
Async

Michael Zucchi

Async ii

Copyright © 1993 Michael Zucchi, All right reserved

Async iii

COLLABORATORS

TITLE :

Async

ACTION NAME DATE SIGNATURE

WRITTEN BY Michael Zucchi January 9, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Async iv

Contents

1 Async 1

1.1 Async.guide . 1

1.2 Module overview . 2

1.3 The guy who wrote it . 2

1.4 as_open . 3

1.5 as_close . 4

1.6 as_read . 4

1.7 as_fgets . 5

1.8 as_fgetc . 6

1.9 as_nextbuffer . 7

1.10 Information about the examples . 8

Async 1 / 8

Chapter 1

Async

1.1 Async.guide

Aynschronous file reading module for AmigaE2.5+

© 1993
Michael Zucchi
All Rights Reserved

This document describes the usage of a suite of asynchronous file reading
routines designed for the AmigaE language. The interface is designed to
follow the V36 dos.library calls as closely as possible.

The following sections are available:

OverView
some of the ideas behind the module

General functions

as_Open()
to open a file

as_Close()
to close a file

as_Read()
reading from the file

High level functions

as_FGetS()
reading text lines

as_FGetC()
reading character by character

Low level functions

Async 2 / 8

as_NextBuffer()
accessing input buffers direct

Examples
NOTE: This module requires Workbench 2.0 (V36) or higher! Please

make sure that this version of the system libraries is present before
using these functions.

1.2 Module overview

Just what is meant by ’asynchronous i/o’?

When most programs use dos.library to read/write files, they simply call
Read() or Write(). What happens then is that these functions examine the
filehandle passed to them for information about the handler that handles
the file, and creates a dos ’packet’ out of this information (see
dos/dosextens.m to see what a packet looks like). This packet is then sent
via the standard message passing system to the handler handling the file.
The dos function calls then wait for a reply to the request via the process’s
message port pr_MessagePort - i.e. they wait until the filesystem and handler
have retrieved the information before returning (incidentally, the fact that
the replies come in through pr_MessagePort is the reason dos cannot be called
from a standard ’task’). With a slow i.o device (e.g. floppy disk) all
of this waiting can mean the cpu is sitting idle a lot of the time waiting
for data to come in.

How do you fix this less than ideal situation? Its quite simple. You
can create your own packets and send these packets direct to dos.
This way, a custom reply port can be set up for the packets, and requests
for reads (or writes) can be sent out immediately, and the data read when
the packets are returned. If something needs to be done while the filesystem
is fetching this data, then your program can get it done - without having
to wait.

This is basically what async.m does. Currently only reading is supported,
but writing will be added in the future, along with utilitiy functions like
Seek() etc. I got the idea from some code i got off the local BBS, something
from one of the cool guys at Commodore i think.

1.3 The guy who wrote it

I wrote this code some time ago, mainly for a multi-threaded directory
utility i’ve been working on from time to time. I found it so handy for
adding just that extra bit of performance to just about everything i wrote
that i thought other people might find it useful too.

Presently, i study ‘from time to time’ (:-) in order to obtain a Computer

Async 3 / 8

Systems Engineering degree from the Univerity Of South Australia.
I’m ‘Zed’ of FRONTIER in my anti-os hours.

I can be contacted in the following ways:

Internet email:

9107047w@lux.levels.unisa.edu.au
till the end of ’94 at least - reliable

‘Real Mode’ (tm) mail:

Michael Zucchi
PO BOX 824
Waikerie
South Australia 5330

slow, but very reliable - till mum sells the house :)

Michael Zucchi
110 Dunrobin Rd
Warradale
South Australia 5046

to my door - till i move (?)

1.4 as_open

async.m/as_Open ←↩
async.m/as_Open

SYNTAX

file := as_Open(name:PTR TO CHAR,
mode:LONG,
count:LONG,
size:LONG);

PURPOSE
Opens an asynchronous file, and returns a pointer to a (private) file
handle. When called, packets will be sent to the appropriate handler
to fill all buffers, and the return will call immediately.

INPUTS
name A string, describing the name of the file to open
mode Same as mode in dos.library/Open. Must be MODE_OLDFILE

for now.
count Number of buffers to allocate. 3 works very well.
size The size of each buffer to allocate. Above 5000 works

well, must be a multiple of 4.

OUTPUTS
file A pointer to a filehandle that may be passed to the other

async functions.

NOTES
No sanity checking is done on any of the input values. Use

Async 4 / 8

reasonable values for everything.
The filehandle returned by as_Open() is NOT compatible with normal
dos filehandles, and system calls!

SEE ALSO

as_Close()
,
as_NextBuffer()
,
as_Read()
,
as_FGetS()
,
as_FGetC()

1.5 as_close

async.m/as_Close ←↩
async.m/as_Close

SYNTAX

as_Close(file:LONG);

PURPOSE
Closes the file, free’s all memory buffers and cleans up all
outstanding packets. This call may be made as any time on a valid
async filehandle.

INPUTS
file valid filehandle from as_Open(), or NIL in which case nothing

happens.

OUTPUTS

NOTES

SEE ALSO

as_Open()

1.6 as_read

async.m/as_Read ←↩
async.m/as_Read

SYNTAX

bytes := as_Read(file:LONG,
buffer:PTR TO CHAR,

Async 5 / 8

number:LONG);

PURPOSE
as_Read reads a number of bytes (’number’) into the buffer specified
by ’buffer’, from the async file ’file’.

The number of bytes actually read in is indicated by the return value.
A return of zero indicates end of file, and errors are flagged by a
return value of -1.

INPUTS
file Only a valid filehandle from as_Open() is allowed.
buffer A pointer to at least ’number’ bytes of memory to store the

data. May be arbitrarily aligned.
number Specifies the number of bytes to read. number=0 is ignored.

OUTPUTS
bytes The number of bytes actually stored in ’buffer’. A value of

zero indicates end of file, and -1 that a file error has
occurred, check IoErr() for detail.

NOTES

SEE ALSO

as_Open()
,
as_Close()
,
as_NextBuffer()
,
as_FGetS()
,
as_FGetC()

1.7 as_fgets

async.m/as_FGetS ←↩
async.m/as_FGetS

SYNTAX

buffer := as_FGetS(file:LONG,
buffer:PTR TO CHAR,
number:LONG);

PURPOSE
Reads upto ’size’ bytes from the file ’file’ into the buffer pointed
to by the buffer parameter. Stops reading at end of file or once a
NEWLINE ($0a) character is encountered. Returns a pointer to that
buffer or NIL on end of file or error.

The string stored in the buffer is NULL terminated.

INPUTS

Async 6 / 8

file A valid filehandle from
as_Open()
.

buffer A pointer to at least ’number’ bytes of memory to store the
data. May be arbitrarily aligned.

number Specifies the number of bytes to read, at maximum. This MUST
be >2.

OUTPUTS
buffer Same as ’buffer’ passed as an input, or NIL on end of file

or file error.

NOTES
If the line is too long to fit, the input stream is not skipped till
the next linefeed.

SEE ALSO

as_Open()
,
as_Close()
,
as_Read()
,
as_NextBuffer()
,
as_FGetC()

1.8 as_fgetc

async.m/as_FGetC ←↩
async.m/as_FGetC

SYNTAX

char := as_FGetC(file:LONG);

PURPOSE
Reads the next character from the input file. Returns -1 on error
or end of file. The character is an unsigned 32 bit quantity.

INPUTS
file A valid filehandle from

as_Open()
.

OUTPUTS
char The next available byte from the input stream, or -1 on

error.

NOTES
This call is about as efficient as possible.

SEE ALSO

Async 7 / 8

as_Open()
,
as_Close()
,
as_Read()
,
as_NextBuffer()
,
as_FGetS()

1.9 as_nextbuffer

async.m/as_NextBuffer async.m/ ←↩
as_NextBuffer

SYNTAX

buffer,valid := as_NextBuffer(file:LONG);

PURPOSE
Returns the next available data buffer in the file. If end of file
has not yet been reached, and a buffer has now been made free, then
another read request is sent to the filesystem, in an asynchronous
manner.

INPUTS
file A valid filehandle from

as_Open()
.

OUTPUTS
buffer The address of the internal data buffer, 0 for end of file,

or -1 on a file error.
valid Number of valid bytes in the buffer. This will be the same

as the size of each buffer as specified when the file was
opened, unless it is the last buffer being read.

NOTES
The call is NOT compatible with any of the other reading functions.
If you call those functions, you must NOT call this function, and
visa-versa. It is a low level function which both of the other read
functions make use of directly, and should only be used (esclusively)
where extra performance/lower memory use is required.

SEE ALSO

as_Open()
,
as_Close()
,
as_Read()
,
as_FGetS()
,

Async 8 / 8

as_FGetC()

1.10 Information about the examples

Included with this package are a few examples of using this module.

typef

This is a simple example demonstrating the use of the as_FGetS() call.
It simply types a specified file to the current shell - quite a bit
faster than c:type does.

usage:
typef [Name] <filename>

PlaySamp

This is a non-trivial example of the as_Read() function. It is a
complete ’raw sample’ player that can be used to play ANY sized sample
from disk.

usage:
PlaySamp [Name] <file1> [<file2> ...] RATE <rate>

histogram

A simple example of using the as_NextBuffer() command. It counts
the occurrannces of each byte in a file, and produces a report when
done.

usage:
histogram [Name] <filename>

Coding a more useful example for as_NextBuffer() requires a bit more
work than i have time for :)

	Async
	Async.guide
	Module overview
	The guy who wrote it
	as_open
	as_close
	as_read
	as_fgets
	as_fgetc
	as_nextbuffer
	Information about the examples

