x:=Ftan(y)

no "!" is needed here since no operator-math or conversions are necessary.

x:=!y*z

the "*" acts on y and z as floats, since "!" denotes the whole as
a float-exp. the float result is stored in x

a:=b!*x+y!

e 73 / 129

a more complex example: the int "b" is converted to float, then x
and y are float-multiplied and float-added to it. The result is converted
to int and stored in the int "a"

x:=!y*z-z*y+(a!)+z/z

z:=!x*Fsin(!x*y)

all (+ * - /) are computed as float, and the int "a" is converted
to float somewhere in the middle. since "(" ")" denotes a new expression,
it has it’s own status of "!". Same idea for the function below.

IF !x<0.1 THEN WriteF(’Float value too small!\n’)

as you can see, "!" also works on the six comparison operators.

1.87 ch_12c

12C. builtin float functions

Some trans-math functions are present, more will probably follow.

x:=Fsin(y) x:=Fcos(y) x:=Ftan(y)

usual sin() etc. functions. they work with radians.

x:=Fabs(y)

compute absolute value of y

x:=Ffloor(y) x:=Fceil(y)

compute lowest and highest whole-number float value near y

x:=Fexp(y) x:=Flog(y) Flog10(y) x:=Fpow(y,z) Fsqrt(y)

compute e^y, ln(y), log base 10, z^y and square root of y, respectively.

x,n:=RealVal(s)

parses string "s" to produce float value x. will skip leading spaces and tabs.
n is the number of characters parsed from the start of the string, or 0
if it couldn’t be parsed as a float value. "x" will then be 0.0.
accepts negative numbers (and number without a ".", even).
example:

RealVal(’ 3.14 ’) results in 3.14, 5
RealVal(’blabla’) results in 0.0, 0

s:=RealF(s,x,n)

Format a float value x to the estring s, with n positions after the ".".

e 74 / 129

max for "n" is 8, even less if you have lots of digits leading the ".".
an "n" of 0 will denote no fraction. The string is returned as result,
so it can be reused in a WriteF() for example:

WriteF(’float = \s\n’,RealF(s,3.14159),4) results in ’float = 3.1416\n’

RealF() tries hard to make sensible roundings for a certain "n", as
the example shows. negative numbers are also handled properly.

RealF(s,-3.14159,0) results in ’-3’

1.88 ch_12d

12D. float implementation issues

As said before, the E float format is IEEE (single), this means that
older float code using the FFP format with the SpXxx functions will
have to be rewritten (as stated in the v2.1b docs). The mathffp
library is no longer directly supported by EC v3.0, and you’ll
have to open this library like all others if you want to use it.

single IEEE’s were chosen because:
- double IEEE’s don’t fit in a LONG
- the FFP format routines do not make use of a 68881 if present,

the IEEE ones do. Furthermore the FFP format is incompatible
with the 68881, which also uses IEEE format.

- IEEE is the worldwide float-format standard, which encourages
data-file compatability among software/platforms.

E’s float routines use the mathieeesingbas.library and the
mathieeesingtrans.library, which are not by default supplied
with the ancient v1.3 of the OS. This means that if you want
to write under / support 1.3 AND you want to use the _builtin_
floats, you have to make sure these libraries are present (they
seem to be available, maybe through commodore?).

Both EC and the programs it generates do not open these libraries
as long as no float-features are used.

If all else fails, one can always use other floatlibraries to use
floats with 1.3. I might recommend the tools/longreal.m module
which uses doubles.

In the future, EC will probably allow mathieee library calls to
be replaced with inline 68881 code transparently.

[note: v3.1 (v40) of the amiga operating system is known to contain
a bug in the IEEE code. Be sure to run a SetPatch that fixes this]

e 75 / 129

1.89 ch_13a

13A. defining exception handlers (HANDLE/EXCEPT)
--
The exception mechanism in E is basically the same as in ADA; it
provides for flexible reaction on errors in your program and
complex resource management. NOTE: the term ’exception’ in E has
very little to do with exceptions caused directly by 680x0 processors.

An exception handler is a piece of program code that will be invoked
when runtime errors occurs, such as windows that fail to open or
memory that is not available. You, or the runtime system itself,
may signal that something is wrong (this is called "raising an
exception"), and then the runtime-system will try and find the
appropriate exception handler. I say "appropriate" because a program
can have more than one exception handler, on all levels of a program.
A normal function definition may (as we all know) look like this:

PROC bla()
/* ... */

ENDPROC

a function with an exception handler looks like this:

PROC bla() HANDLE
/* ... */

EXCEPT
/* ... */

ENDPROC

The block between PROC and EXCEPT is executed as normal, and if no
exception occurs, the block between EXCEPT and ENDPROC is skipped, and
the procedure is left at ENDPROC. If an exception is raised, either
in the PROC part, or in any function that is called in this block,
an exception handler is invoked.

1.90 ch_13b

13B. using the Raise() function

There are many ways to actually "raise" an exception, the simplest
is through the function Raise():

Raise(exceptionID=0)

the exception ID is simply a constant that defines the type of
exception, and is used by handlers to determine what went wrong.
Example:

ENUM NOMEM,NOFILE /* and others */

PROC bla() HANDLE
DEF mem
IF (mem:=New(10))=NIL THEN Raise(NOMEM)

e 76 / 129

myfunc()
EXCEPT

SELECT exception
CASE NOMEM

WriteF(’No memory!\n’)
/* ... and others */

ENDSELECT
ENDPROC

PROC myfunc()
DEF mem
IF (mem:=New(10))=NIL THEN Raise(NOMEM)

ENDPROC

The "exception" variable in the handler always contains the value of
the argument to the Raise() call that invoked it.
In both New() cases, the Raise() function invokes the handler of
function bla(), and then exits it correctly to the caller of bla().
If myfunc() had its own exception-handler, that one would be invoked
for the New() call in myfunc(). The scope of a handler is from the start
of the PROC in which it is defined until the EXCEPT keyword, including
all calls made from there.

This has three consequences:
A. handlers are organized in a recursive fashion, and which handler is

actually invoked is dependant on which function calls which at runtime;
B. if an exception is raised within a handler, the handler of a lower

level is invoked. This characteristic of handlers may be used
to implement complex recursive resource allocation schemes with
great ease, as we’ll see shortly.

C. If an exception is raised on a level where no lower-level handler
is available (or in a program that hasn’t got any handlers at all),
the program is terminated. (i.e: Raise(x) has the same effect as
CleanUp(0))

other functions:

Throw(exceptionID,value)

same as Raise(), only now it takes an arbitrary value with it. in
a handler one can then scrutinize this value with the variable
’exceptioninfo’

ReThrow()

has no args. simply does a Throw() on the current exception value,
IFF it is <>0.

1.91 ch_13c

13C. defining exceptions for built-in functions (RAISE/IF)

With exceptions like before, we have made a major gain over the
old way of defining our own "error()" function, but still it is

e 77 / 129

a lot of typing to have to check for NIL with every call to New().

The E exception handling system allows for definition of exceptions
for all E functions (like New(), OpenW() etc.), and for all Library
functions (OpenLibrary(), AllocMem() etc.), even for those
included by modules. Syntax:

RAISE <exceptionId> IF <func> <comp> <value> , ...

the part after RAISE may be repeated with a ",".
Example:

RAISE NOMEM IF New()=NIL,
NOLIBRARY IF OpenLibrary()=NIL

the first line says something like: "whenever a call to New() results
in NIL, automatically raise the NOMEM exception".
<comp> may be any of = <> > < >= <=
After this definition, we may write all through our programs:

mem:=New(size)

without having to write:

IF mem=NIL THEN Raise(NOMEM)

Note that the only difference is that ’mem’ never gets any value
if the runtime system invokes the handler: code is generated for
every call to New() to check directly after New() returns and call
Raise() when necessary.

We’ll now be implementing a small example that would be complex to solve
without exception handling: we call a function recursively, and in each
we allocate a resource (in this case memory), which we allocate before,
and release after the recursive call. What happens when somewhere high
in the recursion a severe error occurs, and we have to leave the program?
right: we would (in a conventional language) be unable to free all the
resources lower in the recursion while leaving the program, because all
pointers to those memory areas are stored in unreachable local variables.
In E, we can simply raise an exception, and from the end of the handler
again raise an exception, thus recursively calling all handlers and
releasing all resources. Example:

CONST SIZE=100000
ENUM NOMEM /* ,... */

RAISE NOMEM IF AllocMem()=NIL

PROC main()
alloc()

ENDPROC

PROC alloc() HANDLE
DEF mem
mem:=AllocMem(SIZE,0) /* see how many blocks we can get */
alloc() /* do recursion */

e 78 / 129

EXCEPT DO
IF mem THEN FreeMem(mem,SIZE)
ReThrow() /* recursively call all handlers */

ENDPROC

This is of course a simulation of a natural programming problem that
is usually far more complex, and thus the need for exception handling
becomes far more obvious. For a real-life example program whose error
handling would have become very difficult without exception
handlers, see the ’D.e’ utility source.

The "DO" after an EXCEPT means that instead of jumping to ENDPROC,
the main code will simply continue execution in the handler as soon
as it gets there. it also sets exception to 0.
This is handy if you free resources local to a PROC in the handler.

1.92 ch_13d

13D. use of exception-ID’s

In real life an exception-ID is of course a normal 32-bit value,
and you may pass just about anything to an exception handler: for
example, some use it to pass error-description strings

Raise(’Could not open "gadtools.library"!’)

However, if you want to use exceptions in expandabele fashion and you
want to be able to use future modules that raise exceptions not defined
by your program, follow the following guidelines:

- Use and define ID 0 as "no error" (i.e. normal termination)

- For exceptions specific to your program, use the ID’s 1-10000.
Define these in the usual fashion with ENUM:

ENUM OK,NOMEM,NOFILE,...

(OK will be 0, and others will be 1+)

- ID’s 12336 to 2054847098 (these are all identifiers
consisting of upper/lowercase letters and digits of length 2,3 or 4
enclosed in "") are reserved as common exceptions. A common exception
is an exception that need not be defined in your program, and that
may be used by implementors of modules (with functions in them) to
raise exceptions: for example, if you design a set of procedures that
perform a certain task, you may want to raise exceptions. As you would
want to use those functions in various programs, it would be
unpractical to have to coordinate the IDs with the main program,
furthermore, if you use more than one set of functions (in a module,
in the future) and every module would have a different ID for
’no memory!’, things could get out of hand.
This is where common exceptions come in: the common out-of-memory

e 79 / 129

ID is "MEM" (including the quotes): any implementor can now simply

Raise("MEM")

from all different procedures, and the programmer that uses the module
only needs to suply an exception handler that understands "MEM"

future modules that contain sets of functions will specify what
exception a certain procedure may raise, and if these overlap
with the IDs of other procedures, the task of the programmer
that has to deal with the exceptions will be greatly simplified.

examples:

(system)

"MEM" out of memory
"FLOW" (nearly) stack overflow
"STCK" garbage collector has stack problems
"^C" Control-C break
"ARGS" bad args

(exec/libraries)

"SIG" could not allocate signal
"PORT" could not create messageport
"LIB" library not available
"ASL" no asl.library
"UTIL" no utility.library
"LOC" no locale.library
"REQ" no req.library
"RT" no reqtools.library
"GT" no gadtools.library (similar for others)

(intuition/gadtools/asl/gfx)

"WIN" failed to open window
"SCR" failed to open screen
"REQ" could not open requester
"FREQ" could not open filerequester
"GAD" could not create gadget
"MENU" could not create menu(s)
"FONT" problem getting font

(dos)

"OPEN" could not open a file / file does not exist
"OUT" problems while writing
"IN" problems while reading
"EOF" unexpected end of file
"FORM" input format error
"SEG" loadseg problems

The general tendency is:

* all uppercase for general system exceptions,

* mixed case for exceptions used by >1 app, but not general enough.

* all lowercase for exceptions raised within your own

e 80 / 129

multi-module application

- all others (including all negative IDs) remain reserved.

1.93 ch_14a

14A. OO features in E

The features descibed here in this chapter are grouped as such
since they constitute what is generally seen as the three essential
main components that make a language ’Object Oriented’ (i.e.
inheritance - data hiding - polymorhism). However in E they are
by no means a ’separate chapter’ since each can be used in any
way with other E features.

1.94 ch_14b

14B. object inheritance

it’s always annoying not being able to express dependencies between
OBJECTs, or reuse code that works on a particular OBJECT with a bigger
OBJECT that encapsulates the first. Object Inheritance allows you
to do just that in E. when you have an object a:

OBJECT a
next, index, term

ENDOBJECT

you can make a new object b that has the same properties
as a (and is compatible with code for a):

OBJECT b OF a
bla, x, burp

ENDOBJECT

is equivalent to:

OBJECT b
next, index, term /* from a */
bla, x, burp

ENDOBJECT

with DEF p:b, you can directly not only access p.bla as usual,
but also p.next.

as an example, if one would have a module with an OBJECT to
implement a certain datatype (for example a doubly-linked-list),
and PROCs to support it, one could simply inherit from it, adding
own data to the object, and use the _existing_ functions to

e 81 / 129

manipulate the list. However, it’s only in combination with
methods (descibed below), inheritance can show its real power.

1.95 ch_14c

14C. data hiding (EXPORT/PRIVATE/PUBLIC)
--
E has a very handy data-hiding mechanism. Other languages, like C++,
use data-hiding on classes, which raises the need for kludges (like
’friends’), and makes datahiding insecure (Eiffel). E’s datahiding
works on the module-level, which can model class-level datahiding,
but enables more intelligent schemes also.

PRIVATE and PUBLIC let you declare a section of an object as visible
to the outer world or not; the outer world here is all code outside
the module. for the code within a module, everything is always visible.
example:

OBJECT mydata PRIVATE -> whole object is private
bla:PTR TO mydata, burp, grrr:INT

ENDOBJECT

OBJECT aaargh
blerk:PTR TO aaargh -> public

PRIVATE
x:INT, y:INT, z:INT -> private

PUBLIC
hmpf[10]:ARRAY OF mydata -> public again

ENDOBJECT

an object is by default public, an occurring PRIVATE or PUBLIC
acts as a toggle-switch to the objects current visibility. In the
first object, all is private. The second object has only (x,y,z)
as private. PRIVATE and PUBLIC keywords may occur:
- in the object header line
- as a line on itself in the object-def
- preceding decls in an object-def
(i.e virtually anywhere)

Why datahiding?
If you want to know why datahiding is a good technique, you’d
probably want to read a good book on OO. But in short: it is
generally assumed that lots of problems in maintaining and
enhancing large pieces of software is the fact that it’s hard to change
things because lots of code start to depend on certain structures
in your program. if you datahide an object, only the code within a
module will rely on the format of objects, and you can easily change
both representation of an object (for example changing a stack
implementation from ARRAY to a linked list) and the code that
works with it. If a lot of code of a large app depend on the fact
that the stack is an ARRAY, you won’t be able to simply change
it, which will lead to kludges. In general, try to datahide as

e 82 / 129

much as possible without becoming too restrictive on the use
of your object. Using methods (below) will often enable you to
keep the whole object private.

1.96 ch_14d

14D. methods and virtual methods

A method is much like a PROC, only now it’s part of an OBJECT. It
also allows you to exploit Polymorhism on objects, as we’ll see
below. definition of a method:

OBJECT blerk PRIVATE
x:PTR TO blerk, y:INT, z

ENDOBJECT

PROC getx() OF blerk IS self.x

the ’OF blerk’ part tells the compiler it belongs to the object
’blerk’. Note that apart from the ’OF’ the syntax is completely
like a ’PROC’, however, it can’t be invoked as one, and also
functions quite differently.

’self’ is a local variable that is available in every method, and
is a pointer to the object that the method belongs to (in this
case ’self:PTR TO blerk’). This function just returns the value
of the x field of blerk, which actually makes sense, given that
this allows you to later change whatever x represents.

we may call methods similar to object selections ".":

DEF a:PTR TO blerk
NEW a
...
a.getx() -> invoke method getx() on object a

in this example, upon invocation ‘a’ becomes the value of ‘self’
during the execution of getx().

so far the use of methods has been nice, but hasn’t show us its
real power, which only comes when used with inheritance.

If I inherit an object that has methods, I automatically get
those in the new object:

OBJECT burp OF blerk PRIVATE -> same as blerk, + extra field
prut:INT

ENDOBJECT

e 83 / 129

DEF b:PTR TO burp
NEW b
...
b.getx() -> same method

The interesting thing is now, that instead of inheriting a method,
you may also redefine it:

PROC getx() OF burp IS self.x+1

(it goes without saying that we may also add new methods)
so where appropriate, we can choose to modify slightly the
behaviour of methods we get from other objects, while the
interface to it (i.e. ’getx()’) stays the same. Not only
does this allow us to reuse code selectively, we can also make use
of polymorhism:

PROC dosomething(o:PTR TO blerk)
...
o.getx()
...

ENDPROC

dosomething(a)
dosomething(b)

we may call that PROC with both a and b, since both are compatible
with a blerk object. But which of the two method implementations of
getx() is invoked at o.getx()? Answer: both are. Method calls in E
are what virtual method calls are in other languages: they dynamically
act on the real type of an object (o) and call the appropriate method.

A more clear example:

-> classical OO polymorphic example

OBJECT loc
PRIVATE xpos:INT, ypos:INT

ENDOBJECT

OBJECT point OF loc
PRIVATE colour:INT

ENDOBJECT

OBJECT circle OF point
PRIVATE radius:INT

ENDOBJECT

PROC show() OF loc IS WriteF(’I’’m a Location!\n’)
PROC show() OF point IS WriteF(’I’’m a Point!\n’)
PROC show() OF circle IS WriteF(’I’’m a Circle!\n’)

e 84 / 129

PROC main()
DEF x:PTR TO loc,l:PTR TO loc,p:PTR TO point,c:PTR TO circle
ForAll({x},[NEW l,NEW p,NEW c],‘x.show())

ENDPROC

In the above, x is a PTR TO loc, so many would expect x.show() to
write ’I’m a Location’ three times, but instead it writes the
right string for each object.

If one would write this example in a non-OO language, one would need
a SELECT for every operation like show(), testing some value
present in the object to see what it is. If I would add a new shape
to this, say:

OBJECT ellipse OF circle

I would need to change all SELECTs throughout my app to account for
it. With object-polymorhism, I can just write a show() method, and
ALL code throughout my app that calls x.show() will act correctly
when x is a PTR TO ellipse, even without recompilation!

It’s difficult to show why this is powerful in a few examples, and
best to discover this is using it in real life apps. and: like I said,
read a book on it.

How does polymorphism work?
In the above examples, it’s clear the compiler can’t know
what method it’s going to call. that’s why E uses a ’class
object’, and every object created gets a ptr to this object.
In the class object, all information is stored that is common
for all objects of that type, such as pointers to methods.
when the E compiler sees a call like x.show(), instead of
looking directly at the show() that belongs to the type of
x (i.e. loc), it will generate code to retrieve the pointer
to the show() method from loc’s class object. since the
class object for point looks the same as loc (only maybe
slightly larger), that code will automatically call point’s
show(), when x is really a point object. This is sometimes
called runtime binding.

Objects that have methods therefore always are 4 bytes larger
than you expect them to be, since they contain a class object
pointer. This pointer is automatically installed by NEW, which
is the reason _currently_ NEW is the only way to create such
an object.

If a method is declared with the sole purpose of enabling
subclasses to redefine it (this type of class is known as
a virtual baseclass in some languages), one may use EMPTY:

PROC bla() OF obj IS EMPTY

it may then be redefined in subclasses. Since a programmer

e 85 / 129

might not implement all methods at once, it is not an error
when the above method is executed. it will just return 0 or NIL.

One may effectively add methods to system OBJECTs:

OBJECT mygadget OF gadget -> from intuition!
-> extra fields here

ENDOBJECT

PROC creategadget() OF mygadget IS ...

A pointer to an object such as mygadget above is then compatible
with a normal gadget pointer, i.e. it may be added directly to a
window etc.

1.97 ch_14e

14E. Constructors, Destructors and Super-Methods
--

The constructor name may be anything, but it is usually given the same name
as the class. One may even have multiple constructors for one class.
A constructor is called directly on the object created with NEW:

NEW obj.stack()

Destructors however have to be named "end". An object is destroyed like this:

END obj

If ’obj’ has a .end() method, it is automatically called. end() shouldn’t have
any arguments, and it is of no use returning a value. (see

5M
for a desciption

of END’s precise functioning).

The super-method of a method is the method by the same name of its super
class. Sometimes it’s handy to call this method because you might want to
add its behaviour to the implementation of your class, however, since
you’ve redefined it, calling the super-method by that name will just
call yourself (!). The SUPER keyword allows you to call any method of your
superclass (or someone else’s superclass):

SUPER obj.method()

This piece of code above can be used as expression and statement.
Care has to be taken though, since if your supermethod calls another
method of that object, it will call the redefined version, not the
one at its own ’level’, so to speak (generally this is what one wants).
Also, the compiler looks at the static type of ’obj’ to find the
superclass, not the dynamic type (though it may still have that behaviour).

e 86 / 129

1.98 ch_15a

15A. identifier sharing

As you’ve probably guessed from the example in chapter 5D, assembly
instructions may be freely mixed with E code. The big secret is, that
a complete assembler has been built in to the compiler.
Apart from normal assembly addressing modes, you may use the following
identifiers from E:

mylabel:
LEA mylabel(PC),A1 /* labels */

DEF a /* variables */
MOVE.L (A0)+,a /* note that <var> is <offset>(A4) (or A5) */

MOVE.L dosbase,A6 /* library call identifiers */
JSR Output(A6)

MOVEQ #TRUE,D0 /* constants */

EC’s assembler supports following constructs,

where
n = registernum
x = index
lab = label, from: "label:" or "PROC label()"
abs = absolute addressing
s = size. L, W or B where appropriate.

- addressing modes supported by EC:

Dn, An, (An), (An)+, -(An), x(An), x(An,Dn.s),
lab(PC), lab(PC,Dn.s), abs, abs.W

(note: write abs.W in hexadecimal, to not confuse it with a float
value, i.e. write MOVE.L $4.W,A6)

- supported partially:

#<constexp>

- not supported:

lab (same as abs), #lab
use LEA lab(PC),An instead.

- extra modes:

var.s (transfers contents of var. optionally size is ".W" or ".B",
default is ".L")

e 87 / 129

LibraryFunction(A6)

example:

...
MOVE.W myvar.W,D0 -> move lowword of ’myvar’
...
MOVE.L dosbase,A6
JSR Write(A6)

As an extra, E allows to directly return registers from a function:

ENDPROC D0

You may even interpret this as multiple return values, i.e. D0/D1/D2.

1.99 ch_15b

15B. the inline assembler compared to a macro assembler

The inline assembler differs somewhat from your average macro-assembler,
and this is caused mainly by the fact that it is an extension to E,
and thus it obeys E-syntax. Main differences:

- comments are with /* */ and not with ";", they have a different meaning.
- keywords and registers are in uppercase, everything is case sensitive
- no macros and other luxury assembler stuff (well, there’s the complete

E language to make up for that ...)
- You should be aware that registers A4/A5 may not be trashed by inline

assembly code, as these are used by E code. Also, if your code
can be called by code that is register-allocated, you should preserve
D3-D7. an instruction like

MOVEM.L D3-D7,-(A7); /* inline asm */; MOVEM.L (A7)+,D3-D7

should help if problems occur.
- no support for LARGE model/reloc-hunks in assembly _YET_.

This means practically that you have to use (PC)-relative addressing
for now (which is faster anyway).

1.100 ch_15c

15C. ways using binary data (INCBIN/CHAR..)

INCBIN

syntax: INCBIN <filename>

e 88 / 129

includes a binary file at the exact spot of the statement, should
therefore be separate from the code. Example:

mytab: INCBIN ’df1:data/blabla.bin’

LONG, INT, CHAR

syntax: LONG <values>,...
INT <values>,...
CHAR <values>,...

Allows you to place binary data directly in your program. Functions much
like DC.x in assembly. Note that the CHAR statement also takes strings,
and will always be aligned to an even word-boundary. Example:

mydata: LONG 1,2; CHAR 3,4,’hi folks!’,0,1

1.101 ch_15d

15D. OPT ASM

OPT ASM is discussed also in chapter 16A. It allows you to operate
’EC’ as an assembler. There’s no good reason to use EC over some
macro-assembler, except that it is significantly faster than for example
A68k, equals DevPac and loses of AsmOne (sob 8-{). You will also have
a hard time trying to squeeze your disks of old seka-sources through EC,
because of the differences as described in chapter 15B. If you want to write
assembly programs with EC, and want to keep your sources compatible with
other assemblers, simply precede all E-specific elements with a ";",
EC will use them, and any other assembler will see them as a comment.
Start all regular comments with a smiley (";->").
Example:

; OPT ASM

start: MOVEQ #1,D0 ;-> do something silly
RTS ;-> and exit

this will be assembled by any assembler, including EC

1.102 ch_15e

15E. Inline asm and register variables

register variables are a great companion to inline assembly, as
they function just as registers, but at the same time have clear
identifiers instead of Dx, and also are automatically saved and
restored by E code. example:

e 89 / 129

PROC bla()
DEF count:REG
MOVEQ #10,count

loop: WriteF(’count=\d\n’,count)
DBRA count,loop

ENDPROC

all instruction that can work with a Dx EA, work with register
variables. examples:

MOVEQ #1,a
MOVEM.L D0/D1/a/b/A0,-(A7)
LSL.L a,b

etc.

as may be known, EC uses D3-D7 for these register variables. If you wish
to write code that freely mixes assembly with E, it’s advisable to
keep longer-term values in register variables, and temporaries in
D0-D2/A0-A3/A6

1.103 ch_16a

16A. the OPT keyword

OPT, LARGE, STACK, ASM, NOWARN, DIR, OSVERSION, MODULE, EXPORT, RTD, REG

syntax: OPT <options>,...

allows you to change some compiler settings:

LARGE Sets code and data model to large. Default is small;
the compiler generates mostly pc-relative code, with a
max-size of 32k. With LARGE, there are no such limits,
and reloc-hunks are generated (see

0D
, LARGE).

STACK=x Set stacksize to x bytes yourself. Only if you know what
you are doing. Normally the compiler makes a very good
guess itself at the required stack space (see

16C
).

ASM Set the compiler to assembly mode. From there on, only
assembly instructions are allowed, and no initialisation
code is generated. (see

15D
, inline assembly)

NOWARN Shut down warnings. The compiler will warn you if it

thinks your program is incorrect, but still syntactically
ok. (see

0D
, -n)

DIR=moduledir Sets the directory where the compiler searches for modules.

e 90 / 129

default=’emodules:’
OSVERSION=vers Default=33 (v1.2). Sets the minimum version of the kickstart

(like 37 for v2.04) your program runs on. That way, your
program simply fails while the dos.library is being opened
in the initialisation code when running on an older machine.
However, checking the version yourself and giving an
appropriate error-message is more helpful for the user.

MODULE denotes this source to be a module. (see
10C

)
EXPORT automatically export all declarations in a module
RTD generates RTD’s instead of RTS in the main source.

020+ only. [experimental optimisation]
020,881,040 generate code for these CPUs. not really usable yet.
REG=n use n register for register-allocation.

example:

OPT STACK=20000,NOWARN,DIR=’df1:modules’,OSVERSION=39,REG=3

1.104 ch_16b

16B. small/large model

Amiga E lets you choose between SMALL and LARGE code/data model.
Note that most of the programs you’ll write (especially if you just
started with E) will fit into 32k when compiled: you won’t have to
bother setting some code-generation model. You’ll recognise the
need for LARGE model as soon as EC starts complaining that it can’t
squeeze your code into 32k anymore. To compile a source with LARGE model:

1> ec -l sizy.e

or better yet, put the statement

OPT LARGE

at the top of your code.

1.105 ch_16c

16C. stack organisation

To store all local and global variables, the run-time system of an
executable generated by Amiga E allocates a chunk of memory,
from which it takes some fixed part to store all global variables.
The rest will be dynamically used as functions get called.
as a function is called in E, space on the stack is reserved
to store all local data, which is released upon exit of the function.

e 91 / 129

That is why having large arrays of local data can be dangerous when
used recursively: all data of previous calls to the same function
still resides on the stack and eats up large parts of the free stack
space. However, if PROCs are called in a linear fashion, there’s
no way the stack will overflow.
Example:

global data: 10k (arrays etc.)
local data PROC #1: 1k
local data PROC #1: 3k

the runtime system always reserves an extra 10k over this for normal
recursion (for example with small local-arrays) and additional buffers/
system spaces, thus will allocate a total of 24k stack space

1.106 ch_16d

16D. hardcoded limits

Note these signs: (+-) just about, depends on situation,
(n.l.) no clear limit, but this seems reasonable.

--
OBJECT/ITEM SIZE/AMOUNT/MAX
--

value datatype CHAR 0 .. 255
value datatype INT -32 k .. +32 k
value datatype LONG/PTR -2 gig .. +2 gig

identifierlength 100 bytes (n.l.)
length of one source line 2000 lexical tokens (+-)
source length 2 gig (theoretically)
constant lists few hundred elements (+-)
constant strings 1000 chars (n.l.)
max. nesting depth of loops (IF, FOR etc.) 500 deep
max. nesting depth of comments infinite

#of local variables per procedure 8000
#of global variables 7500
#of arguments to own functions 8000 (together with locals)
#of arguments to E-varargs functions (WriteF()) 64 (v2.1) / 1024 (v2.5)

one object (allocated local/global or dyn.) 8 k
one array, list or string (local or global) 32 k
one string (dynamically) 32 k
one list (dynamically) 128 k
one array (dynamically) 2 gig
objects with NEW 64k elem.
CHAR/INT/LONG with NEW 2 gig.

local data per procedure 250 meg
global data 250 meg

e 92 / 129

code size of one procedure 32 k
code size of executable 32 k SMALL, 2 gig LARGE model
current practical limit (may extend in future) 2-5 meg (v2.1) / 10 meg (v2.5)

buffersize of generated code and identifiers relative to source
buffersize of labels/branches and intermediate independently (re)allocated

1.107 ch_16e

16E. error messages, warnings and the unreferenced check
--
Sometimes, when compiling your source with EC, you get a message
of the sort UNREFERENCED: <ident>, <ident>, ...
This is the case when you have declared variables, functions or labels,
but did not use them. This is an extra service rendered to you by the
compiler to help you find out about those hard to find errors.

There are several warnings that the compiler issues to notify you that
something might be wrong, but is not really an error.

- "A4/A5 used in inline assembly"
This is the warning you’ll get if you use registers A4 or A5 in your
assembly code. The reason for this is that those registers are used
internally by E to address the global and local variables respectively.
Of course there might be a good reason to use these, like doing
a MOVEM.L A4/A5,-(A7) before a large part of inline assembly code

- "keep an eye on your stacksize"
- "stack is definitely too small"

Both these may be issued when you use OPT STACK=<size>. The compiler
will simply match your <size> against its own estimate (see

16C
),

and issue the former warning if it thinks it’s ok but a bit on the small
side, and the latter if it’s probably too small.

- ’suspicious use of "=" in void expressions (s). (line %d)’
This warning is issued if you write expressions like ’a=1’ as a
statement. One reason for this is the fact that a comparison doesn’t
make much sense as a statement, but the main reason is that it could be
an often occurring typo for ’a:=1’. Forgetting those ":" may be hard to
find, and it may have disastrous consequences.

- ’module changed OPT settings’
If you use a module that has OPT OSVERSION=37, this changes the
OPT for the main program too. this warning serves to make you aware
of this. put such an OPT in the main program too to get rid of it.

- ’variable used as function’
in v3, arbitrary variables may be used as function. this function
is there to warn you so you don’t accidentally do this.

e 93 / 129

- ’code outside PROCs’
You wrote E code in between PROCs, which is only rarely useful.

Errors.
The compiler will print the source-code-line that caused the error below it,
with a cursor at the exact spot. The cursor denotes the spot the compiler was
when it _discovered_ the error, it is thus likely that the token that caused
the error is the one or two tokens just _before_ the cursor.

- ’syntax error’
Most common error. This error is issued either when no other
error is appropriate or your way of ordering code in your sources
is too abnormal.

- ’unknown keyword/const’
You have used an identifier in uppercase (like "IF" or "TRUE"), and
the compiler could not find a definition for it. Causes:

* mispelled keyword

* you used a constant, but forgot to define it in a CONST statement

* you forgot to specify the module where your constant is defined

- ’":=" expected’
You have written a FOR statement or an assignment, and put something
other than ":=" in its place.

- ’unexpected characters in line’
You used characters that have no syntactic meaning in E outside of
a string. examples: "@!&\~"

- ’label expected’
At some places, for example after the PROC or JUMP keyword,
a label identifier is required. You wrote something else.

- ’"," expected’
In specifying a list of items (for example a parameter list)
you wrote something else instead of a comma.

- ’variable expected’
This construction requires a variable, example:
FOR <var>:= ... etc.

- ’value does not fit in 32 bit’
In specifying a constant value (see

2A
-2E) you wrote too

large a number, examples: $FFFFFFFFF, "abcdef".
Also occurs when you define a SET of more than 32 elements.

- ’missing apostrophe/quote’
You forgot the ’ at the other end of a string.

- ’incoherent program structure’

* you started a new PROC before ending the last one

* you don’t nest your loops properly, for example:
FOR

IF

e 94 / 129

ENDFOR
ENDIF

- ’illegal command-line option’
In specifying ’EC -opt source’ you wrote something for ’-opt’
that is not a legal option to EC.

- ’division and multiplication 16bit only’
The compiler detected that you were about to use 32bits
for * or /. This would not have the desired result at runtime.
(see

9G
, Mul() and Div()).

- ’superfluous items in expression/statement’
After the compiler already compiled your statement, it still found
lexical tokens instead of an end of line. You probably forgot
the <lf> or ";" to separate two statements.

- ’procedure "main" not available’
Your program does not include a main procedure !

- ’double declaration of label’
You declared a label twice, for example:
label:
PROC label()

- ’unsafe use of "*" or "/"’
This again has to do with 16bit instead of 32bit * and /.
See ’division and multiplication 16bit only’.

- "reading sourcefile didn’t succeed"
Check your source spec. that you gave with ’ec mysource’
make sure the file ends in ’.e’

- "writing executable didn’t succeed"
Trying to write the generated code as an executable caused a dos
error. For example, the executable that did already exist could
not be overwritten.

- ’no args’
"USAGE: ec [-opts] <sourcecodefilename> (‘.e’ is added)"
You get this by just typing ’ec’ without any arguments.

- ’unknown/illegal addressing mode’
This error is reported only by the inline assembler. Possible causes are:

* you used some addressing mode that does not exist on the 68000

* the addressing mode exists, but not for this instruction.
not all assembly instructions support all combinations of
effective addresses for source and destination.

- ’unmatched parentheses’
Your statement has more "(" than ")" or the other way around

- ’double declaration’
One identifier is used in two or more declarations.

e 95 / 129

- ’unknown identifier’
An identifier is not used in any declaration; it is unknown.
You probably forgot to put it in a DEF statement.

- ’incorrect #of args or use of ()’

* You forgot to put "(" or ")" at the right spot

* you supplied the incorrect #of arguments to some function

- ’unknown e/library function’
You wrote an identifier with the first character in uppercase, and
the second in lowercase, but the compiler could not find a definition.
Possible causes:

* Misspelled name of function

* You forgot to include the module that defines this library call.

- ’illegal function call’
Rarely occurs. You get this one if you try to construct weird
function calls like nested WriteF()’s. Example:
WriteF(WriteF(’hi!’))

- ’unknown format code following "\"’
You specified a format code in a string which is illegal.
(see

2F
for a listing of format codes)

- ’/* not properly nested comment structure */’
The #of ’/*’ is unequal to the #of ’*/’, or is placed in a funny order.

- ’could not load binary’
<filespec> in INCBIN <filespec> could not be read.

- ’"}" expected’
You started an expression with "{<var>" , but forgot the "}"

- ’immediate value expected’
Some constructions require an immediate value instead of an expression.
Example:
DEF s[x*y]:STRING /* wrong: only something like s[100]:STRING is legal */

- ’incorrect size of value’
You specified an unacceptably large (or small) value for some construction.
Examples:
DEF s[-1]:STRING, t[1000000]:STRING /* needs to be 0..32000 */
MOVEQ #1000,D2 /* needs to be -128..127 */

- ’no e code allowed in assembly modus’
You wish to operate the compiler as an assembler by writing ’OPT ASM’,
but, by accident, wrote some E code.

- ’illegal/inappropriate type’
At someplace where a <type> spec. was needed, you wrote something
inappropriate. Examples:
DEF a:PTR TO ARRAY /* no such type */
[1,2,3]:STRING

- ’"]" expected’

e 96 / 129

You started with "[", but never ended with "]"

- ’statement out of local/global scope’
A breakpoint of scope is the first PROC statement. before that,
only global definitions (DEF,CONST,MODULE etc.) are allowed, and no code.
In the second part, only code and function definitions are legal, no
global definitions.

- ’could not read module correctly’
A dos error occurred while trying to read a module from a MODULE
statement. Causes:

* emodules: was not assigned properly

* module name was misspelled, or did not exist in the first place

* you wrote MODULE ’bla.m’ instead of MODULE ’bla’

- ’workspace full!’
Rarely occurs. If it does, you’ll need the ’-m’ (ADDBUF) option to
manually force EC to make a bigger estimate on the needed amount of
memory. Try compiling with -m2, then -m3 until the error disappears.
You’ll probably be writing huge applications with giant amounts
of data just to even possibly get this error.

- ’not enough memory while (re-)allocating’
Just like that. Possible solutions:
1. You were running other programs in multitasking. Leave them and try again.
2. You were low on memory anyway and your memory was fragmented.

Try rebooting.
3. None of 1-2. Buy a memory expansion (um).

- ’incorrect object definition’
You were being silly while writing the definitions between OBJECT and
ENDOBJECT. (see

8F
to find out how to do it right).

- ’illegal use of/reference to object’
If you use expressions like ptr.member, member needs to be a legal
member of the object ptr is pointing to.

- ’incomplete if-then-else expression’
If you use IF as an operator (see

4E
), then an ELSE part

needs to be present: an expression with an IF in it always needs to
return a value, while a statement with an IF in it can just ’do nothing’
if no ELSE part is present.

- ’unknown object identifier’
You used an identifier that was recognised by the compiler as being
part of some object, but you forgot to declare it. Causes:

* misspelled name

* missing module

* the identifier in the module is spelled not like you expected
from the RKRM’s. Check with ShowModule.
Note that amiga-system-objects inherit from assembly identifiers,
not from C. Second: identifiers obey E-syntax.

e 97 / 129

- ’double declaration of object identifier’
One identifier used in two object definitions

- ’reference(s) out of 32k range: switch to LARGE model’
Your program is growing larger than 32k. Simply put ’OPT LARGE’
in your source and code on. (see

16B
).

- ’reference(s) out of 256 byte range’
You probably wrote BRA.S or Bcc.S over too great a distance.

- ’too sizy expression’
You used a string ’’ or list [], possibly recursive [[]], that is too sizy.

- ’incomplete exception handler definition’
You probably used EXCEPT without HANDLE, or the other way round
(see

13A
on exception handling).

- ’not allowed in a module’
You’re doing one of the few things you can’t do in a module,
such as global variables with initialisations.

- ’allowed in modules only’
you probably use EXPORT in your main source

- ’this doesn’t make sense’
general error.

- ’you need a newer version of EC for this :-)’
You probably use a module that was compiled with a newer
version of EC than you currently have.

- ’no matching "["’
within a statement, a "]" was found, without a matching "]".

- ’this instruction needs a better CPU/FPU (see
You use a construction (probably an asm instruction) that
requires an OPT 020 or the like.

- ’object doesn’t understand this method’
you invoke a method on a object that wasn’t defined
for its type.

- ’method doesn’t have same #of args as method of baseclass’
If you redefine a method, you have to make sure the new one
has the same #of args as the original.

- ’too many register variables in this function’
If you use :REG to assign register variables yourself,
you can’t use more than 5, currently.

- ’Linker can’t find all symbols’
If you use a module A that uses again a module B,
B also needs to linked. A relies on certain PROCs to

e 98 / 129

be present in B, and if B was recompiled with those
PROCs removed, the linker has trouble putting your
exe together.

- ’could not open "mathieeesingbas.library"’
If you use float code, the compiler itself may need
float functions to be able to generate code.

- ’illegal destructor definition’
You defined an end() method with arguments (or with a returnvalue)

- ’implicit initialisation of private members’
You write a [...] or NEW [...] expression that has private parts.

- ’double method declaration’
You defined a method on this object twice.

- ’object referenced by other object not found’
You probably inherited from some other object in another module, and
then changed it (its name for example) without changing/recompiling
other dependant modules too.

- ’unknown preprocessor keyword’
only #define, #ifdef, #ifndef and #endif are known by EC’s PP.

- ’illegal macro definition’
You made a syntax error in typing your #define (see

17L
)

- ’incoherent #ifdef/#ifndef nesting’
You forgot to close with #endif or similar

- ’macro redefinition’
You can’t use the same macro-name-identifier twice.

- ’syntax error in #ifdef/#ifndef/#else/#endif’
(see

17L
for the correct way to write conditionally compiled code)

- ’macro(s) nested too deep’
You will get this if macros expand to other macros which expand to yet
others... such that the amount of memory needed for this is getting
out of hand. More likely you just defined a recursive macro (which will
want to expand forever).

- ’method definition out of object/module scope’
You can only define methods for an object in the same module/source
where that object is defined.

- ’library definition problem’
Generally when there’s something wrong with the procs you specified in
the LIBRARY declaration, i.e.: one doesn’t exist, is not a PROC or is
a method etc.

e 99 / 129

1.108 ch_16f

16F. compiler buffer organisation and allocation
--
When you get the error ’workspace full’ (very unlikely), or want
to know what really happens when your program is compiled, it’s useful
to know how EC organizes its buffers.

A compiler, and in this case EC needs buffers to keep track of all sorts
of things, like identifiers etc., and it needs a buffer to keep the
generated code in. EC doesn’t know how big these buffers need to be.
for most buffers, like the one for various strcutures, this is no
problem: if the buffer is full while compiling, EC just allocates a
new piece of memory and continues. Other buffers, like the one for
the generated code, need to be a continuous block of memory that doesn’t
move while compiling: EC needs to make a pretty good estimate of
this buffersize to be able to compile small and large sources alike.
To do this, EC computes the needed memory relative to the size of
your source code, and adds a nice amount to it. This way, in 99% of the
cases, EC will have allocated enough memory to compile just about any
source, in other cases, you’ll get the error and have to specify more
memory with the ’-m’ (ADDBUF) option.

Experiment with different types and sizes of example-sources in combination
with the ’-b’ (SHOWBUF) option (see

0D
) to see how this works in practice.

1.109 ch_16g

16G. register allocation

E v3 supports a register allocation, which is a technique to keep
variables in registers instead of on the stack. For normal code
that uses OS-routines you won’t notice the difference very much,
but for tight computation-loops, this optimisation can make a big
difference. There are two ways to use register allocation:

- with the option REG.
If you write for example EC REG=3 bla.e, (max=5, currently),
EC will compute for each PROC the 3 most-used variables in
registers. Register allocation is a technique that tries to be
intelligent: it will compute for each var a weight, and will
use heuristics to increase that weight, for example a var used
in a FOR loop gets relatively a higher weight than one outside
it, and one in an IF gets an even lower weight. These weights
are combined, so a WHILE in a FOR gets quite a high weight.

e 100 / 129

- DIY: you can put the keyword REG in front of any type in a
declaration, for example:

DEF x:REG, s[4]:REG LIST

you can do this if you don’t trust the register-allocator,
or if you want to fine-tune just one PROC. You can even use
both together: if in a PROC you have one var with :REG,
compiling with REG=5 will allow EC to pick the remaining 4
by itself.

The default is REG=0, so EC works much like the older versions.

The variables that CAN be allocated are only local variables
that are not parameters. also, if you take the address of
a variable with {} it can’t be put in a register either (guess
why...). registers can’t be allocated in PROCs that have
an exception handler, for now.

There are a few things to note when using registers:
- this part of EC is currently (E v3.0a) was tested to

be pretty reliable, but you still check that behaviour is
the same as in non-allocated code.
it _should_ work ok, but it’s too early to guarantee it :-)
In short: be careful for now when applying these techniques.

- EC uses registers D7..D3 for variables, so if you use
inline assembly, you need to check that PROCs that use
register-allocation or :REG don’t trash these (see

15E
).

The code generated for a PROC automatically saves the
registers it uses (callee save) to protect the code that
called it.

- hint: compiling with REG=5 is not inherently fastest,
since variable saving on function/library calls also
incurs an overhead. REG=3 may be better for some
cases. Also if _all_ code in question deals with
library calls instead of pure computation, expect no
gain from registers.

-> register allocation will easily make this program twice as fast

PROC main()
DEF a,b=10,c=20,d
FOR a:=1 TO 1000000 DO d:=b+c

ENDPROC

-> at most 5% faster when using register allocation

PROC main()
DEF a,s[100]:STRING,t
t:=’putting "a" in a reg won’’t give that much of a speedup, I think.’
FOR a:=1 TO 100000 DO StrCopy(s,t)

ENDPROC

e 101 / 129

1.110 ch_17a

17A. bin/showmodule

As you might have noticed, E’s equivalent for "includes", modules, are binary
files, much like those usually suplied with Modula2 compilers, for example.
To display the contents of such a file in readable ascii form, you may use
showmodule:

showmodule <modulespec>

examples:

1> showmodule emodules:intuition/intuition
1> showmodule >gadtools.txt emodules:gadtools

note that showmodule by default outputs to stdout, and may be interrupted at
any point by <ctrlc>.

when given the option -c, ShowModule will output modules with library
declarations in .fd format, constants in #define format.

1.111 ch_17b

17B. sources/utilities/showhunk.e, bin/showhunk

Displays all types of executable files, and also object ".o" files as
generated by (other) compilers/assemblers. will show you the (very simple)
structure of executables generated by EC, but also supports complex
overlay-files. also dumps labels (like XREF’s and XDEF’s).

most important of all, ShowHunk features a disassembler for
code-hunks. use the option ’DISASM/S’

showhunk <exefile>

like: 1> showhunk helloworld
1> showhunk disasm dpaint

1.112 ch_17c

17C. bin/iconvert, bin/pragma2module

These two utilities are for advanced E-programmers only. if
you don’t feel like one (yet), skip this part.

e 102 / 129

[NOTE: like the showmodule utility, the sources to these utilities
have been removed from the distribution, because people misused
their knowledge of the .m module format. It is PRIVATE. Contact
me first if you want to do something with it.]

Iconvert will convert structure and constant definitions in
assembly ".i" files to E modules, and pragma2module will do the
same for SAS/C pragma library definition files. Of course, all
commodores includes have already been converted this way, but
say you find a nice PD library that you may want to use with E,
you will need these utilities.

most libraries come with various includes defining, most obvious,
the library calls of the library, as well as the constants
and structures (OBJECTs in E) that it uses. say that it is
called "tools.library", then it will probably feature:

pragmas/tools_pragmas.h
includes/tools.i

then do:

1> pragma2module tools_pragmas.h

rename the resulting "tools_pragmas.m" to "tools.m" and put it
in emodules:, check with ShowModule if all went well.

Now, in your program you may use tools.library:

MODULE ’tools’

PROC main()
IF (toolsbase:=Openlibrary(’tools.library’,37))=NIL THEN error()

ToolsFunc()

...etc.

convert tools.i with Iconvert to another tools.m, which you place in
emodules:libraries, for example. Iconvert needs an assembler like
the PD A68k to do the hard work of understanding the actual assembly.

1> iconvert tools.i

see with showmodule what became of the ".i" file. use in your
program with:

MODULE ’libraries/tools’

DEF x:toolsobj, y=TOOLS_CONST

converting with Iconvert may require some assembly expertise, as
Iconvert relies on the correct format of the ".i" file, just like
commodores assembly includes. About 10% of the ".i" files need
to be patched by hand to be "convertable". definitions that
Iconvert judges correctly are amongst others

e 103 / 129

<label> EQU <any_expression>

STRUCTURE <sname>,0 ; if <>0, then <struct>_SIZEOF
ULONG <sname>_<label>
BPTR <sname>_<label>

; etc.
LABEL <sname>_SIZEOF ; or "_SIZE"

to get an idea what kind of assembly-expression Iconvert can
handle, take a look at commodores assembly includes and compare
them to the equivalent modules (for example intuition.i).

1.113 ch_17d

17D. bin/ShowCache, bin/FlushCache

The E Module Cache is a piece of memory that is able to hold modules (.m)
between compiles. The first time you use a certain module, EC will load it
from disk and put it in the cache. the second time and on, EC will find it in
cache and doesn’t have to load anything from disk. If EC compiles a module of
which an old version is present in cache, it will flush it. One can imagine
that this a tremendous speedup, even for people with HD’s when they use a lot
of modules and recompile often.

To see what’s currently stored in the cache (and how much memory
it’s wasteing :-), type:

1> ShowCache

A second utility, FlushCache, allows you to selectively remove modules
from the cache. Reasons for this can be:
- you can’t afford the memory it uses
- you created a new .m, with a tool other than EC, so you need to flush

by hand (in all other cases it’s NOT necessary to flush!).
The argument to Flushcache is the substring that needs to occur in
a module name for it to be flushed. no args means flush all.

1> FlushCache ; empty whole cache
1> FlushCache intuition/ ; flush all intuition-related modules

You can use the EC option ’IGNORECACHE/S’ to compile a source without
using the cache. Whether the cache is full or empty, EC will load
all from disk, and store nothing new in cache.

If two EC’s try to access the cache simultaneously in multitasking,
the second EC acts as if its IGNORECACHE flag were set.

1.114 ch_17e

e 104 / 129

17E. rexx/ecompile.rexx

[what’s keeping the other rexx-scripts?]

This is a rexx-script for CygnusEd (tm), and enables you to compile E programs
from the editor. Just assign this script a function key in the editor with
"Install Dos/Arexx command ..." (check your CED-manual if you’re not sure how
to do this). Now write your programs, and press Fx if you wish to compile.
Your source will be saved if necessary, the compiler will be invoked on a
separate console window, and the program is run on the same console. When
your program is done, you may press <return> to return to the editor
(CED-screen to back and front is automatically done by the script). If an
error occurred during compilation, the script will let CED jump to the line of
error after you pressed <return>

Note: in the script there is a path name as to where the compiler can be
found. You probably need to change this. Also, the script copies EC to ram:
for systems with a slower SYS: device, you may want to disable this if you
have a fast HD.

1.115 ch_17f

17F. bin/o2m

If you have large pieces of assembly source that you’d like to use it would be
tedious at best to convert them all by hand to E’s inline assembly. o2m
allows you to simply have your favourite macro-assembler assemble it all to a
.o file, and o2, then will turn this .o file into a .m file for use with E.
If you have a file bla.o:

1> o2m bla

will produce bla.m. However, the .o file will have to obey certain rules. It
should consist of just one code-hunk with external definitions (XDEFs) for
each symbol you wish to reference from E, and no XREFs. typically,

your source would look like:

XDEF add__ii

add__ii:
move.l 4(a7),d0
add.l 8(a7),d0
rts

this example shows a bit of assembly code that gets two arguments (hence
the two "i" for integer). arguments can be found on the stack, where
4(a7) is the last arg, 8(a7) the one before that etc.

Showhunk shows you this:

hunk_unit:
HUNK -1 hunk_name:

e 105 / 129

hunk_code: 12 bytes
hunk_ext

add__ii = $0

this type of .o file is easily transformed to .m by o2m:

/* this module contains 12 bytes of code! */

PROC add(a,b)

there are a couple of things to note:
- if your asm code uses D3-D7/A4/A5 you should probably save it.
- if a label doesn’t have the "__" with an "i" for each function,

it becomes a parameterless function. Don’t worry if the label
actually references data, you can simply get the address of this
’proc’ with {}, and use it as a ptr to your data.

theoretically, o2m could be used to link C code to E programs, however in
practise this is often not feasable. If your C compiler allows you to ’tune’
the resulting .o files a bit, this might work.

some problems are:
- reference of C functions, for example _printf()
- reference of globals vars created by C startup code. C code

may reference "DOSBase" as an XREF, whereas E’s startup code makes
this value available somewhere on the stack

- call/register conventions.

I did manage to link a small C function to E that only does some computation,
and call it succesfully (this was done using MaxonC++, whose linker uses the
__ii convention for parameters also).

1.116 ch_17g

17G. bin/EYacc

This is a port of the famous Yacc utility for unix, which now produces E code
instead of C code. It is only a first version, so don’t expect too much from
it. If you have no clue what Yacc does, read a text on it, since I’m not
going to explain that in full here.

Basically you can write .y sources as normal, only where actions used to be
written in C, now you can write E. See the Src/Yacc/bcalc.y example.

1> eyacc bcalc.y

produces a file ’yyparse.e’

1> ec yyparse

will get you a module, which contains only the function yyparse(). The rest
of ’how to interface with Yacc’ should be analoguous to C.

e 106 / 129

[note: I’m halfway through a translation of Lex to E-Lex, but not done yet.]

further info.
E-Yacc is a modification of Berkeley Yacc 1.8, originally by
corbett@berkeley.edu. The inclusion of this modified version in the E
distribution is totally legal, as the author states in the original BYacc1.8
README:

" Berkeley Yacc is in the public domain. The data structures and algorithms
used in Berkeley Yacc are all either taken from documents available to the
general public or are inventions of the author. Anyone may freely distribute
source or binary forms of Berkeley Yacc whether unchanged or modified.
Distributers may charge whatever fees they can obtain for Berkeley Yacc.
Programs generated by Berkeley Yacc may be distributed freely. "

1.117 ch_17h

17H. Src/Various/SrcGen.e

[note: this utility hasn’t been updated to work better with
the E module system, it still outputs just the raw source
(which is then easily incorporated in any module). If there
is much demand I will upgrade this utility. If you want to
add a nice GUI to your program, also take a look at
modules/tools/EasyGUI.m, or newer toolkits suchs as the upcoming
BGUI from Jan van den Baard, the author of GadToolsBox.]

SrcGen GadToolBox source generator for E: beta version

You’ll be needing GadToolBox v2.0 or higher, and have the
gadtoolsbox.library that comes with it in your LIBS:. Now, with GTB,
make some simple example (just a window with a few gadgets/menus etc.),
save it as "bla" (filename will be "bla.gui"), and type:

1> SrcGen bla
1> EC bla
1> bla

"bla.e" contains the routines for opening your interface, as well
as some routines to handle idcmpmessages, errors etc., and a dummy
"main" that just waits for one selection. here you can put in
your own code. see the commandline template how to stop SrcGen from
generating these routines.

That’s all there’s to it. If you have problems, just check the
source that has been generated.

1.118 ch_17i

e 107 / 129

17I. bin/EBuild

EBuild is a "Make" clone, and it functions likewise. Build is a tool
that helps you in recompiling necessary parts of a large application
after modification. You write a file ".build" in the directory
that contains the sources of your project. The file contains info
about which sources depend on which, and what actions need to be
performed if a module or exe needs to be rebuilt. Build checks the
dates of the files to see if a source has been modified after the
last compilation, and if the source uses modules that also have
been modified, it will compile these first.

the syntax equals that of unix-make. in general, "#" precedes
lines with comments, and:

target: dep1 dep2 ...
action1
action2
...

target is the resulting file we’re talking about, in most cases an
exe or module, but may be anything. Following the ":" you write all
files that it depends upon, most notably its source, and other modules.
The actions on the following lines are normal AmigaDos commands, and
need to be preceded by at least one space or tab to distinquish them
from targets.

bla: bla.e defs.m
ec bla quiet

this simple example will only recompile ’bla.e’ if it was modified,
or if the defs.m which it uses was modified.

If you type ’build’ with no args, build will ensure the
first target to be up to date.

TARGET,FROM/K,FORCE/S:

if you supply a TARGET, this way build will start with another target.
FROM allows you to use another file than ".build", and FORCE will
rebuild everything, regardless of whether it was really necessary.

Example:

test build file

all: bla burp

defs.m: defs.e
ec defs quiet

bla: bla.e defs.m
ec bla quiet

burp: burp.e

e 108 / 129

ec burp quiet

clean:
delete defs.m bla burp

this build file is about two programs, bla and burp, of which bla
also depends on a module defs.m. An extra fake target ’clean’ has
been added so you can type ’build clean’ to delete all results.

Other dependencies and actions are easily added. for example,
if your project uses a parser generated by E-Yacc:

yyparse.m: parser.y
eyacc parser.y
ec yyparse quiet

Or incorporates macro-assembly code as often used tool module:

blerk.m: blerk.s
a68k blerk.s
o2m blerk
copy blerk.m emodules:tools
flushcache tools/blerk

Once you get to know build, you’ll discover you can use it for
more purposes than just this. see it as an intelligent script tool.

If you want to find out the details of what build can do, read the
documentation of some unix-make, as build should be somewhat compatible
with this. what it doesn’t do for now, is:

- rule out cyclic dependancies
- allow "\" at the end of a line for longer rules
- constant definitions

For v3.1 it was updated by Jason Hulance, to fix the bug that executed
actions in reverse order. Also he changed execution of action into
a script (transparent). in this script the variable ’target’ is set to
the actual target. example:

test: test.e
ec "$target"
if warn

echo "Error: compile failed"
else

echo "Compiled OK... running"
"$target"

endif

largely equivalent to the old code below, but allows more.

all: test

e 109 / 129

echo "ok, running:"
test

test: test.e
ec -q test

1.119 ch_17j

17J. EE / Aprof

These are described in their own documentation in the tools directory.

1.120 ch_17k

17K. EDBG

EDBG is the E sourcelevel debugger. To use it, compile your source with
the DEBUG flag (this works on both main program an modules).
This will add debug infos to your executable/module.

NOTE: Do NOT distribute a program of which any part is compiled with DEBUG/S.
(You can check this with ShowHunk, it should not contain any hunk_debug).
Programs with debug-infos are compiled with extra NOPs to facilitate
debugging, which isn’t wanted in the final code.

Always make sure sources and compiled are in the current directory, then
fire up EDBG with:

1> EDBG exename

template:

EXECUTABLE/A,PUBSCREEN/K:

with for example PUBSCREEN=Workbench you can run EDBG anywhere. By default
it opens it own screen, which is a clone of the workbench in size and
display mode. EDBG works fine on the graphics-cards etc.

EDBG opens a window for every source/module in your project, and it will start
with the one that contains ’main’. From you can step through your code, and
windows will automatically open when necessary. When code doesn’t have a
source attached, it can be executed only (which is sometimes handy, if it
doesn’t need to be debugged).

From here all is pretty intuitive. Major buttons are the first two pictures
which are step over/in. Step in follows the code every step as it is

e 110 / 129

executed, step over does the same but does not enter subroutines.
[Just try it, the debugger is quite intuitive]

Other functions show memory or register windows, and various other functions.
An important one is double-clicking on variable-names: this will show their
contents in variable view window. Double clicking somewhere not on a variable
allows you to set a breakpoint there.

For the memory views, memory breakpoints, exception raising features a subset
of the E expression language can be used to denote addresses and values:

values: 123, $ABC, %010101, "FORM"
variables: a, {a}
operators: +, -, *, /, ()

For example:
- to check when variable ‘a’ is modified, use ‘{a}’ as a memory breakpoint.
- to view the memory pointed to by array ‘a’ (of LONGs) at offset ‘b’, use

‘a+(b*4)’ with a memory view.
- to change the contents of variable ‘a’ into ‘b*2’ click on the variable
in the variable-view and select ’Modify’.

To quit a debugging session in the middle of a program while still freeing
all resources, or to test the capacity of your program to deal with failures,
raise an exception.

Caveats:
- The debugged program runs on the same task as EDBG. this means that

all code that does something special to the task will have to be
careful. An example is Forbid() etc.

- A special case is ReadArgs(). because EDBG already read the args, a
call from the debugged program will cause a read from the console.
So you can conveniently type the args to your program on the EDBG
output console and press return.

Know problems:
- The variable view treats scopes on basis of variable names

Future:
- configurability
- an ARexx port
- editing in variable and memory views
- more extensive E expression language support
- E types support (OBJECTs in particular)
- cooperation with enforcer

The LINEDEBUG and SYM options.
The LINEDEBUG option adds linedebug info to your executable (for each line of
code inside a PROC). This option is necessary for EDBG, but the DEBUG switch
automatically turns it on. LINEDEBUG is partially compatible with the "LINE"
HUNK_DEBUG produced by other compilers/assemblers, so it can be useful with
other debug-tools as well. The SYM option is not necessary for EDBG, but
can be useful for others, such as AProf or disassemblers.

e 111 / 129

1.121 ch_17l

17L. EC PreProcessor

EC has an internal preprocessor which features macro substitution and
conditional compilation. These are not features of the E language,
rather it has been integrated with EC for speed and flexibility.

Activating the preprocessor.
Until you type:

OPT PREPROCESS

EC will behave as normal. This OPT is necessary for any preprocessor
related feature.

Macros.
The macropreprocessor is compatible with Mac2E and the C language PP.
You can define macros as follows:

#define MACRONAME
#define MACRONAME BODY
#define MACRONAME(ARG,...) BODY
#define MACRONAME(ARG,...) BODY \

REST OF BODY

MACRONAME and ARG may be ANY case, and may contain "_" and 0-9 as usual.
Whitespace may be added everywhere, except between MACRONAME and "(", because
otherwise EC can’t see the difference between arguments and a body. The BODY
may contain occurances of the ARGs. A macro may continue on the next line by
preceding the end_of_line with a "\". A body should not extend over more than
one statement. [a macroname with no body is useful in combination with
conditional compilation].

Macro identifiers have precedence over other identifiers.

Macro definitions defined in a module will be saved in the module only if
OPT EXPORT is on (#define can’t be preceded with EXPORT). If that’s a problem,
keep macros together in their own modules. Macros in modules can be used in
other code simply by importing them with MODULE and OPT PREPROCESS.

Using a macro.
Using MACRONAME anywhere in the program will insert the body of the macro
at that spot. Note that this substitution is text substitution, and has
little to do with actual E syntax. If the macros have arguments they will
be inserted at their respective places in the macrobody. If the body (or
the arguments) contain futher macros, these will be expanded after that.

example:

#define MAX(x,y) (IF x>y THEN x ELSE y)

WriteF(’biggest = \d\n’,MAX(10,a))

e 112 / 129

will equal writing:

WriteF(’biggest = \d\n’,(IF 10>a THEN 10 ELSE a))

This immediately shows a danger of macros: since it simply copies
textually, writing MAX(large_computation(),1) will generate code
that executes large_computation() twice. Be aware of this.

Conditional compilation.
This can be useful if you wish to decide at compile time which part of
your code to use. syntax:

#ifdef MACRONAME

or

#ifndef MACRONAME

the piece of source following this will or won’t be compiled depending on
whether MACRONAME was defined. you can simply do this with:

#define MYFLAG

or somesuch. End a conditionally compiled block with:

#endif

Blocks like these may be nested. example:

#define DEBUG
->#define HEAVYDEBUG

#ifdef DEBUG
WriteF(’now entering bla() with x = \d\n’,x)

#ifdef HEAVYDEBUG
WriteF(’now dumping memory...\n’)
/* ... */

#endif
#endif

1.122 ch_17m

17M. EC Library mode

NOTE: there are quite a couple of things you need to know before you can
rush off and create a library. please read this WHOLE chapter before
proceeding!

EC can generate shared library files that can be called from any programming
language, and from any number of tasks at the same time. Additionally it

e 113 / 129

supports almost all E language constructs in one way or another.

How?

You can create a library by writing a LIBRARY declaration at the top of the
sourcefile you want to become the library. syntax:

LIBRARY name,version,revision,versionstring IS function,...

for example:

LIBRARY ’mytools.library’,37,1,’MyTools 37.1 (2.7.95)’ IS
opengui,closegui,...

The function names are simply those of the PROCs (no methods!) you wish to
make available as functions in the library. The order in which they appear is
important, because it denotes at which offsets they will be in the library
(starting from -30).

A source with a declaration like this is in many respects similar to a normal
E source (i.e. not a module). You may also put names of PROCs from included
modules in the LIBRARY declaration.

If all went ok, EC will compile your source to two files: the library file
(with the name from the LIBRARY declaration, not the source file!), and a
module (".library" replaced by ".m") which contains information for other E
programs on how to use your library (see
of procedures have their first char converted to uppercase.

You may now use your library from another E program as follows:

MODULE ’*mymodule’

PROC main()
IF mymodulebase:=OpenLibrary(’mymodule.library’,37)

/* ... use libfunctions here! ... */
CloseLibrary(mymodulebase)

ENDIF
ENDPROC

or similar. This is all the E syntax need to create and use libraries,
however, there are quite a number of things one needs to know about what kind
of E code may be put into libraries.

What’s so special about libraries then?

Well, imagine that the code in a library is completely separate from the
calling program, and that it may be executed at the same time by two different
tasks. This weren’t so problematic if it weren’t for the fact that code in
most languages needs a global environment, not only for storing global
variables, but in E also for quite a lot of features including exception
handling, memory, io, library bases, etc. (In E, the A4 register is used for
this). It is safe to say that E code without this specific global environment
is almost impossible.

This environment can’t be provided by the program that calls the library,

e 114 / 129

since this program might be written in C (even for E it would be a problem).
It can’t be stored in the library base, since two tasks might be using the
library at the same time. So what do E libraries do? They create such an
environment for every task that calls them. When a the library is opened by a
task, a small E environment for that task is created. When the task makes a
call, the environment belonging to the task is looked up (and put in A4).

In practise this means that libraries created by E should be opened/closed by
any one task EXACTLY ONCE, not more, not less (this shouldn’t pose any
problems though). If you put your library in the PD, you will want to put a
programmers notice in your docs mentioning this. Strange things WILL happen
if you don’t obey this rule.

features and problems/suggestions, hints and tips:
- If you use global variables, or in general the global environment, remember

that you have a set of global vars for each task that uses your library.
Global arrays are initialised as normal. (this is what you want, in
general).

- A procedure main() still needs to be present. It will be called each time
when a task makes an OpenLibrary() call to you library. Use it only to make
minor initialisations, i.e. setting global vars to certain values, otherwise
leave it empty.

- Lists with variable bits in them, i.e [1,2,a]. A problem when >1 task uses
the library. This is a bit of a problem for example in taglists. For now
one should probably prefix those with a NEW and FastDisposeList() them
afterwards (hopefully a better solution will be found sometime later).

- Exceptions can be raised and caught like normal, only NO exception should
be thrown out of a library call ever (strange things might happen). If one
of your library calls uses code that might throw an exception, you have to
handle it at the bottom level and turn it into an error code or somesuch.

- In general, and specifically with NEW, if you allocate resources in the
library, free them in the library. If you feel you have to leave memory
behind from or to the library, use AllocMem. Also, don’t deallocate stuff
that the calling task allocated for you.

- If you need callbacks, use hooks from the OS. Using pointers to PROCs
like for example EasyGUI does won’t do, as these then will be executed
within the libraries’ environment (i.e. the calling task will not be
able to reach its own A4 (or equivalent in another language).

- LISP Cells make use of tricky garbage collection techniques on the stack,
and generally will not work in libraries. This could be made to work, I
guess...

- stdin, stdout, conout, arg, wbmessage will all be NIL. If you wish to
use for example WriteF(), it’s best to open (and close!) your own console,
and place its handle in stdout.

- libraries will stay in memory after use, so make you flush them regularly,
otherwise debugging becomes particularly hard (you’ll be using an old
version: "didn’t I just change that?"). Also close the library in all cases,
otherwise you’ll have to reboot to flush it. A trick to flush directly
after testing the library is writing ‘AllocMem(100000000,0)’ or similar
directly after the CloseLibrary() call.

- If you want to use libraries with other languages like C, note that
ShowModule has a "-c" option that shows a library module in .fd format,
which can easily be converted to pragmas for a specific compiler.

- Do not "convert" old code to libraries without looking at it first,
especially don’t put code you don’t have the source to in libraries
without thinking first (it might have static lists, exceptions at weird

e 115 / 129

spots etc.). (easygui.m is an example of this).
- Test your code under different circumstances. Have two programs use

your library at the same time, and close in different orders to see
wether it has problematic code in it. Try letting it fall over in any
combination of EDBG, NILCHECK/S, enforcer/mungwall etc. Test your
code first as normal exe or module before turning it into a library.

- In general, If you do tricky stuff involving the task or global environment,
remember that you’re in a different position from normal E code.

Have a look at the examples in the Src/Library dir.

1.123 ch_18a

18A. The E grammar

This is a grammar of E for those who are interested. Don’t expect
it to be up to date or otherwise complete/correct though (it should
be quite ok for E upto v2.1b atleast).

lex syntax: regular expressions
parse syntax: own ASF/SDF adaption;

name = grammar ident
"name" = constant
() = grouping
| = or
e* = 0 or more of e
e+ = 1 or more of e
{e s}* = 0 or more of e separated by s
{e s}+ = 1 or more of e separated by s
[e] = e is optional
; e = e is comment :-)

LEX

whitespace = [\t] ; also \n if last token is [,+-*/] or similar
anything between "/*" and "*/"
from "->" to \n

eol = [;\n]

constant = [A-Z] ([A-Z] [A-Za-z0-9_]*)?
builtin = [A-Z] [a-z] [A-Za-z0-9_]*
ident,objident = [a-z] [a-zA-Z0-9_]*

num = [0-9]+ ; "-" is separate token
$[0-9A-Fa-f]+

e 116 / 129

%[01]+
fnum = [0-9]*.[0-9]*

stringconst = anything in ’’
charconst = anything in ""

PARSE

program = opts globalpart localpart

globalpart = (modulestat | defstat | objdecl | constdecl | raisedecl)*
localpart = (procdecl | constdecl)+

modulestat = "MODULE" { conststring "," }+ eol
defstat = "DEF" vardecllist eol
objdecl = "OBJECT" ident ["OF" ident] eol

(vardecllist eol)+
"ENDOBJECT" eol

constdecl = "CONST" { (constant "=" constexp) "," }+ |
"ENUM" { (constant | constant "=" constexp) "," }+ |
"SET" { constant "," }+

procdecl = ["EXPORT"] "PROC" ident "(" argdecllist ")"
["OF" ident] ["HANDLE"]
(("RETURN" | "IS") { exp "," }* |

eol defstat* stats
["EXCEPT" eol stats]
"ENDPROC" { exp "," }* eol)

raisedecl = "RAISE" { (constant "IF" builtin "()" compop num) "," }+
opts = ("OPT" { setting "," }+)* ; machine dependant

vardecllist = { vardecl "," }+
vardecl = ident ["=" num]

[":" ("LONG" | "REAL" | "PTR" "TO" ptrtype)] |
ident ":" objtype |
ident "[" num "]" ":"

("ARRAY" |
"ARRAY" "OF" ptrtype |
"STRING" |
"LIST")

argdecllist = { argdecl "," }+
argdecl = ident ["=" defaultarg]

[":" ("LONG" | "REAL" | "PTR" "TO" ptrtype)]
ptrtype = objtype | simpletype
simpletype = CHAR | INT | LONG
objtype = ident

stats = ((onelinestat | multlinestat) eol)*
onelinestat = exp |

lval ":=" exp |
{ var "," }+ ":=" exp |
"IF" exp "THEN" onelinestat "ELSE" onelinestat |
"FOR" var ":=" exp "TO" exp ["STEP" num]

"DO" onelinestat |

e 117 / 129

"WHILE" exp "DO" onelinestat |
"RETURN" { exp "," }* |
"JUMP" ident |

("INC" | "DEC") var | ; nearly obsolete
asm_mnemonic { operand "," }* | ; machine dependant
"INCBIN" stringconst | ; inline asm support
simpletype { num "," }+ |
"VOID" exp ; obsolete

multlinestat = "IF" exp eol stats
[("ELSEIF" exp eol stats)*]
["ELSE" eol stats]
"ENDIF" |

"FOR" var ":=" exp "TO" exp ["STEP" num] eol
stats "ENDPROC" |

"WHILE" exp eol stats "ENDWHILE" |
"REPEAT" eol stats "UNTIL" exp |
"SELECT" var eol

("CASE" exp eol stats)+
["DEFAULT" eol stats]
"ENDSELECT" |

"LOOP" eol stats "ENDLOOP"

explist = { exp "," }+
exp = ["-"] { item binop }+ |

exp "BUT" exp
item = num | fnum | lval | stringconst | charconst |

"SIZEOF" objident |
"IF" exp "THEN" exp "ELSE" exp |
"[" explist "]" [":" ptrtype] |
(builtin | ident) "(" explist ")" |
var ":=" exp |
"{" ident "}" |
"‘" exp |

binop = mathop | compop | logop
mathop = "+" | "-" | "*" | "/"
compop = "=" | "<>" | ">" | "<" | ">=" | "<="
logop = "AND" | "OR"
constexp = ["-"] { num ("+" | "-" | "*" | "/") }+
lval = var ("[" [exp] "]" | "." ident)* ["++" | "--"] |

"^" var ["++" | "--"] |
var = ident
defaultarg = num

1.124 ch_18b

18B. Tutorial

NOTE: the original E v2.1b tutorial has been removed, since it
was not a very useful tutorial, IMHO. Instead, Jason Hulance made
an extensive E tutorial that you’d definitly want to take a look at.

e 118 / 129

1.125 ch_18c

18C. Mapping E to C/C++/Pascal/Ada/Lisp etc.
--

[some new stuff has been added here]

In the first/second column I will match E against AnsiC/C++, the third
column is reserved for a third language. I will mainly use Pascal here,
but where a feature asks for it, I will use others (for example, LISP
with quoted expression, Ada with exceptions etc.

note well: take these tables with a grain of salt. I’ll try to denote
syntactic equivalences, and semantic properties as well as possible,
but different languages still need their own evaluation.

usage of signs:

- = feature not available in language in question.
? = author has no clue what this feature translates to.

(or atleast he’s not sure).
... = feature may be available, but no appropriate 1:1 translation

possible to make it interesting.
x,y,z = arbitrary identifiers
e,f,g = arbitrary expressions
s,t,u = arbitrary statements
i,j,k = arbitrary integers
etc.

STRUCTURE/STATEMENTS

E C/C++ Pascal
----------------------- ----------------------- -----------------------
PROC x() int x() { FUNCTION x:INTEGER;
PROC x(y,z) int x(y,z) { FUNCTION x(y,z:INTEGER):INTEGER;
PROC x(y=1) int x(y=1) { -
ENDPROC return 0; }; x:=0; END;
ENDPROC e return e; }; x:=e; END;
ENDPROC e,f,g - -
RETURN e return e; ?

IF e if(e) { IF e THEN BEGIN
ELSEIF e } else if(e) { END ELSE IF e THEN BEGIN
ELSE } else { END ELSE BEGIN
ENDIF }; END;
IF e THEN s if(e) s; IF e THEN s;
IF e THEN s ELSE t if(e) s else t; IF e THEN s ELSE t;

FOR x:=e TO f - (1) FOR x:=e TO f DO BEGIN
FOR x:=e TO f STEP i - - (2)
EXIT e if(e) break; -

e 119 / 129

ENDFOR - END;
FOR x:=e TO f DO s - FOR x:=e TO f DO s;

WHILE e while(e) { WHILE e DO BEGIN
EXIT e if(e) break; -
ENDWHILE }; END;
WHILE e DO s while(e) s; WHILE e DO s;

s; WHILE e for(s;e;u) { s; WHILE e DO BEGIN
t; u t; t; u

ENDWHILE }; END;

REPEAT do { REPEAT
UNTIL e } while(!e); UNTIL e;

LOOP for(;;) { WHILE TRUE DO BEGIN (?)
ENDLOOP }; END;

SELECT x switch(x) { CASE x OF
SELECT x OF y switch(x) { CASE x OF
CASE 1; s... case 1: s...; break 1: BEGIN s... END
CASE a+1 - -
CASE 1,2,3 case 1: case 2: case3: 1,2,3:
CASE "a".."z" - -
ENDSELECT }; END

INC x x++; x:=x+1; (INC())
DEC x x--; x:=x-1; (DEC())
JUMP lab goto lab; GOTO lab;
x:=e x=e; x:=e;

/* */ /* */ { }
-> // -

(1) see WHILE; C has no FOR, "for" in C is another way of writing "while"
(2) only STEP -1 as DOWNTO

VALUES

E C/C++ Pascal
----------------------- ----------------------- -----------------------
1 1 1
1.0 1.0 1.0
$1 0x1 ?
%1 ? ?
"a" ’a’ chr(97) (?)
’blabla’ "blabla" ’blabla’
[1,2,3] - (1) -
[1,2,3]:INT - -

(1) in translating from E to C, you can often simulate them with:

myfunc([1,2,3])

becomes:

e 120 / 129

int dummy [] = {1,2,3};
myfunc(dummy);

OPERATORS

E C/C++ Pascal
----------------------- ----------------------- -----------------------
+ - * / + - * / + - * DIV
= <> > < >= <= == != > < >= <= = <> > < >= <=
AND OR (log) && || and or
AND OR (bit) & | ?
SIZEOF x sizeof(x) -
‘e - - (1)
^x (4) *x ...
{x} &x ...
x++ x++ -
x-- --x -
-x -x -x
IF e THEN f ELSE g e ? f : g -
x.y x->y x^.y
- x.y x.y
x.y.z x->y->z x^.y^.z
x:=e x=e -
e BUT f (e,f) -
x[] x[0] *x (2) x[0]
x[1] x[1] x[1]
x[1] (3) &x[1] ?
x[1].y x[1]->y x[1]^.y
x[]++ *x++ -
x[1].y++ *(x+1)++ -
x::y.a ((y *)x)->a -
x.y::z.a ((z *)x->y)->a -

(1) see QUOTED EXPRESSIONS
(2) also for others, equivalences between *(x+e) and x[e] hold.
(3) if ARRAY OF <object>
(4) ONLY for giving by reference. otherwise: "[]"

CONSTANTS/TYPES

E C/C++ Pascal
----------------------- ----------------------- -----------------------
CONST X=1 #define X 1 CONST X=1;

const int X=1;
ENUM X,Y,Z #define X 0 (etc.) TYPE x=(X,Y,Z);

enum x{X,Y,Z};
SET X,Y,Z - TYPE x=SET OF (X,Y,Z);

DEF VAR
x int x; (or: long x;) x:INTEGER;
x:LONG int x; x:INTEGER;
x:PTR TO y struct y* x; x:^y;
x:y struct y x; x:y;

e 121 / 129

x[10]:ARRAY OF y struct y x[10]; x:ARRAY [0..9] OF y;
x[10]:STRING - (1) x:STRING[10]; (2)
x[10]:LIST - (1) - (1)

x:REG register int x;

OBJECT x struct x { (3) TYPE x = RECORD
y:CHAR,z:INT char y; short z; y:CHAR; z:INTEGER;

ENDOBJECT }; END;

(1) when translating from E to C, simulate with an array of char/int resp.,
and do your own range-checking etc.

(2) no Wirth Pascal, but available in all popular dialects.
(3) or public class.

QUOTED EXPRESSIONS

E LISP MIRANDA
----------------------- --------------------------- -------------------
‘e (QUOTE e) ’e (3)

(LAMBDA () e) (1)
‘x+y ’(+ x y)
Eval(‘e) (EVAL ‘e)
ForAll(v,l,‘e) - (2)
MapList(v,l,l,‘e) (MAPCAR (LAMBDA (V) E) L) map (\v->e) l

example:

E: MapList({x},[1,2,3,4],a,‘x*x)
MIRANDA: map (\x->x*x) [1,2,3,4]
LISP: (MAPCAR (LAMBDA (X) (* X X) ‘(1 2 3 4))

(1) really QUOTE, but sometimes used where in LISP LAMBDA would be
used, like in MapList()

(2) not even in ProLog, see other logical languages.
(3) lazyness would be used instead here

UNIFICATION AND LISP CELLS

E LISP PROLOG
----------------------- ----------------------- -----------------------
<1|2> (1 . 2) [1|2]
<1,2,3> (1 2 3) [1,2,3]
<1,2|3> (1 2 . 3) [1,2|3]

E HASKELL PROLOG
----------------------- ----------------------- -----------------------
e <=> <x|y> (x:y) = e e = [X|Y]
e <=> <1,2,x> [1,2,x] = e e = [1,2,X]
e <=> [1,x] - -

EXCEPTIONS

e 122 / 129

E C++ ADA
----------------------- ----------------------- -----------------------
PROC x() HANDLE int x() { try { function x is begin
EXCEPT } catch (exc) { (1) exception
EXCEPT DO - -
ENDPROC }}; end x;

Raise(e) throw e; raise e;
Throw(e,f) ? -
ReThrow() throw e; raise e;
RAISE "MEM" IF New()=0 - - (2)

(1) catch handles only one specific exception, it’s quite different
from general exception handlers as used in E.

(2) the runtime system does raise some exceptions, but I’m not sure
whether automatically raised exceptions can be _defined_ in Ada.

OBJECT ORIENTED PROGRAMMING

E C++
------------------------------- -----------------------
OBJECT x class x {
OBJECT x OF y class x : y {
self.i this->i
PROC a OF x IS self.i virtual int x::a() { return i; }
- int x::a() { return i; }
PROC a OF x IS EMPTY virtual int x::a() =0
PUBLIC public:
a.method(1) a->method(1)
SUPER a.method(1) a->supername::method(1)

[see also next part under NEW]

BUILTIN FUNCTIONS AND MEMORY ALLOCATION
(only a few are presented here, as an example)

E C/C++ Pascal
----------------------- ----------------------- -----------------------
WriteF(fs,...) printf(fs,...); WriteLn(a,b,...);

cout << a << b ... ;

ReadStr(f,s) scanf(fs,...) ReadLn(s)
Val(s) Val()

cin >> s;

StrCopy(s,s,n) (1) strcpy(s,s) s:=s; (2)

Mod(e,e) e%e e MOD e
Shl(e,n) e<<n Shl()
Long(e) - -

e 123 / 129

p:=New(e) p=malloc(e); New(p);
NEW p p=new type;
NEW p.constr() p=new constr() -
NEW [e,f,g] - -
Dispose(p) free(p); Dispose(p);
END p delete p;

(1) when translating from C, make sure you turn the arrays of char into
proper STRINGs.

(2) dunno what function is needed in the pointer case.

1.126 ch_18d

18D. Amiga E FAQ

[94_10_1..94_12_1]

This FAQ-list (Frequently Asked Questions) was compiled by looking through
old email and gathering those questions which keep popping up.

Compiler/Linking/Executables

- How can I link E code with other languages? / use standard object format?

Converting between .m and .o really isn’t a huge problem, as one can see
from the o2m utility, which allows cooperation between E and Macro-Assembly
quite marvelously. The problem with C is in the compiled code, not the file
format. Anything but trivial C will reference things like _DOSBase, link-
library functions, stack-bases or other things from startup-code that E
provides in a quite different way, for example E’s startup code is very
different from that of C compilers, and dosbase in E is placed on the stack,
not in the exe as with C. Even two C compilers may have these problems.
If you can get your C compiler to deliver a .o without external references
etc., you can link it with E (I did this once with MaxonC++). If you need
to program a project in both E and another language, you may wish to look
at E’s (or the other language’s) library linking facilities.

- Can I link amiga.lib?

Currently no. To a lesser extend this has the same problems as .o files.
Many functions from amiga.lib have already been "converted" to E modules.
(see

- Can E code be made resident?

Nearly ALL E code is already resident-able without the help of the
programmer. As fas as I know, the only E construct that can violate this is
a static list [] with an expression in it (so [a], for example. [1] or
NEW [a] is ok.).

- I have this application with pieces of inline asm, and after

e 124 / 129

OPTI/S it behaves weird. what is going on?

Inline asm may use the same registers as the register optimizer does.
check E.doc for this.

- I wrote X in both C and E, and the E version is Y times slower/faster.
how come?

It’s not easy to compare both in a fair way. Often it may be the case that
one of the two has more optimized routines for something (string handling,
I/O etc.). Use of a profiler can reveal this. If the code in question only
does calculations, there’s no reason why any of the two should be
significantly slower than the other, if used properly.

- I have written this nice ’myutils.m’, only when I use one function
from it, EC links all. I don’t like that.

The style of writing modules in E is to keep them as relatively small units,
with only related code and data. (This makes more sense if you know that the
module is the unit of datahiding in E). Split it up!

- Can I make EC resident?

no, currently not. EC itself is still written in old-fashioned assembly
style, and cannot be made resident ;-)

- Can we have an option for EC to generate assembly source instead of an
executable?

No. There’s no intermediate level of assembly in EC, it generates code
directly. Using a disassembler is as close as you will get.

- I have been disassembling some code generated by EC, and I think this
bit of code here can be optimized to this bit of code.

Sure it can, I can see that too. But EC is not an assembly programmer.
Doing really very high quality optimisations would require a complete
rewrite of EC, and would make it a lot slower, even with optimisation off.

- E should have a CHIP keyword or somesuch, to put data areas in chip memory.

I don’t find this worth it. If the amount of data is small (a gadget image),
it’s no waste doing a CopyMem(). If it’s large (an iff picture, a sample),
what’s it doing in the executable in the first place? load it directly to
chip mem from disk.

Resources

- There’s no explanation in the docs of all those handy functions from
intuition.library etc. How come?

The functions are not part of E, rather they are part of the amiga OS.
As such, they are described by Commodore’s documents, not by the E documents.
"The AMIGA ROM Kernal Reference Manuals" are a series of books published
by Addison Wesley. A good place to start for example "Libraries", ISBN
0-201-56774-1. Other books are worth considering too, an example is "The

e 125 / 129

Amiga Guru Book" by Ralph Babel.

- I’d like to read more source code than what comes with the distribution
where should I look?

There are lots of places too look, but the best is without doubt Aminet
(A collection of FTP-sites on the internet), for example ftp.luth.se.
In the directory ’pub/aminet/dev/e’ you’ll find all sorts of E related
stuff. Some BBS’es outside of the internet also carry Aminet, and there
are even CDROMs available. Another good place to pick up sources and
to talk with fellow E programmers is the E mailing list. Send an email
with ’HELP’ in the body to amigae-request@bkhouse.cts.com to hear all
about it. There are E discussion on other nets as well (FidoNet, AmigaNet),
public domain disk series (EPD in europe/germany, same address as the german
registration site), furthermore there are heaps of user-clubs, BBS’s etc.
supporting E these days. just look around in your area.

- I have heard about this mailing list. is it any good?

Find out for yourself. If your serious about E it’s definitly a must, also
because it’s the place where news on E is generally released first.

- I have a hard time getting on the mailing list. Could you take care of that
for me?

I personally don’t have anything to do with the administration of the list,
so I can’t help out any better than anyone else can. Remember that the
server is an automated process, so you need to be very precise in what you
send there. Don’t send administrative post to the list at large, instead
try and get hold of the administrator.

- I’m new to internet. Could you help me get on the mailing list /
FTP files from Aminet etc...?

Stuff like that is way beyond my service. Please try and contact someone
locally.

- How do I know what is the latest version / How do I receive it?

If you’re on the mailing list you’ll be the first to know. Aminet is the
place where releases and updates are uploaded first. Registered users get
updates/notices automatically in their mbox.

- How do I register?

please read E.doc on this.

- Does E exist for other platforms?

Not Yet. Personally I have undertaken small project to make portable
compilers/translators, and several others have E compiler projects on other
platforms, but nothing has come out of this so far.

- Can I become an E registration site for country X?

Generally I pick sites myself, when I feel the necessity, and know someone
in that country pretty well.

e 126 / 129

- Can I start an E support BBS / an E programming club...?

You can always do that, without asking me. I of course enjoy hearing about
efforts like this...

- Just out of curiosity, how many registered E programmers are there?

This changes all the time. Inquire within :-)

Programming

- Can I do X in E? (where X = {games,dtp-packages,...})

E is a general purpose programming language, so there shouldn’t be any type
of program that can’t be done in E (with few rare exceptions, which are covered
by E’s inline asm). This doesn’t mean E is especially equipped for certain
types of programs, i.e. E has no special functions for games (though its
extensibility makes it easy to add them).

- How do I create X in E (where X = {window, interupt handler,...})

as with the last question, E just opens the possibilities to write anything,
and there isn’t always a specific function available. In the worst case this
means having to use difficult functions from spooky libraries, but it’s
worth it getting to grips with that. If you’re lucky some E programmer
already has done something similar which you can learn from.

- Please write me an example how to do X in E.

Please try to figure it out yourself first, or ask other E programmers to
help out.

- The compiler refuses to compile things like myscreen.rastport.bitmap,
eventhough x.y.z is generally possible. Why is that?

Thanks to jasons v40 modules this should not be a problem anymore.
The only case where this can still occur is if you do not include the
module that defines the object "z" is in.

- I’m writing code like this:

DEF s[100]:STRING
s:=’my beautiful string’

which is allowed by the compiler, but later gives me problems. What can possibly
be wrong with this?

If you’re used to for example BASIC, you’re used to handle strings in the
same way as integers, as they are both _values_. In E however there are no
real string variables in the BASIC sense, the DEF above creates a piece of
memory to hold a string, then sets the variable as a pointer to this memory.
The pointer and the memory are implementation-wise two unrelated entities.
From that DEF on, all operation that directly access ’s’ access the pointer,
which is just an integer which tells us were to find the actual string.
The assignment thus puts the address of ’my beautiful string’ into ’s’,

e 127 / 129

overwriting the old value. The string-memory created by the DEF sits there
unaltered, and now unaccessable because no pointer points to it. Functions
like StrCopy() can use this pointer to find the real memory, and can fill
it:

StrCopy(s,’my beautiful string’)

is correct. Of course assigning strings as pointers also has a use, for
example if you just want to read the string data and do nothing else with
it. then:

DEF s:PTR TO CHAR

allocates no memory for a string, only the pointer. the assignment above
would now make sense. This all boils down to the differences between
pointers and values (or value/reference semantics), and is important to
understand to succesfully program in E.

- How do I return a STRING / OBJECT etc. from a function?

depends. If you just wish to use it as temporary return value, give a string
as argument and let the routine fill it. If you need to create a NEW string/
object, allocate it dynamically within the function, and return the pointer.

- can I create an array of typed pointers, eg ARRAY OF PTR TO LONG

um... no.

<more of these specific questions are to be added>

Bugs

- I remember programming something when suddenly the compiler crashed/
misbehaved/produced an internal error/gave wrong error messages. shouldn’t
you be doing something about this?

If I have no clue where to look for a bug I can’t fix it. If you stumble
across something that you’re sure of is a compiler bug, make a copy of
the source that reproduces the bug (possibly cut the source down while
making sure it still shows the bug) and send it to me with as much info
as possible. EC-enforcer hits for example are very useful.

- I wrote program X, but it crashes. I’m positive I made no mistakes,
so certainly this must be a compiler bug.

due to E’s untyped-ness, you can never be quite sure you’re code is
correct. Most code send to me with comments like the above later proved
to be errors in the code, mostly due to lock of E knowledge. Read the
docs, and use EDBG!

Future Features

e 128 / 129

Will E have...
- Registerised arguments?

It surely is possible but like many things it’s not a priority for me.

- Library/Device linker?

Yes, it’s included in this version.

- Multiple Inheritance?

Not possible in E. MI breaks with structural compatability between objects,
and needs relatively strong typing to resolve this.

- PROCs inside PROCs?

Not likely.

- multidimensional arrays?

Not likely either. In E there isn’t really something like an array, just
pointers that point to a large amounts of equally sized objects. To have
twodimensional arrays, one needs to have the concept of ’size’ of an array,
which E doesn’t have.

- Overloading

No. Overloading requires quite strong typing to distinguish which function
to call. Besides, overloading is 100% syntactic sugering, it doesn’t provide
any added functionality whatsoever.

- more 020/881 support?

Yes, eventually. It just isn’t at the top of my TODO-list.

- C compatible syntax?

Often people are used to some type of language (mostly C), and don’t
understand why a programming language design isn’t as configurable as a
directory utility or text editor:
’I like "=="/"=" better than "="/":="’
’Can’t you switch """ and "’" ?’
’Why doesn’t "--" work as in C?’
’I hate typing CAPS for keywords!’
’No precedence sucks!’
The features ’referenced’ above will never change, and you’d better get use
to it. All design decisions have very good reasons, and unlike some rumours
they were not done for compiler speed (infact implementing them more
traditionally wouldn’t make the compiler any slower).

- Why is feature X in E not like language Y, which I find better.

Like above, the design of a language isn’t changed just because of
personal preference. If you have strong ideas of what a language should
look like according to you, and those ideas stem from language Y, then
use Y. If you can’t find your ideas in any existing language, then it’s
time to design and implement your own! (I’m not kidding, it’s worth the

e 129 / 129

trouble! and you can always start with E... :-)

- X maybe?

Having seen literally hundreds of programming languages, your chances of
suggesting a new feature for E which I haven’t thought of before are not
too bright. Many things don’t ’fit’ into E, and in general time is limited
to add more fancy stuff. (If you look closely, the amount of features in
E is already quite high for an average programming language). I have quite
a huge list of possible features for E, and eventually some of these will
be implemented. just wait and see...

-------------------------------EOF--------------------------------------

	e
	main
	ch_0a
	ch_0b
	ch_0c
	ch_0d
	ch_0e
	ch_0f
	ch_1a
	ch_1b
	ch_1c
	ch_2a
	ch_2b
	ch_2c
	ch_2d
	ch_2e
	ch_2f
	ch_2g
	ch_2h
	ch_3a
	ch_3b
	ch_3c
	ch_3d
	ch_4a
	ch_4b
	ch_4c
	ch_4d
	ch_4e
	ch_4f
	ch_4g
	ch_4h
	ch_4i
	ch_4j
	ch_4k
	ch_4l
	ch_4m
	ch_5a
	ch_5b
	ch_5c
	ch_5d
	ch_5e
	ch_5f
	ch_5g
	ch_5h
	ch_5i
	ch_5j
	ch_5k
	ch_5l
	ch_5m
	ch_6a
	ch_6b
	ch_6c
	ch_6d
	ch_6e
	ch_6f
	ch_6g
	ch_6h
	ch_7a
	ch_7b
	ch_7c
	ch_7d
	ch_8a
	ch_8b
	ch_8c
	ch_8d
	ch_8e
	ch_8f
	ch_8g
	ch_8h
	ch_9a
	ch_9b
	ch_9c
	ch_9d
	ch_9e
	ch_9f
	ch_9g
	ch_9h
	ch_9i
	ch_10a
	ch_10b
	ch_10c
	ch_10d
	ch_11a
	ch_11b
	ch_11c
	ch_12a
	ch_12b
	ch_12c
	ch_12d
	ch_13a
	ch_13b
	ch_13c
	ch_13d
	ch_14a
	ch_14b
	ch_14c
	ch_14d
	ch_14e
	ch_15a
	ch_15b
	ch_15c
	ch_15d
	ch_15e
	ch_16a
	ch_16b
	ch_16c
	ch_16d
	ch_16e
	ch_16f
	ch_16g
	ch_17a
	ch_17b
	ch_17c
	ch_17d
	ch_17e
	ch_17f
	ch_17g
	ch_17h
	ch_17i
	ch_17j
	ch_17k
	ch_17l
	ch_17m
	ch_18a
	ch_18b
	ch_18c
	ch_18d

