
automake

automake ii

COLLABORATORS

TITLE :

automake

ACTION NAME DATE SIGNATURE

WRITTEN BY January 15, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

automake iii

Contents

1 automake 1

1.1 automake.guide . 1

1.2 automake.guide/Introduction . 2

1.3 automake.guide/Invoking Automake . 3

1.4 automake.guide/Generalities . 5

1.5 automake.guide/General Operation . 5

1.6 automake.guide/Depth . 6

1.7 automake.guide/Strictness . 6

1.8 automake.guide/Uniform . 7

1.9 automake.guide/Canonicalization . 8

1.10 automake.guide/configure . 9

1.11 automake.guide/Requirements . 9

1.12 automake.guide/Optional . 10

1.13 automake.guide/Invoking aclocal . 12

1.14 automake.guide/Macros . 12

1.15 automake.guide/Extending aclocal . 13

1.16 automake.guide/Top level . 13

1.17 automake.guide/Programs . 14

1.18 automake.guide/A Program . 15

1.19 automake.guide/A Library . 16

1.20 automake.guide/LIBOBJS . 17

1.21 automake.guide/Program variables . 17

1.22 automake.guide/Yacc and Lex . 18

1.23 automake.guide/C++ . 18

1.24 automake.guide/ANSI . 18

1.25 automake.guide/Dependencies . 19

1.26 automake.guide/Other objects . 20

1.27 automake.guide/Scripts . 20

1.28 automake.guide/Headers . 21

1.29 automake.guide/Data . 21

automake iv

1.30 automake.guide/Sources . 21

1.31 automake.guide/Other GNU Tools . 22

1.32 automake.guide/Emacs Lisp . 22

1.33 automake.guide/gettext . 22

1.34 automake.guide/Documentation . 23

1.35 automake.guide/Texinfo . 23

1.36 automake.guide/Man pages . 24

1.37 automake.guide/Install . 24

1.38 automake.guide/Clean . 25

1.39 automake.guide/Dist . 25

1.40 automake.guide/Tests . 26

1.41 automake.guide/Options . 26

1.42 automake.guide/Miscellaneous . 28

1.43 automake.guide/Tags . 28

1.44 automake.guide/Suffixes . 29

1.45 automake.guide/Built . 29

1.46 automake.guide/Extending . 29

1.47 automake.guide/Distributing . 30

1.48 automake.guide/Examples . 30

1.49 automake.guide/Hello . 31

1.50 automake.guide/Tricky . 31

1.51 automake.guide/Automake . 32

1.52 automake.guide/Textutils . 34

1.53 automake.guide/Future . 36

1.54 automake.guide/Variables . 36

1.55 automake.guide/Configure variables . 39

1.56 automake.guide/Targets . 41

automake 1 / 43

Chapter 1

automake

1.1 automake.guide

GNU Automake

This file documents the GNU Automake package for creating GNU
Standards-compliant Makefiles from template files. This edition
documents version 1.1e.

Introduction
Automake’s purpose

Invoking Automake
Creating a Makefile.in

Generalities
General ideas

configure
Scanning configure.in

Top level
The top-level Makefile.am

Programs
Building programs and libraries

Other objects
Other derived objects

Other GNU Tools
Other GNU Tools

Documentation
Building documentation

Install
What gets installed

automake 2 / 43

Clean
What gets cleaned

Dist
What goes in a distribution

Tests
Support for test suites

Options
Changing Automake’s behavior

Miscellaneous
Miscellaneous rules

Extending
Extending Automake

Distributing
Distributing the Makefile.in

Examples
Some example packages

Future
Some ideas for the future

Variables
Index of variables

Configure variables
Index of configure variables and macros

Targets
Index of targets

1.2 automake.guide/Introduction

Introduction

Automake is a tool for automatically generating ‘Makefile.in’s from
files called ‘Makefile.am’. The ‘Makefile.am’ is basically a series of
‘make’ macro definitions (with rules being thrown in occasionally).
The generated ‘Makefile.in’s are compliant with the GNU Makefile
standards.

The GNU Makefile Standards Document (see Makefile Conventions) is
long, complicated, and subject to change. The goal of Automake is to
remove the burden of Makefile maintenance from the back of the
individual GNU maintainer (and put it on the back of the Automake
maintainer).

automake 3 / 43

The typical Automake input files is simply a series of macro
definitions. Each such file is processed to create a ‘Makefile.in’.
There should generally be one ‘Makefile.am’ per directory of a project.

Automake does constrain a project in certain ways; for instance it
assumes that the project uses Autoconf (see The Autoconf Manual), and
enforces certain restrictions on the ‘configure.in’ contents.

‘Automake’ requires ‘perl’ in order to generate the ‘Makefile.in’s.
However, the distributions created by Automake are fully GNU
standards-compliant, and do not require ‘perl’ in order to be built.

Mail suggestions and bug reports for Automake to
bug-gnu-utils@prep.ai.mit.edu.

1.3 automake.guide/Invoking Automake

Creating a ‘Makefile.in’

To create all the ‘Makefile.in’s for a package, run the ‘automake’
program in the top level directory, with no arguments. ‘automake’ will
automatically find each appropriate ‘Makefile.am’ (by scanning
‘configure.in’; see

configure
) and generate the corresponding

‘Makefile.in’.

You can optionally give ‘automake’ an argument; ‘.am’ is appended to
the argument and the result is used as the name of the input file.
This feature is generally only used to automatically rebuild an
out-of-date ‘Makefile.in’. Note that ‘automake’ must always be run
from the topmost directory of a project, even if being used to
regenerate the ‘Makefile.in’ in some subdirectory. This is necessary
because ‘automake’ must scan ‘configure.in’, and because ‘automake’
uses the knowledge that a ‘Makefile.in’ is in a subdirectory to change
its behavior in some cases.

‘automake’ accepts the following options:

‘-a’
‘--add-missing’

Automake requires certain common files to exist in certain
situations; for instance ‘config.guess’ is required if
‘configure.in’ runs ‘AC_CANONICAL_HOST’. Automake is distributed
with several of these files; this option will cause the missing
ones to be automatically added to the package, whenever possible.
In general if Automake tells you a file is missing, try using this
option.

‘--amdir=DIR’
Look for Automake data files in directory DIR instead of in the
installation directory. This is typically used for debugging.

automake 4 / 43

‘--build-dir=DIR’
Tell Automake where the build directory is. This option is used
when including dependencies into a ‘Makefile.in’ generated by ‘make
dist’; it should not be used otherwise.

‘--foreign’
An alias for ‘--strictness=foreign’.

‘--gnits’
An alias for ‘--strictness=gnits’.

‘--gnu’
An alias for ‘--strictness=gnu’.

‘--help’
Print a summary of the command line options and exit.

‘-i’
‘--include-deps’

Include all automatically generated dependency information (see

Dependencies
) in the generated ‘Makefile.in’. This is generally

done when making a distribution; see See
Dist
.

‘-o DIR’
‘--output-dir=DIR’

Put the generated ‘Makefile.in’ in the directory DIR. Ordinarily
each ‘Makefile.in’ is created in the directory of the
corresponding ‘Makefile.am’. This option is used when making
distributions.

‘--srcdir-name=DIR’
Tell Automake the name of the source directory used in the current
build. This option is used when including dependencies into a
‘Makefile.in’ generated by ‘make dist’; it should not be used
otherwise.

‘-s LEVEL’
‘--strictness=LEVEL’

Set the global strictness to LEVEL; this can be overridden in each
‘Makefile.am’ if required. See

Generalities
for more information.

‘-v’
‘--verbose’

Cause Automake to print information about which files are being
read or created.

‘--version’
Print the version number of Automake and exit.

automake 5 / 43

1.4 automake.guide/Generalities

General ideas

There are a few basic ideas that will help understand how Automake
works.

General Operation
General operation of Automake

Depth
The kinds of packages

Strictness
Standards conformance checking

Uniform
The Uniform Naming Scheme

Canonicalization
How derived variables are named

1.5 automake.guide/General Operation

General Operation
=================

Automake essentially works by reading a ‘Makefile.am’ and generating
a ‘Makefile.in’.

The macro definitions and targets in the ‘Makefile.am’ are copied
into the generated file. This allows you to add essentially arbitrary
code into the generated ‘Makefile.in’. For instance the Automake
distribution includes a non-standard ‘cvs-dist’ target, which the
Automake maintainer uses to make distributions from his source control
system.

Note that GNU make extensions are not recognized by Automake. Using
such extensions in a ‘Makefile.am’ will lead to errors or confusing
behavior.

Automake tries to group comments with adjoining targets (or variable
definitions) in an intelligent way.

A target defined in ‘Makefile.am’ generally overrides any such

automake 6 / 43

target of a similar name that would be automatically generated by
‘automake’. Although this is a supported feature, it is generally best
to avoid making use of it, as sometimes the generated rules are very
particular.

When examining a variable definition, Automake will recursively
examine variables referenced in the definition. Eg if Automake is
looking at the content of ‘foo_SOURCES’ in this snippet

xs = a.c b.c
foo_SOURCES = c.c $(xs)

it would use the files ‘a.c’, ‘b.c’, and ‘c.c’ as the contents of
‘foo_SOURCES’.

Automake also allows a form of comment which is *not* copied into
the output; all lines beginning with ‘##’ are completely ignored by
Automake.

It is customary to make the first line of ‘Makefile.am’ read:

Process this file with automake to produce Makefile.in

1.6 automake.guide/Depth

Depth
=====

‘automake’ supports three kinds of directory hierarchy: "flat",
"shallow", and "deep".

A "flat" package is one in which all the files are in a single
directory. The ‘Makefile.am’ for such a package by definition lacks a
‘SUBDIRS’ macro. An example of such a package is ‘termutils’.

A "deep" package is one in which all the source lies in
subdirectories; the top level directory contains mainly configuration
information. GNU cpio is a good example of such a package, as is GNU
‘tar’. The top level ‘Makefile.am’ for a deep package will contain a
‘SUBDIRS’ macro, but no other macros to define objects which are built.

A "shallow" package is one in which the primary source resides in
the top-level directory, while various parts (typically libraries)
reside in subdirectories. ‘automake’ is one such package (as is GNU
‘make’, which does not currently use ‘automake’).

1.7 automake.guide/Strictness

Strictness
==========

automake 7 / 43

While Automake is intended to be used by maintainers of GNU
packages, it does make some effort to accommodate those who wish to use
it, but do not want to use all the GNU conventions.

To this end, Automake supports three levels of "strictness" - the
strictness indicating how stringently Automake should check standards
conformance.

The valid strictness levels are:

‘foreign’
Automake will check for only those things which are absolutely
required for proper operations. For instance, whereas GNU
standards dictate the existence of a ‘NEWS’ file, it will not be
required in this mode. The name comes from the fact that Automake
is intended to be used for GNU programs; these relaxed rules are
not the standard mode of operation.

‘gnu’
Automake will check - as much as possible - for compliance to the
GNU standards for packages. This is the default.

‘gnits’
Automake will check for compliance to the as-yet-unwritten GNITS
standards. These are based on the GNU standards, but are even more
detailed. Unless you are a GNITS standards contributor, it is
recommended that you avoid this option until such time as the GNITS
standard is actually published.

1.8 automake.guide/Uniform

The Uniform Naming Scheme
=========================

Automake variables generally follow a uniform naming scheme that
makes it easy to decide how programs (and other derived objects) are
built, and how they are installed. This scheme also supports
‘configure’ time determination of what should be built.

At ‘make’ time, certain variables are used to determine which
objects are to be built. These variables are called "primary"
variables. For instance, the primary variable ‘PROGRAMS’ holds a list
of programs which are to be compiled and linked.

A different set of variables is used to decide where the built
objects should be installed. These variables are named after the
primary variables, but have a prefix indicating which standard
directory should be used as the installation directory. The standard
directory names are given in the GNU standards (see
Directory Variables). ‘automake’ extends this list with ‘pkglibdir’,
‘pkgincludedir’, and ‘pkgdatadir’; these are the same as the non-‘pkg’
versions, but with ‘@PACKAGE@’ appended.

automake 8 / 43

For each primary, there is one additional variable named by
prepending ‘EXTRA_’ to the primary name. This variable is used to list
objects which may or may not be built, depending on what ‘configure’
decides. This variable is required because Automake must know the
entire list of objects to be built in order to generate a ‘Makefile.in’
that will work in all cases.

For instance, ‘cpio’ decides at configure time which programs are
built. Some of the programs are installed in ‘bindir’, and some are
installed in ‘sbindir’:

EXTRA_PROGRAMS = mt rmt
bin_PROGRAMS = cpio pax
sbin_PROGRAMS = @PROGRAMS@

Defining a primary variable is an error.

Note that the common ‘dir’ suffix is left off when constructing the
variable names; thus one writes ‘bin_PROGRAMS’ and not
‘bindir_PROGRAMS’.

Not every sort of object can be installed in every directory.
Automake will flag those attempts it finds in error. Automake will
also diagnose obvious misspellings in directory names.

Sometimes the standard directories - even as augmented by Automake -
are not enough. In particular it is sometimes useful, for clarity, to
install objects in a subdirectory of some predefined directory. To this
end, Automake allows you to extend the list of possible installation
directories. A given prefix (eg ‘zar’) is valid if a variable of the
same name with ‘dir’ appended is defined (eg ‘zardir’).

For instance, until HTML support is part of Automake, you could use
this to install raw HTML documentation:

htmldir = $(prefix)/html
html_DATA = automake.html

The special prefix ‘noinst’ indicates that the objects in question
should not be installed at all.

The special prefix ‘check’ indicates that the objects in question
should not be built until the ‘make check’ command is run.

Possible primary names are ‘PROGRAMS’, ‘LIBRARIES’, ‘LISP’,
‘SCRIPTS’, ‘DATA’, ‘HEADERS’, ‘MANS’, and ‘TEXINFOS’.

1.9 automake.guide/Canonicalization

How derived variables are named
===============================

Sometimes a Makefile variable name is derived from some text the user
supplies. For instance program names are rewritten into Makefile macro

automake 9 / 43

names. Automake canonicalizes this text, so that it does not have to
follow Makefile variable naming rules. All characters in the name
except for letters, numbers, and the underscore are turned into
underscores when making macro references. Eg, if your program is named
‘sniff-glue’, the derived variable name would be ‘sniff_glue_SOURCES’,
not ‘sniff-glue_SOURCES’.

1.10 automake.guide/configure

Scanning ‘configure.in’

Automake scans the package’s ‘configure.in’ to determine certain
information about the package. Some ‘autoconf’ macros are required and
some variables must be defined in ‘configure.in’. Automake will also
use information from ‘configure.in’ to further tailor its output.

Requirements
Configuration requirements

Optional
Other things Automake recognizes

Invoking aclocal
Auto-generating aclocal.m4

Macros
Autoconf macros supplied with Automake

Extending aclocal
Writing your own aclocal macros

1.11 automake.guide/Requirements

Configuration requirements
==========================

The simplest way to meet the basic Automake requirements is to use
the macro ‘AM_INIT_AUTOMAKE’ (FIXME: xref). But if you prefer, you can
do the required steps by hand:

* Define the variables ‘PACKAGE’ and ‘VERSION’ with ‘AC_SUBST’.
‘PACKAGE’ should be the name of the package as it appears when
bundled for distribution. For instance, Automake defines ‘PACKAGE’
to be ‘automake’. ‘VERSION’ should be the version number of the
release that is being developed. We recommend that you make
‘configure.in’ the only place in your package where the version

automake 10 / 43

number is defined; this makes releases simpler.

Automake doesn’t do any interpretation of ‘PACKAGE’ or ‘VERSION’,
except in ‘Gnits’ mode (FIXME xref).

* Use the macro ‘AC_ARG_PROGRAM’ if a program or script is installed.

* Use ‘AC_PROG_MAKE_SET’ if the package is not flat.

* Use ‘AM_PROG_INSTALL’ if any scripts (see
Scripts
) are installed

by the package. Otherwise, use ‘AC_PROG_INSTALL’.

Here are the other macros which Automake requires but which are not
run by ‘AM_INIT_AUTOMAKE’:

‘AC_OUTPUT’
Automake uses this to determine which files to create. Listed
files named ‘Makefile’ are treated as ‘Makefile’s. Other listed
files are treated differently. Currently the only difference is
that a ‘Makefile’ is removed by ‘make distclean’, while other files
are removed by ‘make clean’.

1.12 automake.guide/Optional

Other things Automake recognizes
================================

Automake will also recognize the use of certain macros and tailor the
generated ‘Makefile.in’ appropriately. Currently recognized macros and
their effects are:

‘AC_CONFIG_HEADER’
Automake will generate rules to automatically regenerate the config
header. If you do use this macro, you must create the file
‘stamp-h.in’ in your source directory. It can be empty. Also, the
‘AC_OUTPUT’ command in ‘configure.in’ must create ‘stamp-h’, eg:

AC_OUTPUT(Makefile,
[test -z "$CONFIG_HEADERS" || echo timestamp > stamp-h])

Note that Automake does not currently currently check to make sure
the ‘AC_OUTPUT’ command is correct. Hopefully a future version of
‘autoconf’ will let Automake handle this automatically.

‘AC_CONFIG_AUX_DIR’
Automake will look for various helper scripts, such as
‘mkinstalldirs’, in the directory named in this macro invocation.
If not seen, the scripts are looked for in their "standard"
locations (either the top source directory, or in the source
directory corresponding to the current ‘Makefile.am’, whichever is
appropriate). FIXME: give complete list of things looked for in
this directory

automake 11 / 43

‘AC_PATH_XTRA’
Automake will insert definitions for the variables defined by
‘AC_PATH_XTRA’ into each ‘Makefile.in’ that builds a C program or
library.

‘AC_CANONICAL_HOST’
‘AC_CANONICAL_SYSTEM’
‘AC_CHECK_TOOL’

Automake will ensure that ‘config.guess’ and ‘config.sub’ exist.

‘AC_FUNC_ALLOCA’
‘AC_FUNC_GETLOADAVG’
‘AC_FUNC_MEMCMP’
‘AC_STRUCT_ST_BLOCKS’
‘AM_FUNC_FNMATCH’
‘AM_FUNC_STRTOD’
‘AC_REPLACE_FUNCS’
‘AC_REPLACE_GNU_GETOPT’
‘AM_WITH_REGEX’

Automake will ensure that the appropriate source files are part of
the distribution, and will ensure that the appropriate
dependencies are generated for these objects. See

A Library
for

more information.

‘LIBOBJS’
Automake will detect statements which put ‘.o’ files into
‘LIBOBJS’, and will treat these additional files as if they were
discovered via ‘AC_REPLACE_FUNCS’.

‘AC_PROG_RANLIB’
This is required if any libraries are built in the package.

‘AC_PROG_CXX’
This is required if any C++ source is included.

‘AC_PROG_YACC’
If a Yacc source file is seen, then you must either use this macro
or declare the variable ‘YACC’ in ‘configure.in’. The former is
preferred.

‘AC_DECL_YYTEXT’
This macro is required if there is Yacc source in the package.

‘AC_PROG_LEX’
If a Lex source file is seen, then this macro must be used.

‘ALL_LINGUAS’
If Automake sees that this variable is set in ‘configure.in’, it
will check the ‘po’ directory to ensure that all the named ‘.po’
files exist, and that all the ‘.po’ files that exist are named.

‘AM_C_PROTOTYPES’
This is required when using automatic de-ANSI-fication, see See

ANSI

automake 12 / 43

.

‘ud_GNU_GETTEXT’
This macro is required for packages which use GNU gettext (see

gettext
). It is distributed with gettext. Automake uses this

macro to ensure that the package meets some of gettext’s
requirements.

‘AM_MAINTAINER_MODE’
This macro adds a ‘--enable-maintainer-mode’ option to
‘configure’. If this is used, ‘automake’ will cause
"maintainer-only" rules to be turned off by default in the
generated ‘Makefile.in’s. This macro is disallowed in ‘Gnits’
mode. FIXME xref.

1.13 automake.guide/Invoking aclocal

Auto-generating aclocal.m4
==========================

The ‘aclocal’ program will automatically generate ‘aclocal.m4’ files
based on the contents of ‘configure.in’.

... explain why on earth you’d want to do this

‘aclocal’ accepts the following options:

‘--acdir=DIR’
Look for the macro files in DIR instead of the installation
directory. This is typically used for debugging.

‘--help’
Print a summary of the command line options and exit.

‘--output=FILE’
Cause the output to be put into FILE instead of ‘aclocal.m4’.

‘--verbose’
Print the names of the files it examines.

‘--version’
Print the version number of Automake and exit.

1.14 automake.guide/Macros

Autoconf macros supplied with Automake
======================================

automake 13 / 43

‘AM_FUNC_FNMATCH’
If the ‘fnmatch’ function is not available, or does not work
correctly (like the one on SunOS 5.4), add ‘fnmatch.o’ to output
variable ‘LIBOBJS’.

‘AM_FUNC_STRTOD’
If the ‘strtod’ function is not available, or does not work
correctly (like the one on SunOS 5.4), add ‘strtod.o’ to output
variable ‘LIBOBJS’.

‘AM_C_PROTOTYPES’
‘AM_TIOCGWINSZ_NEEDS_IOCTL’
‘AM_INIT_AUTOMAKE’
‘AM_MAINTAINER_MODE’
‘AM_PATH_LISPDIR’
‘AM_PROG_CC_STDC’
‘AM_PROG_INSTALL’
‘AM_SANITY_CHECK_CC’
‘AM_SYS_POSIX_TERMIOS’
‘AM_TYPE_PTRDIFF_T’
‘AM_WITH_DMALLOC’
‘AM_WITH_REGEX’

1.15 automake.guide/Extending aclocal

Writing your own aclocal macros
===============================

... explain format of macro files ... explain how to get your own
macros installed (using acinstall) ... explain situations where this is
actually useful (eg gettext)

1.16 automake.guide/Top level

The top-level ‘Makefile.am’

In non-flat packages, the top level ‘Makefile.am’ must tell Automake
which subdirectories are to be built. This is done via the ‘SUBDIRS’
variable.

The ‘SUBDIRS’ macro holds a list of subdirectories in which building
of various sorts can occur. Many targets (eg ‘all’) in the generated
‘Makefile’ will run both locally and in all specified subdirectories.
Note that the directories listed in ‘SUBDIRS’ are not required to
contain ‘Makefile.am’s; only ‘Makefile’s (after configuration). This
allows inclusion of libraries from packages which do not use Automake
(such as ‘gettext’).

In a deep package, the top-level ‘Makefile.am’ is often very short.

automake 14 / 43

For instance, here is the ‘Makefile.am’ from the textutils distribution:

SUBDIRS = lib src doc man
EXTRA_DIST = @README_ALPHA@

‘SUBDIRS’ can contain configure substitutions (eg ‘@DIRS@’);
Automake itself does not actually examine the contents of this variable.

If ‘SUBDIRS’ is defined, then your ‘configure.in’ must include
‘AC_PROG_MAKE_SET’.

The use of ‘SUBDIRS’ is not restricted to just the top-level
‘Makefile.am’. Automake can be used to construct packages of arbitrary
depth.

1.17 automake.guide/Programs

Building Programs and Libraries

A large part of Automake’s functionality is dedicated to making it
easy to build C programs and libraries.

A Program
Building a program

A Library
Building a library

LIBOBJS
Special handling for LIBOBJS and ALLOCA

Program variables
Variables used when building a program

Yacc and Lex
Yacc and Lex support

C++
C++ and other languages

ANSI
Automatic de-ANSI-fication

Dependencies
Automatic dependency tracking

automake 15 / 43

1.18 automake.guide/A Program

Building a program
==================

In a directory containing source that gets built into a program (as
opposed to a library), the ‘PROGRAMS’ primary is used. Programs can be
installed in ‘bindir’, ‘sbindir’, ‘libexecdir’, ‘pkglibdir’, or not at
all.

For instance:

bin_PROGRAMS = hello

In this simple case, the resulting ‘Makefile.in’ will contain code
to generate a program named ‘hello’. The variable ‘hello_SOURCES’ is
used to specify which source files get built into an executable:

hello_SOURCES = hello.c

This causes ‘hello.c’ to be compiled into ‘hello.o’, and then linked
to produce ‘hello’.

If ‘prog_SOURCES’ is needed, but not specified, then it defaults to
the single file ‘prog.c’. In the example above, the definition of
‘hello_SOURCES’ is actually redundant.

Multiple programs can be built in a single directory. Multiple
programs can share a single source file. The source file must be
listed in each ‘_SOURCES’ definition.

Header files listed in a ‘_SOURCES’ definition will be included in
the distribution but otherwise ignored. In case it isn’t obvious, you
should not include the header file generated by ‘configure’ in an
‘_SOURCES’ variable; this file should not be distributed. Lex (‘.l’)
and yacc (‘.y’) files can also be listed; support for these should work
but is still preliminary.

Sometimes it is useful to determine the programs that are to be
built at configure time. For instance, GNU ‘cpio’ only builds ‘mt’ and
‘rmt’ under special circumstances.

In this case, you must notify ‘Automake’ of all the programs that
can possibly be built, but at the same time cause the generated
‘Makefile.in’ to use the programs specified by ‘configure’. This is
done by having ‘configure’ substitute values into each ‘_PROGRAMS’
definition, while listing all optionally built programs in
‘EXTRA_PROGRAMS’.

If you need to link against libraries that are not found by
‘configure’, you can use ‘LDADD’ to do so. This variable actually can
be used to add any options to the linker command line.

Sometimes, multiple programs are built in one directory but do not
share the same link-time requirements. In this case, you can use the
‘PROG_LDADD’ variable (where PROG is the name of the program as it

automake 16 / 43

appears in some ‘_PROGRAMS’ variable, and usually written in lowercase)
to override the global ‘LDADD’. (If this variable exists for a given
program, then that program is not linked using ‘LDADD’.)

For instance, in GNU cpio, ‘pax’, ‘cpio’, and ‘mt’ are linked
against the library ‘libcpio.a’. However, ‘rmt’ is built in the same
directory, and has no such link requirement. Also, ‘mt’ and ‘rmt’ are
only built on certain architectures. Here is what cpio’s
‘src/Makefile.am’ looks like (abridged):

bin_PROGRAMS = cpio pax @MT@
libexec_PROGRAMS = @RMT@
EXTRA_PROGRAMS = mt rmt

LDADD = ../lib/libcpio.a @INTLLIBS@
rmt_LDADD =

cpio_SOURCES = ...
pax_SOURCES = ...
mt_SOURCES = ...
rmt_SOURCES = ...

It is also occasionally useful to have a program depend on some other
target which is not actually part of that program. This can be done
using the ‘prog_DEPENDENCIES’ variable. Each program depends on the
contents of such a variable, but no further interpretation is done.

If ‘prog_DEPENDENCIES’ is not supplied, it is computed by Automake.
The automatically-assigned value is the contents of ‘prog_LDADD’ with
all the ‘-l’ and ‘-L’ options removed. Be warned that ‘configure’
substitutions are preserved; this can lead to bad dependencies if you
are not careful.

1.19 automake.guide/A Library

Building a library
==================

Building a library is much like building a program. In this case,
the name of the primary is ‘LIBRARIES’. Libraries can be installed in
‘libdir’ or ‘pkglibdir’.

Each ‘_LIBRARIES’ variable is a list of the base names of libraries
to be built. For instance to create a library named ‘libcpio.a’, but
not install it, you would write:

noinst_LIBRARIES = cpio

The sources that go into a library are determined exactly as they are
for programs, via the ‘_SOURCES’ variables. Note that programs and
libraries share a namespace, so one cannot have a program (‘lob’) and a
library (‘liblob.a’) with the same name in one directory.

Extra objects can be added to a library using the ‘library_LIBADD’

automake 17 / 43

variable. This should be used for objects determined by ‘configure’.
Again from cpio:

cpio_LIBADD = @LIBOBJS@ @ALLOCA@

1.20 automake.guide/LIBOBJS

Special handling for LIBOBJS and ALLOCA
=======================================

Automake explicitly recognizes the use of ‘@LIBOBJS@’ and
‘@ALLOCA@’, and uses this information, plus the list of ‘LIBOBJS’ files
derived from ‘configure.in’ to automatically include the appropriate
source files in the distribution (see

Dist
). These source files are

also automatically handled in the dependency-tracking scheme, see See

Dependencies
.

‘@LIBOBJS@’ and ‘@ALLOCA@’ are specially recognized in any ‘_LDADD’
or ‘_LIBADD’ variable.

1.21 automake.guide/Program variables

Variables used when building a program
======================================

Occasionally it is useful to know which ‘Makefile’ variables
Automake uses for compilations; for instance you might need to do your
own compilation in some special cases.

Some variables are inherited from Autoconf; these are ‘CC’,
‘CFLAGS’, ‘CPPFLAGS’, ‘DEFS’, ‘LDFLAGS’, and ‘LIBS’.

There are some additional variables which Automake itself defines:

‘INCLUDES’
A list of ‘-I’ options. This can be set in your ‘Makefile.am’ if
you have special directories you want to look in.

‘COMPILE’
This is the command used to actually compile a C source file. The
filename is appended to form the complete command line.

‘LINK’
This is the command used to actually link a C program.

automake 18 / 43

1.22 automake.guide/Yacc and Lex

Yacc and Lex support
====================

Automake has somewhat idiosyncratic support for Yacc and Lex.
FIXME: describe it here.

1.23 automake.guide/C++

C++ and other languages
=======================

Automake includes full support for C++, and rudimentary support for
other languages. Support for other languages will be improved based on
demand.

Any package including C++ code must use ‘AC_PROG_CXX’ in its
‘configure.in’.

A few additional variables are defined when a C++ source file is
seen:

‘CXX’
The name of the C++ compiler.

‘CXXFLAGS’
Any flags to pass to the C++ compiler.

‘CXXCOMPILE’
The command used to actually compile a C++ source file. The file
name is appended to form the complete command line.

‘CXXLINK’
The command used to actually link a C++ program.

1.24 automake.guide/ANSI

Automatic de-ANSI-fication
==========================

Although the GNU standards prohibit it, some GNU programs are
written in ANSI C; see FIXME. This is possible because each source
file can be "de-ANSI-fied" before the actual compilation takes place.

If the ‘Makefile.am’ variable ‘AUTOMAKE_OPTIONS’ (See
Options
)

contains the option ‘ansi2knr’ then code to handle de-ANSI-fication is
inserted into the generated ‘Makefile.in’.

automake 19 / 43

This causes each source file to be treated as ANSI C. If an ANSI C
compiler is available, it is used.

This support requires the source files ‘ansi2knr.c’ and ‘ansi2knr.1’
to be in the same directory as the ANSI C source; these files are
distributed with Automake. Also, the package ‘configure.in’ must call
the macro ‘AM_C_PROTOTYPES’.

Automake also handles finding the ‘ansi2knr’ support files in some
other directory in the current package. This is done by prepending the
relative path to the appropriate directory to the ‘ansi2knr’ option.
For instance, suppose the package has ANSI C code in the ‘src’ and
‘lib’ subdirs. The files ‘ansi2knr.c’ and ‘ansi2knr.1’ appear in
‘lib’. Then this could appear in ‘src/Makefile.am’:

AUTOMAKE_OPTIONS = ../lib/ansi2knr

Note that the directory holding the ‘ansi2knr’ support files must be
built before all other directories using these files. Automake does
not currently check that this is the case.

1.25 automake.guide/Dependencies

Automatic dependency tracking
=============================

As a developer it is often painful to continually update the
‘Makefile.in’ whenever the include-file dependencies change in a
project. ‘automake’ supplies a way to automatically track dependency
changes, and distribute the dependencies in the generated ‘Makefile.in’.

Currently this support requires the use of GNU ‘make’ and ‘gcc’. It
might become possible in the future to supply a different dependency
generating program, if there is enough demand.

This mode is enabled by default if any C program or library is
defined in the current directory.

When you decide to make a distribution, the ‘dist’ target will
re-run ‘automake’ with the ‘--include-deps’ option. This causes the
previously generated dependencies to be inserted into the generated
‘Makefile.in’, and thus into the distribution. ‘--include-deps’ also
turns off inclusion of the dependency generation code.

This mode can be suppressed by putting ‘no-dependencies’ in the
variable ‘AUTOMAKE_OPTIONS’.

If you unpack a distribution made by ‘make dist’, and you want to
turn on the dependency-tracking code again, simply run ‘automake’ with
no arguments.

automake 20 / 43

1.26 automake.guide/Other objects

Other Derived Objects

Automake can handle derived objects which are not C programs.
Sometimes the support for actually building such objects must be
explicitly supplied, but Automake will still automatically handle
installation and distribution.

Scripts
Executable scripts

Headers
Header files

Data
Architecture-independent data files

Sources
Derived sources

1.27 automake.guide/Scripts

Executable Scripts
==================

It is possible to define and install programs which are scripts.
Such programs are listed using the ‘SCRIPTS’ primary name. ‘automake’
doesn’t define any dependencies for scripts; the ‘Makefile.am’ should
include the appropriate rules.

‘automake’ does not assume that scripts are derived objects; such
objects must be deleted by hand; see See

Clean
for more information.

‘automake’ itself is a script that is generated at configure time
from ‘automake.in’. Here is how this is handled:

bin_SCRIPTS = automake

Since ‘automake’ appears in the ‘AC_OUTPUT’ macro, a target for it
is automatically generated.

Script objects can be installed in ‘bindir’, ‘sbindir’,
‘libexecdir’, or ‘pkgdatadir’.

automake 21 / 43

1.28 automake.guide/Headers

Header files
============

Header files are specified by the ‘HEADERS’ family of variables.
Generally header files are not installed, so the ‘noinst_HEADERS’
variable will be the most used.

All header files must be listed somewhere; missing ones will not
appear in the distribution. Often it is clearest to list uninstalled
headers with the rest of the sources for a program. See

A Program
.

Headers listed in a ‘_SOURCES’ variable need not be listed in any
‘_HEADERS’ variable.

Headers can be installed in ‘includedir’, ‘oldincludedir’, or
‘pkgincludedir’.

1.29 automake.guide/Data

Architecture-independent data files
===================================

Automake supports the installation of miscellaneous data files using
the ‘DATA’ family of variables.

Such data can be installed in the directories ‘datadir’,
‘sysconfdir’, ‘sharedstatedir’, ‘localstatedir’, or ‘pkgdatadir’.

All such data files are included in the distribution.

Here is how ‘automake’ installs its auxiliary data files:

pkgdata_DATA = clean-kr.am clean.am compile-kr.am compile-vars.am \
compile.am data.am depend.am dist-subd-top.am dist-subd-vars.am \
dist-subd.am dist-vars.am dist.am footer.am header-vars.am header.am \
libscripts.am libprograms.am libraries-vars.am libraries.am library.am \
mans-vars.am mans.am packagedata.am program.am programs.am remake-hdr.am \
remake-subd.am remake.am scripts.am subdirs.am tags.am tags-subd.am \
texinfos-vars.am texinfos.am hack-make.sed nl-remove.sed

1.30 automake.guide/Sources

Built sources
=============

Occasionally a file which would otherwise be called "source" (eg a C

automake 22 / 43

‘.h’ file) is actually derived from some other file. Such files should
be listed in the ‘BUILT_SOURCES’ variable.

Files listed in ‘BUILT_SOURCES’ are built before any automatic
dependency tracking is done. Built sources are included in a
distribution.

1.31 automake.guide/Other GNU Tools

Other GNU Tools

Since Automake is primarily intended to generate ‘Makefile.in’s for
use in GNU programs, it tries hard to interoperatoe with other GNU
tools.

Emacs Lisp
Emacs Lisp

gettext
Gettext

1.32 automake.guide/Emacs Lisp

Emacs Lisp
==========

Automake provides some support for Emacs Lisp. The ‘LISP’ primary
is used to hold a list of ‘.el’ files. Possible prefixes for this
primary are ‘lisp_’ and ‘noinst_’. Note that if ‘lisp_LISP’ is
defined, then ‘configure.in’ must run ‘AM_PATH_LISPDIR’ (fixme xref).

By default Automake will byte-compile all Emacs Lisp source files
using the Emacs found by ‘AM_PATH_LISPDIR’. If you wish to avoid
byte-compiling, simply define the variable ‘ELCFILES’ to be empty.

1.33 automake.guide/gettext

Gettext
=======

If ‘ud_GNU_GETTEXT’ is seen in ‘configure.in’, then Automake turns
on support for GNU gettext, a message catalog system for
internationalization (see GNU Gettext).

automake 23 / 43

The ‘gettext’ support in Automake requires the addition of two
subdirectories to the package, ‘intl’ and ‘po’. Automake ensure that
these directories exist and are mentioned in ‘SUBDIRS’.

Furthermore, Automake checks that the definition of ‘ALL_LINGUAS’ in
‘configure.in’ corresponds to all the valid ‘.po’ files, and nothing
more.

1.34 automake.guide/Documentation

Building documentation

Currently Automake provides support for Texinfo and man pages.

Texinfo
Texinfo

Man pages
Man pages

1.35 automake.guide/Texinfo

Texinfo
=======

If the current directory contains Texinfo source, you must declare it
with the ‘TEXINFOS’ primary. Generally Texinfo files are converted
into info, and thus the ‘info_TEXINFOS’ macro is most commonly used
here. Note that any Texinfo source file must end in the ‘.texi’ or
‘.texinfo’ extension.

If the ‘.texi’ file ‘@include’s ‘version.texi’, then that file will
be automatically generated. ‘version.texi’ defines three Texinfo
macros you can reference: ‘EDITION’, ‘VERSION’, and ‘UPDATED’. The
first two hold the version number of your package (but are kept
separate for clarity); the last is the date the primary file was last
modified. The ‘version.texi’ support requires the ‘mdate-sh’ program;
this program is supplied with Automake.

Sometimes an info file actually depends on more than one ‘.texi’
file. For instance, in the ‘xdvik’ distribution, ‘kpathsea.texi’
includes the files ‘install.texi’, ‘copying.texi’, and ‘freedom.texi’.
You can tell Automake about these dependencies using the
‘texi_TEXINFOS’ variable. Here is how ‘xdvik’ could do it:

automake 24 / 43

info_TEXINFOS = kpathsea.texi
kpathsea_TEXINFOS = install.texi copying.texi freedom.texi

By default, Automake requires the file ‘texinfo.tex’ to appear in
the same directory as the Texinfo source. However, if you used
‘AC_CONFIG_AUX_DIR’ in ‘configure.in’, then ‘texinfo.tex’ is looked for
there. Automake supplies ‘texinfo.tex’.

Automake generates an ‘install-info’ target; some people apparently
use this. By default, info pages are installed by ‘make install’.
This can be prevented via the ‘no-installinfo’ option.

1.36 automake.guide/Man pages

Man pages
=========

A package can also include man pages. (Though see the GNU standards
on this matter, See Man Pages.) Man pages are declared using the
‘MANS’ primary. Generally the ‘man_MANS’ macro is used. Man pages are
automatically installed in the correct subdirectory of ‘mandir’, based
on the file extension.

By default, man pages are installed by ‘make install’. However,
since the GNU project does not require man pages, many maintainers do
not expend effort to keep the man pages up to date. In these cases, the
‘no-installman’ option will prevent the man pages from being installed
by default. The user can still explicitly install them via ‘make
install-man’.

Here is how the documentation is handled in GNU ‘cpio’ (which
includes both Texinfo documentation and man pages):

info_TEXINFOS = cpio.texi
man_MANS = cpio.1 mt.1

Texinfo source, info pages and man pages are all considered to be
source for the purposes of making a distribution.

1.37 automake.guide/Install

What Gets Installed

Naturally, Automake handles the details of actually installing your
program once it has been built. All ‘PROGRAMS’, ‘SCRIPTS’,
‘LIBRARIES’, ‘LISP’, ‘DATA’ and ‘HEADERS’ are automatically installed
in the appropriate places.

Automake also handles installing any specified info and man pages.

automake 25 / 43

Automake generates separate ‘install-data’ and ‘install-exec’
targets, in case the installer is installing on multiple machines which
share directory structure - these targets allow the machine-independent
parts to be installed only once. The ‘install’ target depends on both
of these targets.

Automake also generates an ‘uninstall’ target, and an ‘installdirs’
target.

It is possible to extend this mechanism by defining an
‘install-exec-local’ or ‘install-data-local’ target. If these targets
exist, they will be run at ‘make install’ time.

1.38 automake.guide/Clean

What Gets Cleaned

The GNU Makefile Standards specify a number of different clean rules.
Generally the files that can cleaned are determined automatically by
Automake. Of course, Automake also recognizes some variables that can
be defined to specify additional files to clean. These variables are
‘MOSTLYCLEANFILES’, ‘CLEANFILES’, ‘DISTCLEANFILES’, and
‘MAINTAINERCLEANFILES’.

1.39 automake.guide/Dist

What Goes in a Distribution

The ‘dist’ target in the generated ‘Makefile.in’ can be used to
generate a gzip’d ‘tar’ file for distribution. The tar file is named
based on the PACKAGE and VERSION variables; more precisely it is named
‘PACKAGE-VERSION.tar.gz’.

For the most part, the files to distribute are automatically found by
Automake: all source files are automatically included in a distribution,
as are all ‘Makefile.am’s and ‘Makefile.in’s. Automake also has a
built-in list of commonly used files which, if present in the current
directory, are automatically included. This list is printed by
‘automake --help’. Also, files which are read by ‘configure’ (ie, the
source files corresponding to the files specified in the ‘AC_OUTPUT’
invocation) are automatically distributed.

Still, sometimes there are files which must be distributed, but which
are not covered in the automatic rules. These files should be listed in
the ‘EXTRA_DIST’ variable.

Occasionally it is useful to be able to change the distribution

automake 26 / 43

before it is packaged up. If the ‘dist-hook’ target exists, it is run
after the distribution directory is filled, but before the actual tar
(or shar) file is created. One way to use this is for distributing file
in subdirectories for which a new ‘Makefile.am’ is overkill:

dist-hook:
mkdir $(distdir)/random
cp -p random/a1 random/a2 $(distdir)/random

Automake also generates a ‘distcheck’ target which can be help to
ensure that a given distribution will actually work. ‘distcheck’ makes
a distribution, and then tries to do a ‘VPATH’ build.

1.40 automake.guide/Tests

Support for test suites

Automake supports a two forms of test suite.

If the variable ‘TESTS’ is defined, its value is taken to be a list
of programs to run in order to do the testing. The programs can either
be derived objects or source objects; the generated rule will look both
in SRCDIR and ‘.’. The number of failures will be printed at the end
of the run. The variable ‘TESTS_ENVIRONMENT’ can be used to set
environment variables for the test run; the environment variable
‘srcdir’ is set in the rule.

If ‘dejagnu’ appears in ‘AUTOMAKE_OPTIONS’, then the a
‘dejagnu’-based test suite is assumed. The value of the variable
‘DEJATOOL’ is passed as the ‘--tool’ argument to ‘runtest’; it defaults
to the name of the package. The variables ‘EXPECT’, ‘RUNTEST’ and
‘RUNTESTFLAGS’ can also be overridden to provide project-specific
values. For instance, you will need to do this if you are testing a
compiler toolchain, because the default values do not take into account
host and target names.

In either case, the testing is done via ‘make check’.

1.41 automake.guide/Options

Changing Automake’s Behavior

Various features of Automake can be controlled by options in the
‘Makefile.am’. Such options are listed in a special variable named
‘AUTOMAKE_OPTIONS’. Currently understood options are:

‘gnits’
‘gnu’

automake 27 / 43

‘foreign’
The same as the corresponding ‘--strictness’ option.

‘no-installman’
The generated ‘Makefile.in’ will not cause man pages to be
installed by default. However, an ‘install-man’ target will still
be available for optional installation. This option is disallowed
at ‘GNU’ strictness and above.

‘no-installinfo’
The generated ‘Makefile.in’ will not cause info pages to be built
or installed by default. However, ‘info’ and ‘install-info’
targets will still be available. This option is disallowed at
‘GNU’ strictness and above.

‘ansi2knr’
‘path/ansi2knr’

Turn on automatic de-ANSI-fication. See
ANSI
. If preceeded by a

path, the generated ‘Makefile.in’ will look in the specified
directory to find the ‘ansi2knr’ program. Generally the path
should be a relative path to another directory in the same
distribution (though Automake currently does not check this). It
is up to you to make sure that the specified directory is built
before the current directory; if ‘ansi2knr’ does not exist then
the build will fail.

‘dejagnu’
Cause ‘dejagnu’-specific rules to be generated. See

Tests
.

‘dist-shar’
Generate a ‘dist-shar’ target as well as the ordinary ‘dist’
target. This new target will create a shar archive of the
distribution.

‘dist-zip’
Generate a ‘dist-zip’ target as well as the ordinary ‘dist’
target. This new target will create a zip archive of the
distribution.

‘dist-tarZ’
Generate a ‘dist-tarZ’ target as well as the ordinary ‘dist’
target. This new target will create a compressed tar archive of
the distribution; a traditional ‘tar’ and ‘compress’ will be
assumed. Warning: if you are actually using ‘GNU tar’, then the
generated archive might contain nonportable constructs.

‘no-dependencies’
This is similar to using ‘--include-deps’ on the command line, but
is useful for those situations where you don’t have the necessary
bits to make automatic dependency tracking work See

Dependencies
.

In this case the effect is to effectively disable automatic

automake 28 / 43

dependency tracking.

VERSION
A version number (eg ‘0.30’) can be specified. If Automake is not
newer than the version specified, creation of the ‘Makefile.in’
will be suppressed.

Unrecognized options are diagnosed by ‘automake’.

1.42 automake.guide/Miscellaneous

Miscellaneous Rules

There are a few rules and variables that didn’t fit anywhere else.

Tags
Interfacing to etags and mkid

Suffixes
Handling new file extensions

Built
Built sources

1.43 automake.guide/Tags

Interfacing to ‘etags’
======================

‘automake’ will generate rules to generate ‘TAGS’ files for use with
GNU Emacs under some circumstances.

If any C source code or headers are present, then a ‘tags’ target
will be generated for the directory.

At the topmost directory of a multi-directory package, a ‘tags’
target file will be generated which, when run, will generate a ‘TAGS’
file that includes by reference all ‘TAGS’ files from subdirectories.

Also, if the variable ‘ETAGS_ARGS’ is defined, a ‘tags’ target will
be generated. This variable is intended for use in directories which
contain taggable source that ‘etags’ does not understand.

Here is how Automake generates tags for its source, and for nodes in
its Texinfo file:

automake 29 / 43

ETAGS_ARGS = automake.in --lang=none \
--regex=’/^@node[\t]+\([^,]+\)/\1/’ automake.texi

If you add filenames to ETAGS_ARGS, you will probably also want to
set TAGS_DEPENDENCIES. The contents of this variable are added
directly to the dependencies for the ‘tags’ target.

Automake will also generate an ‘ID’ target which will run ‘mkid’ on
the source. This is only supported on a directory-by-directory basis.

1.44 automake.guide/Suffixes

Handling new file extensions
============================

It is sometimes useful to introduce a new implicit rule to handle a
file type that Automake does not know about. If this is done, you must
notify GNU Make of the new suffixes. This can be done by putting a list
of new suffixes in the ‘SUFFIXES’ variable.

1.45 automake.guide/Built

Built sources
=============

FIXME write this

1.46 automake.guide/Extending

When Automake Isn’t Enough

Sometimes ‘automake’ isn’t enough. Then you just lose.

Actually, ‘automake’s implicit copying semantics means that many
problems can be worked around by simply adding some ‘make’ targets and
rules to ‘Makefile.in’. ‘automake’ will ignore these additions.

There are some caveats to doing this. Although you can overload a
target already used by ‘automake’, it is often inadvisable,
particularly in the topmost directory of a non-flat package. However,
various useful targets have a ‘-local’ version you can specify in your
‘Makefile.in’. Automake will supplement the standard target with these
user-supplied targets.

The targets that support a local version are ‘all’, ‘info’, ‘dvi’,

automake 30 / 43

‘check’, ‘install-data’, ‘install-exec’, and ‘uninstall’. Note that
there are no ‘uninstall-exec-local’ or ‘uninstall-data-local’ targets;
just use ‘uninstall-local’. It doesn’t make sense to uninstall just
data or just executables.

For instance, here is how to install a file in ‘/etc’:

install-data-local:
$(INSTALL_DATA) $(srcdir)/afile /etc/afile

Some targets also have a way to run another target, called a "hook",
after their work is done. The hook is named after the principal target,
with ‘-hook’ appended. The targets allowing hooks are ‘install-data’,
‘install-exec’, ‘dist’, and ‘distcheck’.

For instance, here is how to create a hard link to an installed
program:

install-exec-hook:
ln $(bindir)/program $(bindir)/proglink

1.47 automake.guide/Distributing

Distributing ‘Makefile.in’s

Automake places no restrictions on the distribution of the resulting
‘Makefile.in’s. We still encourage software authors to distribute
their work under terms like those of the GPL, but doing so is not
required to use Automake.

Some of the files that can be automatically installed via the
‘--add-missing’ switch do fall under the GPL; examine each file to see.

1.48 automake.guide/Examples

Some example packages

Here are some examples of how Automake can be used.

Hello
The simplest GNU program

Tricky
A trickier example

Automake

automake 31 / 43

Automake’s own use

Textutils
A deep hierarchy

1.49 automake.guide/Hello

The simplest GNU program
========================

‘hello’ is renowned for its classic simplicity and versatility.
What better place to begin a tour? The below shows what could be used
as the Hello distribution’s ‘Makefile.am’.

bin_PROGRAMS = hello
hello_SOURCES = hello.c version.c getopt.c getopt1.c getopt.h
hello_LDADD = @ALLOCA@
info_TEXINFOS = hello.texi
hello_TEXINFOS = gpl.texi

EXTRA_DIST = testdata

check-local: hello
@echo expect no output from diff
./hello > test.out
diff -c $(srcdir)/testdata test.out
rm -f test.out

Of course, Automake also requires some minor changes to
‘configure.in’. The new ‘configure.in’ would read:

dnl Process this file with autoconf to produce a configure script.
AC_INIT(hello.c)
AM_INIT_AUTOMAKE(hello, 1.3)
AC_PROG_CC
AC_PROG_CPP
AC_PROG_INSTALL
AC_STDC_HEADERS
AC_HAVE_HEADERS(string.h fcntl.h sys/file.h)
AC_ALLOCA
AC_OUTPUT(Makefile)

If Hello were really going to use Automake, the ‘version.c’ file
would probably be deleted, or changed so as to be automatically
generated.

1.50 automake.guide/Tricky

automake 32 / 43

A tricker example
=================

Here is another, trickier example. It shows how to generate two
programs (‘ctags’ and ‘etags’) from the same source file (‘etags.c’).
The difficult part is that each compilation of ‘etags.c’ requires
different ‘cpp’ flags.

bin_PROGRAMS = etags ctags
ctags_SOURCES =
ctags_LDADD = ctags.o
ctags_DEPENDENCIES = ctags.o

etags.o:
$(COMPILE) -DETAGS_REGEXPS etags.c

ctags.o:
$(COMPILE) -DCTAGS -o ctags.o etags.c

Note that ‘ctags_SOURCES’ is defined to be empty - that way no
implicit value is substituted. The implicit value, however, is used to
generate ‘etags’ from ‘etags.o’.

‘ctags_LDADD’ is used to get ‘ctags.o’ into the link line, while
‘ctags_DEPENDENCIES’ exists to make sure that ‘ctags.o’ gets built in
the first place.

This is a somewhat pathological example.

1.51 automake.guide/Automake

Automake uses itself
====================

Automake, of course, uses itself to generate its ‘Makefile.in’.
Since Automake is a shallow package, it has more than one
‘Makefile.am’. Here is the top-level ‘Makefile.am’:

Process this file with automake to create Makefile.in

AUTOMAKE_OPTIONS = gnits
MAINT_CHARSET = latin1
PERL = @PERL@

SUBDIRS = tests

bin_SCRIPTS = automake
info_TEXINFOS = automake.texi

pkgdata_DATA = clean-kr.am clean.am compile-kr.am compile-vars.am \
compile.am data.am depend.am \
dist-vars.am footer.am header.am header-vars.am \
kr-vars.am libraries-vars.am \

automake 33 / 43

libraries.am library.am mans-vars.am \
program.am programs.am remake-hdr.am \
remake-subd.am remake.am scripts.am subdirs.am tags.am tags-subd.am \
tags-clean.am \
texi-version.am texinfos-vars.am texinfos.am \
libraries-clean.am programs-clean.am data-clean.am \
COPYING INSTALL texinfo.tex \
ansi2knr.c ansi2knr.1 \
aclocal.m4

These must all be executable when installed.
pkgdata_SCRIPTS = config.guess config.sub install-sh mdate-sh mkinstalldirs

The following requires a fixed version of the Emacs 19.30 etags.
ETAGS_ARGS = automake.in --lang=none \
--regex=’/^@node[\t]+\([^,]+\)/\1/’ automake.texi

‘test -x’ is not portable. So we use Perl instead. If Perl
doesn’t exist, then this test is meaningless anyway.
Check to make sure some installed files are executable.
installcheck-local:
$(PERL) -e "exit ! -x ’$(pkgdatadir)/config.guess’;"
$(PERL) -e "exit ! -x ’$(pkgdatadir)/config.sub’;"
$(PERL) -e "exit ! -x ’$(pkgdatadir)/install-sh’;"
$(PERL) -e "exit ! -x ’$(pkgdatadir)/mdate-sh’;"
$(PERL) -e "exit ! -x ’$(pkgdatadir)/mkinstalldirs’;"

Some simple checks:
* syntax check with perl4 and perl5.
* make sure the scripts don’t use ’true’
* expect no instances of ’${...}’
These are only really guaranteed to work on my machine.
maintainer-check: automake check
$(PERL) -c -w automake
@if grep ’^[^#].*true’ $(srcdir)/[a-z]*.am; then \
echo "can’t use ’true’ in GNU Makefile" 1>&2; \
exit 1; \

else :; fi
@if test ‘fgrep ’$${’ $(srcdir)/[a-z]*.am | wc -l‘ -ne 0; then \

echo "found too many uses of ’\$${’" 1>&2; \
exit 1; \

fi
if $(SHELL) -c ’perl4.036 -v’ >/dev/null 2>&1; then \

perl4.036 -c -w automake; \
else :; fi

Tag before making distribution. Also, don’t make a distribution if
checks fail. Also, make sure the NEWS file is up-to-date.
cvs-dist: maintainer-check
@if sed 1q NEWS | grep -e "$(VERSION)" > /dev/null; then :; else \

echo "NEWS not updated; not releasing" 1>&2; \
exit 1; \

fi
cvs tag ‘echo "Release-$(VERSION)" | sed ’s/\./-/g’‘
$(MAKE) dist

As you can see, Automake defines many of its own rules, to make the

automake 34 / 43

maintainer’s job easier. For instance the ‘cvs-dist’ rule
automatically tags the current version in the CVS repository, and then
makes a standard distribution.

Automake consists primarily of one program, ‘automake’, and a number
of auxiliary scripts. Automake also installs a number of programs
which are possibly installed via the ‘--add-missing’ option; these
scripts are listed in the ‘pkgdata_SCRIPTS’ variable.

Automake also has a ‘tests’ subdirectory, as indicated in the
‘SUBDIRS’ variable above. Here is ‘tests/Makefile.am’:

Process this file with automake to create Makefile.in

AUTOMAKE_OPTIONS = gnits

TESTS = mdate.test vtexi.test acoutput.test instexec.test checkall.test \
acoutnoq.test acouttbs.test libobj.test proginst.test acoutqnl.test \
confincl.test spelling.test prefix.test badprog.test depend.test

EXTRA_DIST = defs

This is where all the tests are really run. ‘defs’ is an
initialization file used by each test script; it is explicitly mentioned
because ‘automake’ has no way of automatically finding it.

1.52 automake.guide/Textutils

A deep hierarchy
================

The GNU textutils are a collection of programs for manipulating text
files. They are distributed as a deep package. The textutils have only
recently been modified to use Automake; the examples come from a
prerelease.

Here is the top-level ‘Makefile.am’:

SUBDIRS = lib src doc man

In the ‘lib’ directory, a library is built which is used by each
textutil. Here is ‘lib/Makefile.am’:

noinst_LIBRARIES = tu

EXTRA_DIST = rx.c regex.c

tu_SOURCES = error.h getline.h getopt.h linebuffer.h \
long-options.h md5.h regex.h rx.h xstrtod.h xstrtol.h xstrtoul.h \
error.c full-write.c getline.c getopt.c getopt1.c \
linebuffer.c long-options.c md5.c memchr.c safe-read.c \
xmalloc.c xstrtod.c xstrtol.c xstrtoul.c

tu_LIBADD = @REGEXOBJ@ @LIBOBJS@ @ALLOCA@

automake 35 / 43

The ‘src’ directory contains the source for all the textutils - 23
programs in all. The ‘Makefile.am’ for this directory also includes
some simple checking code, and constructs a ‘version.c’ file on the fly:

bin_PROGRAMS = cat cksum comm csplit cut expand fmt fold head join md5sum \
nl od paste pr sort split sum tac tail tr unexpand uniq wc

noinst_HEADERS = system.h version.h
DISTCLEANFILES = stamp-v version.c

INCLUDES = -I$(top_srcdir)/lib

LDADD = version.o ../lib/libtu.a

$(PROGRAMS): version.o ../lib/libtu.a

AUTOMAKE_OPTIONS = ansi2knr

version.c: stamp-v
stamp-v: Makefile
rm -f t-version.c
echo ’#include <config.h>’ > t-version.c
echo ’#include "version.h"’ >> t-version.c
echo ’const char *version_string = "’GNU @PACKAGE@ @VERSION@’";’ \

>> t-version.c
if cmp -s version.c t-version.c; then \

rm t-version.c; \
else \

mv t-version.c version.c; \
fi
echo timestamp > $@

check: md5sum
./md5sum \
--string="" \
--string="a" \
--string="abc" \
--string="message digest" \
--string="abcdefghijklmnopqrstuvwxyz" \
--string="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" \
--string ←↩

="12345678901234567890123456789012345678901234567890123456789012345678901234567890" ←↩
\
| diff -c $(srcdir)/md5-test.rfc -

The ‘doc’ directory builds the info documentation for the textutils:

info_TEXINFOS = textutils.texi

And, last, the ‘man’ directory installs the man pages for all the
textutils:

man_MANS = cat.1 cksum.1 comm.1 csplit.1 cut.1 expand.1 fmt.1 fold.1 head.1 \
join.1 md5sum.1 nl.1 od.1 paste.1 pr.1 sort.1 split.1 sum.1 tac.1 tail.1 \
tr.1 unexpand.1 uniq.1 wc.1

automake 36 / 43

You can now see how easy it is to handle even a largish project using
Automake.

1.53 automake.guide/Future

Some ideas for the future

Here are some things that might happen in the future:

* HTML support.

* The output will be cleaned up. For instance, only variables which
are actually used will appear in the generated ‘Makefile.in’.

* There will be support for automatically recoding a distribution.
The intent is to allow a maintainer to use whatever character set
is most convenient locally, but for all distributions to be
Unicode or ISO 10646 with the UTF-8 encoding.

1.54 automake.guide/Variables

Index of Variables

_LDADD
A Program

_LIBADD
A Library

_SOURCES
A Program

_TEXINFOS
Texinfo

AUTOMAKE_OPTIONS <1>
Options

AUTOMAKE_OPTIONS <2>
Dependencies

AUTOMAKE_OPTIONS
ANSI

BUILT_SOURCES

automake 37 / 43

Sources

CLEANFILES
Clean

DATA <1>
Uniform

DATA
Data

DEJATOOL
Tests

DISTCLEANFILES
Clean

ELCFILES
Emacs Lisp

ETAGS_ARGS
Tags

EXPECT
Tests

EXTRA_DIST
Dist

EXTRA_PROGRAMS
A Program

HEADERS <1>
Headers

HEADERS
Uniform

info_TEXINFOS
Texinfo

LDADD
A Program

LIBADD
A Library

LIBRARIES
Uniform

LISP <1>
Uniform

LISP
Emacs Lisp

lisp_LISP

automake 38 / 43

Emacs Lisp

MAINTAINERCLEANFILES
Clean

man_MANS
Man pages

MANS <1>
Man pages

MANS
Uniform

MOSTLYCLEANFILES
Clean

noinst_LISP
Emacs Lisp

PROGRAMS
Uniform

RUNTEST
Tests

RUNTESTFLAGS
Tests

SCRIPTS <1>
Scripts

SCRIPTS
Uniform

SOURCES
A Program

SUBDIRS <1>
Top level

SUBDIRS
Depth

SUFFIXES
Suffixes

TAGS_DEPENDENCIES
Tags

TESTS
Tests

TESTS_ENVIRONMENT
Tests

TEXINFOS <1>

automake 39 / 43

Texinfo

TEXINFOS
Uniform

1.55 automake.guide/Configure variables

Index of Configure Variables and Macros

AC_ARG_PROGRAM
Requirements

AC_CANONICAL_HOST
Optional

AC_CANONICAL_SYSTEM
Optional

AC_CHECK_TOOL
Optional

AC_CONFIG_AUX_DIR
Optional

AC_CONFIG_HEADER
Optional

AC_DECL_YYTEXT
Optional

AC_FUNC_ALLOCA
Optional

AC_FUNC_FNMATCH
Optional

AC_FUNC_GETLOADAVG
Optional

AC_FUNC_MEMCMP
Optional

AC_OUTPUT
Requirements

AC_PATH_XTRA
Optional

AC_PROG_CXX

automake 40 / 43

Optional

AC_PROG_INSTALL
Requirements

AC_PROG_LEX
Optional

AC_PROG_MAKE_SET
Requirements

AC_PROG_RANLIB
Optional

AC_PROG_YACC
Optional

AC_REPLACE_FUNCS
Optional

AC_REPLACE_GNU_GETOPT
Optional

AC_STRUCT_ST_BLOCKS
Optional

ALL_LINGUAS
Optional

AM_C_PROTOTYPES <1>
ANSI

AM_C_PROTOTYPES
Optional

AM_FUNC_FNMATCH
Optional

AM_FUNC_STRTOD
Optional

AM_INIT_AUTOMAKE
Requirements

AM_PROG_INSTALL
Requirements

AM_WITH_REGEX
Optional

jm_MAINTAINER_MODE
Optional

LIBOBJS
Optional

PACKAGE <1>

automake 41 / 43

Dist

PACKAGE <2>
Uniform

PACKAGE
Requirements

ud_GNU_GETTEXT
Optional

VERSION <1>
Requirements

VERSION
Dist

YACC
Optional

1.56 automake.guide/Targets

Index of Targets

all
Extending

check
Extending

dist <1>
Dist

dist
Dependencies

dist-hook
Extending

dist-shar
Options

dist-tarZ
Options

dist-zip
Options

distcheck

automake 42 / 43

Dist

dvi
Extending

id
Tags

info <1>
Options

info
Extending

install
Install

install-data <1>
Extending

install-data
Install

install-data-hook
Extending

install-data-local
Install

install-exec <1>
Extending

install-exec
Install

install-exec-hook
Extending

install-exec-local
Install

install-info
Options

install-man <1>
Options

install-man
Man pages

installdirs
Install

tags
Tags

uninstall <1>

automake 43 / 43

Extending

uninstall
Install

	automake
	automake.guide
	automake.guide/Introduction
	automake.guide/Invoking Automake
	automake.guide/Generalities
	automake.guide/General Operation
	automake.guide/Depth
	automake.guide/Strictness
	automake.guide/Uniform
	automake.guide/Canonicalization
	automake.guide/configure
	automake.guide/Requirements
	automake.guide/Optional
	automake.guide/Invoking aclocal
	automake.guide/Macros
	automake.guide/Extending aclocal
	automake.guide/Top level
	automake.guide/Programs
	automake.guide/A Program
	automake.guide/A Library
	automake.guide/LIBOBJS
	automake.guide/Program variables
	automake.guide/Yacc and Lex
	automake.guide/C++
	automake.guide/ANSI
	automake.guide/Dependencies
	automake.guide/Other objects
	automake.guide/Scripts
	automake.guide/Headers
	automake.guide/Data
	automake.guide/Sources
	automake.guide/Other GNU Tools
	automake.guide/Emacs Lisp
	automake.guide/gettext
	automake.guide/Documentation
	automake.guide/Texinfo
	automake.guide/Man pages
	automake.guide/Install
	automake.guide/Clean
	automake.guide/Dist
	automake.guide/Tests
	automake.guide/Options
	automake.guide/Miscellaneous
	automake.guide/Tags
	automake.guide/Suffixes
	automake.guide/Built
	automake.guide/Extending
	automake.guide/Distributing
	automake.guide/Examples
	automake.guide/Hello
	automake.guide/Tricky
	automake.guide/Automake
	automake.guide/Textutils
	automake.guide/Future
	automake.guide/Variables
	automake.guide/Configure variables
	automake.guide/Targets

