
FetchRefs documentation

FetchRefs documentation ii

COLLABORATORS

TITLE :

FetchRefs documentation

ACTION NAME DATE SIGNATURE

WRITTEN BY January 9, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

FetchRefs documentation iii

Contents

1 FetchRefs documentation 1

1.1 FetchRefs documentation . 1

1.2 Introduction . 1

1.3 Special features . 2

1.4 Useful information . 3

1.5 Registration . 3

1.6 Updates . 4

1.7 The source code . 4

1.8 Author . 4

1.9 Using GenerateIndex . 5

1.10 Requirements . 6

1.11 Arguments . 6

1.12 FROM . 7

1.13 TO . 7

1.14 SETTINGS . 8

1.15 Options . 9

1.16 Files options . 9

1.17 AutoDocs . 11

1.18 C includes . 11

1.19 E includes . 12

1.20 Asm includes . 12

1.21 Other options . 13

1.22 Scan drawers recursively . 13

1.23 Keep files without references . 14

1.24 Unrecognized files . 14

1.25 Windows . 14

1.26 The main window . 15

1.27 Add... 15

1.28 Edit... 15

1.29 Rescan . 16

FetchRefs documentation iv

1.30 Delete . 16

1.31 Menus . 16

1.32 Clear . 17

1.33 Load data... 17

1.34 Save data... 17

1.35 Options... 17

1.36 About... 17

1.37 Quit . 18

1.38 The edit window . 18

1.39 The options window . 18

1.40 Using FetchRefs . 19

1.41 The arguments . 19

1.42 FILES . 20

1.43 PORTNAME . 21

1.44 RUNONCE . 21

1.45 The ARexx interface . 22

1.46 The ARexx commands . 22

1.47 FR_ADD . 23

1.48 FR_CLEAR . 23

1.49 FR_GET . 24

1.50 FR_NEW . 26

1.51 FR_QUIT . 26

1.52 ARexx scripts . 27

1.53 The script for Shell . 27

1.54 Problems and tricks-tips-hints . 28

1.55 Unsupported editor . 28

1.56 Limited memory . 29

1.57 FetchRefs does not understand AmigaGuide AutoDocs! . 29

FetchRefs documentation 1 / 29

Chapter 1

FetchRefs documentation

1.1 FetchRefs documentation

FetchRefs 1.1

A feature packed utility that provides you with the most
comfortable access to your AutoDoc and include file references

For that extra touch, first read this document in its entirety.
Then re-read selected parts little by little, as you forget them.

Introduction

Special~features

Useful~information

Using~GenerateIndex

Using~FetchRefs

Problems~and~tricks-tips-hints

1.2 Introduction

To get one important thing straight right away: by a ’reference’ I mean a
part of an AutoDoc describing a particular function or a part of an
include file, describing a structure or constant. If you do not know about
AutoDocs or include files, this is probably not the tool you would most
likely use!

Should you know about AutoDocs and include files you will also know that
they contain very essential information. Unfortunately it is very time
consuming to look something up in these files. FetchRefs is a tool made to
minimize the time wasted by looking things up.

FetchRefs documentation 2 / 29

FetchRefs works by reading the word your cursor is currently at in your
editor. With the help of an index file it figures out exactly where this
word is documented. This specific part of an AutoDoc/include file is then
loaded and showed by the editor.

An example: When FetchRefs is installed, you can place the cursor at the
’T’ in this word: "Text" and press your defined FetchRefs-key. Shortly
after a window will pop up. This window will contain the AutoDoc for Text
(from the graphics.library). The Text AutoDoc will, no doubt, mention the
structure RastPort and you can then press the FetchRefs-key again and a
window with the include file where RastPort is defined will pop up - with
the cursor placed at the top of exactly the RastPort definition! You can
continue this way until you have all the information you need.

As FetchRefs is operated through ARexx it is very flexible; for example,
if you do not want to keep FetchRefs (and more memory consuming: its index
table) resident all the time, you can simply make an ARexx script that
just activates FetchRefs when it is needed. The disadvantage to this is
that you will need to know at least a little ARexx if you are not
satisfied with the standard setup.

1.3 Special features

Though many other programs help you to get a hand on the same kind of
references as FetchRefs does, FetchRefs has some features which make it
the absolute winner - in my eyes (but then again, of course I have not
seen all the AutoDoc readers which are available. Moreover, I may be a
little biassed).

The following feature list should outline some of the most obvious
advantages that FetchRefs has (some of these features may apply to other
similar products, but no other has it all :-).

· FetchRefs fits into every environment as long as the editor has a decent
ARexx port - which an editor of today HAS. Therefore you will not have
to learn to operate a completely new program - you just need to know
what key/menu you attach FetchRefs to.

· FetchRefs will generate references to AutoDoc files and to include files
for the following languages: C, Assembler and E.

· FetchRefs knows of the popular suffixes ’Tags’, ’TagList’ and ’A’ for
different interfaces to the same function. This ensures for example that
you can get a reference to ’System’ even though the function is
documented as ’SystemTagList’ in the AutoDoc.

· FetchRefs will pop up a window when it finds out that a requested
reference exist more than once. In this window you can double click at
the file you want to load the reference from. This is extremly handy for
things like OpenDevice() which is documented in the AutoDocs for every
device.

· FetchRefs can - by option - consider each file in its index file as a
reference itself. The effect is that you can follow a thread even if the

FetchRefs documentation 3 / 29

’SEE ALSO’ paragraph reads something like <dos/dostags.h>. This will
simply load the entire file.

· If you are uncertain as to what you are actually searching for,
FetchRefs supports wild cards as well.

· FetchRefs’s index files are generated by a powerful index file generator
which sports both command line options (handy for script usage) and a
font and size sensitive GUI. Any type of reference may be turned on or
off during index file generation to customize the index file completely.

· FetchRefs itself supports execution from both Workbench and Shell. Thus
you can put it in either s:user-startup or WBStartup, as you please.

· FetchRefs comes with ready-to-use ARexx scripts for several editors:
AmokEd, CygnusEd, DME, GoldED and TurboText. Adapting one of them to
another editor should be relatively easy if you know some ARexx. An
additional script lets you look up references from the Shell.

· FetchRefs is free. Complete C source is available for free, too.

If you do not agree that FetchRefs is the best utility to get access to
references, please tell me why - and I shall try to make it better.

1.4 Useful information

FetchRefs has very straight forward distribution conditions:

- SPREAD IT
- DO NOT CHANGE ANYTHING
- KEEP ALL FILES TOGETHER
- ADD NOTHING BUT .DISPLAYME FILES TO THE DISTRIBUTION
- DO NOT CHARGE ANYTHING
- IF YOU USE IT, TELL ME SO - IF NOT, TELL ME WHY

Registration

Updates

The~source~code

Author

1.5 Registration

I would like everyone using FetchRefs to send me a post ←↩
card or a

NetMail/e-mail (address: see
author
) telling me so.

FetchRefs documentation 4 / 29

Donations of any kind are gladly accepted, but are not required for
registering. I will not think bad of you if you tell me that you are using
FetchRefs without paying for it; actually it will make me much more happy
than not knowing at all that you use it.

Too few people seem to appreciate free software...

1.6 Updates

The most recently released version of FetchRefs should always be available
for free freq at Jørgen Valentiners BBS, ’The Amiga Zone’, as the magic
name FETCHREFS.

To call The Amiga Zone: Line #1 +45 32 52 42 94 (HST/V32b)
Line #2 +45 32 50 87 30 (V32b)
Line #3 +45 32 46 13 40 (ISDNC)

For freq’ing, the FidoNet address is 2:235/314.

I will try to spread new versions of FetchRefs through Fred Fish, Aminet
and ADS but no promises!

As the situation is today, I have no trouble in keeping up with update
requests sent directly to me; actually I have recieved zero requests so
far :-). Should you decide to request an update from me, please consider
that sending mail costs me money!

1.7 The source code

FetchRefs is written completely in C and I compile it using a registered
DICE - version 2.07.54. The distribution should have included the source.

You are hereby invited to do whatever you want to the source, but are in
no way permitted to distribute the raped work by any means. If you really
think of a great improvement, either just tell me about it and I will make
it or you can make it and send me the source. I will then include it into
MY release of FetchRefs. If you believe I have stopped the development and
you want to take over, then you willl have to contact me first.
All this is because FetchRefs is MY program and I do not want five
different FetchRefs 3.4 around.

If you should want to steal ideas or actual code from FetchRefs to other
projects of yours then it is okay. Some credit would of course make me
happy and a copy of the work would not harm either; but neither are
required.

1.8 Author

FetchRefs documentation 5 / 29

I, the author, am 18 years old, own an Amiga 500+ with a ←↩
GVP 121MB

harddisk, 6MB RAM, a modem and a Toshiba CD-ROM. I have been programming
since 1985 and currently I use C (I have been doing that since 1990, two
years after I got my first Amiga) and study a little assembly. I program
for the fun of it; but I would like to make a living of it someday.

I believe I have saved your day now - do you not just hate it when you
know nothing about the author of the program you are using? No? NO? Shame
on you :-).

If you would want to contact me (for
registration
, questions or

whatever), I would prefer getting a letter (either on paper or electronic)
because I can answer letters when I feel like it. I will try to answer all
letters I get, no matter in what way they get to me.

Mail: Anders Melchiorsen
Gammel Skivevej 39
7870 Roslev
Denmark

Phone: +45 97 57 19 99

FidoNet: 2:235/314.10
UseNet: and@scala.ping.dk

1.9 Using GenerateIndex

GenerateIndex takes advantage of (see
requirements
):

· reqtools.library, copyright Nico François
· triton.library, copyright Stefan Zeiger

The index file that FetchRefs requires contains information about all the
references. A slightly deeper discussion of the format can be found in the
section

the~edit~window
but probably it is not really necessary for you

to know the format.

You can have several index files, but I suggest for your own best that you
keep it at one; this way you know exactly where you have what. If you
start making several index files you will probably need to change the
ARexx script you use, and therefore you should feel used to FetchRefs
before doing this. The suggested name for your index file is
’S:FetchRefs.index’.

Requirements

FetchRefs documentation 6 / 29

Arguments

Options

Windows

1.10 Requirements

Apart from an Amiga with Kickstart 2.0+ you need a few additional programs
if you want to take full advantage of GenerateIndex. These programs are
the reqtools.library and the triton.library. Version 38 (release 2) of
reqtools.library and version 2 (release 1.1) of triton.library is
required.

If you do not have these programs, you will NOT be able to use the GUI of
GenerateIndex; however, Shell usage is still available.

As Triton is a rather new package, I have included a minimal copy of the
distribution and the Installer script will take care of installing it if
you have not got it already.

ReqTools is not all that new and I believe that most people have it
installed by now - therefore I did not consider including it worth the
space it would take up. Of course this means that you will have to dig it
up yourself, should you not have it. As it has been released as freely
distributeable software this should not turn out too hard, though.

1.11 Arguments

The Shell template for GenerateIndex is:

FROM/M,TO,SETTINGS,RECURSIVELY/S,KEEPEMPTY/S,UNRECOGAREDOCS/S,AutoDoc/S,
C/S,C_DEFINE/S,C_STRUCT/S,C_TYPEDEF/S,E/S,E_CONST/S,E_OBJECT/S,E_PROC/S,
ASM/S,ASM_EQU/S,ASM_STRUCTURE/S,ASM_MACRO/S

or, for those who prefer BNF:

GenerateIndex [[FROM] {wildcard}} [TO <file>] [SETTINGS <file>]
[RECURSIVELY] [KEEPEMPTY] [UNRECOGAREDOCS]
[AutoDoc]
[C] [C_DEFINE] [C_STRUCT] [C_TYPEDEF]
[E] [E_CONST] [E_OBJECT] [E_PROC]
[ASM] [ASM_EQU] [ASM_STRUCTURE] [ASM_MACRO]

- which is rather confusing unless you know GenerateIndex well. Therefore
I suggest that you get used to GenerateIndex by using the GUI, before
trying to use it without the GUI.

If you do NOT specify FROM as a Shell argument, the graphical user
interface is opened. This requires that you have installed both ReqTools
and Triton; see

FetchRefs documentation 7 / 29

requirements
.

If you start GenerateIndex from your Workbench, not all arguments are
available (as tool types) and you are forced to use the graphic user
interface. Actually, only the TO and SETTINGS arguments are available from
Workbench, and even these two should not really be nessecary.

All arguments but FROM, TO and SETTINGS are used to set the scan options
of GenerateIndex. Each argument reflect a gadget in the options window and
you should read the

options
part of the guide to learn what they

actually mean.

FROM

TO

SETTINGS

1.12 FROM

If you specify the FROM argument, it must be a specification of ←↩
what files

to scan for references (i.e. either include files or AutoDocs). You can
specify as many files as you wish, and if you specify the argument
RECURSIVELY you may also specify a directory (containing e.g. all your
include files). Note that you are actually specifying wildcards so e.g.
"INCLUDE:*.h" is perfectly valid. This argument is the same as selecting
files by using the

Add...
gadget of

the~main~window
of the GUI.

The FROM argument is not accessible via Workbench tool types - instead the
GUI is provided. This is because FROM is intended to be used in a script
that automatically recreates your index file; this script can then be run
when you get new manuals or include files.
This is also why all the options arguments are only available for Shell
usage - they are mainly useful in a script, otherwise you would prefer the
GUI to set them.

An example script for creating an index file is provided (GenIndex.sh),
but this example is very specific to my setup and really IS just an
example - you will have to make one for yourself if you want one!

1.13 TO

FetchRefs documentation 8 / 29

The TO argument specifies an index file. If this file is already ←↩
present

it will be loaded and therefore any new references will get appended to
it. If it is not present, the name is just used as a "save name" when
GenerateIndex is run in its script mode; i.e. when the

FROM
argument is

specified. You can not use the
FROM
argument without also using TO.

If you enter TO as a tool type and start GenerateIndex via the Workbench,
the specified file will get loaded before the GUI opens. If the specified
file does not exist, the default file name of the file requester will just
be set to the name. Thus you can just press ’Ok’ in the file requester
when you are about to save an index file and the name specified in the
tool type will get used.

By default, both FetchRefs and GenerateIndex are set to use
S:FetchRefs.index as index file so you should not need to change anything.
This is due to the tool types I have defined for you; if you start
FetchRefs or GenerateIndex from the Shell, no default name is specified
(as tool types are only read when run from Workbench).

The warning mentioned in
Load~data...
is valid here, too!

1.14 SETTINGS

The settings argument lets you specify a previously saved settings ←↩
file to

load upon startup. If you do not specify this argument, the items in the

Options
window will get set to the settings saved in

ENV:FetchRefs_GI.prefs (when you start from Workbench - data are saved to
this file when you select Save or Use in the Options window).

If you start from Shell and do not use this argument you are telling
GenerateIndex that you want to set the options by hand (by using the other
Shell arguments) - thus no options will be activated if you do not specify
either SETTINGS or some of the option-activating arguments. That is,
ENV:FetchRefs_GI.prefs is not automatically loaded when you start from
Shell.

This argument can also be used to simplify a Shell script; you could
select whatever options you want with the GUI, save them and then in the
Shell simply specify the settings file instead of typing in all the
settings yourself!

FetchRefs documentation 9 / 29

1.15 Options

GenerateIndex has several options concerning what files it should ←↩
pick up

and what kind of references it should search for in these files. These
options can be set both by specifying

arguments
on the command line

(Shell) and by using the GUI (
the~options~window
).

The
SETTINGS
argument will load a previously saved set of options to

quickly select your prefered ones.

In the following I will refer to them with the names from

the~options~window
. The Shell arguments for the same actions have less

natural names but you should easily be able to figure out which is which.

Whenever a checkmark appears in a box in the options window, this option
is turned on. Specifying any command line arguments will also turn an
option on. Otherwise the option is probably off :-).

The options window is split in two parts. One which specifies what files
you want to scan and what they should be scanned for. Below this are some
gadgets with more global meaning; that is, they count for all kinds of
files.

Files options

Other options

1.16 Files options

The many gadgets in the top box are used to select exactly what ←↩
references

GenerateIndex should look for when scanning files. To be able to operate
this efficiently you will need to know how GenerateIndex scans the files.

For each file it first tries to figure out whether it is an AutoDoc, some
kind of include file or something else.

Files are identified by certain keywords in the first 2KB of each file.
The identifier list is currently as follows which should cover most (all?)
cases. The list is case sensitive and "\n" means "new line". A file is
considered recognized when just one of the keywords is found. The keywords
are looked for in the order shown below.

AutoDoc: "TABLE OF CONTENTS"

FetchRefs documentation 10 / 29

C include: "#if", "#define"

E include: "\n(---) OBJECT", "\nCONST", "\nPROC"

Assembler include: "IFND", "EQU", "STRUCTURE", "MACRO", "BITDEF"

Depending on the state of the option
Unrecognized~files

GenerateIndex
may either ignore files it cannot identify or it may handle them as
AutoDocs.

Once the file type is determined GenerateIndex checks if you are
interested in this kind of files at all. You select this by the four
gadgets at the very top, above the horizontal line. If you have not
selected this kind of file it is simply skipped. That is, it is forgotten
completely, no matter how you set the

Keep~files~without~references
option.

If you HAVE selected this kind of file GenerateIndex will start its
scanner. If it is an AutoDoc there is only one thing to scan for:
functions. Otherwise, if it is an include file, there are several things
and each single part of the scanner can be turned on or off.

If you turn all the parts of a scanner off but still leave the file type
selected it will generate a file without references everytime you do a
scan. However, if you have set the

Keep~files~without~references
option

the files are not completely forgot and may be used along with the FILEREF
option of

FR_GET
. Thus it is NOT the same to select/not select a file

type even if you have not selected any of the sub parts of the particular
scanner.

Okay, enough generic information, now I will go on to more specific talk
about each of the scanners. It is of course only necessary for you to read
about the kind of scanners you intend to use. On the other hand you really
SHOULD read these parts. The scanners are rather poorly implemented in
some respects and it may be good to know about limitations they may have.

AutoDocs

C includes

E includes

Asm includes

FetchRefs documentation 11 / 29

1.17 AutoDocs

Three things are important for the AutoDoc scanner.

A) The file MUST start with a line "TABLE OF CONTENTS". Otherwise the file
is not even recognized as an AutoDoc (exception: set

Unrecognized~files
to "AutoDocs").

B) Each function must have a header like this:

nofrag.library/GetMemoryChain nofrag.library/GetMemoryChain

That is, the same string must be present both at the start and at the
end of the same line. The last part of the string (everything after the
last NON-alphanumeric character) is the function name. No leading
spaces, etc. are allowed.

C) The end of each function must be marked by a "form feed" character (^L,
ASCII value 12). The exception is the last function which may simply
have the end-of-file as end marker.

All these requirements should be met by any AutoDoc if it wants to be "a
real" AutoDoc. Consequently, unless you have an invalid AutoDoc these
rules should not give any problems.

1.18 C includes

The special thing about the C scanner is that for struct/union references
GenerateIndex will only use a part of the entire file as the reference.
Apart from AutoDocs this is the only case where the entire file is not
just loaded by FetchRefs when you request a reference look-up. Even though
the cursor is placed at the right place in all the other cases it is still
a bit faster and more memory efficient to just load the part that is
really required. I hope to make more scanners work this way in the future.

The limits for each of the struct/union references are from the end of the
previous struct/union up till the start of the next struct/union. This way
you can read comments and other stuff related to this struct/union no
matter if it is right before or right after the actual definition.

A note on the typedef scanner is that it is extremely poorly implemented.
It will just use the last word in the typedef as the name of the
reference. While this works for most of (all?) the typedef’s in the
Commodore includes it will fail when used on things like this:

typedef void ((*__sigfunc)(int);

Unfortunately it is hard to make the scanner much better without half-way
compiling the includes (which is something I do not want to do :-).

The C scanner does not yet understand comments and therefore you can get

FetchRefs documentation 12 / 29

some references included even though they are actually commented out.

1.19 E includes

DISCLAIMER: Unfortunately I know very little about E. The E scanner is
very simple and more or less expects files generated by ShowModule
version~1.7. This is because all I know about the format of E files is
gathered from a few fragments of the output from ShowModule. Of course
GenerateIndex MAY work on other files but I cannot give any guarantees at
all. I would like feed-back as to how sufficient you find the E scanner.

Also as a result of my limited knowledge of E, the scanner does not (yet)
figure out exactly what part of the include file each reference is limited
to. Therefore FetchRefs will load the entire file and just make the editor
jump to the line where the reference begins. This works, but of course it
would be nicer if you only had to wait for the right part of the include
file to load.

There is not much to say about the different scan methods; CONST will of
course toggle whether any constant definitons such as MODE_OLDFILE should
be included in the index. OBJECT toggles indexing of the objects (in other
languages knows as data structures).
The PROC scanner can be used if you have some modules and have run them
through ShowModule to get a list of all the functions in the modules. By
indexing this list you can quickly get a quick reminder on the arguments
of a function. Of course this should not be used if you have a complete
AutoDoc for the module. However, you seldom have an AutoDoc if it is for
example your own, private module.

1.20 Asm includes

To be honest: making the Assembler scanner was an unplesant experience and
it did not even turn out perfectly! The problem is that most of the things
the scanner looks for is actually just macros. Therefore I had to not just
scan for certain words but also to some extent emulate the macros used.

I think I have managed to get it working most of the time but I also think
that it is still possible to confuse GenerateIndex, especially if you scan
’exec/types.i’. A line such as

STRUCTURE MACRO

will make GenerateIndex believe that both a STRUCTURE (named MACRO) and a
MACRO (named STRUCTURE) is defined while only the latter is actually the
case. More problems exist with ’exec/types.i’ but most of them will just
generate a few weired references that you will never meet anyway.

I do not use the Assembler scanner myself and is therefore very interested
in your opinion on how well it works!

The only other thing really worth mentioning is that GenerateIndex will
unroll BITDEF definitions and generate both the bit number and bit mask

FetchRefs documentation 13 / 29

name. For example: "BITDEF~MEM,CLEAR,16" will generate two references
(named MEMF_CLEAR and MEMB_CLEAR) to the same line. Apart from this, the
Assembler scanners should work as expected.

The Assembler scanner WILL understand comments and ignore the stuff in
them. A comment is everything after a ’;’ or a ’*’. This may lead to minor
problems with constants declared as ’;’ or ’*’ but usually they should
occour in situations where they are not confusing GenerateIndex.

1.21 Other options

These options are global in that they apply to each and every ←↩
file no

matter if it is an AutoDoc, a C include file or whatever.

Scan drawers recursively

Keep~files~without~references

Unrecognized~files

1.22 Scan drawers recursively

With this option you can specify if you want the directory ←↩
scan to be

recursive. That is, if GenerateIndex comes to a directory, should it look
into it for more files?

The scan will always take directories you specifically specify into
account. Let us say you have this directory tree:

a --- b --- c

Now, if you are on the level with the directory ’a’ (as well as some
files, possibly), you could multi-select several files/drawers. Let us say
you included ’a’. If you have recursive scan turned on, GenerateIndex will
pick all files in directory ’a’, all files in directory ’b’, all files in
directory ’c’ and so on - for all drawers that are on a lower level than
’a’.
Had the recursive scan been turned OFF, GenerateIndex WOULD scan all files
in ’a’ (that is, all files on the same level as directory ’b’), but it
would not go any deeper. Therefore it would pick no files on the same
level as ’c’.

The same is the case when you specify Shell arguments (
FROM
), only this

time you will have to enter the directory names instead of clicking on
them. If DH0:a is a directory, specifying ’DH0:a’ as a FROM file and
leaving recursivity off will scan all *files* in ’a’ but not any

directories.

FetchRefs documentation 14 / 29

Damn, recursivity is so simple, yet so hard to clearly explain :-(.

1.23 Keep files without references

This option toggles whether files that contains no references ←↩
should be

included in the index anyway. This is useful if you use the FILEREF option
of

FR_GET
(in FetchRefs).

For example, if you have turned scanning for #define’s and typedef’s off,
exec/types.h would contain no references as it contains no structs. But if
you search for ’types’ you will still want types.h to show up; therefore
the file must be included even though it contains no references.

On the other hand; if you do not use FILEREF, there is no reason for
including empty files - that will just make the index file bigger.
However, other than that it will not hurt so the general advice is to
activate this option.

1.24 Unrecognized files

If GenerateIndex is unable to figure the kind of a file out it can either
just forget the file or it can treat it like an AutoDoc.

If you scan AutoDocs that lack the "TABLE OF CONTENTS" line in the
beginning (which is wrong) then you should set this option to "AutoDocs"
as they will otherwise not be scanned. On the other hand, if you are not
scanning AutoDocs you will not want GenerateIndex to try to read other
files as AutoDocs as this can be a rather confusing experience for
GenerateIndex.

Generally you should only use this option (i.e. set it to "AutoDocs") if
you experience problems when scanning AutoDocs.

1.25 Windows

GenerateIndex has several windows, each used to do different ←↩
things.

Following this is a description of each window and what you can do with
it.

The~main~window

The~edit~window

FetchRefs documentation 15 / 29

The~options~window

1.26 The main window

The main window is the window that is first opened when ←↩
you start

GenerateIndex. This window is for the biggest part covered by a listview
gadget, containg the names of all the files you have indexed so far. Below
this is a little gadget showing how many references the currently selected
file contains. Even further down are four gadgets and if you press the
right mouse button you will find some menus.

Add...

Edit...

Rescan

Delete

Menus

1.27 Add...

This gadget will open a file requester. Any file you select here ←↩
will get

scanned and added to the list. Depending on the kind of file it is and how
you set the

options
, the actual scanning procedure may vary.

You can select several files in one go: hold down a shift key and select
all the files you please by clicking on each of them a single time. It is
not possible to select files in different levels of the directory hierachy
- to do this you will have to select ’Add...’ several times.

Depending on the set
options
, directories selected may be scanned

recursively or not.

1.28 Edit...

Clicking on this gadget will open
the~edit~window
. The same effect can

be achieved by double clicking on an item in the list view.

FetchRefs documentation 16 / 29

1.29 Rescan

This will scan the currently selected file again, with the options ←↩
set at

the time you select rescan. This could be used if you set some options
wrong and do not feel like selecting files again. However, as you have to
rescan each file seperately it will probably be faster to just

delete
them all and then
add...

them if you have a big number of files to
rescan.

A thing to note is that the file could disappear if you rescan it with
some options that produce no references and do not have the

Keep~files~without~references
option set.

1.30 Delete

Without any warning, this gadget deletes the currently selected ←↩
file from

the list. This is mainly useful if you by accident included a file too
much when you generated the index or if you added some files with wrong

options
.

1.31 Menus

The following menu items are attached to the main window of ←↩
GenerateIndex.

Clear

Load~data...

Save~data...

Options...

About...

Quit

FetchRefs documentation 17 / 29

1.32 Clear

This will clear the entire list of indexed files and thus begin a new
index file. A warning will be given before flushing the list.

1.33 Load data...

’Load data’ will load an index file previously saved with
Save~data...
.

If some files are already indexed, GenerateRefs will ask whether it should
clear the list before loading or if it should append the file you specify
to the end of the list.

Warning: In the current version, FetchRefs has no ID in its index files.
Therefore it can not distinguish real index files from anything else but
will treat all specified files equally. Loading a non-FetchRefs file is a
VERY bad idea!

1.34 Save data...

’Save data’ simply saves the entire index to a files which can then later
be loaded by FetchRefs or GenerateIndex.

By default, FetchRefs is set to use S:FetchRefs.index as its index file,
so by specifying this name you do not have to change any settings for
FetchRefs. This is due to the tool types I have defined for you; if you
start FetchRefs or GenerateIndex from the Shell, no default name is
specified.

1.35 Options...

This menu item opens
the~options~window
.

1.36 About...

About shows the version number and compilation date of the GenerateIndex
you are using, as well as my name. Nothing interesting in here :-).

FetchRefs documentation 18 / 29

1.37 Quit

Quit will abort GenerateIndex. If you have not saved your data file it
will be lost without a warning. The exact same action is performed if you
click in the close gadget of the main window.

1.38 The edit window

This window is much like
the~main~window
, only this time the list

contains all the references in the file currently selected in the main
window. Furthermore, more information is shown.

Some of the information entries speak for themselves; however, it should
be noted that the Offset and Length are counted as bytes in the original
file.

’Line’ is counted in lines from the start of the reference (Offset) and is
the number of lines to jump in the reference to find the start of the
"important" stuff.
For example, when indexing C include files, all comments from the previous
struct and up till the current is included in the reference. This is
because the comments before a struct definiton often contain useful notes.
However, the most important information is the struct itself and therefore
Line will be equal to the number of lines the comments before the struct
fills out.

FR_GET
will return this number upon a successful reference

look-up so the ARexx script can figure out where to position the cursor.

If Length is -1 it simply means "the entire file". The actual length is
figured out by FetchRefs once it is fetching that particular reference.

Should you not understand the above explanations, do not worry! Most
probably you need not know about it - actually you should only rarely need
to open the edit window at all!

The Okay gadget will close the edit window while "Delete" will delete the
selected reference. This is useful if you have several references of the
same name but only really needs one of them - this way you can delete the
others and keep FetchRefs from popping up its window, asking which one you
want.

The original idea was that this window should allow you to change the
informations as well, but I came to think of what that could be used for
and I figured out: not much. So, the only editing capability is really the
ability to delete specified references.

1.39 The options window

FetchRefs documentation 19 / 29

This window is opened by selecting the menu item
Options...
. It contains

many gadgets to configure the scan phase of GenerateIndex to act exactly
like you want it to.

Furthermore it has a little menu to enable you to load and save your
settings. This is only needed if you need more than one set of settings.

Otherwise you will use the Save and/or Use gadgets which will save the
settings to the files "ENVARC:FetchRefs_GI.prefs" respectively
"ENV:FetchRefs_GI.prefs".

The Cancel gadget and close icon of the window will both leave the options
window and set the options back to what they were when the window was
first opened.

This should all be close to the standard Preferences behaviour and hard to
misunderstand ;-).

See the
options
part for further information on what the other gadgets

actually do.

1.40 Using FetchRefs

Please note that before you can use FetchRefs at anything, you ←↩
will have

to generate an index file. Without this index file FetchRefs would become
very, very slow at finding a reference.
Therefore; before you do anything else, you should make sure that you’ve
read and understood the

Using~GenerateIndex
chapter. Ok, so the index

file is ready? Then you may continue.

FetchRefs can be started either via Workbench or the Shell; both has
advantages as well as disadvantages, which I will not discuss deeply here.
Depending on what method you prefer, you will have to enter the arguments
differently (tool types versus command line options). I will asume that
you know how to pass arguments, and just list what they actually are to
FetchRefs.

The~arguments

The~ARexx~interface

1.41 The arguments

FetchRefs documentation 20 / 29

The syntax of FetchRefs is (in standard AmigaDos notation):

FILES/M,PORTNAME,RUNONCE/S

If you prefer this BNF-like approach, then it should mean the same:

FetchRefs [FILES {wildcard}] [PORTNAME <name>] [RUNONCE]

As you can see(?), you can specify as many FILES arguments (index files)
as you please, and you do not have to enter the word ’FILES’. However, if
you want to use any of the other options you will have to specify the
keyword also.
If you want to use tool types (by starting via Workbench/WBStartup), you
simply enter each argument as a tool type. To enter several index FILES
you simply make several tool type lines, all starting with ’FILES=’

In the following sections, each argument is explained.

FILES

PORTNAME

RUNONCE

1.42 FILES

The FILES argument specifies what index file(s) FetchRefs should ←↩
initially

load. This/these file(s) are generated by GenerateIndex and are unreadable
for anything but FetchRefs/GenerateIndex. From the Shell you can enter as
many FILES as you please, simply by listing them one after another. It is,
however, suggested that you keep the index to one file, for two reasons:

1. It is faster to load one big file than ten small ones
2. You get less confused with just one file

One issue to remember is that what you specify via the FILES argument are
not really file names but rather wild card specifications. This means that
you can use all the standard things like # ? [] and so on to specify the
FILES. If you enter a wild card that matches no files, a warning is
written to the Shell window (nothing happens when run from Workbench).
This can be handy mostly if you specify the name without wildcards but
make a typing mistake; except from that warning, FetchRefs will just
consider it a wild card with no match and do nothing more about it.

It is not required that you enter any FILES. For example, people with very
limited memory might want to have no files loaded and then use the ARexx
function

FR_NEW
to load the index file right before they use

FR_GET
to

fetch the reference.

FetchRefs documentation 21 / 29

Concerning memory usage, only the FILES that can fit in memory are loaded.
If several FILES are specified, some might be loaded while others might
not, depending on the amount of free memory.
If an unfragmented piece of memory which is at least as big as the index
file exists, a fast loading routine is used. If this is not the case, a
slow routine is used. This slow routine does not care whether the memory
is unfragmented, as long as it exists - but it is both real slow and
requires some more memory than the fast one (to keep track of all the
small chunks it allocates).
Generally this is no problem as no-one want to have an index file so big
that they have no memory left - instead one would chose to have less
references in it, e.g. by not indexing #define statements (for C include
files).

1.43 PORTNAME

The PORTNAME argument specifies what the name of FetchRefs’s ARexx port
should be. The default is ’FETCHREFS’. If a port of the specified (or
default) name already exists, a suffix of ".nn" will be applied where nn
is a number increasing from 01 to 99 until a free port is found. If
FetchRefs is unable to find a free port name it will exit with an error
message telling you that there is no free store. This is very unlikely,
however.

By the way, I do not see any reason why you’d want to change the name of
the ARexx port.

1.44 RUNONCE

If you use the RUNONCE argument, FetchRefs will not allow several ←↩
copies

of itself to run at the same time. Instead, when you run FetchRefs for the
second time, it will signal the already running copy to quit. You can then
run FetchRefs for a third time and have it installed again.

The way FetchRefs uses to signal the already running copy is to send it
the ARexx message

FR_QUIT
. Therefore the new FetchRefs needs to know the

port name of the running copy. Unless you specified a special name when
the first copy was run, this is no problem - ’FETCHREFS’ is used by
default both times. However, if you DID change the portname for the first
copy, you need to specify the SAME name (using the

PORTNAME
argument)

when you run FetchRefs to quit it!

RUNONCE is only needed when you want to quit an already running copy. You
can specify RUNONCE even when no FetchRefs with the specified port name is
running but in this case the RUNONCE argument is simply ignored.

FetchRefs documentation 22 / 29

1.45 The ARexx interface

FetchRefs has an ARexx interface which makes it fit into ←↩
actually any

environment as long as the editor used also has ARexx support. The ARexx
part of FetchRefs is really divided in two parts: the actual ARexx
functions of FetchRefs and the supplied scripts, which are needed to
interact with the editor.

For the most basic usage of FetchRefs you do not need to know particulary
much about any of these, but if you want to customize FetchRefs a bit you
will probably want to know how and why FetchRefs does what and when.
In any case you should read the

FR_GET
part as it covers a big part of

what FetchRefs offers.

One VERY important thing to remember is that ARexx MUST be running in the
background before you can use the ARexx interface of FetchRefs (or any
other product for that matter - including your editor). This is normally
done in the s:startup-sequence by calling RexxMast, so unless you have
changed your Amigas start up procedure this should not be a problem.
If you HAVE mingled with the s:startup-sequence, or if you are not
starting using the standard Workbench disk, you should make very certain
that you are still executing RexxMast.
If you use Workbench, you can move the RexxMast icon from your System
drawer into your WBStartup drawer; but once again: this is ONLY if it is
not present in your s:startup-sequence.

The~ARexx~commands

ARexx~scripts

1.46 The ARexx commands

FetchRefs supports just a few ARexx commands but they cover ←↩
everything

FetchRefs has to offer... actually ARexx is the only way to activate
FetchRefs!

Below all the ARexx commands are described. They are also provided in the
file called FetchRefs.doc (without icon) in a format that is directly
suitable for processing by GenerateIndex (standard AutoDoc format). This
file could be the data for your first test run :-).

FR_ADD

FR_CLEAR

FR_GET

FR_NEW

FetchRefs documentation 23 / 29

FR_QUIT

1.47 FR_ADD

FetchRefs/FR_ADD FetchRefs/FR_ADD

NAME
FR_ADD -- load additional index files

SYNOPSIS
FR_ADD FILE/M

FR_ADD [wildcard ...]

FUNCTION
FR_ADD will load extra index files and add them to the internal
list. The index files already in memory are not removed.

INPUTS
FILE/M - wild card specification(s) for the index files to load.

RESULTS
None.

BUGS
None known.

SEE ALSO
FR_CLEAR, FR_NEW

1.48 FR_CLEAR

FetchRefs/FR_CLEAR FetchRefs/FR_CLEAR

NAME
FR_CLEAR -- remove any index files from memory

SYNOPSIS
FR_CLEAR

FUNCTION
Free all memory allocated to store loaded index files. Most of the
memory FetchRefs uses is for the index file(s), so this will put
FetchRefs in a low-memory sleep mode. By later calling FR_ADD or
FR_NEW the original state can again be achived.

INPUTS
None.

RESULTS

FetchRefs documentation 24 / 29

None.

BUGS
None known.

SEE ALSO
FR_ADD, FR_NEW

1.49 FR_GET

FetchRefs/FR_GET FetchRefs/ ←↩
FR_GET

NAME
FR_GET -- get a reference into a file or the clipboard

SYNOPSIS
FR_GET FIND/A,TO/A,PUBSCREEN,FILEREF/S,CASE/S

FR_GET keyword filename [public screen name] [FILEREF] [CASE]

FUNCTION
Searches the internal list for a name matching the FIND keyword.

The FIND argument is a wild card. Thus you can search on things
like "Open#?" and get a long list of functions starting with
"Open". Many more wild cards exist, if you do not know how to use
them you should do yourself the favour of learning them - they are
quite powerfull in other situations, too. Of course you can ignore
the wild card feature completely if you know exactly what you are
searching for - or if you do not know wild cards :-).

One important note here: though FR_GET supports all wild cards,
the provided ARexx scripts do not! Only # and ? are supported
through the scripts, except

the~script~for~Shell
which also

supports all wild cards. Confusing, eh?

When no matches are found, an error is returned. If excatly one is
found, the reference is written to the filename specified by the
TO argument. If several references exist to the same keyword, a
window pops up (on the default screen or whatever screen is
specified by the PUBSCREEN argument, see below). This window
contains a listview gadget with the file names of all the files
that contains a reference of the requested name. A double click on
any of these files will get the reference bound to this file. If
the window is closed or Esc is pressed an error, "FetchRefs:
Aborted!", is returned.

The screen, on which this window is to be opened, is specifed by
using the PUBSCREEN argument. You specify the name of a public
screen which may not be in private mode (they rarely are). If the
specified screen is not available (non-existent or non-public) or

FetchRefs documentation 25 / 29

if you do not specify PUBSCREEN at all then FetchRefs will open
the window on the currently active screen. Should this not be
public, the default public screen (usually Workbench) is used.
No matter where the window opens that screen will be brought to
front (if it is not already there). When you have finished the
selection and the window closes, the screen is again put behind
the other screens (but only if it was brought to front in the
first place).

If the FILEREF argument is given, each of the files in the index
file will be considered a reference themselves. The name of the
reference is the filename without any leading path or suffixes.
For example, the file ’DINCLUDE:Amiga30/exec/types.h’ would be
considered a match if you search for the reference ’types’. The
reason for this truncation is mainly due to the way FetchRefs
works otherwise; types.h must be truncated at the dot if ’types’
was a structure and not a file name - and FetchRefs really has no
way of knowing what it actually is, until the match is already
found; so, the most sensible idea seemed to trucate everything at
the first non alpha-numeric character.

Depending on whether you set the CASE flag or not, the comparsion
of the reference names is either case sensitive (CASE specified)
or case in-sensitive. While case in-sensitivity is a good idea
when you are not certain what you are searching for, case
sensitivity will reduce the number of matches when you search for
something that exist twice, only with different capitalization -
and with a reduced number of matches, you get less confused :-).

To put the reference into the clipboard instead of a file, a
filename of "CLIPnn" should be specified, with nn being the number
of the clipboard unit you wish to use. The "CLIP" word must be in
uppercase, otherwise the name is considered an usual file name.

INPUTS
FIND/A - name of reference to search for. Wild cards accepted.
TO/A - file name to put the result into. "CLIPnn" specifies

the clipboard unit nn.
PUBSCREEN - public screen to open "select reference" window on.

Default is the currently active screen (if public,
otherwise the default public screen).

FILEREF - let a reference search on the base name of a file
match with the entire file.

CASE - activate case sensitive search.

RESULTS
rc will be 0 on success, 10 otherwise.

rc2 contains additional information; if rc is 10 then it will be a
text string describing the error, otherwise rc2 is a number
specifying at what line the most important part of the reference
begins. What is most important depends on the kind of file the
reference is in, but basically if rc is zero, you will most likely
want to jump to line rc2 after having loaded the generated file
into your editor.

BUGS

FetchRefs documentation 26 / 29

None known.

SEE ALSO

1.50 FR_NEW

FetchRefs/FR_NEW FetchRefs/FR_NEW

NAME
FR_NEW -- clear internal index list and load a new

SYNOPSIS
FR_NEW FILE/M

FR_NEW [wildcard ...]

FUNCTION
This is a combination of FR_CLEAR and FR_ADD and results in the
internal list being set to nothing but what’s specified by the
FILE arguments.

INPUTS
FILE/M - wild card specification(s) describing what files to load

instead of the current list.

RESULTS
None.

BUGS
None known.

SEE ALSO
FR_ADD, FR_CLEAR

1.51 FR_QUIT

FetchRefs/FR_QUIT FetchRefs/ ←↩
FR_QUIT

NAME
FR_QUIT -- force FetchRefs to quit

SYNOPSIS
FR_QUIT

FUNCTION
Will send a ^C signal to the FetchRefs process that owns the ARexx
port. This will force FetchRefs to free all allocated memory,
close down the ARexx port and exit.
A similar effect can be achived by using the C:Break program,

FetchRefs documentation 27 / 29

running FetchRefs again with the
RUNONCE
argument or by sending

a ^C by any other means.

INPUTS
None.

RESULTS
None.

BUGS
None known.

SEE ALSO
exec.library/Signal :-)

1.52 ARexx scripts

Included in the FetchRefs distribution are some pre-made ARexx ←↩
scripts for

popular editors (the list is shown by the Installer script).

I consider it your problem to figure out how you execute the script from
your particular editor. The basic idea, however, is to assign the command
"execute arexx script ’GoFetchRefs’" to a key and then simply press that
key when your cursor is at the start of the word you want a reference for.
If the cursor is in the middle of something, FetchRefs will believe the
word starts here and most likely NOT find any reference (this is a
feature, btw).

If you want to change the options of FetchRefs (as described in
FR_GET
)

you must locate the line starting with "FR_GET" and change it according to
your needs. This line is present in all the scripts.

If you enhance a script or invent an entirely new script for an editor
that is currently not yet supported, I would be very interested in getting
a copy so I can distribute it along with further versions of FetchRefs
that might be.

The~script~for~Shell

1.53 The script for Shell

Apart from all the scripts for editors, a generic one is also supplied.
This script does not need any editor and just prints the reference to a
Shell window. You execute it from a Shell prompt like this:

FetchRefs documentation 28 / 29

Shell> rx GoFetchRefs OpenScreen

Of course you change "OpenScreen" to whatever you want to search for. Wild
cards are accepted, so you could go "rx GoFetchRefs (Open|Close|%)Screen"
- if you should happen to know these wild cards ;-).

1.54 Problems and tricks-tips-hints

Below is a list of the problems I figured you could encounter ←↩
. It is

probably very incomplete as it is quite hard for me to guess what you
cannot figure out. Therefore I would very much like you to send me a
letter if you come across a problem that is not described here; only that
way I can include the problem in this list and possibly save others from
the trouble you had.

Unsupported~editor

Limited~memory

FetchRefs~does~not~understand~AmigaGuide~AutoDocs!

1.55 Unsupported editor

The greatest problem is most likely that you use an editor which I have
not provided a script for. I cannot really help you with that one, because
if I had had access to that editor I would have made an ARexx script for
it. If it is a freely distributeable editor you can send me a copy and I
will provide the script (remember that I cannot make the script if I do
not know the editor’s commands so I also need a copy of the
documentation).

If your editor does not have an ARexx port or the port is very limited,
you are probably out of luck and should look around for another editor.
The functions that the port should be capable of doing are:

- Get the current word (the word the cursor is at)
- Open a new window/view
- Load a file into the newly created window

A function to jump to a specified line is handy for include file
references and it will give a more integrated system if there is a way to
tell if anything went wrong. However, this is not really required. If the
editor does not support the above mentioned functions, I honestly cannot
see how it should work. It is, however, some of the most basic functions I
can think of, so if the editor has an ARexx port, it probably supports
them in some way.
If the editor cannot return the current word or if it has a ’wrong’ way of
thinking what a word is (it is NOT from white space to white space) then
you are not completely out of luck: if the editor can tell about the

FetchRefs documentation 29 / 29

entire currently active line as well as the column the cursor is at, you
will be able to get the word from these. I do this myself in for example
the GoldED script.

I have been able to make scripts for all the editors I have tried, but not
without some problems. By reading the various scripts you may be able to
learn a few tricks, though a certain limitation of a certain editor can be
hard to work around.

If you should succeed in creating a new script I would be happy to get a
copy of it so that I can include it in a future release.

1.56 Limited memory

The index file that FetchRefs uses is quite big to keep in RAM ←↩
all the

time - considering that it is not used very often.

A solution would be to make a script the invokes the
FR_CLEAR

and

FR_ADD
ARexx commands. This way you can flush the index whenever you do

not use it. With a relatively fast harddisk this will make each loop-up
take just a little longer and you only use the RAM for the index file when
you actually need it.
I have not implemented this into the ARexx scripts provided as I wanted to
keep them quite simple - by getting sophisticated, more people will
experience problems with their particular setup.

1.57 FetchRefs does not understand AmigaGuide AutoDocs!

The original AutoDocs are plain text files with a very simple format.
There exist, however, programs to convert these files into different
formats - a very popular one being the AmigaGuide format (just like this
guide). With the AutoDocs as a guide you can jump in the text by simply
clicking on the function name, etc. that you want information about.

This does not work very well together with FetchRefs as GenerateIndex does
not understand how to scan guides for keywords. Therefore you need to have
the original AutoDocs installed if you want to use FetchRefs - however,
with FetchRefs running, regular AutoDocs are just as useful as those fancy
guides.

	FetchRefs documentation
	FetchRefs documentation
	Introduction
	Special features
	Useful information
	Registration
	Updates
	The source code
	Author
	Using GenerateIndex
	Requirements
	Arguments
	FROM
	TO
	SETTINGS
	Options
	Files options
	AutoDocs
	C includes
	E includes
	Asm includes
	Other options
	Scan drawers recursively
	Keep files without references
	Unrecognized files
	Windows
	The main window
	Add...
	Edit...
	Rescan
	Delete
	Menus
	Clear
	Load data...
	Save data...
	Options...
	About...
	Quit
	The edit window
	The options window
	Using FetchRefs
	The arguments
	FILES
	PORTNAME
	RUNONCE
	The ARexx interface
	The ARexx commands
	FR_ADD
	FR_CLEAR
	FR_GET
	FR_NEW
	FR_QUIT
	ARexx scripts
	The script for Shell
	Problems and tricks-tips-hints
	Unsupported editor
	Limited memory
	FetchRefs does not understand AmigaGuide AutoDocs!

