
Version Management

with

CVS

for cvs 1.8.7

Per Cederqvist et al

Copyright

c

 1992, 1993 Signum Support AB

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided also that the section entitled \GNU General Public License" is

included exactly as in the original, and provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions, except that the section entitled \GNU General

Public License" and this permission notice may be included in translations approved by the Free

Software Foundation instead of in the original English.

About this manual 1

About this manual

Up to this point, one of the weakest parts of cvs has been the documentation. cvs is a complex

program. Previous versions of the manual were written in the manual page format, which is not

really well suited for such a complex program.

When writing this manual, I had several goals in mind:

� No knowledge of rcs should be necessary.

� No previous knowledge of revision control software should be necessary. All terms, such as

revision numbers, revision trees and merging are explained as they are introduced.

� The manual should concentrate on the things cvs users want to do, instead of what the cvs

commands can do. The �rst part of this manual leads you through things you might want to

do while doing development, and introduces the relevant cvs commands as they are needed.

� Information should be easy to �nd. In the reference manual in the appendices almost all

information about every cvs command is gathered together. There is also an extensive index,

and a lot of cross references.

This manual was contributed by Signum Support AB in Sweden. Signum is yet another in the

growing list of companies that support free software. You are free to copy both this manual and

the cvs program. See Appendix E [Copying], page 109, for the details. Signum Support o�ers

support contracts and binary distribution for many programs, such as cvs, gnu Emacs, the gnu

C compiler and others. Write to us for more information.

Signum Support AB

Box 2044

S-580 02 Linkoping

Sweden

Email: info@signum.se

Phone: +46 (0)13 - 21 46 00

Fax: +46 (0)13 - 21 47 00

Another company selling support for cvs is Cyclic Software, web: http://www.cyclic.com/,

email: info@cyclic.com.

Checklist for the impatient reader

cvs is a complex system. You will need to read the manual to be able to use all of its capabilities.

There are dangers that can easily be avoided if you know about them, and this manual tries to

warn you about them. This checklist is intended to help you avoid the dangers without reading

the entire manual. If you intend to read the entire manual you can skip this table.

Binary �les

cvs can handle binary �les, but you must have rcs release 5.5 or later and a release

of gnu di� that supports the `-a' ag (release 1.15 and later are OK). You must also

con�gure both rcs and cvs to handle binary �les when you install them.

2 CVS|Concurrent Versions System

Keword substitution can be a source of trouble with binary �les. See Chapter 16

[Keyword substitution], page 57, for solutions.

The admin command

Careless use of the admin command can cause cvs to cease working. See Section A.6

[admin], page 71, before trying to use it.

Credits

Roland Pesch, Cygnus Support <pesch@cygnus.com> wrote the manual pages which were dis-

tributed with cvs 1.3. Appendix A and B contain much text that was extracted from them. He

also read an early draft of this manual and contributed many ideas and corrections.

The mailing-list info-cvs is sometimes informative. I have included information from postings

made by the following persons: David G. Grubbs <dgg@think.com>.

Some text has been extracted from the man pages for rcs.

The cvs faq by David G. Grubbs has provided useful material. The faq is no longer main-

tained, however, and this manual about the closest thing there is to a successor (with respect to

documenting how to use cvs, at least).

In addition, the following persons have helped by telling me about mistakes I've made:

Roxanne Brunskill <rbrunski@datap.ca>, Kathy Dyer <dyer@phoenix.ocf.llnl.gov>, Karl

Pingle <pingle@acuson.com>, Thomas A Peterson <tap@src.honeywell.com>, Inge Wallin

<ingwa@signum.se>, Dirk Koschuetzki <koschuet@fmi.uni-passau.de> and Michael Brown

<brown@wi.extrel.com>.

BUGS

This manual is known to have room for improvement. Here is a list of known de�ciencies:

� In the examples, the output from cvs is sometimes displayed, sometimes not.

� The input that you are supposed to type in the examples should have a di�erent font than the

output from the computer.

� This manual should be clearer about what �le permissions you should set up in the repository,

and about setuid/setgid.

� Some of the chapters are not yet complete. They are noted by comments in the `cvs.texinfo'

�le.

� This list is not complete. If you notice any error, omission, or something that is unclear, please

send mail to bug-cvs@prep.ai.mit.edu.

I hope that you will �nd this manual useful, despite the above-mentioned shortcomings.

Linkoping, October 1993

Per Cederqvist

Chapter 1: What is CVS? 3

1 What is CVS?

cvs is a version control system. Using it, you can record the history of your source �les.

For example, bugs sometimes creep in when software is modi�ed, and you might not detect

the bug until a long time after you make the modi�cation. With cvs, you can easily retrieve old

versions to see exactly which change caused the bug. This can sometimes be a big help.

You could of course save every version of every �le you have ever created. This would however

waste an enormous amount of disk space. cvs stores all the versions of a �le in a single �le in a

clever way that only stores the di�erences between versions.

cvs also helps you if you are part of a group of people working on the same project. It is all

too easy to overwrite each others' changes unless you are extremely careful. Some editors, like

gnu Emacs, try to make sure that the same �le is never modi�ed by two people at the same time.

Unfortunately, if someone is using another editor, that safeguard will not work. cvs solves this

problem by insulating the di�erent developers from each other. Every developer works in his own

directory, and cvs merges the work when each developer is done.

cvs started out as a bunch of shell scripts written by Dick Grune, posted to comp.sources.unix

in the volume 6 release of December, 1986. While no actual code from these shell scripts is present

in the current version of cvs much of the cvs conict resolution algorithms come from them.

In April, 1989, Brian Berliner designed and coded cvs. Je� Polk later helped Brian with the

design of the cvs module and vendor branch support.

You can get cvs via anonymous ftp from a number of sites, for instance prep.ai.mit.edu in

`pub/gnu'.

There is a mailing list for cvs. To subscribe or unsubscribe, write to <info-cvs-request@prep.ai.mit.edu>.

Please be speci�c about your email address. As of May 1996, subscription requests are handled

by a busy human being, so you cannot expect to be added or removed immediately. The usenet

group comp.software.config-mgmt is also a suitable place for cvs discussions (along with other

con�guration management systems).

CVS is not: : :

cvs can do a lot of things for you, but it does not try to be everything for everyone.

cvs is not a build system.

Though the structure of your repository and modules �le interact with your build

system (e.g. `Makefile's), they are essentially independent.

cvs does not dictate how you build anything. It merely stores �les for retrieval in a

tree structure you devise.

cvs does not dictate how to use disk space in the checked out working directories.

If you write your `Makefile's or scripts in every directory so they have to know the

relative positions of everything else, you wind up requiring the entire repository to be

checked out.

4 CVS|Concurrent Versions System

If you modularize your work, and construct a build system that will share �les (via

links, mounts, VPATH in `Makefile's, etc.), you can arrange your disk usage however

you like.

But you have to remember that any such system is a lot of work to construct and

maintain. cvs does not address the issues involved.

Of course, you should place the tools created to support such a build system (scripts,

`Makefile's, etc) under cvs.

Figuring out what �les need to be rebuilt when something changes is, again, something

to be handled outside the scope of cvs. One traditional approach is to use make for

building, and use some automated tool for generating the depencies which make uses.

cvs is not a substitute for management.

Your managers and project leaders are expected to talk to you frequently enough to

make certain you are aware of schedules, merge points, branch names and release dates.

If they don't, cvs can't help.

cvs is an instrument for making sources dance to your tune. But you are the piper

and the composer. No instrument plays itself or writes its own music.

cvs is not a substitute for developer communication.

When faced with conicts within a single �le, most developers manage to resolve them

without too much e�ort. But a more general de�nition of \conict" includes problems

too di�cult to solve without communication between developers.

cvs cannot determine when simultaneous changes within a single �le, or across a whole

collection of �les, will logically conict with one another. Its concept of a conict is

purely textual, arising when two changes to the same base �le are near enough to spook

the merge (i.e. diff3) command.

cvs does not claim to help at all in �guring out non-textual or distributed conicts in

program logic.

For example: Say you change the arguments to function X de�ned in �le `A'. At the same

time, someone edits �le `B', adding new calls to function X using the old arguments.

You are outside the realm of cvs's competence.

Acquire the habit of reading specs and talking to your peers.

cvs does not have change control

Change control refers to a number of things. First of all it can mean bug-tracking,

that is being able to keep a database of reported bugs and the status of each one (is it

�xed? in what release? has the bug submitter agreed that it is �xed?). For interfacing

cvs to an external bug-tracking system, see the `rcsinfo' and `editinfo' �les (see

Appendix B [Administrative �les], page 95).

Another aspect of change control is keeping track of the fact that changes to several

�les were in fact changed together as one logical change. If you check in several �les in a

single cvs commit operation, cvs then forgets that those �les were checked in together,

and the fact that they have the same log message is the only thing tying them together.

Keeping a gnu style `ChangeLog' can help somewhat.

Another aspect of change control, in some systems, is the ability to keep track of the

status of each change. Some changes have been written by a developer, others have

been reviewed by a second developer, and so on. Generally, the way to do this with

cvs is to generate a di� (using cvs diff or diff) and email it to someone who can

then apply it using the patch utility. This is very exible, but depends on mechanisms

outside cvs to make sure nothing falls through the cracks.

cvs is not an automated testing program

It should be possible to enforce mandatory use of a testsuite using the commitinfo

�le. I haven't heard a lot about projects trying to do that or whether there are subtle

gotchas, however.

Chapter 1: What is CVS? 5

cvs does not have a builtin process model

Some systems provide ways to ensure that changes or releases go through various

steps, with various approvals as needed. Generally, one can accomplish this with cvs

but it might be a little more work. In some cases you'll want to use the `commitinfo',

`loginfo', `rcsinfo', or `editinfo' �les, to require that certain steps be performed

before cvs will allow a checkin. Also consider whether features such as branches and

tags can be used to perform tasks such as doing work in a development tree and then

merging certain changes over to a stable tree only once they have been proven.

6 CVS|Concurrent Versions System

Chapter 2: Basic concepts 7

2 Basic concepts

cvs stores all �les in a centralized repository : a directory (such as `/usr/local/cvsroot' or

`user@remotehost:/usr/local/cvsroot') which is populated with a hierarchy of �les and direc-

tories. (see Section 4.5 [Remote repositories], page 17 for information about keeping the repository

on a remote machine.)

Normally, you never access any of the �les in the repository directly. Instead, you use cvs

commands to get your own copy of the �les, and then work on that copy. When you've �nished a

set of changes, you check (or commit) them back into the repository.

The �les in the repository are organized in modules. Each module is made up of one or more

�les, and can include �les from several directories. A typical usage is to de�ne one module per

project.

2.1 Revision numbers

Each version of a �le has a unique revision number. Revision numbers look like `1.1', `1.2',

`1.3.2.2' or even `1.3.2.2.4.5'. A revision number always has an even number of period-separated

decimal integers. By default revision 1.1 is the �rst revision of a �le. Each successive revision is

given a new number by increasing the rightmost number by one. The following �gure displays a

few revisions, with newer revisions to the right.

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !

+-----+ +-----+ +-----+ +-----+ +-----+

cvs is not limited to linear development. The revision tree can be split into branches, where

each branch is a self-maintained line of development. Changes made on one branch can easily be

moved back to the main trunk.

Each branch has a branch number, consisting of an odd number of period-separated decimal

integers. The branch number is created by appending an integer to the revision number where the

corresponding branch forked o�. Having branch numbers allows more than one branch to be forked

o� from a certain revision.

8 CVS|Concurrent Versions System

All revisions on a branch have revision numbers formed by appending an ordinal number to the

branch number. The following �gure illustrates branching with an example.

+-------------+

Branch 1.2.2.3.2 -> ! 1.2.2.3.2.1 !

/ +-------------+

/

/

+---------+ +---------+ +---------+ +---------+

Branch 1.2.2 -> _! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !----! 1.2.2.4 !

/ +---------+ +---------+ +---------+ +---------+

/

/

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

!

!

! +---------+ +---------+ +---------+

Branch 1.2.4 -> +---! 1.2.4.1 !----! 1.2.4.2 !----! 1.2.4.3 !

+---------+ +---------+ +---------+

The exact details of how the branch number is constructed is not something you normally need

to be concerned about, but here is how it works: When cvs creates a branch number it picks the

�rst unused even integer, starting with 2. So when you want to create a branch from revision 6.4 it

will be numbered 6.4.2. All branch numbers ending in a zero (such as 6.4.0) are used internally by

cvs (see Section D.1 [Magic branch numbers], page 107). The branch 1.1.1 has a special meaning.

See Chapter 12 [Tracking sources], page 49.

2.2 Versions, revisions and releases

A �le can have several versions, as described above. Likewise, a software product can have

several versions. A software product is often given a version number such as `4.1.1'.

Versions in the �rst sense are called revisions in this document, and versions in the second sense

are called releases. To avoid confusion, the word version is almost never used in this document.

Chapter 3: A sample session 9

3 A sample session

This section describes a typical work-session using cvs. It assumes that a repository is set up

(see Chapter 4 [Repository], page 13).

Suppose you are working on a simple compiler. The source consists of a handful of C �les and

a `Makefile'. The compiler is called `tc' (Trivial Compiler), and the repository is set up so that

there is a module called `tc'.

3.1 Getting the source

The �rst thing you must do is to get your own working copy of the source for `tc'. For this, you

use the checkout command:

$ cvs checkout tc

This will create a new directory called `tc' and populate it with the source �les.

$ cd tc

$ ls

CVS Makefile backend.c driver.c frontend.c parser.c

The `CVS' directory is used internally by cvs. Normally, you should not modify or remove any

of the �les in it.

You start your favorite editor, hack away at `backend.c', and a couple of hours later you have

added an optimization pass to the compiler. A note to rcs and sccs users: There is no need to lock

the �les that you want to edit. See Chapter 6 [Multiple developers], page 25, for an explanation.

3.2 Committing your changes

When you have checked that the compiler is still compilable you decide to make a new version

of `backend.c'.

$ cvs commit backend.c

cvs starts an editor, to allow you to enter a log message. You type in \Added an optimization

pass.", save the temporary �le, and exit the editor.

The environment variable $CVSEDITOR determines which editor is started. If $CVSEDITOR is

not set, then if the environment variable $EDITOR is set, it will be used. If both $CVSEDITOR and

$EDITOR are not set then the editor defaults to vi. If you want to avoid the overhead of starting an

editor you can specify the log message on the command line using the `-m' ag instead, like this:

$ cvs commit -m "Added an optimization pass" backend.c

10 CVS|Concurrent Versions System

3.3 Cleaning up

Before you turn to other tasks you decide to remove your working copy of tc. One acceptable

way to do that is of course

$ cd ..

$ rm -r tc

but a better way is to use the release command (see Section A.15 [release], page 87):

$ cd ..

$ cvs release -d tc

M driver.c

? tc

You have [1] altered files in this repository.

Are you sure you want to release (and delete) module `tc': n

** `release' aborted by user choice.

The release command checks that all your modi�cations have been committed. If history

logging is enabled it also makes a note in the history �le. See Section B.9 [history �le], page 102.

When you use the `-d' ag with release, it also removes your working copy.

In the example above, the release command wrote a couple of lines of output. `? tc' means

that the �le `tc' is unknown to cvs. That is nothing to worry about: `tc' is the executable

compiler, and it should not be stored in the repository. See Section B.8 [cvsignore], page 101, for

information about how to make that warning go away. See Section A.15.2 [release output], page 88,

for a complete explanation of all possible output from release.

`M driver.c' is more serious. It means that the �le `driver.c' has been modi�ed since it was

checked out.

The release command always �nishes by telling you how many modi�ed �les you have in your

working copy of the sources, and then asks you for con�rmation before deleting any �les or making

any note in the history �le.

You decide to play it safe and answer n RET when release asks for con�rmation.

3.4 Viewing di�erences

You do not remember modifying `driver.c', so you want to see what has happened to that �le.

$ cd tc

$ cvs diff driver.c

This command runs diff to compare the version of `driver.c' that you checked out with your

working copy. When you see the output you remember that you added a command line option that

enabled the optimization pass. You check it in, and release the module.

Chapter 3: A sample session 11

$ cvs commit -m "Added an optimization pass" driver.c

Checking in driver.c;

/usr/local/cvsroot/tc/driver.c,v <-- driver.c

new revision: 1.2; previous revision: 1.1

done

$ cd ..

$ cvs release -d tc

? tc

You have [0] altered files in this repository.

Are you sure you want to release (and delete) module `tc': y

12 CVS|Concurrent Versions System

Chapter 4: The Repository 13

4 TheRepository

Figure 3 below shows a typical setup of a repository. Only directories are shown below.

/usr

|

+--local

| |

| +--cvsroot

| | |

| | +--CVSROOT

| (administrative files)

|

+--gnu

| |

| +--diff

| | (source code to gnu diff)

| |

| +--rcs

| | (source code to rcs)

| |

| +--cvs

| (source code to cvs)

|

+--yoyodyne

|

+--tc

| |

| +--man

| |

| +--testing

|

+--(other Yoyodyne software)

There are a couple of di�erent ways to tell cvs where to �nd the repository. You can name the

repository on the command line explicitly, with the -d (for "directory") option:

cvs -d /usr/local/cvsroot checkout yoyodyne/tc

Or you can set the $CVSROOT environment variable to an absolute path to the root of the

repository, `/usr/local/cvsroot' in this example. To set $CVSROOT, all csh and tcsh users should

have this line in their `.cshrc' or `.tcshrc' �les:

setenv CVSROOT /usr/local/cvsroot

sh and bash users should instead have these lines in their `.profile' or `.bashrc':

CVSROOT=/usr/local/cvsroot

export CVSROOT

14 CVS|Concurrent Versions System

A repository speci�ed with -d will override the $CVSROOT environment variable. Once you've

checked a working copy out from the repository, it will remember where its repository is (the

information is recorded in the `CVS/Root' �le in the working copy).

The -d option and the `CVS/Root' �le both override the $CVSROOT environment variable. If

-d option di�ers from `CVS/Root', the former is used (and specifying -d will cause `CVS/Root' to

be updated). Of course, for proper operation they should be two ways of referring to the same

repository.

There is nothing magical about the name `/usr/local/cvsroot'. You can choose to place the

repository anywhere you like. See Section 4.5 [Remote repositories], page 17, to learn how the

repository can be on a di�erent machine than your working copy of the sources.

Note: For compatibility with older versions, cvs will treat any repository name that contains

a colon as an indication of a remote repository (See Section 4.5 [Remote repositories], page 17).

If the name of your local repository contains a colon, you should prepend the string `:local:' to

the pathname to tell cvs that it is, indeed, a local repository. For example, you might use this

command line under Windows NT:

cvs -d :local:c:\src\cvsroot checkout yoyodyne/tc

The repository is split in two parts. `$CVSROOT/CVSROOT' contains administrative �les for cvs.

The other directories contain the actual user-de�ned modules.

4.1 User modules

$CVSROOT

|

+--yoyodyne

| |

| +--tc

| | |

+--Makefile,v

+--backend.c,v

+--driver.c,v

+--frontend.c,v

+--parser.c,v

+--man

| |

| +--tc.1,v

|

+--testing

|

+--testpgm.t,v

+--test2.t,v

The �gure above shows the contents of the `tc' module inside the repository. As you can see

all �le names end in `,v'. The �les are history �les. They contain, among other things, enough

information to recreate any revision of the �le, a log of all commit messages and the user-name of

Chapter 4: The Repository 15

the person who committed the revision. cvs uses the facilities of rcs, a simpler version control

system, to maintain these �les. For a full description of the �le format, see the man page rcs�le(5).

4.1.1 File permissions

All `,v' �les are created read-only, and you should not change the permission of those �les. The

directories inside the repository should be writable by the persons that have permission to modify

the �les in each directory. This normally means that you must create a UNIX group (see group(5))

consisting of the persons that are to edit the �les in a project, and set up the repository so that it

is that group that owns the directory.

This means that you can only control access to �les on a per-directory basis.

cvs tries to set up reasonable �le permissions for new directories that are added inside the tree,

but you must �x the permissions manually when a new directory should have di�erent permissions

than its parent directory.

Since cvs was not written to be run setuid, it is unsafe to try to run it setuid. You cannot use

the setuid features of rcs together with cvs.

4.2 The administrative �les

The directory `$CVSROOT/CVSROOT' contains some administrative �les. See Appendix B [Admin-

istrative �les], page 95, for a complete description. You can use cvs without any of these �les, but

some commands work better when at least the `modules' �le is properly set up.

The most important of these �les is the `modules' �le. It de�nes all modules in the repository.

This is a sample `modules' �le.

CVSROOT CVSROOT

modules CVSROOT modules

cvs gnu/cvs

rcs gnu/rcs

diff gnu/diff

tc yoyodyne/tc

The `modules' �le is line oriented. In its simplest form each line contains the name of the

module, whitespace, and the directory where the module resides. The directory is a path relative

to $CVSROOT. The last four lines in the example above are examples of such lines.

The line that de�nes the module called `modules' uses features that are not explained here. See

Section B.1 [modules], page 95, for a full explanation of all the available features.

16 CVS|Concurrent Versions System

4.2.1 Editing administrative �les

You edit the administrative �les in the same way that you would edit any other module. Use

`cvs checkout CVSROOT' to get a working copy, edit it, and commit your changes in the normal

way.

It is possible to commit an erroneous administrative �le. You can often �x the error and check in

a new revision, but sometimes a particularly bad error in the administrative �le makes it impossible

to commit new revisions.

4.3 Multiple repositories

In some situations it is a good idea to have more than one repository, for instance if you have two

development groups that work on separate projects without sharing any code. All you have to do

to have several repositories is to specify the appropriate repository, using the CVSROOT environment

variable, the `-d' option to cvs, or (once you have checked out a working directory) by simply

allowing cvs to use the repository that was used to check out the working directory (see Chapter 4

[Repository], page 13).

Notwithstanding, it can be confusing to have two or more repositories.

None of the examples in this manual show multiple repositories.

4.4 Creating a repository

To set up a cvs repository, choose a directory with ample disk space available for the revision

history of the source �les. It should be accessable (directly or via a networked �le system) from all

machines which want to use cvs in server or local mode; the client machines need not have any access

to it other than via the cvs protocol. It is not possible to use cvs to read from a repository which

one only has read access to; cvs needs to be able to create lock �les (see Section 6.5 [Concurrency],

page 29).

To create a repository, run the cvs init command. It will set up an empty repository in the

cvs root speci�ed in the usual way (see Chapter 4 [Repository], page 13). For example,

cvs -d /usr/local/cvsroot init

cvs init is careful to never overwrite any existing �les in the repository, so no harm is done if

you run cvs init on an already set-up repository.

cvs init will enable history logging; if you don't want that, remove the history �le after running

cvs init. See Section B.9 [history �le], page 102.

Chapter 4: The Repository 17

4.5 Remote repositories

Your working copy of the sources can be on a di�erent machine than the repository. Generally,

using a remote repository is just like using a local one, except that the format of the repository

name is:

:method:user@hostname:/path/to/repository

The details of exactly what needs to be set up depend on how you are connecting to the server.

4.5.1 Connecting with rsh

CVS uses the `rsh' protocol to perform these operations, so the remote user host needs to have

a `.rhosts' �le which grants access to the local user.

For example, suppose you are the user `mozart' on the local machine `anklet.grunge.com', and

the server machine is `chainsaw.brickyard.com'. On chainsaw, put the following line into the �le

`.rhosts' in `bach''s home directory:

anklet.grunge.com mozart

Then test that rsh is working with

rsh -l bach chainsaw.brickyard.com echo $PATH

Next you have to make sure that rsh will be able to �nd the server. Make sure that the

path which rsh printed in the above example includes the directory containing a program named

cvs which is the server. You need to set the path in `.bashrc', `.cshrc', etc., not `.login' or

`.profile'. Alternately, you can set the environment variable CVS_SERVER on the client machine

to the �lename of the server you want to use, for example `/usr/local/bin/cvs-1.6'.

There is no need to edit inetd.conf or start a cvs server daemon.

Continuing our example, supposing you want to access the module `foo' in the repository

`/usr/local/cvsroot/', on machine `chainsaw.brickyard.com', you are ready to go:

cvs -d :server:bach@chainsaw.brickyard.com:/usr/local/cvsroot checkout foo

(The `bach@' can be omitted if the username is the same on both the local and remote hosts.)

4.5.2 Direct connection with password authentication

The cvs client can also connect to the server using a password protocol. This is particularly

useful if using rsh is not feasible (for example, the server is behind a �rewall), and Kerberos also

is not available.

18 CVS|Concurrent Versions System

To use this method, it is necessary to make some adjustments on both the server and client

sides.

4.5.2.1 Setting up the server for password authentication

On the server side, the �le `/etc/inetd.conf' needs to be edited so inetd knows to run the

command cvs pserver when it receives a connection on the right port. By default, the port number

is 2401; it would be di�erent if your client were compiled with CVS_AUTH_PORT de�ned to something

else, though.

If your inetd allows raw port numbers in `/etc/inetd.conf', then the following (all on a single

line in `inetd.conf') should be su�cient:

2401 stream tcp nowait root /usr/local/bin/cvs

cvs -b /usr/local/bin pserver

The `-b' option speci�es the directory which contains the rcs binaries on the server.

If your inetd wants a symbolic service name instead of a raw port number, then put this in

`/etc/services':

cvspserver 2401/tcp

and put cvspserver instead of 2401 in `inetd.conf'.

Once the above is taken care of, restart your inetd, or do whatever is necessary to force it to

reread its initialization �les.

Because the client stores and transmits passwords in cleartext (almost|see Section 4.5.2.3

[Password authentication security], page 19, for details), a separate cvs password �le may be used,

so people don't compromise their regular passwords when they access the repository. This �le is

`$CVSROOT/CVSROOT/passwd' (see Section 4.2 [Intro administrative �les], page 15). Its format is

similar to `/etc/passwd', except that it only has two �elds, username and password. For example:

bach:ULtgRLXo7NRxs

cwang:1sOp854gDF3DY

The password is encrypted according to the standard Unix crypt() function, so it is possible

to paste in passwords directly from regular Unix `passwd' �les.

When authenticating a password, the server �rst checks for the user in the cvs `passwd' �le.

If it �nds the user, it compares against that password. If it does not �nd the user, or if the cvs

`passwd' �le does not exist, then the server tries to match the password using the system's user-

lookup routine. When using the cvs `passwd' �le, the server runs under as the username speci�ed

in the the third argument in the entry, or as the �rst argument if there is no third argument (in

this way cvs allows imaginary usernames provided the cvs `passwd' �le indicates corresponding

valid system usernames). In any case, cvs will have no privileges which the (valid) user would not

have.

Chapter 4: The Repository 19

Right now, the only way to put a password in the cvs `passwd' �le is to paste it there from

somewhere else. Someday, there may be a cvs passwd command.

4.5.2.2 Using the client with password authentication

Before connecting to the server, the client must log in with the command cvs login. Logging

in veri�es a password with the server, and also records the password for later transactions with the

server. The cvs login command needs to know the username, server hostname, and full reposi-

tory path, and it gets this information from the repository argument or the CVSROOT environment

variable.

cvs login is interactive | it prompts for a password:

cvs -d :pserver:bach@chainsaw.brickyard.com:/usr/local/cvsroot login

CVS password:

The password is checked with the server; if it is correct, the login succeeds, else it fails, com-

plaining that the password was incorrect.

Once you have logged in, you can force cvs to connect directly to the server and authenticate

with the stored password:

cvs -d :pserver:bach@chainsaw.brickyard.com:/usr/local/cvsroot checkout foo

The `:pserver:' is necessary because without it, cvs will assume it should use rsh to connect

with the server (see Section 4.5.1 [Connecting via rsh], page 17). (Once you have a working copy

checked out and are running cvs commands from within it, there is no longer any need to specify

the repository explicitly, because cvs records it in the working copy's `CVS' subdirectory.)

Passwords are stored by default in the �le `$HOME/.cvspass'. Its format is human-readable, but

don't edit it unless you know what you are doing. The passwords are not stored in cleartext, but

are trivially encoded to protect them from "innocent" compromise (i.e., inadvertently being seen

by a system administrator who happens to look at that �le).

The CVS_PASSFILE environment variable overrides this default. If you use this variable, make

sure you set it before cvs login is run. If you were to set it after running cvs login, then later

cvs commands would be unable to look up the password for transmission to the server.

The CVS_PASSWORD environment variable overrides all stored passwords. If it is set, cvs will use

it for all password-authenticated connections.

4.5.2.3 Security considerations with password authentication

The passwords are stored on the client side in a trivial encoding of the cleartext, and transmitted

in the same encoding. The encoding is done only to prevent inadvertent password compromises

(i.e., a system administrator accidentally looking at the �le), and will not prevent even a naive

attacker from gaining the password.

20 CVS|Concurrent Versions System

The separate cvs password �le (see Section 4.5.2.1 [Password authentication server], page 18)

allows people to use a di�erent password for repository access than for login access. On the other

hand, once a user has access to the repository, she can execute programs on the server system

through a variety of means. Thus, repository access implies fairly broad system access as well.

It might be possible to modify cvs to prevent that, but no one has done so as of this writing.

Furthermore, there may be other ways in which having access to cvs allows people to gain more

general access to the system; noone has done a careful audit.

In summary, anyone who gets the password gets repository access, and some measure of general

system access as well. The password is available to anyone who can sni� network packets or read

a protected (i.e., user read-only) �le. If you want real security, get Kerberos.

4.5.3 Direct connection with kerberos

The main disadvantage of using rsh is that all the data needs to pass through additional pro-

grams, so it may be slower. So if you have kerberos installed you can connect via a direct tcp

connection, authenticating with kerberos (note that the data transmitted is not encrypted by de-

fault; you must use the -x global option to request encryption).

To do this, cvs needs to be compiled with kerberos support; when con�guring cvs it tries to

detect whether kerberos is present or you can use the `--with-krb4' ag to con�gure.

You need to edit inetd.conf on the server machine to run cvs kserver. The client uses port

1999 by default; if you want to use another port specify it in the CVS_CLIENT_PORT environment

variable on the client.

When you want to use cvs, get a ticket in the usual way (generally kinit); it must be a ticket

which allows you to log into the server machine. Then you are ready to go:

cvs -d :kserver:chainsaw.brickyard.com:/user/local/cvsroot checkout foo

Previous versions of cvs would fall back to a connection via rsh; this version will not do so.

Chapter 5: Starting a project with CVS 21

5 Starting a project with CVS

Since cvs 1.x is bad at renaming �les and moving them between directories, the �rst thing

you do when you start a new project should be to think through your �le organization. It is not

impossible|just awkward|to rename or move �les. See Chapter 13 [Moving �les], page 51.

What to do next depends on the situation at hand.

5.1 Setting up the �les

The �rst step is to create the �les inside the repository. This can be done in a couple of di�erent

ways.

5.1.1 Creating a directory tree from a number of �les

When you begin using cvs, you will probably already have several projects that can be put

under cvs control. In these cases the easiest way is to use the import command. An example is

probably the easiest way to explain how to use it. If the �les you want to install in cvs reside in

`wdir', and you want them to appear in the repository as `$CVSROOT/yoyodyne/rdir', you can do

this:

$ cd wdir

$ cvs import -m "Imported sources" yoyodyne/rdir yoyo start

Unless you supply a log message with the `-m' ag, cvs starts an editor and prompts for a

message. The string `yoyo' is a vendor tag, and `start' is a release tag. They may �ll no purpose

in this context, but since cvs requires them they must be present. See Chapter 12 [Tracking

sources], page 49, for more information about them.

You can now verify that it worked, and remove your original source directory.

$ cd ..

$ mv dir dir.orig

$ cvs checkout yoyodyne/dir # Explanation below

$ ls -R yoyodyne

$ rm -r dir.orig

Erasing the original sources is a good idea, to make sure that you do not accidentally edit them in

dir, bypassing cvs. Of course, it would be wise to make sure that you have a backup of the sources

before you remove them.

The checkout command can either take a module name as argument (as it has done in all

previous examples) or a path name relative to $CVSROOT, as it did in the example above.

It is a good idea to check that the permissions cvs sets on the directories inside `$CVSROOT'

are reasonable, and that they belong to the proper groups. See Section 4.1.1 [File permissions],

page 15.

22 CVS|Concurrent Versions System

If some of the �les you want to import are binary, you may want to use the wrappers features

to specify which �les are binary and which are not. See Section B.2 [Wrappers], page 96.

5.1.2 Creating Files From Other Version Control Systems

If you have a project which you are maintaining with another version control system, such as

rcs, you may wish to put the �les from that project into cvs, and preserve the revision history of

the �les.

From RCS If you have been using rcs, �nd the rcs �les|usually a �le named `foo.c' will have its

rcs �le in `RCS/foo.c,v' (but it could be other places; consult the rcs documentation

for details). Then create the appropriate directories in cvs if they do not already exist.

Then copy the �les into the appropriate directories in the cvs repository (the name in

the repository must be the name of the source �le with `,v' added; the �les go directly

in the appopriate directory of the repository, not in an `RCS' subdirectory). This is one

of the few times when it is a good idea to access the cvs repository directly, rather

than using cvs commands. Then you are ready to check out a new working directory.

From another version control system

Many version control systems have the ability to export rcs �les in the standard format.

If yours does, export the rcs �les and then follow the above instructions.

From SCCS

There is a script in the `contrib' directory of the cvs source distribution called

`sccs2rcs' which converts sccs �les to rcs �les. Note: you must run it on a ma-

chine which has both sccs and rcs installed, and like everything else in contrib it is

unsupported (your mileage may vary).

5.1.3 Creating a directory tree from scratch

For a new project, the easiest thing to do is probably to create an empty directory structure,

like this:

$ mkdir tc

$ mkdir tc/man

$ mkdir tc/testing

After that, you use the import command to create the corresponding (empty) directory structure

inside the repository:

$ cd tc

$ cvs import -m "Created directory structure" yoyodyne/dir yoyo start

Then, use add to add �les (and new directories) as they appear.

Check that the permissions cvs sets on the directories inside `$CVSROOT' are reasonable.

Chapter 5: Starting a project with CVS 23

5.2 De�ning the module

The next step is to de�ne the module in the `modules' �le. This is not strictly necessary, but

modules can be convenient in grouping together related �les and directories.

In simple cases these steps are su�cient to de�ne a module.

1. Get a working copy of the modules �le.

$ cvs checkout modules

$ cd modules

2. Edit the �le and insert a line that de�nes the module. See Section 4.2 [Intro administrative

�les], page 15, for an introduction. See Section B.1 [modules], page 95, for a full description

of the modules �le. You can use the following line to de�ne the module `tc':

tc yoyodyne/tc

3. Commit your changes to the modules �le.

$ cvs commit -m "Added the tc module." modules

4. Release the modules module.

$ cd ..

$ cvs release -d modules

24 CVS|Concurrent Versions System

Chapter 6: Multiple developers 25

6 Multiple developers

When more than one person works on a software project things often get complicated. Often,

two people try to edit the same �le simultaneously. Some other version control systems (including

rcs and sccs) try to solve that particular problem by introducing �le locking, so that only one

person can edit each �le at a time. Unfortunately, �le locking can be very counter-productive. If

two persons want to edit di�erent parts of a �le, there may be no reason to prevent either of them

from doing so.

cvs does not use �le locking. Instead, it allows many people to edit their own working copy of

a �le simultaneously. The �rst person that commits his changes has no automatic way of knowing

that another has started to edit it. Others will get an error message when they try to commit the

�le. They must then use cvs commands to bring their working copy up to date with the repository

revision. This process is almost automatic, and explained in this chapter.

There are many ways to organize a team of developers. cvs does not try to enforce a certain

organization. It is a tool that can be used in several ways. It is often useful to inform the group

of commits you have done. cvs has several ways of automating that process. See Section 6.4

[Informing others], page 28. See Chapter 18 [Revision management], page 63, for more tips on how

to use cvs.

6.1 File status

After you have checked out a �le out from cvs, it is in one of these four states:

Up-to-date

The �le is identical with the latest revision in the repository.

Locally modi�ed

You have edited the �le, and not yet committed your changes.

Needing update

Someone else has committed a newer revision to the repository.

Needing merge

Someone else have committed a newer revision to the repository, and you have also

made modi�cations to the �le.

You can use the status command to �nd out the status of a given �le. See Section A.17 [status],

page 90.

6.2 Bringing a �le up to date

When you want to update or merge a �le, use the update command. For �les that are not up to

date this is roughly equivalent to a checkout command: the newest revision of the �le is extracted

from the repository and put in your working copy of the module.

26 CVS|Concurrent Versions System

Your modi�cations to a �le are never lost when you use update. If no newer revision exists,

running update has no e�ect. If you have edited the �le, and a newer revision is available, cvs will

merge all changes into your working copy.

For instance, imagine that you checked out revision 1.4 and started editing it. In the meantime

someone else committed revision 1.5, and shortly after that revision 1.6. If you run update on the

�le now, cvs will incorporate all changes between revision 1.4 and 1.6 into your �le.

If any of the changes between 1.4 and 1.6 were made too close to any of the changes you have

made, an overlap occurs. In such cases a warning is printed, and the resulting �le includes both

versions of the lines that overlap, delimited by special markers. See Section A.19 [update], page 91,

for a complete description of the update command.

6.3 Conicts example

Suppose revision 1.4 of `driver.c' contains this:

#include <stdio.h>

void main()

{

parse();

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(nerr == 0 ? 0 : 1);

}

Revision 1.6 of `driver.c' contains this:

#include <stdio.h>

int main(int argc,

char **argv)

{

parse();

if (argc != 1)

{

fprintf(stderr, "tc: No args expected.\n");

exit(1);

}

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(!!nerr);

}

Chapter 6: Multiple developers 27

Your working copy of `driver.c', based on revision 1.4, contains this before you run `cvs update':

#include <stdlib.h>

#include <stdio.h>

void main()

{

init_scanner();

parse();

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You run `cvs update':

$ cvs update driver.c

RCS file: /usr/local/cvsroot/yoyodyne/tc/driver.c,v

retrieving revision 1.4

retrieving revision 1.6

Merging differences between 1.4 and 1.6 into driver.c

rcsmerge warning: overlaps during merge

cvs update: conflicts found in driver.c

C driver.c

cvs tells you that there were some conicts. Your original working �le is saved unmodi�ed in

`.#driver.c.1.4'. The new version of `driver.c' contains this:

#include <stdlib.h>

#include <stdio.h>

int main(int argc,

char **argv)

{

init_scanner();

parse();

if (argc != 1)

{

fprintf(stderr, "tc: No args expected.\n");

exit(1);

}

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

<<<<<<< driver.c

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

=======

exit(!!nerr);

28 CVS|Concurrent Versions System

>>>>>>> 1.6

}

Note how all non-overlapping modi�cations are incorporated in your working copy, and that the

overlapping section is clearly marked with `<<<<<<<', `=======' and `>>>>>>>'.

You resolve the conict by editing the �le, removing the markers and the erroneous line. Suppose

you end up with this �le:

#include <stdlib.h>

#include <stdio.h>

int main(int argc,

char **argv)

{

init_scanner();

parse();

if (argc != 1)

{

fprintf(stderr, "tc: No args expected.\n");

exit(1);

}

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You can now go ahead and commit this as revision 1.7.

$ cvs commit -m "Initialize scanner. Use symbolic exit values." driver.c

Checking in driver.c;

/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c

new revision: 1.7; previous revision: 1.6

done

If you use release 1.04 or later of pcl-cvs (a gnu Emacs front-end for cvs) you can use an Emacs

package called emerge to help you resolve conicts. See the documentation for pcl-cvs.

6.4 Informing others about commits

It is often useful to inform others when you commit a new revision of a �le. The `-i' option

of the `modules' �le, or the `loginfo' �le, can be used to automate this process. See Section B.1

[modules], page 95. See Section B.6 [loginfo], page 100. You can use these features of cvs to, for

instance, instruct cvs to mail a message to all developers, or post a message to a local newsgroup.

Chapter 6: Multiple developers 29

6.5 Several developers simultaneously attempting to run CVS

If several developers try to run cvs at the same time, one may get the following message:

[11:43:23] waiting for bach's lock in /usr/local/cvsroot/foo

cvs will try again every 30 seconds, and either continue with the operation or print the message

again, if it still needs to wait. If a lock seems to stick around for an undue amount of time,

�nd the person holding the lock and ask them about the cvs command they are running. If they

aren't running a cvs command, look for and remove �les starting with `#cvs.tfl', `#cvs.rfl', or

`#cvs.wfl' from the repository.

Note that these locks are to protect cvs's internal data structures and have no relationship

to the word lock in the sense used by rcs{a way to prevent other developers from working on a

particular �le.

Any number of people can be reading from a given repository at a time; only when someone is

writing do the locks prevent other people from reading or writing.

One might hope for the following property

If someone commits some changes in one cvs command,

then an update by someone else will either get all the

changes, or none of them.

but cvs does not have this property. For example, given the �les

a/one.c

a/two.c

b/three.c

b/four.c

if someone runs

cvs ci a/two.c b/three.c

and someone else runs cvs update at the same time, the person running update might get only

the change to `b/three.c' and not the change to `a/two.c'.

6.6 Mechanisms to track who is editing �les

For many groups, use of cvs in its default mode is perfectly satisfactory. Users may sometimes

go to check in a modi�cation only to �nd that another modi�cation has intervened, but they deal

with it and proceed with their check in. Other groups prefer to be able to know who is editing

what �les, so that if two people try to edit the same �le they can choose to talk about who is

doing what when rather than be surprised at check in time. The features in this section allow such

coordination, while retaining the ability of two developers to edit the same �le at the same time.

30 CVS|Concurrent Versions System

For maximum bene�t developers should use cvs edit (not chmod) to make �les read-write to

edit them, and cvs release (not rm) to discard a working directory which is no longer in use, but

cvs is not able to enforce this behavior.

6.6.1 Telling CVS to watch certain �les

To enable the watch features, you �rst specify that certain �les are to be watched.

Commandcvs watch on [-l] �les : : :

Specify that developers should run cvs edit before editing �les. CVS will create

working copies of �les read-only, to remind developers to run the cvs edit command

before working on them.

If �les includes the name of a directory, CVS arranges to watch all �les added to the

corresponding repository directory, and sets a default for �les added in the future; this

allows the user to set noti�cation policies on a per-directory basis. The contents of the

directory are processed recursively, unless the -l option is given.

If �les is omitted, it defaults to the current directory.

Commandcvs watch o� [-l] �les : : :

Do not provide noti�cation about work on �les. CVS will create working copies of �les

read-write.

The �les and -l arguments are processed as for cvs watch on.

6.6.2 Telling CVS to notify you

You can tell cvs that you want to receive noti�cations about various actions taken on a �le.

You can do this without using cvs watch on for the �le, but generally you will want to use cvs

watch on, so that developers use the cvs edit command.

Commandcvs watch add [-a action] [-l] �les : : :

Add the current user to the list of people to receive noti�cation of work done on �les.

The -a option speci�es what kinds of events CVS should notify the user about. action

is one of the following:

edit Another user has applied the cvs edit command (described below) to a

�le.

unedit Another user has applied the cvs unedit command (described below) or

the cvs release command to a �le, or has deleted the �le and allowed cvs

update to recreate it.

commit Another user has committed changes to a �le.

all All of the above.

Chapter 6: Multiple developers 31

none None of the above. (This is useful with cvs edit, described below.)

The -a option may appear more than once, or not at all. If omitted, the action defaults

to all.

The �les and -l option are processed as for the cvs watch commands.

Commandcvs watch remove [-a action] [-l] �les : : :

Remove a noti�cation request established using cvs watch add; the arguments are the

same. If the -a option is present, only watches for the speci�ed actions are removed.

When the conditions exist for noti�cation, cvs calls the `notify' administrative �le. Edit

`notify' as one edits the other administrative �les (see Section 4.2 [Intro administrative �les],

page 15). This �le follows the usual conventions for administrative �les (see Section B.3.1 [syntax],

page 98), where each line is a regular expression followed by a command to execute. The command

should contain a single ocurrence of `%s' which will be replaced by the user to notify; the rest of the

information regarding the noti�cation will be supplied to the command on standard input. The

standard thing to put in the notify �le is the single line:

ALL mail %s -s \"CVS notification\"

This causes users to be noti�ed by electronic mail.

Note that if you set this up in the straightforward way, users receive noti�cations on the server

machine. One could of course write a `notify' script which directed noti�cations elsewhere, but to

make this easy, cvs allows you to associate a noti�cation address for each user. To do so create a

�le `users' in `CVSROOT' with a line for each user in the format user:value. Then instead of passing

the name of the user to be noti�ed to `notify', cvs will pass the value (normally an email address

on some other machine).

6.6.3 How to edit a �le which is being watched

Since a �le which is being watched is checked out read-only, you cannot simply edit it. To make

it read-write, and inform others that you are planning to edit it, use the cvs edit command.

Commandcvs edit [options] �les : : :

Prepare to edit the working �les �les. CVS makes the �les read-write, and noti�es

users who have requested edit noti�cation for any of �les.

The cvs edit command accepts the same options as the cvs watch add command, and

establishes a temporary watch for the user on �les; CVS will remove the watch when

�les are unedited or committed. If the user does not wish to receive noti�cations, she

should specify -a none.

The �les and -l option are processed as for the cvs watch commands.

32 CVS|Concurrent Versions System

Normally when you are done with a set of changes, you use the cvs commit command, which

checks in your changes and returns the watched �les to their usual read-only state. But if you

instead decide to abandon your changes, or not to make any changes, you can use the cvs unedit

command.

Commandcvs unedit [-l] �les : : :

Abandon work on the working �les �les, and revert them to the repository versions on

which they are based. CVS makes those �les read-only for which users have requested

noti�cation using cvs watch on. CVS noti�es users who have requested unedit noti-

�cation for any of �les.

The �les and -l option are processed as for the cvs watch commands.

When using client/server cvs, you can use the cvs edit and cvs unedit commands even if cvs

is unable to succesfully communicate with the server; the noti�cations will be sent upon the next

successful cvs command.

6.6.4 Information about who is watching and editing

Commandcvs watchers [-l] �les : : :

List the users currently watching changes to �les. The report includes the �les being

watched, and the mail address of each watcher.

The �les and -l arguments are processed as for the cvs watch commands.

Commandcvs editors [-l] �les : : :

List the users currently working on �les. The report includes the mail address of each

user, the time when the user began working with the �le, and the host and path of the

working directory containing the �le.

The �les and -l arguments are processed as for the cvs watch commands.

6.6.5 Using watches with old versions of CVS

If you use the watch features on a repository, it creates `CVS' directories in the repository and

stores the information about watches in that directory. If you attempt to use cvs 1.6 or earlier

with the repository, you get an error message such as

cvs update: cannot open CVS/Entries for reading: No such file or directory

and your operation will likely be aborted. To use the watch features, you must upgrade all

copies of cvs which use that repository in local or server mode. If you cannot upgrade, use the

watch off and watch remove commands to remove all watches, and that will restore the repository

to a state which cvs 1.6 can cope with.

Chapter 7: Branches 33

7 Branches

So far, all revisions shown in this manual have been on the main trunk of the revision tree, i.e.,

all revision numbers have been of the form x.y. One useful feature, especially when maintaining

several releases of a software product at once, is the ability to make branches on the revision tree.

Tags, symbolic names for revisions, will also be introduced in this chapter.

7.1 Tags{Symbolic revisions

The revision numbers live a life of their own. They need not have anything at all to do with the

release numbers of your software product. Depending on how you use cvs the revision numbers

might change several times between two releases. As an example, some of the source �les that make

up rcs 5.6 have the following revision numbers:

ci.c 5.21

co.c 5.9

ident.c 5.3

rcs.c 5.12

rcsbase.h 5.11

rcsdiff.c 5.10

rcsedit.c 5.11

rcsfcmp.c 5.9

rcsgen.c 5.10

rcslex.c 5.11

rcsmap.c 5.2

rcsutil.c 5.10

You can use the tag command to give a symbolic name to a certain revision of a �le. You can

use the `-v' ag to the status command to see all tags that a �le has, and which revision numbers

they represent. Tag names can contain uppercase and lowercase letters, digits, `-', and `_'. The

two tag names BASE and HEAD are reserved for use by cvs. It is expected that future names which

are special to cvs will contain characters such as `%' or `=', rather than being named analogously

to BASE and HEAD, to avoid conicts with actual tag names.

The following example shows how you can add a tag to a �le. The commands must be issued

inside your working copy of the module. That is, you should issue the command in the directory

where `backend.c' resides.

$ cvs tag release-0-4 backend.c

T backend.c

$ cvs status -v backend.c

===

File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992

RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,v

Sticky Tag: (none)

Sticky Date: (none)

34 CVS|Concurrent Versions System

Sticky Options: (none)

Existing Tags:

release-0-4 (revision: 1.4)

There is seldom reason to tag a �le in isolation. A more common use is to tag all the �les that

constitute a module with the same tag at strategic points in the development life-cycle, such as

when a release is made.

$ cvs tag release-1-0 .

cvs tag: Tagging .

T Makefile

T backend.c

T driver.c

T frontend.c

T parser.c

(When you give cvs a directory as argument, it generally applies the operation to all the �les

in that directory, and (recursively), to any subdirectories that it may contain. See Chapter 9

[Recursive behavior], page 43.)

The checkout command has a ag, `-r', that lets you check out a certain revision of a module.

This ag makes it easy to retrieve the sources that make up release 1.0 of the module `tc' at any

time in the future:

$ cvs checkout -r release-1-0 tc

This is useful, for instance, if someone claims that there is a bug in that release, but you cannot

�nd the bug in the current working copy.

You can also check out a module as it was at any given date. See Section A.7.1 [checkout

options], page 75.

When you tag more than one �le with the same tag you can think about the tag as "a curve

drawn through a matrix of �lename vs. revision number." Say we have 5 �les with the following

revisions:

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- TAG

1.2*- 1.2 1.2 -1.2*-

1.3 \- 1.3*- 1.3 / 1.3

1.4 \ 1.4 / 1.4

\-1.5*- 1.5

1.6

At some time in the past, the * versions were tagged. You can think of the tag as a handle

attached to the curve drawn through the tagged revisions. When you pull on the handle, you get

Chapter 7: Branches 35

all the tagged revisions. Another way to look at it is that you "sight" through a set of revisions

that is "at" along the tagged revisions, like this:

file1 file2 file3 file4 file5

1.1

1.2

1.1 1.3 _

1.1 1.2 1.4 1.1 /

1.2*----1.3*----1.5*----1.2*----1.1 (--- <--- Look here

1.3 1.6 1.3 _

1.4 1.4

1.5

7.2 What branches are good for

Suppose that release 1.0 of tc has been made. You are continuing to develop tc, planning to

create release 1.1 in a couple of months. After a while your customers start to complain about a

fatal bug. You check out release 1.0 (see Section 7.1 [Tags], page 33) and �nd the bug (which turns

out to have a trivial �x). However, the current revision of the sources are in a state of ux and

are not expected to be stable for at least another month. There is no way to make a bug�x release

based on the newest sources.

The thing to do in a situation like this is to create a branch on the revision trees for all the �les

that make up release 1.0 of tc. You can then make modi�cations to the branch without disturbing

the main trunk. When the modi�cations are �nished you can select to either incorporate them on

the main trunk, or leave them on the branch.

7.3 Creating a branch

The rtag command can be used to create a branch. The rtag command is much like tag, but

it does not require that you have a working copy of the module. See Section A.16 [rtag], page 88.

(You can also use the tag command; see Section A.18 [tag], page 90).

$ cvs rtag -b -r release-1-0 release-1-0-patches tc

The `-b' ag makes rtag create a branch (rather than just a symbolic revision name). `-r

release-1-0' says that this branch should be rooted at the node (in the revision tree) that

corresponds to the tag `release-1-0'. Note that the numeric revision number that matches

`release-1-0' will probably be di�erent from �le to �le. The name of the new branch is

`release-1-0-patches', and the module a�ected is `tc'.

To �x the problem in release 1.0, you need a working copy of the branch you just created.

$ cvs checkout -r release-1-0-patches tc

$ cvs status -v driver.c backend.c

===

36 CVS|Concurrent Versions System

File: driver.c Status: Up-to-date

Version: 1.7 Sat Dec 5 18:25:54 1992

RCS Version: 1.7 /usr/local/cvsroot/yoyodyne/tc/driver.c,v

Sticky Tag: release-1-0-patches (branch: 1.7.2)

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

release-1-0-patches (branch: 1.7.2)

release-1-0 (revision: 1.7)

===

File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992

RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,v

Sticky Tag: release-1-0-patches (branch: 1.4.2)

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

release-1-0-patches (branch: 1.4.2)

release-1-0 (revision: 1.4)

release-0-4 (revision: 1.4)

As the output from the status command shows the branch number is created by adding a digit

at the tail of the revision number it is based on. (If `release-1-0' corresponds to revision 1.4,

the branch's revision number will be 1.4.2. For obscure reasons cvs always gives branches even

numbers, starting at 2. See Section 2.1 [Revision numbers], page 7.).

7.4 Sticky tags

The `-r release-1-0-patches' ag that was given to checkout in the previous example is

sticky, that is, it will apply to subsequent commands in this directory. If you commit any modi�-

cations, they are committed on the branch. You can later merge the modi�cations into the main

trunk. See Chapter 8 [Merging], page 39.

You can use the status command to see what sticky tags or dates are set:

$ vi driver.c # Fix the bugs

$ cvs commit -m "Fixed initialization bug" driver.c

Checking in driver.c;

/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c

new revision: 1.7.2.1; previous revision: 1.7

done

$ cvs status -v driver.c

===

Chapter 7: Branches 37

File: driver.c Status: Up-to-date

Version: 1.7.2.1 Sat Dec 5 19:35:03 1992

RCS Version: 1.7.2.1 /usr/local/cvsroot/yoyodyne/tc/driver.c,v

Sticky Tag: release-1-0-patches (branch: 1.7.2)

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

release-1-0-patches (branch: 1.7.2)

release-1-0 (revision: 1.7)

The sticky tags will remain on your working �les until you delete them with `cvs update -A'.

The `-A' option retrieves the version of the �le from the head of the trunk, and forgets any sticky

tags, dates, or options.

Sticky tags are not just for branches. For example, suppose that you want to avoid updating your

working directory, to isolate yourself from possibly destabilizing changes other people are making.

You can, of course, just refrain from running cvs update. But if you want to avoid updating only a

portion of a larger tree, then sticky tags can help. If you check out a certain revision (such as 1.4)

it will become sticky. Subsequent cvs update will not retrieve the latest revision until you reset

the tag with cvs update -A. Likewise, use of the `-D' option to update or checkout sets a sticky

date, which, similarly, causes that date to be used for future retrievals.

Many times you will want to retrieve an old version of a �le without setting a sticky tag. The

way to do that is with the `-p' option to checkout or update, which sends the contents of the �le

to standard output. For example, suppose you have a �le named `file1' which existed as revision

1.1, and you then removed it (thus adding a dead revision 1.2). Now suppose you want to add it

again, with the same contents it had previously. Here is how to do it:

$ cvs update -p -r 1.1 file1 >file1

===

Checking out file1

RCS: /tmp/cvs-sanity/cvsroot/first-dir/Attic/file1,v

VERS: 1.1

$ cvs add file1

cvs add: re-adding file file1 (in place of dead revision 1.2)

cvs add: use 'cvs commit' to add this file permanently

$ cvs commit -m test

Checking in file1;

/tmp/cvs-sanity/cvsroot/first-dir/file1,v <-- file1

new revision: 1.3; previous revision: 1.2

done

$

38 CVS|Concurrent Versions System

Chapter 8: Merging 39

8 Merging

You can include the changes made between any two revisions into your working copy, bymerging.

You can then commit that revision, and thus e�ectively copy the changes onto another branch.

8.1 Merging an entire branch

You can merge changes made on a branch into your working copy by giving the `-j branch' ag

to the update command. With one `-j branch' option it merges the changes made between the

point where the branch forked and newest revision on that branch (into your working copy).

The `-j' stands for \join".

Consider this revision tree:

+-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+

!

!

! +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !

+---------+ +---------+

The branch 1.2.2 has been given the tag (symbolic name) `R1fix'. The following example assumes

that the module `mod' contains only one �le, `m.c'.

$ cvs checkout mod # Retrieve the latest revision, 1.4

$ cvs update -j R1fix m.c # Merge all changes made on the branch,

i.e. the changes between revision 1.2

and 1.2.2.2, into your working copy

of the �le.

$ cvs commit -m "Included R1fix" # Create revision 1.5.

A conict can result from a merge operation. If that happens, you should resolve it before

committing the new revision. See Section 6.3 [Conicts example], page 26.

The checkout command also supports the `-j branch' ag. The same e�ect as above could be

achieved with this:

$ cvs checkout -j R1fix mod

$ cvs commit -m "Included R1fix"

40 CVS|Concurrent Versions System

8.2 Merging from a branch several times

Continuing our example, the revision tree now looks like this:

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

! *

! *

! +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !

+---------+ +---------+

where the starred line represents the merge from the `R1fix' branch to the main trunk, as just

discussed.

Now suppose that development continues on the `R1fix' branch:

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

! *

! *

! +---------+ +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !

+---------+ +---------+ +---------+

and then you want to merge those new changes onto the main trunk. If you just use the cvs

update -j R1fix m.c command again, cvs will attempt to merge again the changes which you

have already merged, which can have undesirable side e�ects.

So instead you need to specify that you only want to merge the changes on the branch which

have not yet been merged into the trunk. To do that you specify two `-j' options, and cvs merges

the changes from the �rst revision to the second revision. For example, in this case the simplest

way would be

cvs update -j 1.2.2.2 -j R1fix m.c # Merge changes from 1.2.2.2 to the

head of the R1�x branch

The problem with this is that you need to specify the 1.2.2.2 revision manually. A slightly better

approach might be to use the date the last merge was done:

cvs update -j R1fix:yesterday -j R1fix m.c

Better yet, tag the R1�x branch after every merge into the trunk, and then use that tag for

subsequent merges:

cvs update -j merged_from_R1fix_to_trunk -j R1fix m.c

Chapter 8: Merging 41

8.3 Merging di�erences between any two revisions

With two `-j revision' ags, the update (and checkout) command can merge the di�erences

between any two revisions into your working �le.

$ cvs update -j 1.5 -j 1.3 backend.c

will remove all changes made between revision 1.3 and 1.5. Note the order of the revisions!

If you try to use this option when operating on multiple �les, remember that the numeric

revisions will probably be very di�erent between the various �les that make up a module. You

almost always use symbolic tags rather than revision numbers when operating on multiple �les.

42 CVS|Concurrent Versions System

Chapter 9: Recursive behavior 43

9 Recursive behavior

Almost all of the subcommands of cvs work recursively when you specify a directory as an

argument. For instance, consider this directory structure:

$HOME

|

+--tc

| |

+--CVS

| (internal cvs files)

+--Makefile

+--backend.c

+--driver.c

+--frontend.c

+--parser.c

+--man

| |

| +--CVS

| | (internal cvs files)

| +--tc.1

|

+--testing

|

+--CVS

| (internal cvs files)

+--testpgm.t

+--test2.t

If `tc' is the current working directory, the following is true:

� `cvs update testing' is equivalent to `cvs update testing/testpgm.t testing/test2.t'

� `cvs update testing man' updates all �les in the subdirectories

� `cvs update .' or just `cvs update' updates all �les in the tc module

If no arguments are given to update it will update all �les in the current working directory and

all its subdirectories. In other words, `.' is a default argument to update. This is also true for

most of the cvs subcommands, not only the update command.

The recursive behavior of the cvs subcommands can be turned o� with the `-l' option.

$ cvs update -l # Don't update �les in subdirectories

44 CVS|Concurrent Versions System

Chapter 10: Adding �les to a module 45

10 Adding �les to amodule

To add a new �le to a module, follow these steps.

� You must have a working copy of the module. See Section 3.1 [Getting the source], page 9.

� Create the new �le inside your working copy of the module.

� Use `cvs add �lename' to tell cvs that you want to version control the �le.

� Use `cvs commit �lename' to actually check in the �le into the repository. Other developers

cannot see the �le until you perform this step.

� If the �le contains binary data it might be necessary to change the default keyword substitution.

See Chapter 16 [Keyword substitution], page 57. See Section A.6.2 [admin examples], page 73.

You can also use the add command to add a new directory inside a module.

Unlike most other commands, the add command is not recursive. You cannot even type `cvs

add foo/bar'! Instead, you have to

$ cd foo

$ cvs add bar

See Section A.5 [add], page 69, for a more complete description of the add command.

46 CVS|Concurrent Versions System

Chapter 11: Removing �les from a module 47

11 Removing �les from amodule

Modules change. New �les are added, and old �les disappear. Still, you want to be able to

retrieve an exact copy of old releases of the module.

Here is what you can do to remove a �le from a module, but remain able to retrieve old revisions:

� Make sure that you have not made any uncommitted modi�cations to the �le. See Section 3.4

[Viewing di�erences], page 10, for one way to do that. You can also use the status or update

command. If you remove the �le without committing your changes, you will of course not be

able to retrieve the �le as it was immediately before you deleted it.

� Remove the �le from your working copy of the module. You can for instance use rm.

� Use `cvs remove �lename' to tell cvs that you really want to delete the �le.

� Use `cvs commit �lename' to actually perform the removal of the �le from the repository.

When you commit the removal of the �le, cvs records the fact that the �le no longer exists.

It is possible for a �le to exist on only some branches and not on others, or to re-add another �le

with the same name later. CVS will correctly create or not create the �le, based on the `-r' and

`-D' options speci�ed to checkout or update.

Commandcvs remove [-lR] �les : : :

Schedule �le(s) to be removed from the repository (�les which have not already been

removed from the working directory are not processed). This command does not actu-

ally remove the �le from the repository until you commit the removal. The `-R' option

(the default) speci�es that it will recurse into subdirectories; `-l' speci�es that it will

not.

Here is an example of removing several �les:

$ cd test

$ rm ?.c

$ cvs remove

cvs remove: Removing .

cvs remove: scheduling a.c for removal

cvs remove: scheduling b.c for removal

cvs remove: use 'cvs commit' to remove these files permanently

$ cvs ci -m "Removed unneeded files"

cvs commit: Examining .

cvs commit: Committing .

If you change your mind you can easily resurrect the �le before you commit it, using the add

command.

$ ls

CVS ja.h oj.c

$ rm oj.c

$ cvs remove oj.c

cvs remove: scheduling oj.c for removal

48 CVS|Concurrent Versions System

cvs remove: use 'cvs commit' to remove this file permanently

$ cvs add oj.c

U oj.c

cvs add: oj.c, version 1.1.1.1, resurrected

If you realize your mistake before you run the remove command you can use update to resurrect

the �le:

$ rm oj.c

$ cvs update oj.c

cvs update: warning: oj.c was lost

U oj.c

Chapter 12: Tracking third-party sources 49

12 Tracking third-party sources

If you modify a program to better �t your site, you probably want to include your modi�cations

when the next release of the program arrives. cvs can help you with this task.

In the terminology used in cvs, the supplier of the program is called a vendor. The unmodi�ed

distribution from the vendor is checked in on its own branch, the vendor branch. cvs reserves

branch 1.1.1 for this use.

When you modify the source and commit it, your revision will end up on the main trunk. When

a new release is made by the vendor, you commit it on the vendor branch and copy the modi�cations

onto the main trunk.

Use the import command to create and update the vendor branch. After a successful import

the vendor branch is made the `head' revision, so anyone that checks out a copy of the �le gets

that revision. When a local modi�cation is committed it is placed on the main trunk, and made

the `head' revision.

12.1 Importing a module for the �rst time

Use the import command to check in the sources for the �rst time. When you use the import

command to track third-party sources, the vendor tag and release tags are useful. The vendor tag

is a symbolic name for the branch (which is always 1.1.1, unless you use the `-b branch' ag|See

Section A.12.1 [import options], page 83.). The release tags are symbolic names for a particular

release, such as `FSF_0_04'.

Suppose you use wdiff (a variant of diff that ignores changes that only involve whitespace),

and are going to make private modi�cations that you want to be able to use even when new releases

are made in the future. You start by importing the source to your repository:

$ tar xfz wdiff-0.04.tar.gz

$ cd wdiff-0.04

$ cvs import -m "Import of FSF v. 0.04" fsf/wdiff FSF_DIST WDIFF_0_04

The vendor tag is named `FSF_DIST' in the above example, and the only release tag assigned is

`WDIFF_0_04'.

12.2 Updating a module with the import command

When a new release of the source arrives, you import it into the repository with the same import

command that you used to set up the repository in the �rst place. The only di�erence is that you

specify a di�erent release tag this time.

$ tar xfz wdiff-0.05.tar.gz

$ cd wdiff-0.05

$ cvs import -m "Import of FSF v. 0.05" fsf/wdiff FSF_DIST WDIFF_0_05

50 CVS|Concurrent Versions System

For �les that have not been modi�ed locally, the newly created revision becomes the head

revision. If you have made local changes, import will warn you that you must merge the changes

into the main trunk, and tell you to use `checkout -j' to do so.

$ cvs checkout -jFSF_DIST:yesterday -jFSF_DIST wdiff

The above command will check out the latest revision of `wdiff', merging the changes made on the

vendor branch `FSF_DIST' since yesterday into the working copy. If any conicts arise during the

merge they should be resolved in the normal way (see Section 6.3 [Conicts example], page 26).

Then, the modi�ed �les may be committed.

Using a date, as suggested above, assumes that you do not import more than one release of a

product per day. If you do, you can always use something like this instead:

$ cvs checkout -jWDIFF_0_04 -jWDIFF_0_05 wdiff

In this case, the two above commands are equivalent.

12.3 How to handle binary �les with cvs import

Use the `-k' wrapper option to tell import which �les are binary. See Section B.2 [Wrappers],

page 96.

Chapter 13: Moving and renaming �les 51

13 Moving and renaming �les

Moving �les to a di�erent directory or renaming them is not di�cult, but some of the ways

in which this works may be non-obvious. (Moving or renaming a directory is even harder. See

Chapter 14 [Moving directories], page 53.).

The examples below assume that the �le old is renamed to new.

13.1 The Normal way to Rename

The normal way to move a �le is to copy old to new, and then issue the normal cvs commands

to remove old from the repository, and add new to it. (Both old and new could contain relative

paths, for example `foo/bar.c').

$ mv old new

$ cvs remove old

$ cvs add new

$ cvs commit -m "Renamed old to new" old new

This is the simplest way to move a �le, it is not error-prone, and it preserves the history of what

was done. Note that to access the history of the �le you must specify the old or the new name,

depending on what portion of the history you are accessing. For example, cvs log old will give

the log up until the time of the rename.

When new is committed its revision numbers will start at 1.0 again, so if that bothers you, use

the `-r rev' option to commit (see Section A.8.1 [commit options], page 76)

13.2 Moving the history �le

This method is more dangerous, since it involves moving �les inside the repository. Read this

entire section before trying it out!

$ cd $CVSROOT/module

$ mv old,v new,v

Advantages:

� The log of changes is maintained intact.

� The revision numbers are not a�ected.

Disadvantages:

� Old releases of the module cannot easily be fetched from the repository. (The �le will show up

as new even in revisions from the time before it was renamed).

� There is no log information of when the �le was renamed.

52 CVS|Concurrent Versions System

� Nasty things might happen if someone accesses the history �le while you are moving it. Make

sure no one else runs any of the cvs commands while you move it.

13.3 Copying the history �le

This way also involves direct modi�cations to the repository. It is safe, but not without draw-

backs.

Copy the rcs �le inside the repository

$ cd $CVSROOT/module

$ cp old,v new,v

Remove the old �le

$ cd ~/module

$ rm old

$ cvs remove old

$ cvs commit old

Remove all tags from new

$ cvs update new

$ cvs log new # Remember the tag names

$ cvs tag -d tag1

$ cvs tag -d tag2

: : :

By removing the tags you will be able to check out old revisions of the module.

Advantages:

� Checking out old revisions works correctly, as long as you use `-rtag ' and not `-Ddate' to

retrieve the revisions.

� The log of changes is maintained intact.

� The revision numbers are not a�ected.

Disadvantages:

� You cannot easily see the history of the �le across the rename.

� Unless you use the `-r rev' (see Section A.8.1 [commit options], page 76) ag when new is

committed its revision numbers will start at 1.0 again.

Chapter 14: Moving and renaming directories 53

14 Moving and renaming directories

If you want to be able to retrieve old versions of the module, you must move each �le in the

directory with the cvs commands. See Section 13.1 [Outside], page 51. The old, empty directory

will remain inside the repository, but it will not appear in your workspace when you check out the

module in the future.

If you really want to rename or delete a directory, you can do it like this:

1. Inform everyone who has a copy of the module that the directory will be renamed. They should

commit all their changes, and remove their working copies of the module, before you take the

steps below.

2. Rename the directory inside the repository.

$ cd $CVSROOT/module

$ mv old-dir new-dir

3. Fix the cvs administrative �les, if necessary (for instance if you renamed an entire module).

4. Tell everyone that they can check out the module and continue working.

If someone had a working copy of the module the cvs commands will cease to work for him,

until he removes the directory that disappeared inside the repository.

It is almost always better to move the �les in the directory instead of moving the directory.

If you move the directory you are unlikely to be able to retrieve old releases correctly, since they

probably depend on the name of the directories.

54 CVS|Concurrent Versions System

Chapter 15: History browsing 55

15 History browsing

Once you have used cvs to store a version control history|what �les have changed when, how,

and by whom, there are a variety of mechanisms for looking through the history.

15.1 Log messages

Whenever you commit a �le you specify a log message.

To look through the log messages which have been speci�ed for every revision which has been

committed, use the cvs log command (see Section A.13 [log], page 84).

15.2 The history database

You can use the history �le (see Section B.9 [history �le], page 102) to log various cvs actions.

To retrieve the information from the history �le, use the cvs history command (see Section A.11

[history], page 81).

15.3 User-de�ned logging

You can customize cvs to log various kinds of actions, in whatever manner you choose. These

mechanisms operate by executing a script at various times. The script might append a message to a

�le listing the information and the programmer who created it, or send mail to a group of developers,

or, perhaps, post a message to a particular newsgroup. To log commits, use the `loginfo' �le (see

Section B.6 [loginfo], page 100). To log commits, checkouts, exports, and tags, respectively, you

can also use the `-i', `-o', `-e', and `-t' options in the modules �le. For a more exible way of

giving noti�cations to various users, which requires less in the way of keeping centralized scripts

up to date, use the cvs watch add command (see Section 6.6.2 [Getting Noti�ed], page 30); this

command is useful even if you are not using cvs watch on.

The `taginfo' �le de�nes programs to execute when someone executes a tag or rtag command.

The `taginfo' �le has the standard form for administrative �les (see Appendix B [Administrative

�les], page 95), where each line is a regular expression followed by a command to execute. The

arguments passed to the command are, in order, the tagname, operation (add for tag, mov for tag

-F, and del for tag -d), repository, and any remaining are pairs of �lename revision. A non-zero

exit of the �lter program will cause the tag to be aborted.

15.4 Annotate command

Commandcvs annotate [-lf] [-r rev|-D date] �les : : :

For each �le in �les, print the head revision of the trunk, together with information on

the last modi�cation for each line. For example:

56 CVS|Concurrent Versions System

$ cvs annotate ssfile

Annotations for ssfile

1.1 (mary 27-Mar-96): ssfile line 1

1.2 (joe 28-Mar-96): ssfile line 2

The �le `ssfile' currently contains two lines. The ssfile line 1 line was checked in

by mary on March 27. Then, on March 28, joe added a line ssfile line 2, without

modifying the ssfile line 1 line. This report doesn't tell you anything about lines

which have been deleted or replaced; you need to use cvs diff for that (see Section A.9

[di�], page 79).

These standard options are available with annotate (see Section A.4 [Common options], page 67,

for a complete description of them):

-D date Annotate the most recent revision no later than date.

-f Only useful with the `-D date' or `-r tag ' ags. If no matching revision is found,

annotate the most recent revision (instead of ignoring the �le).

-l Local; run only in current working directory. See Chapter 9 [Recursive behavior],

page 43.

-r tag Annotate revision tag.

Chapter 16: Keyword substitution 57

16 Keyword substitution

As long as you edit source �les inside your working copy of a module you can always �nd out

the state of your �les via `cvs status' and `cvs log'. But as soon as you export the �les from your

development environment it becomes harder to identify which revisions they are.

Rcs uses a mechanism known as keyword substitution (or keyword expansion) to help identifying

the �les. Embedded strings of the form $keyword$ and $keyword:: : :$ in a �le are replaced with

strings of the form $keyword:value$ whenever you obtain a new revision of the �le.

16.1 RCS Keywords

This is a list of the keywords that rcs currently (in release 5.6.0.1) supports:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time (UTC) the revision was checked in.

$Header$ A standard header containing the full pathname of the rcs �le, the revision number,

the date (UTC), the author, the state, and the locker (if locked). Files will normally

never be locked when you use cvs.

Id Same as $Header$, except that the rcs �lename is without a path.

$Name$ Tag name used to check out this �le.

$Locker$ The login name of the user who locked the revision (empty if not locked, and thus

almost always useless when you are using cvs).

Log The log message supplied during commit, preceded by a header containing the rcs

�lename, the revision number, the author, and the date (UTC). Existing log messages

are not replaced. Instead, the new log message is inserted after $Log:: : :$. Each new

line is pre�xed with a comment leader which rcs guesses from the �le name extension.

It can be changed with cvs admin -c. See Section A.6.1 [admin options], page 71.

This keyword is useful for accumulating a complete change log in a source �le, but for

several reasons it can be problematic. See Section 16.5 [Log keyword], page 59.

$RCSfile$

The name of the RCS �le without a path.

$Revision$

The revision number assigned to the revision.

$Source$ The full pathname of the RCS �le.

$State$ The state assigned to the revision. States can be assigned with cvs admin -s|See

Section A.6.1 [admin options], page 71.

16.2 Using keywords

To include a keyword string you simply include the relevant text string, such as Id, inside the

�le, and commit the �le. cvs will automatically expand the string as part of the commit operation.

58 CVS|Concurrent Versions System

It is common to embed Id string in the C source code. This example shows the �rst few lines

of a typical �le, after keyword substitution has been performed:

static char *rcsid="$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";

/* The following lines will prevent gcc version 2.x

from issuing an "unused variable" warning. */

#if __GNUC__ == 2

#define USE(var) static void * use_##var = (&use_##var, (void *) &var)

USE (rcsid);

#endif

Even though a clever optimizing compiler could remove the unused variable rcsid, most com-

pilers tend to include the string in the binary. Some compilers have a #pragma directive to include

literal text in the binary.

The ident command (which is part of the rcs package) can be used to extract keywords and

their values from a �le. This can be handy for text �les, but it is even more useful for extracting

keywords from binary �les.

$ ident samp.c

samp.c:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $

$ gcc samp.c

$ ident a.out

a.out:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $

Sccs is another popular revision control system. It has a command, what, which is very similar

to ident and used for the same purpose. Many sites without rcs have sccs. Since what looks for

the character sequence @(#) it is easy to include keywords that are detected by either command.

Simply pre�x the rcs keyword with the magic sccs phrase, like this:

static char *id="@(#) $Id: ab.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";

16.3 Avoiding substitution

Keyword substitution has its disadvantages. Sometimes you might want the literal text string

`$Author$' to appear inside a �le without rcs interpreting it as a keyword and expanding it into

something like `$Author: ceder $'.

There is unfortunately no way to selectively turn o� keyword substitution. You can use `-ko'

(see Section 16.4 [Substitution modes], page 59) to turn o� keyword substitution entirely.

In many cases you can avoid using rcs keywords in the source, even though they appear in the

�nal product. For example, the source for this manual contains `$@asis{}Author$' whenever the

text `$Author$' should appear. In nroff and troff you can embed the null-character \& inside

the keyword for a similar e�ect.

Chapter 16: Keyword substitution 59

16.4 Substitution modes

Each �le has a stored default substitution mode, and each working directory copy of a �le also

has a substitution mode. The former is set by the `-k' option to cvs add and cvs admin; the latter

is set by the -k or -A options to cvs checkout or cvs update. cvs diff also has a `-k' option. For

some examples, See Chapter 17 [Binary �les], page 61.

The modes available are:

`-kkv' Generate keyword strings using the default form, e.g. $Revision: 5.7 $ for the

Revision keyword.

`-kkvl' Like `-kkv', except that a locker's name is always inserted if the given revision is

currently locked. This option is normally not useful when cvs is used.

`-kk' Generate only keyword names in keyword strings; omit their values. For example, for

the Revision keyword, generate the string $Revision$ instead of $Revision: 5.7 $.

This option is useful to ignore di�erences due to keyword substitution when comparing

di�erent revisions of a �le.

`-ko' Generate the old keyword string, present in the working �le just before it was checked in.

For example, for the Revision keyword, generate the string $Revision: 1.1 $ instead

of $Revision: 5.7 $ if that is how the string appeared when the �le was checked in.

`-kb' Like `-ko', but also inhibit conversion of line endings between the canonical form in

which they are stored in the repository (linefeed only), and the form appropriate to the

operating system in use on the client. For systems, like unix, which use linefeed only

to terminate lines, this is the same as `-ko'. For more information on binary �les, see

Chapter 17 [Binary �les], page 61.

`-kv' Generate only keyword values for keyword strings. For example, for the Revision key-

word, generate the string 5.7 instead of $Revision: 5.7 $. This can help generate �les

in programming languages where it is hard to strip keyword delimiters like $Revision:

$ from a string. However, further keyword substitution cannot be performed once the

keyword names are removed, so this option should be used with care.

One often would like to use `-kv' with cvs export|see Section A.10 [export], page 80.

But be aware that doesn't handle an export containing binary �les correctly.

16.5 Problems with the Log keyword.

The Log keyword is somewhat controversial. As long as you are working on your development

system the information is easily accessible even if you do not use the Log keyword|just do a

cvs log. Once you export the �le the history information might be useless anyhow.

A more serious concern is that rcs is not good at handling Log entries when a branch is

merged onto the main trunk. Conicts often result from the merging operation.

People also tend to "�x" the log entries in the �le (correcting spelling mistakes and maybe

even factual errors). If that is done the information from cvs log will not be consistent with the

information inside the �le. This may or may not be a problem in real life.

60 CVS|Concurrent Versions System

It has been suggested that the Log keyword should be inserted last in the �le, and not in the

�les header, if it is to be used at all. That way the long list of change messages will not interfere

with everyday source �le browsing.

Chapter 17: Handling binary �les 61

17 Handling binary �les

There are two issues with using cvs to store binary �les. The �rst is that cvs by default convert

line endings between the canonical form in which they are stored in the repository (linefeed only),

and the form appropriate to the operating system in use on the client (for example, carriage return

followed by line feed for Windows NT).

The second is that a binary �le might happen to contain data which looks like a keyword (see

Chapter 16 [Keyword substitution], page 57), so keyword expansion must be turned o�.

The `-kb' option available with some cvs commands insures that neither line ending conversion

nor keyword expansion will be done. If you are using an old version of rcs without this option, and

you are using an operating system, such as unix, which terminates lines with linefeeds only, you

can use `-ko' instead; if you are on another operating system, upgrade to a version of rcs, such as

5.7 or later, which supports `-kb'.

Here is an example of how you can create a new �le using the `-kb' ag:

$ echo 'Id' > kotest

$ cvs add -kb -m"A test file" kotest

$ cvs ci -m"First checkin; contains a keyword" kotest

If a �le accidentally gets added without `-kb', one can use the cvs admin command to recover.

For example:

$ echo 'Id' > kotest

$ cvs add -m"A test file" kotest

$ cvs ci -m"First checkin; contains a keyword" kotest

$ cvs admin -kb kotest

$ cvs update -A kotest

$ cvs commit -m "make it binary" kotest # For non-unix systems

When you check in the �le `kotest' the keywords are expanded. (Try the above example, and

do a cat kotest after every command). The cvs admin -kb command sets the default keyword

substitution method for this �le, but it does not alter the working copy of the �le that you have.

The easiest way to get the unexpanded version of `kotest' is cvs update -A. If you need to cope

with line endings (that is, you are using a cvs client on a non-unix system), then you need to check

in a new copy of the �le, as shown by the cvs commit command above.

However, in using cvs admin -k to change the keyword expansion, be aware that the keyword

expansion mode is not version controlled. This means that, for example, that if you have a text

�le in old releases, and a binary �le with the same name in new releases, cvs provides no way to

check out the �le in text or binary mode depending on what version you are checking out. There

is no good workaround for this problem.

You can also set a default for whether cvs add and cvs import treat a �le as binary based on

its name; for example you could say that �les who names end in `.exe' are binary. See Section B.2

[Wrappers], page 96.

62 CVS|Concurrent Versions System

Chapter 18: Revision management 63

18 Revisionmanagement

If you have read this far, you probably have a pretty good grasp on what cvs can do for you.

This chapter talks a little about things that you still have to decide.

If you are doing development on your own using cvs you could probably skip this chapter. The

questions this chapter takes up become more important when more than one person is working in

a repository.

18.1 When to commit?

Your group should decide which policy to use regarding commits. Several policies are possible,

and as your experience with cvs grows you will probably �nd out what works for you.

If you commit �les too quickly you might commit �les that do not even compile. If your partner

updates his working sources to include your buggy �le, he will be unable to compile the code. On

the other hand, other persons will not be able to bene�t from the improvements you make to the

code if you commit very seldom, and conicts will probably be more common.

It is common to only commit �les after making sure that they can be compiled. Some sites

require that the �les pass a test suite. Policies like this can be enforced using the commitinfo �le (see

Section B.4 [commitinfo], page 98), but you should think twice before you enforce such a convention.

By making the development environment too controlled it might become too regimented and thus

counter-productive to the real goal, which is to get software written.

64 CVS|Concurrent Versions System

Appendix A: Reference manual for CVS commands 65

Appendix A Referencemanual for CVS commands

This appendix describes how to invoke cvs, and describes in detail those subcommands of

cvs which are not fully described elsewhere. To look up a particular subcommand, see [Index],

page 111.

A.1 Overall structure of CVS commands

The overall format of all cvs commands is:

cvs [cvs_options] cvs_command [command_options] [command_args]

cvs The name of the cvs program.

cvs_options

Some options that a�ect all sub-commands of cvs. These are described below.

cvs_command

One of several di�erent sub-commands. Some of the commands have aliases that can

be used instead; those aliases are noted in the reference manual for that command.

There are only two situations where you may omit `cvs_command': `cvs -H' elicits a

list of available commands, and `cvs -v' displays version information on cvs itself.

command_options

Options that are speci�c for the command.

command_args

Arguments to the commands.

There is unfortunately some confusion between cvs_options and command_options. `-l', when

given as a cvs_option, only a�ects some of the commands. When it is given as a command_option

is has a di�erent meaning, and is accepted by more commands. In other words, do not take the

above categorization too seriously. Look at the documentation instead.

A.2 Default options and the ~/.cvsrc �le

There are some command_options that are used so often that you might have set up an alias or

some other means to make sure you always specify that option. One example (the one that drove

the implementation of the .cvsrc support, actually) is that many people �nd the default output of

the `diff' command to be very hard to read, and that either context di�s or unidi�s are much

easier to understand.

The `~/.cvsrc' �le is a way that you can add default options to cvs_commands within cvs,

instead of relying on aliases or other shell scripts.

The format of the `~/.cvsrc' �le is simple. The �le is searched for a line that begins with the

same name as the cvs_command being executed. If a match is found, then the remainder of the line

66 CVS|Concurrent Versions System

is split up (at whitespace characters) into separate options and added to the command arguments

before any options from the command line.

If a command has two names (e.g., checkout and co), the o�cial name, not necessarily the one

used on the command line, will be used to match against the �le. So if this is the contents of the

user's `~/.cvsrc' �le:

log -N

diff -u

update -P

co -P

the command `cvs checkout foo' would have the `-P' option added to the arguments, as well as

`cvs co foo'.

With the example �le above, the output from `cvs diff foobar' will be in unidi� format. `cvs

diff -c foobar' will provide context di�s, as usual. Getting "old" format di�s would be slightly

more complicated, because diff doesn't have an option to specify use of the "old" format, so you

would need `cvs -f diff foobar'.

In place of the command name you can use cvs to specify global options (see Section A.3 [Global

options], page 66). For example the following line in `.cvsrc'

cvs -z6

causes cvs to use compression level 6

A.3 Global options

The available `cvs_options' (that are given to the left of `cvs_command') are:

-b bindir Use bindir as the directory where rcs programs are located. Overrides the setting

of the $RCSBIN environment variable and any precompiled directory. This parameter

should be speci�ed as an absolute pathname.

-d cvs_root_directory

Use cvs root directory as the root directory pathname of the repository. Overrides the

setting of the $CVSROOT environment variable. See Chapter 4 [Repository], page 13.

-e editor Use editor to enter revision log information. Overrides the setting of the $CVSEDITOR

and $EDITOR environment variables.

-f Do not read the `~/.cvsrc' �le. This option is most often used because of the non-

orthogonality of the cvs option set. For example, the `cvs log' option `-N' (turn o�

display of tag names) does not have a corresponding option to turn the display on. So

if you have `-N' in the `~/.cvsrc' entry for `log', you may need to use `-f' to show the

tag names.

-H Display usage information about the speci�ed `cvs_command' (but do not actually exe-

cute the command). If you don't specify a command name, `cvs -H' displays a summary

of all the commands available.

Appendix A: Reference manual for CVS commands 67

-l Do not log the cvs command in the command history (but execute it anyway). See

Section A.11 [history], page 81, for information on command history.

-n Do not change any �les. Attempt to execute the `cvs_command', but only to issue

reports; do not remove, update, or merge any existing �les, or create any new �les.

-Q Cause the command to be really quiet; the command will only generate output for

serious problems.

-q Cause the command to be somewhat quiet; informational messages, such as reports of

recursion through subdirectories, are suppressed.

-r Make new working �les �les read-only. Same e�ect as if the $CVSREAD environment

variable is set (see Appendix C [Environment variables], page 105). The default is to

make working �les writable, unless watches are on (see Section 6.6 [Watches], page 29).

-s variable=value

Set a user variable (see Section B.10 [Variables], page 102).

-t Trace program execution; display messages showing the steps of cvs activity. Particu-

larly useful with `-n' to explore the potential impact of an unfamiliar command.

-v Display version and copyright information for cvs.

-w Make new working �les read-write. Overrides the setting of the $CVSREAD environment

variable. Files are created read-write by default, unless $CVSREAD is set or `-r' is given.

-x Encrypt all communication between the client and the server. Only has an e�ect on

the cvs client. As of this writing, this is only implemented when using a Kerberos

connection (see Section 4.5.3 [Kerberos authenticated], page 20).

-z gzip-level

Set the compression level. Only has an e�ect on the cvs client.

A.4 Common command options

This section describes the `command_options' that are available across several cvs commands.

These options are always given to the right of `cvs_command'. Not all commands support all of

these options; each option is only supported for commands where it makes sense. However, when a

command has one of these options you can almost always count on the same behavior of the option

as in other commands. (Other command options, which are listed with the individual commands,

may have di�erent behavior from one cvs command to the other).

Warning: the `history' command is an exception; it supports many options that conict even

with these standard options.

-D date_spec

Use the most recent revision no later than date spec. date spec is a single argument,

a date description specifying a date in the past.

The speci�cation is sticky when you use it to make a private copy of a source �le; that

is, when you get a working �le using `-D', cvs records the date you speci�ed, so that

further updates in the same directory will use the same date (for more information on

sticky tags/dates, see Section 7.4 [Sticky tags], page 36).

A wide variety of date formats are supported by the underlying rcs facilities, similar

to those described in co(1), but not exactly the same. The date spec is interpreted as

being in the local timezone, unless a speci�c timezone is speci�ed. Examples of valid

date speci�cations include:

68 CVS|Concurrent Versions System

1 month ago

2 hours ago

400000 seconds ago

last year

last Monday

yesterday

a fortnight ago

3/31/92 10:00:07 PST

January 23, 1987 10:05pm

22:00 GMT

`-D' is available with the checkout, diff, export, history, rdiff, rtag, and update

commands. (The history command uses this option in a slightly di�erent way; see

Section A.11.1 [history options], page 81).

Remember to quote the argument to the `-D' ag so that your shell doesn't interpret

spaces as argument separators. A command using the `-D' ag can look like this:

$ cvs diff -D "1 hour ago" cvs.texinfo

-f When you specify a particular date or tag to cvs commands, they normally ignore �les

that do not contain the tag (or did not exist prior to the date) that you speci�ed. Use

the `-f' option if you want �les retrieved even when there is no match for the tag or

date. (The most recent revision of the �le will be used).

`-f' is available with these commands: checkout, export, rdiff, rtag, and update.

Warning: The commit command also has a `-f' option, but it has a di�erent behavior

for that command. See Section A.8.1 [commit options], page 76.

-H Help; describe the options available for this command. This is the only option sup-

ported for all cvs commands.

-k kag Alter the default rcs processing of keywords. See Chapter 16 [Keyword substitution],

page 57, for the meaning of kag. Your kag speci�cation is sticky when you use it

to create a private copy of a source �le; that is, when you use this option with the

checkout or update commands, cvs associates your selected kag with the �le, and

continues to use it with future update commands on the same �le until you specify

otherwise.

The `-k' option is available with the add, checkout, diff and update commands.

-l Local; run only in current working directory, rather than recursing through subdirec-

tories.

Warning: this is not the same as the overall `cvs -l' option, which you can specify to

the left of a cvs command!

Available with the following commands: checkout, commit, diff, export, log,

remove, rdiff, rtag, status, tag, and update.

-m message

Use message as log information, instead of invoking an editor.

Available with the following commands: add, commit and import.

-n Do not run any checkout/commit/tag program. (A program can be speci�ed to run on

each of these activities, in the modules database (see Section B.1 [modules], page 95);

this option bypasses it).

Warning: this is not the same as the overall `cvs -n' option, which you can specify to

the left of a cvs command!

Available with the checkout, commit, export, and rtag commands.

Appendix A: Reference manual for CVS commands 69

-P Prune (remove) directories that are empty after being updated, on checkout, or

update. Normally, an empty directory (one that is void of revision-controlled �les)

is left alone. Specifying `-P' will cause these directories to be silently removed from

your checked-out sources. This does not remove the directory from the repository, only

from your checked out copy. Note that this option is implied by the `-r' or `-D' options

of checkout and export.

-p Pipe the �les retrieved from the repository to standard output, rather than writing

them in the current directory. Available with the checkout and update commands.

-W Specify �le names that should be �ltered. You can use this option repeatedly. The spec

can be a �le name pattern of the same type that you can specify in the `.cvswrappers'

�le. Avaliable with the following commands: import, and update.

-r tag Use the revision speci�ed by the tag argument instead of the default head revision.

As well as arbitrary tags de�ned with the tag or rtag command, two special tags are

always available: `HEAD' refers to the most recent version available in the repository,

and `BASE' refers to the revision you last checked out into the current working directory.

The tag speci�cation is sticky when you use this option with checkout or update

to make your own copy of a �le: cvs remembers the tag and continues to use it on

future update commands, until you specify otherwise (for more information on sticky

tags/dates, see Section 7.4 [Sticky tags], page 36). The tag can be either a symbolic or

numeric tag. See Section 7.1 [Tags], page 33.

Specifying the `-q' global option along with the `-r' command option is often useful, to

suppress the warning messages when the rcs history �le does not contain the speci�ed

tag.

Warning: this is not the same as the overall `cvs -r' option, which you can specify to

the left of a cvs command!

`-r' is available with the checkout, commit, diff, history, export, rdiff, rtag, and

update commands.

A.5 add|Add a new �le/directory to the repository

� Synopsis: add [-k kag] [-m 'message'] �les: : :

� Requires: repository, working directory.

� Changes: working directory.

� Synonym: new

Use the add command to create a new �le or directory in the source repository. The �les

or directories speci�ed with add must already exist in the current directory (which must have

been created with the checkout command). To add a whole new directory hierarchy to the source

repository (for example, �les received from a third-party vendor), use the import command instead.

See Section A.12 [import], page 83.

If the argument to add refers to an immediate sub-directory, the directory is created at the

correct place in the source repository, and the necessary cvs administration �les are created in

your working directory. If the directory already exists in the source repository, add still creates the

administration �les in your version of the directory. This allows you to use add to add a particular

directory to your private sources even if someone else created that directory after your checkout of

the sources. You can do the following:

70 CVS|Concurrent Versions System

$ mkdir new_directory

$ cvs add new_directory

$ cvs update new_directory

An alternate approach using update might be:

$ cvs update -d new_directory

(To add any available new directories to your working directory, it's probably simpler to use

checkout (see Section A.7 [checkout], page 74) or `update -d' (see Section A.19 [update], page 91)).

The added �les are not placed in the source repository until you use commit to make the change

permanent. Doing an add on a �le that was removed with the remove command will resurrect

the �le, unless a commit command intervened. See Chapter 11 [Removing �les], page 47, for an

example.

Unlike most other commands add never recurses down directories. It cannot yet handle relative

paths. Instead of

$ cvs add foo/bar.c

you have to do

$ cd foo

$ cvs add bar.c

A.5.1 add options

There are only two options you can give to `add':

-k kag This option speci�es the default way that this �le will be checked out. The kag

argument (see Section 16.4 [Substitution modes], page 59) is stored in the rcs �le

and can be changed with admin -k (see Section A.6.1 [admin options], page 71). See

Chapter 17 [Binary �les], page 61, for information on using this option for binary �les.

-m description

Using this option, you can give a description for the �le. This description appears in

the history log (if it is enabled, see Section B.9 [history �le], page 102). It will also be

saved in the rcs history �le inside the repository when the �le is committed. The log

command displays this description.

The description can be changed using `admin -t'. See Section A.6 [admin], page 71.

If you omit the `-m description' ag, an empty string will be used. You will not be

prompted for a description.

A.5.2 add examples

To add the �le `backend.c' to the repository, with a description, the following can be used.

Appendix A: Reference manual for CVS commands 71

$ cvs add -m "Optimizer and code generation passes." backend.c

$ cvs commit -m "Early version. Not yet compilable." backend.c

A.6 admin|Administration front end for rcs

� Requires: repository, working directory.

� Changes: repository.

� Synonym: rcs

This is the cvs interface to assorted administrative rcs facilities, documented in rcs(1). admin

simply passes all its options and arguments to the rcs command; it does no �ltering or other

processing. This command does work recursively, however, so extreme care should be used.

If there is a group whose name matches a compiled in value which defaults to cvsadmin, only

members of that group can use cvs admin. To disallow cvs admin for all users, create a group with

no users in it.

A.6.1 admin options

Not all valid rcs options are useful together with cvs. Some even makes it impossible to use

cvs until you undo the e�ect!

This description of the available options is based on the `rcs(1)' man page, but modi�ed to

suit readers that are more interrested in cvs than rcs.

-Aold�le Might not work together with cvs. Append the access list of old�le to the access list

of the rcs �le.

-alogins Might not work together with cvs. Append the login names appearing in the comma-

separated list logins to the access list of the rcs �le.

-b[rev] When used with bare rcs, this option sets the default branch to rev ; in cvs sticky tags

(see Section 7.4 [Sticky tags], page 36) are a better way to decide which branch you

want to work on. With cvs, this option can be used to control behavior with respect

to the vendor branch.

-cstring Useful with cvs. Sets the comment leader to string. The comment leader is printed

before every log message line generated by the keyword Log (see Chapter 16 [Keyword

substitution], page 57). This is useful for programming languages without multi-line

comments. Rcs initially guesses the value of the comment leader from the �le name

extension when the �le is �rst committed.

-e[logins]

Might not work together with cvs. Erase the login names appearing in the comma-

separated list logins from the access list of the RCS �le. If logins is omitted, erase the

entire access list.

-I Run interactively, even if the standard input is not a terminal.

-i Useless with cvs. When using bare rcs, this is used to create and initialize a new rcs

�le, without depositing a revision.

72 CVS|Concurrent Versions System

-ksubst Useful with cvs. Set the default keyword substitution to subst. See Chapter 16

[Keyword substitution], page 57. Giving an explicit `-k' option to cvs update, cvs

export, or cvs checkout overrides this default.

-l[rev] Lock the revision with number rev. If a branch is given, lock the latest revision on that

branch. If rev is omitted, lock the latest revision on the default branch.

This can be used in conjunction with the `rcslock.pl' script in the `contrib' directory

of the cvs source distribution to provide reserved checkouts (where only one user can

be editing a given �le at a time). See the comments in that �le for details (and see the

`README' �le in that directory for disclaimers about the unsupported nature of contrib).

According to comments in that �le, locking must set to strict (which is the default).

-L Set locking to strict. Strict locking means that the owner of an RCS �le is not exempt

from locking for checkin. For use with cvs, strict locking must be set; see the discussion

under the `-l' option above.

-mrev:msg

Replace the log message of revision rev with msg.

-Nname[:[rev]]

Act like `-n', except override any previous assignment of name.

-nname[:[rev]]

Associate the symbolic name name with the branch or revision rev. It is normally

better to use `cvs tag' or `cvs rtag' instead. Delete the symbolic name if both `:'

and rev are omitted; otherwise, print an error message if name is already associated

with another number. If rev is symbolic, it is expanded before association. A rev

consisting of a branch number followed by a `.' stands for the current latest revision in

the branch. A `:' with an empty rev stands for the current latest revision on the default

branch, normally the trunk. For example, `rcs -nname: RCS/*' associates name with

the current latest revision of all the named RCS �les; this contrasts with `rcs -nname:$

RCS/*' which associates name with the revision numbers extracted from keyword strings

in the corresponding working �les.

-orange Potentially useful, but dangerous, with cvs (see below). Deletes (outdates) the revi-

sions given by range. A range consisting of a single revision number means that revision.

A range consisting of a branch number means the latest revision on that branch. A

range of the form `rev1:rev2' means revisions rev1 to rev2 on the same branch, `:rev '

means from the beginning of the branch containing rev up to and including rev, and

`rev:' means from revision rev to the end of the branch containing rev. None of the

outdated revisions may have branches or locks.

Due to the way cvs handles branches rev cannot be speci�ed symbolically if it is a

branch. See Section D.1 [Magic branch numbers], page 107, for an explanation.

Make sure that no-one has checked out a copy of the revision you outdate. Strange

things will happen if he starts to edit it and tries to check it back in. For this reason,

this option is not a good way to take back a bogus commit; commit a new revision

undoing the bogus change instead (see Section 8.3 [Merging two revisions], page 41).

-q Run quietly; do not print diagnostics.

-sstate[:rev]

Useful with cvs. Set the state attribute of the revision rev to state. If rev is a branch

number, assume the latest revision on that branch. If rev is omitted, assume the latest

revision on the default branch. Any identi�er is acceptable for state. A useful set

of states is `Exp' (for experimental), `Stab' (for stable), and `Rel' (for released). By

default, the state of a new revision is set to `Exp' when it is created. The state is visible

in the output from cvs log (see Section A.13 [log], page 84), and in the `Log' and

Appendix A: Reference manual for CVS commands 73

`$State$' keywords (see Chapter 16 [Keyword substitution], page 57). Note that cvs

uses the dead state for its own purposes; to take a �le to or from the dead state use

commands like cvs remove and cvs add, not cvs admin -s.

-t[�le] Useful with cvs. Write descriptive text from the contents of the named �le into the

RCS �le, deleting the existing text. The �le pathname may not begin with `-'. If

�le is omitted, obtain the text from standard input, terminated by end-of-�le or by

a line containing `.' by itself. Prompt for the text if interaction is possible; see `-I'.

The descriptive text can be seen in the output from `cvs log' (see Section A.13 [log],

page 84).

-t-string Similar to `-t�le'. Write descriptive text from the string into the rcs �le, deleting the

existing text.

-U Set locking to non-strict. Non-strict locking means that the owner of a �le need not lock

a revision for checkin. For use with cvs, strict locking must be set; see the discussion

under the `-l' option above.

-u[rev] See the option `-l' above, for a discussion of using this option with cvs. Unlock the

revision with number rev. If a branch is given, unlock the latest revision on that

branch. If rev is omitted, remove the latest lock held by the caller. Normally, only the

locker of a revision may unlock it. Somebody else unlocking a revision breaks the lock.

This causes a mail message to be sent to the original locker. The message contains a

commentary solicited from the breaker. The commentary is terminated by end-of-�le

or by a line containing . by itself.

-Vn Emulate rcs version n. Use -Vn to make an rcs �le acceptable to rcs version n by

discarding information that would confuse version n.

-xsu�xes Useless with cvs. Use su�xes to characterize RCS �les.

A.6.2 admin examples

A.6.2.1 Outdating is dangerous

First, an example of how not to use the admin command. It is included to stress the fact that

this command can be quite dangerous unless you know exactly what you are doing.

The `-o' option can be used to outdate old revisions from the history �le. If you are short on

disc this option might help you. But think twice before using it|there is no way short of restoring

the latest backup to undo this command!

The next line is an example of a command that you would not like to execute.

$ cvs admin -o:R_1_02 .

The above command will delete all revisions up to, and including, the revision that corresponds

to the tag R 1 02. But beware! If there are �les that have not changed between R 1 02 and R 1 03

the �le will have the same numerical revision number assigned to the tags R 1 02 and R 1 03. So

not only will it be impossible to retrieve R 1 02; R 1 03 will also have to be restored from the tapes!

74 CVS|Concurrent Versions System

A.6.2.2 Comment leaders

If you use the Log keyword and you do not agree with the guess for comment leader that cvs

has done, you can enforce your will with cvs admin -c. This might be suitable for nroff source:

$ cvs admin -c'.\" ' *.man

$ rm *.man

$ cvs update

The two last steps are to make sure that you get the versions with correct comment leaders in

your working �les.

A.7 checkout|Check out sources for editing

� Synopsis: checkout [options] modules: : :

� Requires: repository.

� Changes: working directory.

� Synonyms: co, get

Make a working directory containing copies of the source �les speci�ed by modules. You must

execute checkout before using most of the other cvs commands, since most of them operate on

your working directory.

The modules part of the command are either symbolic names for some collection of source

directories and �les, or paths to directories or �les in the repository. The symbolic names are

de�ned in the `modules' �le. See Section B.1 [modules], page 95.

Depending on the modules you specify, checkoutmay recursively create directories and populate

them with the appropriate source �les. You can then edit these source �les at any time (regardless

of whether other software developers are editing their own copies of the sources); update them

to include new changes applied by others to the source repository; or commit your work as a

permanent change to the source repository.

Note that checkout is used to create directories. The top-level directory created is always added

to the directory where checkout is invoked, and usually has the same name as the speci�ed module.

In the case of a module alias, the created sub-directory may have a di�erent name, but you can be

sure that it will be a sub-directory, and that checkout will show the relative path leading to each

�le as it is extracted into your private work area (unless you specify the `-Q' global option).

The �les created by checkout are created read-write, unless the `-r' option to cvs (see Sec-

tion A.3 [Global options], page 66) is speci�ed, the CVSREAD environment variable is speci�ed (see

Appendix C [Environment variables], page 105), or a watch is in e�ect for that �le (see Section 6.6

[Watches], page 29).

Running checkout on a directory that was already built by a prior checkout is also permitted,

and has the same e�ect as specifying the `-d' option to the update command, that is, any new

directories that have been created in the repository will appear in your work area. See Section A.19

[update], page 91.

Appendix A: Reference manual for CVS commands 75

A.7.1 checkout options

These standard options are supported by checkout (see Section A.4 [Common options], page 67,

for a complete description of them):

-D date Use the most recent revision no later than date. This option is sticky, and implies `-P'.

See Section 7.4 [Sticky tags], page 36, for more information on sticky tags/dates.

-f Only useful with the `-D date' or `-r tag ' ags. If no matching revision is found,

retrieve the most recent revision (instead of ignoring the �le).

-k kag Process rcs keywords according to kag. See co(1). This option is sticky; future

updates of this �le in this working directory will use the same kag. The status

command can be viewed to see the sticky options. See Section A.17 [status], page 90.

-l Local; run only in current working directory.

-n Do not run any checkout program (as speci�ed with the `-o' option in the modules �le;

see Section B.1 [modules], page 95).

-P Prune empty directories.

-p Pipe �les to the standard output.

-r tag Use revision tag. This option is sticky, and implies `-P'. See Section 7.4 [Sticky tags],

page 36, for more information on sticky tags/dates.

In addition to those, you can use these special command options with checkout:

-A Reset any sticky tags, dates, or `-k' options. See Section 7.4 [Sticky tags], page 36, for

more information on sticky tags/dates.

-c Copy the module �le, sorted, to the standard output, instead of creating or modifying

any �les or directories in your working directory.

-d dir Create a directory called dir for the working �les, instead of using the module name.

Unless you also use `-N', the paths created under dir will be as short as possible.

-j tag With two `-j' options, merge changes from the revision speci�ed with the �rst `-j'

option to the revision speci�ed with the second `j' option, into the working directory.

With one `-j' option, merge changes from the ancestor revision to the revision speci�ed

with the `-j' option, into the working directory. The ancestor revision is the common

ancestor of the revision which the working directory is based on, and the revision

speci�ed in the `-j' option.

In addition, each -j option can contain an optional date speci�cation which, when used

with branches, can limit the chosen revision to one within a speci�c date. An optional

date is speci�ed by adding a colon (:) to the tag: `-jSymbolic Tag:Date Speci�er'.

See Chapter 8 [Merging], page 39.

-N Only useful together with `-d dir'. With this option, cvs will not shorten module paths

in your working directory. (Normally, cvs shortens paths as much as possible when

you specify an explicit target directory).

-s Like `-c', but include the status of all modules, and sort it by the status string. See

Section B.1 [modules], page 95, for info about the `-s' option that is used inside the

modules �le to set the module status.

76 CVS|Concurrent Versions System

A.7.2 checkout examples

Get a copy of the module `tc':

$ cvs checkout tc

Get a copy of the module `tc' as it looked one day ago:

$ cvs checkout -D yesterday tc

A.8 commit|Check �les into the repository

� Version 1.3 Synopsis: commit [-lnR] [-m 'log message' | -f �le] [-r revision] [�les: : :]

� Version 1.3.1 Synopsis: commit [-lnRf] [-m 'log message' | -F �le] [-r revision] [�les: : :]

� Requires: working directory, repository.

� Changes: repository.

� Synonym: ci

Warning: The `-f �le' option will probably be renamed to `-F �le', and `-f' will be given a new

behavior in future releases of cvs.

Use commit when you want to incorporate changes from your working source �les into the source

repository.

If you don't specify particular �les to commit, all of the �les in your working current directory

are examined. commit is careful to change in the repository only those �les that you have really

changed. By default (or if you explicitly specify the `-R' option), �les in subdirectories are also

examined and committed if they have changed; you can use the `-l' option to limit commit to the

current directory only.

commit veri�es that the selected �les are up to date with the current revisions in the source

repository; it will notify you, and exit without committing, if any of the speci�ed �les must be

made current �rst with update (see Section A.19 [update], page 91). commit does not call the

update command for you, but rather leaves that for you to do when the time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be written

to one or more logging programs (see Section B.1 [modules], page 95, and see Section B.6 [loginfo],

page 100) and placed in the rcs history �le inside the repository. This log message can be retrieved

with the log command; See Section A.13 [log], page 84. You can specify the log message on the

command line with the `-m message' option, and thus avoid the editor invocation, or use the `-f

�le' option to specify that the argument �le contains the log message.

A.8.1 commit options

These standard options are supported by commit (see Section A.4 [Common options], page 67,

for a complete description of them):

Appendix A: Reference manual for CVS commands 77

-l Local; run only in current working directory.

-n Do not run any module program.

-R Commit directories recursively. This is on by default.

-r revision

Commit to revision. revision must be either a branch, or a revision on the main trunk

that is higher than any existing revision number. You cannot commit to a speci�c

revision on a branch.

commit also supports these options:

-F �le This option is present in cvs releases 1.3-s3 and later. Read the log message from �le,

instead of invoking an editor.

-f This option is present in cvs 1.3-s3 and later releases of cvs. Note that this is not the

standard behavior of the `-f' option as de�ned in See Section A.4 [Common options],

page 67.

Force cvs to commit a new revision even if you haven't made any changes to the �le.

If the current revision of �le is 1.7, then the following two commands are equivalent:

$ cvs commit -f �le

$ cvs commit -r 1.8 �le

-f �le This option is present in cvs releases 1.3, 1.3-s1 and 1.3-s2. Note that this is not the

standard behavior of the `-f' option as de�ned in See Section A.4 [Common options],

page 67.

Read the log message from �le, instead of invoking an editor.

-m message

Use message as the log message, instead of invoking an editor.

A.8.2 commit examples

A.8.2.1 New major release number

When you make a major release of your product, you might want the revision numbers to track

your major release number. You should normally not care about the revision numbers, but this is

a thing that many people want to do, and it can be done without doing any harm.

To bring all your �les up to the rcs revision 3.0 (including those that haven't changed), you

might do:

$ cvs commit -r 3.0

Note that it is generally a bad idea to try to make the rcs revision number equal to the current

release number of your product. You should think of the revision number as an internal number

that the cvs package maintains, and that you generally never need to care much about. Using the

tag and rtag commands you can give symbolic names to the releases instead. See Section A.18

[tag], page 90, and See Section A.16 [rtag], page 88.

78 CVS|Concurrent Versions System

Note that the number you specify with `-r' must be larger than any existing revision number.

That is, if revision 3.0 exists, you cannot `cvs commit -r 1.3'.

A.8.2.2 Committing to a branch

You can commit to a branch revision (one that has an even number of dots) with the `-r' option.

To create a branch revision, use the `-b' option of the rtag or tag commands (see Section A.18 [tag],

page 90 or see Section A.16 [rtag], page 88). Then, either checkout or update can be used to base

your sources on the newly created branch. From that point on, all commit changes made within

these working sources will be automatically added to a branch revision, thereby not disturbing

main-line development in any way. For example, if you had to create a patch to the 1.2 version of

the product, even though the 2.0 version is already under development, you might do:

$ cvs rtag -b -r FCS1_2 FCS1_2_Patch product_module

$ cvs checkout -r FCS1_2_Patch product_module

$ cd product_module

[[hack away]]

$ cvs commit

This works automatically since the `-r' option is sticky.

A.8.2.3 Creating the branch after editing

Say you have been working on some extremely experimental software, based on whatever revision

you happened to checkout last week. If others in your group would like to work on this software

with you, but without disturbing main-line development, you could commit your change to a new

branch. Others can then checkout your experimental stu� and utilize the full bene�t of cvs conict

resolution. The scenario might look like:

[[hacked sources are present]]

$ cvs tag -b EXPR1

$ cvs update -r EXPR1

$ cvs commit

The update command will make the `-r EXPR1' option sticky on all �les. Note that your changes

to the �les will never be removed by the update command. The commit will automatically commit

to the correct branch, because the `-r' is sticky. You could also do like this:

[[hacked sources are present]]

$ cvs tag -b EXPR1

$ cvs commit -r EXPR1

but then, only those �les that were changed by you will have the `-r EXPR1' sticky ag. If you hack

away, and commit without specifying the `-r EXPR1' ag, some �les may accidentally end up on

the main trunk.

To work with you on the experimental change, others would simply do

Appendix A: Reference manual for CVS commands 79

$ cvs checkout -r EXPR1 whatever_module

A.9 di�|Run di�s between revisions

� Synopsis: di� [-l] [rcsdi� options] [[-r rev1 | -D date1] [-r rev2 | -D date2]] [�les: : :]

� Requires: working directory, repository.

� Changes: nothing.

The diff command is used to compare di�erent revisions of �les. The default action is to

compare your working �les with the revisions they were based on, and report any di�erences that

are found.

If any �le names are given, only those �les are compared. If any directories are given, all �les

under them will be compared.

The exit status will be 0 if no di�erences were found, 1 if some di�erences were found, and 2 if

any error occurred.

A.9.1 di� options

These standard options are supported by diff (see Section A.4 [Common options], page 67, for

a complete description of them):

-D date Use the most recent revision no later than date. See `-r' for how this a�ects the

comparison.

cvs can be con�gured to pass the `-D' option through to rcsdiff (which in turn

passes it on to diff. Gnu di� uses `-D' as a way to put cpp-style `#define' statements

around the output di�erences. There is no way short of testing to �gure out how cvs

was con�gured. In the default con�guration cvs will use the `-D date' option.

-k kag Process rcs keywords according to kag. See co(1).

-l Local; run only in current working directory.

-R Examine directories recursively. This option is on by default.

-r tag Compare with revision tag. Zero, one or two `-r' options can be present. With no `-r'

option, the working �le will be compared with the revision it was based on. With one

`-r', that revision will be compared to your current working �le. With two `-r' options

those two revisions will be compared (and your working �le will not a�ect the outcome

in any way).

One or both `-r' options can be replaced by a `-D date' option, described above.

Any other options that are found are passed through to rcsdiff, which in turn passes them to

diff. The exact meaning of the options depends on which diff you are using. The long options

introduced in gnu di� 2.0 are not yet supported in cvs. See the documentation for your diff to

see which options are supported.

80 CVS|Concurrent Versions System

A.9.2 di� examples

The following line produces a Unidi� (`-u' ag) between revision 1.14 and 1.19 of `backend.c'.

Due to the `-kk' ag no keywords are substituted, so di�erences that only depend on keyword

substitution are ignored.

$ cvs diff -kk -u -r 1.14 -r 1.19 backend.c

Suppose the experimental branch EXPR1 was based on a set of �les tagged RELEASE 1 0. To

see what has happened on that branch, the following can be used:

$ cvs diff -r RELEASE_1_0 -r EXPR1

A command like this can be used to produce a context di� between two releases:

$ cvs diff -c -r RELEASE_1_0 -r RELEASE_1_1 > diffs

If you are maintaining ChangeLogs, a command like the following just before you commit your

changes may help you write the ChangeLog entry. All local modi�cations that have not yet been

committed will be printed.

$ cvs diff -u | less

A.10 export|Export sources from CVS, similar to checkout

� Synopsis: export [-Nn] [-r rev|-D date] [-k subst] [-d dir] module: : :

� Requires: repository.

� Changes: current directory.

This command is a variant of checkout; use it when you want a copy of the source for module

without the cvs administrative directories. For example, you might use export to prepare source

for shipment o�-site. This command requires that you specify a date or tag (with `-D' or `-r'), so

that you can count on reproducing the source you ship to others.

One often would like to use `-kv' with cvs export. This causes any rcs keywords to be expanded

such that an import done at some other site will not lose the keyword revision information. But

be aware that doesn't handle an export containing binary �les correctly. Also be aware that after

having used `-kv', one can no longer use the ident command (which is part of the rcs suite|see

ident(1)) which looks for rcs keyword strings. If you want to be able to use ident you must not

use `-kv'.

A.10.1 export options

These standard options are supported by export (see Section A.4 [Common options], page 67,

for a complete description of them):

Appendix A: Reference manual for CVS commands 81

-D date Use the most recent revision no later than date.

-f If no matching revision is found, retrieve the most recent revision (instead of ignoring

the �le).

-l Local; run only in current working directory.

-n Do not run any checkout program.

-R Export directories recursively. This is on by default.

-r tag Use revision tag.

In addition, these options (that are common to checkout and export) are also supported:

-d dir Create a directory called dir for the working �les, instead of using the module name.

Unless you also use `-N', the paths created under dir will be as short as possible.

-k subst Set keyword expansion mode (see Section 16.4 [Substitution modes], page 59).

-N Only useful together with `-d dir'. With this option, cvs will not shorten module paths

in your working directory. (Normally, cvs shortens paths as much as possible when

you specify an explicit target directory.)

A.11 history|Show status of �les and users

� Synopsis: history [-report] [-ags] [-options args] [�les: : :]

� Requires: the �le `$CVSROOT/CVSROOT/history'

� Changes: nothing.

cvs can keep a history �le that tracks each use of the checkout, commit, rtag, update, and

release commands. You can use history to display this information in various formats.

Logging must be enabled by creating the �le `$CVSROOT/CVSROOT/history'.

Warning: history uses `-f', `-l', `-n', and `-p' in ways that conict with the normal use inside

cvs (see Section A.4 [Common options], page 67).

A.11.1 history options

Several options (shown above as `-report') control what kind of report is generated:

-c Report on each time commit was used (i.e., each time the repository was modi�ed).

-e Everything (all record types); equivalent to specifying `-xMACFROGWUT'.

-m module

Report on a particular module. (You can meaningfully use `-m' more than once on the

command line.)

-o Report on checked-out modules.

82 CVS|Concurrent Versions System

-T Report on all tags.

-x type Extract a particular set of record types type from the cvs history. The types are

indicated by single letters, which you may specify in combination.

Certain commands have a single record type:

F release

O checkout

T rtag

One of four record types may result from an update:

C Amerge was necessary but collisions were detected (requiring manual merg-

ing).

G A merge was necessary and it succeeded.

U A working �le was copied from the repository.

W The working copy of a �le was deleted during update (because it was gone

from the repository).

One of three record types results from commit:

A A �le was added for the �rst time.

M A �le was modi�ed.

R A �le was removed.

The options shown as `-flags' constrain or expand the report without requiring option argu-

ments:

-a Show data for all users (the default is to show data only for the user executing history).

-l Show last modi�cation only.

-w Show only the records for modi�cations done from the same working directory where

history is executing.

The options shown as `-options args' constrain the report based on an argument:

-b str Show data back to a record containing the string str in either the module name, the

�le name, or the repository path.

-D date Show data since date. This is slightly di�erent from the normal use of `-D date', which

selects the newest revision older than date.

-p repository

Show data for a particular source repository (you can specify several `-p' options on

the same command line).

-r rev Show records referring to revisions since the revision or tag named rev appears in

individual rcs �les. Each rcs �le is searched for the revision or tag.

-t tag Show records since tag tag was last added to the the history �le. This di�ers from

the `-r' ag above in that it reads only the history �le, not the rcs �les, and is much

faster.

-u name Show records for user name.

Appendix A: Reference manual for CVS commands 83

A.12 import|Import sources into CVS, using vendor branches

� Synopsis: import [-options] repository vendortag releasetag: : :

� Requires: Repository, source distribution directory.

� Changes: repository.

Use import to incorporate an entire source distribution from an outside source (e.g., a source

vendor) into your source repository directory. You can use this command both for initial creation

of a repository, and for wholesale updates to the module from the outside source. See Chapter 12

[Tracking sources], page 49, for a discussion on this subject.

The repository argument gives a directory name (or a path to a directory) under the cvs root

directory for repositories; if the directory did not exist, import creates it.

When you use import for updates to source that has been modi�ed in your source repository

(since a prior import), it will notify you of any �les that conict in the two branches of development;

use `checkout -j' to reconcile the di�erences, as import instructs you to do.

If cvs decides a �le should be ignored (see Section B.8 [cvsignore], page 101), it does not import

it and prints `I ' followed by the �lename

If the �le `$CVSROOT/CVSROOT/cvswrappers' exists, any �le whose names match the speci�ca-

tions in that �le will be treated as packages and the appropriate �ltering will be performed on the

�le/directory before being imported, See Section B.2 [Wrappers], page 96.

The outside source is saved in a �rst-level rcs branch, by default 1.1.1. Updates are leaves of

this branch; for example, �les from the �rst imported collection of source will be revision 1.1.1.1,

then �les from the �rst imported update will be revision 1.1.1.2, and so on.

At least three arguments are required. repository is needed to identify the collection of source.

vendortag is a tag for the entire branch (e.g., for 1.1.1). You must also specify at least one releasetag

to identify the �les at the leaves created each time you execute import.

A.12.1 import options

This standard option is supported by import (see Section A.4 [Common options], page 67, for

a complete description):

-m message

Use message as log information, instead of invoking an editor.

There are three additional special options.

-b branch Specify a �rst-level branch other than 1.1.1. Unless the `-b branch' ag is given, re-

visions will always be made to the branch 1.1.1|even if a vendortag that matches

another branch is given! What happens in that case, is that the tag will be reset to

1.1.1. Warning: This behavior might change in the future.

84 CVS|Concurrent Versions System

-k subst Indicate the RCS keyword expansion mode desired. This setting will apply to all �les

created during the import, but not to any �les that previously existed in the repository.

See Section 16.4 [Substitution modes], page 59, for a list of valid `-k' settings.

-I name Specify �le names that should be ignored during import. You can use this option

repeatedly. To avoid ignoring any �les at all (even those ignored by default), specify

`-I !'.

name can be a �le name pattern of the same type that you can specify in the

`.cvsignore' �le. See Section B.8 [cvsignore], page 101.

-W spec Specify �le names that should be �ltered during import. You can use this option

repeatedly.

spec can be a �le name pattern of the same type that you can specify in the

`.cvswrappers' �le. See Section B.2 [Wrappers], page 96.

A.12.2 import examples

See Chapter 12 [Tracking sources], page 49, and See Section 5.1.1 [From �les], page 21.

A.13 log|Print out log information for �les

� Synopsis: log [options] [�les: : :]

� Requires: repository, working directory.

� Changes: nothing.

Display log information for �les. log used to call the rcs utility rlog. Although this is no longer

true in the current sources, this history determines the format of the output and the options, which

are not quite in the style of the other cvs commands.

The output includes the location of the rcs �le, the head revision (the latest revision on the

trunk), all symbolic names (tags) and some other things. For each revision, the revision number, the

author, the number of lines added/deleted and the log message are printed. All times are displayed

in Coordinated Universal Time (UTC). (Other parts of cvs print times in the local timezone).

A.13.1 log options

By default, log prints all information that is available. All other options restrict the output.

-b Print information about the revisions on the default branch, normally the highest

branch on the trunk.

-d dates Print information about revisions with a checkin date/time in the range given by the

semicolon-separated list of dates. The following table explains the available range

formats:

d1<d2

d2>d1 Select the revisions that were deposited between d1 and d2.

Appendix A: Reference manual for CVS commands 85

<d

d> Select all revisions dated d or earlier.

d<

>d Select all revisions dated d or later.

d Select the single, latest revision dated d or earlier.

The `>' or `<' characters may be followed by `=' to indicate an inclusive range rather

than an exclusive one.

Note that the separator is a semicolon (;).

-h Print only the rcs pathname, working pathname, head, default branch, access list,

locks, symbolic names, and su�x.

-l Local; run only in current working directory. (Default is to run recursively).

-N Do not print the list of tags for this �le. This option can be very useful when your site

uses a lot of tags, so rather than "more"'ing over 3 pages of tag information, the log

information is presented without tags at all.

-R Print only the name of the rcs history �le.

-rrevisions

Print information about revisions given in the comma-separated list revisions of revi-

sions and ranges. The following table explains the available range formats:

rev1:rev2 Revisions rev1 to rev2 (which must be on the same branch).

:rev Revisions from the beginning of the branch up to and including rev.

rev: Revisions starting with rev to the end of the branch containing rev.

branch An argument that is a branch means all revisions on that branch.

branch1:branch2

A range of branches means all revisions on the branches in that range.

branch. The latest revision in branch.

A bare `-r' with no revisions means the latest revision on the default branch, normally

the trunk. There can be no space between the `-r' option and its argument.

-s states Print information about revisions whose state attributes match one of the states given

in the comma-separated list states.

-t Print the same as `-h', plus the descriptive text.

-wlogins Print information about revisions checked in by users with login names appearing in

the comma-separated list logins. If logins is omitted, the user's login is assumed. There

can be no space between the `-w' option and its argument.

log prints the intersection of the revisions selected with the options `-d', `-s', and `-w', inter-

sected with the union of the revisions selected by `-b' and `-r'.

A.13.2 log examples

Contributed examples are gratefully accepted.

86 CVS|Concurrent Versions System

A.14 rdi�|'patch' format di�s between releases

� rdi� [-ags] [-V vn] [-r t|-D d [-r t2|-D d2]] modules: : :

� Requires: repository.

� Changes: nothing.

� Synonym: patch

Builds a Larry Wall format patch(1) �le between two releases, that can be fed directly into the

patch program to bring an old release up-to-date with the new release. (This is one of the few cvs

commands that operates directly from the repository, and doesn't require a prior checkout.) The

di� output is sent to the standard output device.

You can specify (using the standard `-r' and `-D' options) any combination of one or two

revisions or dates. If only one revision or date is speci�ed, the patch �le reects di�erences between

that revision or date and the current head revisions in the rcs �le.

Note that if the software release a�ected is contained in more than one directory, then it may

be necessary to specify the `-p' option to the patch command when patching the old sources, so

that patch is able to �nd the �les that are located in other directories.

A.14.1 rdi� options

These standard options are supported by rdiff (see Section A.4 [Common options], page 67,

for a complete description of them):

-D date Use the most recent revision no later than date.

-f If no matching revision is found, retrieve the most recent revision (instead of ignoring

the �le).

-l Local; don't descend subdirectories.

-r tag Use revision tag.

In addition to the above, these options are available:

-c Use the context di� format. This is the default format.

-s Create a summary change report instead of a patch. The summary includes information

about �les that were changed or added between the releases. It is sent to the standard

output device. This is useful for �nding out, for example, which �les have changed

between two dates or revisions.

-t A di� of the top two revisions is sent to the standard output device. This is most useful

for seeing what the last change to a �le was.

-u Use the unidi� format for the context di�s. This option is not available if your di�

does not support the unidi� format. Remember that old versions of the patch program

can't handle the unidi� format, so if you plan to post this patch to the net you should

probably not use `-u'.

-V vn Expand rcs keywords according to the rules current in rcs version vn (the expansion

format changed with rcs version 5).

Appendix A: Reference manual for CVS commands 87

A.14.2 rdi� examples

Suppose you receive mail from foo@bar.com asking for an update from release 1.2 to 1.4 of

the tc compiler. You have no such patches on hand, but with cvs that can easily be �xed with a

command such as this:

$ cvs rdiff -c -r FOO1_2 -r FOO1_4 tc | \

$$ Mail -s 'The patches you asked for' foo@bar.com

Suppose you have made release 1.3, and forked a branch called `R_1_3fix' for bug�xes. `R_1_3_1'

corresponds to release 1.3.1, which was made some time ago. Now, you want to see how much

development has been done on the branch. This command can be used:

$ cvs patch -s -r R_1_3_1 -r R_1_3fix module-name

cvs rdiff: Diffing module-name

File ChangeLog,v changed from revision 1.52.2.5 to 1.52.2.6

File foo.c,v changed from revision 1.52.2.3 to 1.52.2.4

File bar.h,v changed from revision 1.29.2.1 to 1.2

A.15 release|Indicate that a Module is no longer in use

� release [-d] directories: : :

� Requires: Working directory.

� Changes: Working directory, history log.

This command is meant to safely cancel the e�ect of `cvs checkout'. Since cvs doesn't lock

�les, it isn't strictly necessary to use this command. You can always simply delete your working

directory, if you like; but you risk losing changes you may have forgotten, and you leave no trace in

the cvs history �le (see Section B.9 [history �le], page 102) that you've abandoned your checkout.

Use `cvs release' to avoid these problems. This command checks that no uncommitted changes

are present; that you are executing it from immediately above a cvs working directory; and that

the repository recorded for your �les is the same as the repository de�ned in the module database.

If all these conditions are true, `cvs release' leaves a record of its execution (attesting to your

intentionally abandoning your checkout) in the cvs history log.

A.15.1 release options

The release command supports one command option:

-d Delete your working copy of the �le if the release succeeds. If this ag is not given your

�les will remain in your working directory.

Warning: The release command uses `rm -r `module'' to delete your �le. This has

the very serious side-e�ect that any directory that you have created inside your checked-

out sources, and not added to the repository (using the add command; see Section A.5

[add], page 69) will be silently deleted|even if it is non-empty!

88 CVS|Concurrent Versions System

A.15.2 release output

Before release releases your sources it will print a one-line message for any �le that is not

up-to-date.

Warning: Any new directories that you have created, but not added to the cvs directory

hierarchy with the add command (see Section A.5 [add], page 69) will be silently ignored (and

deleted, if `-d' is speci�ed), even if they contain �les.

U �le There exists a newer revision of this �le in the repository, and you have not modi�ed

your local copy of the �le.

A �le The �le has been added to your private copy of the sources, but has not yet been

committed to the repository. If you delete your copy of the sources this �le will be lost.

R �le The �le has been removed from your private copy of the sources, but has not yet

been removed from the repository, since you have not yet committed the removal. See

Section A.8 [commit], page 76.

M �le The �le is modi�ed in your working directory. There might also be a newer revision

inside the repository.

? �le �le is in your working directory, but does not correspond to anything in the source

repository, and is not in the list of �les for cvs to ignore (see the description of the `-I'

option, and see Section B.8 [cvsignore], page 101). If you remove your working sources,

this �le will be lost.

Note that no warning message like this is printed for spurious directories that cvs

encounters. The directory, and all its contents, are silently ignored.

A.15.3 release examples

Release the module, and delete your local working copy of the �les.

$ cd .. # You must stand immediately above the

sources when you issue `cvs release'.

$ cvs release -d tc

You have [0] altered files in this repository.

Are you sure you want to release (and delete) module `tc': y

$

A.16 rtag|Add a symbolic tag to a module

� rtag [-falnR] [-b] [-d] [-r tag | -Ddate] symbolic tag modules: : :

� Requires: repository.

� Changes: repository.

� Synonym: rfreeze

You can use this command to assign symbolic tags to particular, explicitly speci�ed source

revisions in the repository. rtag works directly on the repository contents (and requires no prior

Appendix A: Reference manual for CVS commands 89

checkout). Use tag instead (see Section A.18 [tag], page 90), to base the selection of revisions on

the contents of your working directory.

If you attempt to use a tag name that already exists, cvs will complain and not overwrite that

tag. Use the `-F' option to force the new tag value.

A.16.1 rtag options

These standard options are supported by rtag (see Section A.4 [Common options], page 67, for

a complete description of them):

-D date Tag the most recent revision no later than date.

-f Only useful with the `-D date' or `-r tag ' ags. If no matching revision is found, use

the most recent revision (instead of ignoring the �le).

-F Overwrite an existing tag of the same name on a di�erent revision. This option is new

in cvs 1.4. The old behavior is matched by `cvs tag -F'.

-l Local; run only in current working directory.

-n Do not run any tag program that was speci�ed with the `-t' ag inside the `modules'

�le. (see Section B.1 [modules], page 95).

-R Commit directories recursively. This is on by default.

-r tag Only tag those �les that contain tag. This can be used to rename a tag: tag only the

�les identi�ed by the old tag, then delete the old tag, leaving the new tag on exactly

the same �les as the old tag.

In addition to the above common options, these options are available:

-a Use the `-a' option to have rtag look in the `Attic' (see Chapter 11 [Removing �les],

page 47) for removed �les that contain the speci�ed tag. The tag is removed from these

�les, which makes it convenient to re-use a symbolic tag as development continues (and

�les get removed from the up-coming distribution).

-b Make the tag a branch tag. See Chapter 7 [Branches], page 33.

-d Delete the tag instead of creating it.

In general, tags (often the symbolic names of software distributions) should not be

removed, but the `-d' option is available as a means to remove completely obsolete

symbolic names if necessary (as might be the case for an Alpha release, or if you

mistagged a module).

A.17 status|Display status information on checked out �les

� status [-lR] [-v] [�les: : :]

� Requires: working directory, repository.

� Changes: nothing.

90 CVS|Concurrent Versions System

Display a brief report on the current status of �les with respect to the source repository, including

any sticky tags, dates, or `-k' options.

You can also use this command to determine the potential impact of a `cvs update' on your

working source directory|but remember that things might change in the repository before you run

update.

A.17.1 status options

These standard options are supported by status (see Section A.4 [Common options], page 67,

for a complete description of them):

-l Local; run only in current working directory.

-R Commit directories recursively. This is on by default.

There is one additional option:

-v Verbose. In addition to the information normally displayed, print all symbolic tags,

together with the numerical value of the revision or branch they refer to.

A.18 tag|Add a symbolic tag to checked out versions of �les

� tag [-lR] [-b] [-c] [-d] symbolic tag [�les: : :]

� Requires: working directory, repository.

� Changes: repository.

� Synonym: freeze

Use this command to assign symbolic tags to the nearest repository versions to your working

sources. The tags are applied immediately to the repository, as with rtag, but the versions are

supplied implicitly by the cvs records of your working �les' history rather than applied explicitly.

One use for tags is to record a snapshot of the current sources when the software freeze date of

a project arrives. As bugs are �xed after the freeze date, only those changed sources that are to be

part of the release need be re-tagged.

The symbolic tags are meant to permanently record which revisions of which �les were used

in creating a software distribution. The checkout and update commands allow you to extract

an exact copy of a tagged release at any time in the future, regardless of whether �les have been

changed, added, or removed since the release was tagged.

This command can also be used to delete a symbolic tag, or to create a branch. See the options

section below.

If you attempt to use a tag name that already exists, cvs will complain and not overwrite that

tag. Use the `-F' option to force the new tag value.

Appendix A: Reference manual for CVS commands 91

A.18.1 tag options

These standard options are supported by tag (see Section A.4 [Common options], page 67, for

a complete description of them):

-F Overwrite an existing tag of the same name on a di�erent revision. This option is new

in cvs 1.4. The old behavior is matched by `cvs tag -F'.

-l Local; run only in current working directory.

-R Commit directories recursively. This is on by default.

Two special options are available:

-b The -b option makes the tag a branch tag (see Chapter 7 [Branches], page 33), allow-

ing concurrent, isolated development. This is most useful for creating a patch to a

previously released software distribution.

-c The -c option checks that all �les which are to be tagged are unmodi�ed. This can be

used to make sure that you can reconstruct the current �le contents.

-d Delete a tag.

If you use `cvs tag -d symbolic_tag', the symbolic tag you specify is deleted instead

of being added. Warning: Be very certain of your ground before you delete a tag; doing

this permanently discards some historical information, which may later turn out to be

valuable.

A.19 update|Bring work tree in sync with repository

� update [-AdPpR] [-d] [-r tag|-D date] �les: : :

� Requires: repository, working directory.

� Changes: working directory.

After you've run checkout to create your private copy of source from the common repository,

other developers will continue changing the central source. From time to time, when it is convenient

in your development process, you can use the update command from within your working directory

to reconcile your work with any revisions applied to the source repository since your last checkout

or update.

A.19.1 update options

These standard options are available with update (see Section A.4 [Common options], page 67,

for a complete description of them):

-D date Use the most recent revision no later than date. This option is sticky, and implies `-P'.

See Section 7.4 [Sticky tags], page 36, for more information on sticky tags/dates.

-f Only useful with the `-D date' or `-r tag ' ags. If no matching revision is found,

retrieve the most recent revision (instead of ignoring the �le).

92 CVS|Concurrent Versions System

-k kag Process rcs keywords according to kag. See co(1). This option is sticky; future

updates of this �le in this working directory will use the same kag. The status

command can be viewed to see the sticky options. See Section A.17 [status], page 90.

-l Local; run only in current working directory. See Chapter 9 [Recursive behavior],

page 43.

-P Prune empty directories.

-p Pipe �les to the standard output.

-R Operate recursively. This is on by default. See Chapter 9 [Recursive behavior], page 43.

-r tag Retrieve revision tag. This option is sticky, and implies `-P'. See Section 7.4 [Sticky

tags], page 36, for more information on sticky tags/dates.

These special options are also available with update.

-A Reset any sticky tags, dates, or `-k' options. See Section 7.4 [Sticky tags], page 36, for

more information on sticky tags/dates.

-d Create any directories that exist in the repository if they're missing from the working

directory. Normally, update acts only on directories and �les that were already enrolled

in your working directory.

This is useful for updating directories that were created in the repository since the

initial checkout; but it has an unfortunate side e�ect. If you deliberately avoided

certain directories in the repository when you created your working directory (either

through use of a module name or by listing explicitly the �les and directories you

wanted on the command line), then updating with `-d' will create those directories,

which may not be what you want.

-I name Ignore �les whose names match name (in your working directory) during the update.

You can specify `-I' more than once on the command line to specify several �les

to ignore. Use `-I !' to avoid ignoring any �les at all. See Section B.8 [cvsignore],

page 101, for other ways to make cvs ignore some �les.

-Wspec Specify �le names that should be �ltered during update. You can use this option

repeatedly.

spec can be a �le name pattern of the same type that you can specify in the

`.cvswrappers' �le. See Section B.2 [Wrappers], page 96.

-jrevision With two `-j' options, merge changes from the revision speci�ed with the �rst `-j'

option to the revision speci�ed with the second `j' option, into the working directory.

With one `-j' option, merge changes from the ancestor revision to the revision speci�ed

with the `-j' option, into the working directory. The ancestor revision is the common

ancestor of the revision which the working directory is based on, and the revision

speci�ed in the `-j' option.

In addition, each -j option can contain an optional date speci�cation which, when used

with branches, can limit the chosen revision to one within a speci�c date. An optional

date is speci�ed by adding a colon (:) to the tag: `-jSymbolic Tag:Date Speci�er'.

See Chapter 8 [Merging], page 39.

A.19.2 update output

update keeps you informed of its progress by printing a line for each �le, preceded by one

character indicating the status of the �le:

Appendix A: Reference manual for CVS commands 93

U �le The �le was brought up to date with respect to the repository. This is done for any

�le that exists in the repository but not in your source, and for �les that you haven't

changed but are not the most recent versions available in the repository.

A �le The �le has been added to your private copy of the sources, and will be added to the

source repository when you run commit on the �le. This is a reminder to you that the

�le needs to be committed.

R �le The �le has been removed from your private copy of the sources, and will be removed

from the source repository when you run commit on the �le. This is a reminder to you

that the �le needs to be committed.

M �le The �le is modi�ed in your working directory.

`M' can indicate one of two states for a �le you're working on: either there were no

modi�cations to the same �le in the repository, so that your �le remains as you last

saw it; or there were modi�cations in the repository as well as in your copy, but they

were merged successfully, without conict, in your working directory.

cvs will print some messages if it merges your work, and a backup copy of your working

�le (as it looked before you ran update) will be made. The exact name of that �le is

printed while update runs.

C �le A conict was detected while trying to merge your changes to �le with changes from

the source repository. �le (the copy in your working directory) is now the output of

the rcsmerge(1) command on the two revisions; an unmodi�ed copy of your �le is also

in your working directory, with the name `.#�le.revision' where revision is the rcs

revision that your modi�ed �le started from. (Note that some systems automatically

purge �les that begin with `.#' if they have not been accessed for a few days. If you

intend to keep a copy of your original �le, it is a very good idea to rename it.)

? �le �le is in your working directory, but does not correspond to anything in the source

repository, and is not in the list of �les for cvs to ignore (see the description of the

`-I' option, and see Section B.8 [cvsignore], page 101).

Note that no warning message like this is printed for spurious directories that cvs

encounters. The directory, and all its contents, are silently ignored.

A.19.3 update examples

The following line will display all �les which are not up-to-date without actually change anything

in your working directory. It can be used to check what has been going on with the project.

$ cvs -n -q update

94 CVS|Concurrent Versions System

Appendix B: Reference manual for the Administrative �les 95

Appendix B Referencemanual for theAdministrative

�les

Inside the repository, in the directory `$CVSROOT/CVSROOT', there are a number of supportive

�les for cvs. You can use cvs in a limited fashion without any of them, but if they are set up

properly they can help make life easier. For a discussion of how to edit them, See Section 4.2 [Intro

administrative �les], page 15.

The most important of these �les is the `modules' �le, which de�nes the modules inside the

repository.

B.1 The modules �le

The `modules' �le records your de�nitions of names for collections of source code. cvs will use

these de�nitions if you use cvs to update the modules �le (use normal commands like add, commit,

etc).

The `modules' �le may contain blank lines and comments (lines beginning with `#') as well as

module de�nitions. Long lines can be continued on the next line by specifying a backslash (`\') as

the last character on the line.

A module de�nition is a single line of the `modules' �le, in either of two formats. In both cases,

mname represents the symbolic module name, and the remainder of the line is its de�nition.

mname -a aliases: : :

This represents the simplest way of de�ning a module mname. The `-a' ags the

de�nition as a simple alias: cvs will treat any use of mname (as a command argument)

as if the list of names aliases had been speci�ed instead. aliases may contain either

other module names or paths. When you use paths in aliases, checkout creates all

intermediate directories in the working directory, just as if the path had been speci�ed

explicitly in the cvs arguments.

mname [options] dir [�les: : :] [&module: : :]

In the simplest case, this form of module de�nition reduces to `mname dir'. This de�nes

all the �les in directory dir as module mname. dir is a relative path (from $CVSROOT)

to a directory of source in the source repository. In this case, on checkout, a single

directory called mname is created as a working directory; no intermediate directory

levels are used by default, even if dir was a path involving several directory levels.

By explicitly specifying �les in the module de�nition after dir, you can select particular

�les from directory dir. The sample de�nition for `modules' is an example of a module

de�ned with a single �le from a particular directory. Here is another example:

m4test unsupported/gnu/m4 foreach.m4 forloop.m4

With this de�nition, executing `cvs checkout m4test' will create a single working

directory `m4test' containing the two �les listed, which both come from a common

directory several levels deep in the cvs source repository.

A module de�nition can refer to other modules by including `&module' in its de�nition.

checkout creates a subdirectory for each such module, in your working directory.

-d name Name the working directory something other than the module name.

96 CVS|Concurrent Versions System

-e prog Specify a program prog to run whenever �les in a module are exported.

prog runs with a single argument, the module name.

-i prog Specify a program prog to run whenever �les in a module are committed.

prog runs with a single argument, the full pathname of the a�ected direc-

tory in a source repository. The `commitinfo', `loginfo', and `editinfo'

�les provide other ways to call a program on commit.

-o prog Specify a program prog to run whenever �les in a module are checked out.

prog runs with a single argument, the module name.

-s status Assign a status to the module. When the module �le is printed with `cvs

checkout -s' the modules are sorted according to primarily module status,

and secondarily according to the module name. This option has no other

meaning. You can use this option for several things besides status: for

instance, list the person that is responsible for this module.

-t prog Specify a program prog to run whenever �les in a module are tagged with

rtag. prog runs with two arguments: the module name and the symbolic

tag speci�ed to rtag. There is no way to specify a program to run when

tag is executed.

-u prog Specify a program prog to run whenever `cvs update' is executed from

the top-level directory of the checked-out module. prog runs with a single

argument, the full path to the source repository for this module.

B.2 The cvswrappers �le

Wrappers allow you to set a hook which transforms �les on their way in and out of cvs. Most

or all of the wrappers features do not work with client/server cvs.

The �le `cvswrappers' de�nes the script that will be run on a �le when its name matches a

regular expresion. There are two scripts that can be run on a �le or directory. One script is

executed on the �le/directory before being checked into the repository (this is denoted with the -t

ag) and the other when the �le is checked out of the repository (this is denoted with the -f ag)

The `cvswrappers' also has a `-m' option to specify the merge methodology that should be used

when the �le is updated. MERGE means the usual cvs behavior: try to merge the �les (this generally

will not work for binary �les). COPY means that cvs update will merely copy one version over the

other, and require the user using mechanisms outside cvs, to insert any necessary changes. The

`-m' wrapper option only a�ects behavior when merging is done on update; it does not a�ect how

�les are stored. See See Chapter 17 [Binary �les], page 61, for more on binary �les.

The basic format of the �le `cvswrappers' is:

wildcard [option value][option value]...

where option is one of

-f from cvs filter value: path to filter

-t to cvs filter value: path to filter

-m update methodology value: MERGE or COPY

-k keyword expansion value: expansion mode

Appendix B: Reference manual for the Administrative �les 97

and value is a single-quote delimited value.

*.nib -f 'unwrap %s' -t 'wrap %s %s' -m 'COPY'

*.c -t 'indent %s %s'

The above example of a `cvswrappers' �le states that all �les/directories that end with a .nib

should be �ltered with the `wrap' program before checking the �le into the repository. The �le

should be �ltered though the `unwrap' program when the �le is checked out of the repository. The

`cvswrappers' �le also states that a COPY methodology should be used when updating the �les in

the repository (that is no merging should be performed).

The last example line says that all �les that end with a *.c should be �ltered with `indent'

before being checked into the repository. Unlike the previous example no �ltering of the *.c �le is

done when it is checked out of the repository. The -t �lter is called with two arguments, the �rst

is the name of the �le/directory to �lter and the second is the pathname to where the resulting

�ltered �le should be placed.

The -f �lter is called with one argument, which is the name of the �le to �lter from. The end result

of this �lter will be a �le in the users directory that they can work on as they normally would.

For another example, the following command imports a directory, treating �les whose name

ends in `.exe' as binary:

cvs import -I ! -W "*.exe -k 'b'" first-dir vendortag reltag

B.3 The commit support �les

The `-i' ag in the `modules' �le can be used to run a certain program whenever �les are

committed (see Section B.1 [modules], page 95). The �les described in this section provide other,

more exible, ways to run programs whenever something is committed.

There are three kind of programs that can be run on commit. They are speci�ed in �les in the

repository, as described below. The following table summarizes the �le names and the purpose of

the corresponding programs.

`commitinfo'

The program is responsible for checking that the commit is allowed. If it exits with a

non-zero exit status the commit will be aborted.

`editinfo'

The speci�ed program is used to edit the log message, and possibly verify that it

contains all required �elds. This is most useful in combination with the `rcsinfo' �le,

which can hold a log message template (see Section B.7 [rcsinfo], page 101).

`loginfo' The speci�ed program is called when the commit is complete. It receives the log message

and some additional information and can store the log message in a �le, or mail it to

appropriate persons, or maybe post it to a local newsgroup, or: : : Your imagination is

the limit!

98 CVS|Concurrent Versions System

B.3.1 The common syntax

The four �les `commitinfo', `loginfo', `rcsinfo' and `editinfo' all have a common format.

The purpose of the �les are described later on. The common syntax is described here.

Each line contains the following:

� A regular expression

� A whitespace separator|one or more spaces and/or tabs.

� A �le name or command-line template.

Blank lines are ignored. Lines that start with the character `#' are treated as comments. Long lines

unfortunately can not be broken in two parts in any way.

The �rst regular expression that matches the current directory name in the repository is used.

The rest of the line is used as a �le name or command-line as appropriate.

B.4 Commitinfo

The `commitinfo' �le de�nes programs to execute whenever `cvs commit' is about to execute.

These programs are used for pre-commit checking to verify that the modi�ed, added and removed

�les are really ready to be committed. This could be used, for instance, to verify that the changed

�les conform to to your site's standards for coding practice.

As mentioned earlier, each line in the `commitinfo' �le consists of a regular expression and a

command-line template. The template can include a program name and any number of arguments

you wish to supply to it. The full path to the current source repository is appended to the template,

followed by the �le names of any �les involved in the commit (added, removed, and modi�ed �les).

The �rst line with a regular expression matching the relative path to the module will be used.

If the command returns a non-zero exit status the commit will be aborted.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition to the

�rst matching regular expression or the name `DEFAULT'.

Note: when CVS is accessing a remote repository, `commitinfo' will be run on the remote (i.e.,

server) side, not the client side (see Section 4.5 [Remote repositories], page 17).

B.5 Editinfo

If you want to make sure that all log messages look the same way, you can use the `editinfo' �le

to specify a program that is used to edit the log message. This program could be a custom-made

Appendix B: Reference manual for the Administrative �les 99

editor that always enforces a certain style of the log message, or maybe a simple shell script that

calls an editor, and checks that the entered message contains the required �elds.

If no matching line is found in the `editinfo' �le, the editor speci�ed in the environment variable

$CVSEDITOR is used instead. If that variable is not set, then the environment variable $EDITOR is

used instead. If that variable is not set a precompiled default, normally vi, will be used.

The `editinfo' �le is often most useful together with the `rcsinfo' �le, which can be used to

specify a log message template.

Each line in the `editinfo' �le consists of a regular expression and a command-line template.

The template must include a program name, and can include any number of arguments. The full

path to the current log message template �le is appended to the template.

One thing that should be noted is that the `ALL' keyword is not supported. If more than one

matching line is found, the �rst one is used. This can be useful for specifying a default edit script

in a module, and then overriding it in a subdirectory.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

If the edit script exits with a non-zero exit status, the commit is aborted.

Note: when CVS is accessing a remote repository, or when the `-m' or `-F' options to cvs commit

are used, `editinfo' will not be consulted. There is no good workaround for this.

B.5.1 Editinfo example

The following is a little silly example of a `editinfo' �le, together with the corresponding

`rcsinfo' �le, the log message template and an editor script. We begin with the log message tem-

plate. We want to always record a bug-id number on the �rst line of the log message. The rest of log

message is free text. The following template is found in the �le `/usr/cvssupport/tc.template'.

BugId:

The script `/usr/cvssupport/bugid.edit' is used to edit the log message.

#!/bin/sh

#

bugid.edit filename

#

Call $EDITOR on FILENAME, and verify that the

resulting file contains a valid bugid on the first

line.

if ["x$EDITOR" = "x"]; then EDITOR=vi; fi

if ["x$CVSEDITOR" = "x"]; then CVSEDITOR=$EDITOR; fi

$CVSEDITOR $1

until head -1|grep '^BugId:[]*[0-9][0-9]*$' < $1

do echo -n "No BugId found. Edit again? ([y]/n)"

100 CVS|Concurrent Versions System

read ans

case ${ans} in

n*) exit 1;;

esac

$CVSEDITOR $1

done

The `editinfo' �le contains this line:

^tc /usr/cvssupport/bugid.edit

The `rcsinfo' �le contains this line:

^tc /usr/cvssupport/tc.template

B.6 Loginfo

The `loginfo' �le is used to control where `cvs commit' log information is sent. The �rst entry

on a line is a regular expression which is tested against the directory that the change is being made

to, relative to the $CVSROOT. If a match is found, then the remainder of the line is a �lter program

that should expect log information on its standard input.

The �lter program may use one and only one % modi�er (a la printf). If `%s' is speci�ed in the

�lter program, a brief title is included (enclosed in single quotes) showing the modi�ed �le names.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition to the

�rst matching regular expression or `DEFAULT'.

The �rst matching regular expression is used.

See Section B.3 [commit �les], page 97, for a description of the syntax of the `loginfo' �le.

Note: when CVS is accessing a remote repository, `loginfo' will be run on the remote (i.e.,

server) side, not the client side (see Section 4.5 [Remote repositories], page 17).

B.6.1 Loginfo example

The following `loginfo' �le, together with the tiny shell-script below, appends all log messages

to the �le `$CVSROOT/CVSROOT/commitlog', and any commits to the administrative �les (inside the

`CVSROOT' directory) are also logged in `/usr/adm/cvsroot-log'.

ALL /usr/local/bin/cvs-log $CVSROOT/CVSROOT/commitlog

^CVSROOT /usr/local/bin/cvs-log /usr/adm/cvsroot-log

Appendix B: Reference manual for the Administrative �les 101

The shell-script `/usr/local/bin/cvs-log' looks like this:

#!/bin/sh

(echo "---";

echo -n $USER" ";

date;

echo;

sed '1s+'${CVSROOT}'++') >> $1

B.7 Rcsinfo

The `rcsinfo' �le can be used to specify a form to edit when �lling out the commit log.

The `rcsinfo' �le has a syntax similar to the `editinfo', `commitinfo' and `loginfo' �les. See

Section B.3.1 [syntax], page 98. Unlike the other �les the second part is not a command-line

template. Instead, the part after the regular expression should be a full pathname to a �le containing

the log message template.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition to the

�rst matching regular expression or `DEFAULT'.

The log message template will be used as a default log message. If you specify a log message

with `cvs commit -m message' or `cvs commit -f �le' that log message will override the template.

See Section B.5.1 [editinfo example], page 99, for an example `rcsinfo' �le.

When CVS is accessing a remote repository, the contents of `rcsinfo' at the time a directory

is �rst checked out will specify a template which does not then change. If you edit `rcsinfo' or its

templates, you may need to check out a new working directory.

B.8 Ignoring �les via cvsignore

There are certain �le names that frequently occur inside your working copy, but that you don't

want to put under cvs control. Examples are all the object �les that you get while you compile

your sources. Normally, when you run `cvs update', it prints a line for each �le it encounters that

it doesn't know about (see Section A.19.2 [update output], page 93).

cvs has a list of �les (or sh(1) �le name patterns) that it should ignore while running update,

import and release. This list is constructed in the following way.

� The list is initialized to include certain �le name patterns: names associated with cvs ad-

ministration, or with other common source control systems; common names for patch �les,

object �les, archive �les, and editor backup �les; and other names that are usually artifacts of

assorted utilities. Currently, the default list of ignored �le name patterns is:

102 CVS|Concurrent Versions System

RCS SCCS CVS CVS.adm

RCSLOG cvslog.*

tags TAGS

.make.state .nse_depinfo

~ # .#* ,* _$* *$

*.old *.bak *.BAK *.orig *.rej .del-*

*.a *.olb *.o *.obj *.so *.exe

*.Z *.elc *.ln

core

� The per-repository list in `$CVSROOT/CVSROOT/cvsignore' is appended to the list, if that �le

exists.

� The per-user list in `.cvsignore' in your home directory is appended to the list, if it exists.

� Any entries in the environment variable $CVSIGNORE is appended to the list.

� Any `-I' options given to cvs is appended.

� As cvs traverses through your directories, the contents of any `.cvsignore' will be appended

to the list. The patterns found in `.cvsignore' are only valid for the directory that contains

them, not for any sub-directories.

In any of the 5 places listed above, a single exclamation mark (`!') clears the ignore list. This

can be used if you want to store any �le which normally is ignored by cvs.

B.9 The history �le

The �le `$CVSROOT/CVSROOT/history' is used to log information for the history command

(see Section A.11 [history], page 81). This �le must be created to turn on logging. This is done

automatically if the cvs init command is used to set up the repository (see Section 4.4 [Creating

a repository], page 16).

The �le format of the `history' �le is documented only in comments in the cvs source code, but

generally programs should use the cvs history command to access it anyway, in case the format

changes with future releases of cvs.

B.10 Expansions in administrative �les

Sometimes in writing an administrative �le, you might want the �le to be able to know various

things based on environment cvs is running in. There are several mechanisms to do that.

To �nd the home directory of the user running cvs (from the HOME environment variable), use

`~' followed by `/' or the end of the line. Likewise for the home directory of user, use `~user'. These

variables are expanded on the server machine, and don't get any resonable expansion if pserver

(see Section 4.5.2 [Password authenticated], page 17) is in used; therefore user variables (see below)

may be a better choice to customize behavior based on the user running cvs.

One may want to know about various pieces of information internal to cvs. A cvs internal vari-

able has the syntax ${variable}, where variable starts with a letter and consists of alphanumberic

characters and `_'. If the character following variable is a non-alphanumeric character other than

`_', the `{' and `}' can be omitted. The cvs internal variables are:

Appendix B: Reference manual for the Administrative �les 103

CVSROOT This is the value of the cvs root in use. See Chapter 4 [Repository], page 13, for a

description of the various ways to specify this.

RCSBIN This is the value cvs is using for where to �nd rcs binaries. See Section A.3 [Global

options], page 66, for a description of how to specify this.

CVSEDITOR

VISUAL

EDITOR These all expand to the same value, which is the editor that cvs is using. See Sec-

tion A.3 [Global options], page 66, for how to specify this.

USER Username of the user running cvs (on the cvs server machine).

If you want to pass a value to the administrative �les which the user that is running cvs can

specify, use a user variable. To expand a user variable, the administrative �le contains ${=variable}.

To set a user variable, specify the global option `-s' to cvs, with argument variable=value. It may

be particularly useful to specify this option via `.cvsrc' (see Section A.2 [~/.cvsrc], page 65).

For example, if you want the administrative �le to refer to a test directory you might create

a user variable TESTDIR. Then if cvs is invoked as cvs -s TESTDIR=/work/local/tests, and

the administrative �le contains sh ${=TESTDIR}/runtests, then that string is expanded to sh

/work/local/tests/runtests.

All other strings containing `$' are reserved; there is no way to quote a `$' character so that `$'

represents itself.

104 CVS|Concurrent Versions System

Appendix C: All environment variables which a�ect CVS 105

Appendix C All environment variables which a�ect CVS

This is a complete list of all environment variables that a�ect cvs.

$CVSIGNORE

A whitespace-separated list of �le name patterns that cvs should ignore. See Sec-

tion B.8 [cvsignore], page 101.

$CVSWRAPPERS

A whitespace-separated list of �le name patterns that cvs should treat as wrappers.

See Section B.2 [Wrappers], page 96.

$CVSREAD If this is set, checkout and update will try hard to make the �les in your working

directory read-only. When this is not set, the default behavior is to permit modi�cation

of your working �les.

$CVSROOT Should contain the full pathname to the root of the cvs source repository (where

the rcs history �les are kept). This information must be available to cvs for most

commands to execute; if $CVSROOT is not set, or if you wish to override it for one

invocation, you can supply it on the command line: `cvs -d cvsroot cvs_command: : :'

Once you have checked out a working directory, cvs stores the appropriate root (in the

�le `CVS/Root'), so normally you only need to worry about this when initially checking

out a working directory.

$EDITOR

$CVSEDITOR

Speci�es the program to use for recording log messages during commit. If not set, the

default is `/usr/ucb/vi'. $CVSEDITOR overrides $EDITOR. $CVSEDITOR does not exist

in cvs 1.3, but the next release will probably include it.

$PATH If $RCSBIN is not set, and no path is compiled into cvs, it will use $PATH to try to �nd

all programs it uses.

$RCSBIN Speci�es the full pathname of the location of rcs programs, such as co(1) and ci(1). If

not set, a compiled-in value is used, or your $PATH is searched.

$HOME

$HOMEPATH

Used to locate the directory where the `.cvsrc' �le is searched ($HOMEPATH is used for

Windows-NT). see Section A.2 [~/.cvsrc], page 65

$CVS_RSH Used in client-server mode when accessing a remote repository using rsh. The default

value is rsh. You can set it to use another program for accssing the remote server (e.g.

for HP-UX 9, you should set it to remsh because rsh invokes the restricted shell). see

Section 4.5.1 [Connecting via rsh], page 17

$CVS_SERVER

Used in client-server mode when accessing a remote repository using rsh. It speci�es

the name of the program to start on the server side when accessing a remote repository

using rsh. The default value is cvs. see Section 4.5.1 [Connecting via rsh], page 17

$CVS_PASSFILE

Used in client-server mode when accessing the cvs login server. Default value is

`$HOME/.cvspass'. see Section 4.5.2.2 [Password authentication client], page 19

$CVS_PASSWORD

Used in client-server mode when accessing the cvs login server. see Section 4.5.2.2

[Password authentication client], page 19

106 CVS|Concurrent Versions System

$CVS_CLIENT_PORT

Used in client-server mode when accessing the server via Kerberos. see Section 4.5.3

[Kerberos authenticated], page 20

$CVS_RCMD_PORT

Used in client-server mode. If set, speci�es the port number to be used when accessing

the rcmd demon on the server side. (Currently not used for Unix clients).

$CVS_CLIENT_LOG

Used for debugging only in client-server mode. If set, everything send to the server is

logged into `$CVS_CLIENT_LOG.in' and everything send from the server is logged into

`$CVS_CLIENT_LOG.out'.

$CVS_SERVER_SLEEP

Used only for debugging the server side in client-server mode. If set, delays the start

of the server child process the the speci�ed amount of seconds so that you can attach

to it with a debugger.

$CVS_IGNORE_REMOTE_ROOT

(What is the purpose of this variable?)

$COMSPEC Used under OS/2 only. It speci�es the name of the command interpreter and defaults

to cmd.exe.

$TMPDIR

$TMP

$TEMP Directory in which temporary �les are located. Those parts of cvs which are imple-

mented using rcs inspect the above variables in the order they appear above and the

�rst value found is taken; if none of them are set, a host-dependent default is used,

typically `/tmp'. The cvs server checks TMPDIR, and if not set, it uses `/tmp'. Some

parts of cvs will always use `/tmp' (via the tmpnam function provided by the system).

On Windows NT, TMP is used (via the _tempnam function provided by the system).

The patch program which is used by the cvs client uses TMPDIR, and if it is not set,

uses `/tmp' (at least with GNU patch 2.1).

cvs invokes rcs to perform certain operations. The following environment variables a�ect rcs.

Note that if you are using the client/server cvs, these variables need to be set on the server side

(which may or not may be possible depending on how you are connecting). There is probably not

any need to set any of them, however.

$LOGNAME

$USER If set, they a�ect who rcs thinks you are. If you have trouble checking in �les it might

be because your login name di�ers from the setting of e.g. $LOGNAME.

$RCSINIT Options prepended to the argument list, separated by spaces. A backslash escapes

spaces within an option. The $RCSINIT options are prepended to the argument lists of

most rcs commands.

Appendix D: Troubleshooting 107

Appendix D Troubleshooting

D.1 Magic branch numbers

Externally, branch numbers consist of an odd number of dot-separated decimal integers. See

Section 2.1 [Revision numbers], page 7. That is not the whole truth, however. For e�ciency

reasons cvs sometimes inserts an extra 0 in the second rightmost position (1.2.3 becomes 1.2.0.3,

8.9.10.11.12 becomes 8.9.10.11.0.12 and so on).

cvs does a pretty good job at hiding these so called magic branches, but in at least four places

the hiding is incomplete.

� The magic branch can appear in the output from cvs status in vanilla cvs 1.3. This is �xed

in cvs 1.3-s2.

� The magic branch number appears in the output from cvs log. This is much harder to �x,

since cvs log runs rlog (which is part of the rcs distribution), and modifying rlog to know

about magic branches would probably break someone's habits (if they use branch 0 for their

own purposes).

� You cannot specify a symbolic branch name to cvs log.

� You cannot specify a symbolic branch name to cvs admin.

You can use the admin command to reassign a symbolic name to a branch the way rcs expects it

to be. If R4patches is assigned to the branch 1.4.2 (magic branch number 1.4.0.2) in �le `numbers.c'

you can do this:

$ cvs admin -NR4patches:1.4.2 numbers.c

It only works if at least one revision is already committed on the branch. Be very careful so that

you do not assign the tag to the wrong number. (There is no way to see how the tag was assigned

yesterday).

108 CVS|Concurrent Versions System

Appendix E: GNU GENERAL PUBLIC LICENSE 109

Appendix E GNUGENERALPUBLIC LICENSE

110 CVS|Concurrent Versions System

Index 111

Index

-

-j (merging branches) . 39

-k (RCS kags) . 59

.

.bashrc . 13

.cshrc . 13

.cvsrc �le . 65

.pro�le. 13

.tcshrc . 13

/

/usr/local/cvsroot . 13

:

:kserver: . 20

:local: . 14

:pserver: . 19

:server: . 17

=

======= . 28

>

>>>>>>> . 28

<

<<<<<<< . 28

A

A sample session . 9

About this manual . 1

Add (subcommand) . 69

Add options . 70

Adding a tag . 33

Adding �les . 45

Admin (subcommand) . 71

Administrative �les (intro) . 15

Administrative �les (reference) . 95

Administrative �les, editing them 16

ALL in commitinfo . 98

annotate (subcommand) . 55

Atomic transactions, lack of . 29

authenticated client, using . 19

authenticating server, setting up 18

Author keyword . 57

Automatically ignored �les . 102

Avoiding editor invocation . 68

B

Binary �les . 61

Branch merge example . 39

Branch number . 7

Branch numbers . 36

Branch, creating a . 35

Branch, vendor- . 49

Branches . 33

Branches motivation . 35

Branches, copying changes between 39

Branches, sticky . 36

Bringing a �le up to date . 25

Bugs, known in this manual . 2

Bugs, reporting (manual) . 2

C

Changes, copying between branches 39

Changing a log message . 72

Checkin program . 96

Checking commits . 98

Checking out source . 9

Checkout (subcommand) . 74

Checkout program . 96

Checkout, example . 9

Cleaning up . 10

Client/Server Operation . 17

Co (subcommand) . 74

Command reference . 65

Command structure . 65

Comment leader . 74

Commit (subcommand) . 76

Commit �les . 97

Commit, when to . 63

Commitinfo . 98

Committing changes . 9

Common options . 67

Common syntax of info �les . 98

COMSPEC . 106

Conict markers . 28

Conict resolution . 28

Conicts (merge example) . 27

Contributors (CVS program) . 3

Contributors (manual) . 2

Copying changes . 39

Correcting a log message . 72

Creating a branch . 35

Creating a project . 21

Creating a repository . 16

Credits (CVS program) . 3

Credits (manual) . 2

CVS 1.6, and watches . 32

CVS command structure . 65

CVS passwd �le . 18

CVS, history of . 3

CVS, introduction to . 3

112 CVS|Concurrent Versions System

CVS CLIENT LOG . 106

CVS CLIENT PORT . 20

CVS IGNORE REMOTE ROOT 106

CVS PASSFILE, environment variable 19

CVS PASSWORD, environment variable 19

CVS RCMD PORT . 106

CVS RSH . 105

CVS SERVER . 17

CVS SERVER SLEEP . 106

CVSEDITOR . 105

CVSEDITOR, environment variable 9

CVSIGNORE . 105

cvsignore (admin �le), global . 101

CVSREAD . 105

CVSREAD, overriding . 67

cvsroot . 13

CVSROOT . 105

CVSROOT (�le) . 95

CVSROOT, environment variable 13

CVSROOT, module name . 15

CVSROOT, multiple repositories 16

CVSROOT, overriding . 66

CVSWRAPPERS . 105

cvswrappers (admin �le) . 96

CVSWRAPPERS, environment variable 96

D

Date keyword . 57

Dates . 67

Decimal revision number . 7

DEFAULT in commitinfo . 98

DEFAULT in editinfo . 99

De�ning a module . 23

De�ning modules (intro) . 15

De�ning modules (reference manual) 95

Deleting �les. 47

Deleting revisions . 72

Deleting sticky tags . 37

Descending directories . 43

Di� . 10

Di� (subcommand) . 79

Di�erences, merging . 41

Directories, moving . 53

Directory, descending . 43

Disjoint repositories . 16

Distributing log messages . 100

driver.c (merge example) . 26

E

edit (subcommand) . 31

editinfo (admin �le) . 98

Editing administrative �les . 16

Editing the modules �le . 23

EDITOR . 105

Editor, avoiding invocation of . 68

EDITOR, environment variable . 9

EDITOR, overriding . 66

Editor, specifying per module . 98

editors (subcommand) . 32

emerge . 28

Environment variables . 105

Errors, reporting (manual) . 2

Example of a work-session . 9

Example of merge . 26

Example, branch merge . 39

Export (subcommand) . 80

Export program . 95

F

Fetching source . 9

File locking . 25

File permissions . 15

File status . 25

Files, moving . 51

Files, reference manual . 95

Fixing a log message . 72

Forcing a tag match . 68

Form for log message . 101

Format of CVS commands . 65

Four states of a �le . 25

G

Getting started . 9

Getting the source . 9

Global cvsignore . 101

Global options . 66

Group . 15

H

Header keyword . 57

History (subcommand) . 81

History browsing . 55

History �le . 102

History �les . 14

History of CVS . 3

HOME . 105

HOMEPATH . 105

I

Id keyword . 57

Ident (shell command) . 58

Identifying �les . 57

Ignored �les . 102

Ignoring �les . 101

Import (subcommand) . 83

Importing �les . 21

Importing �les, from other version control systesm . . 22

Importing modules . 49

Index . 111

Info �les (syntax) . 98

Informing others . 28

init (subcommand) . 16

Introduction to CVS . 3

Invoking CVS. 65

Index 113

Isolation . 55

J

Join . 39

K

kerberos . 20

Keyword expansion . 57

Keyword substitution . 57

Kag . 59

kinit . 20

Known bugs in this manual . 2

L

Layout of repository . 13

Left-hand options . 66

Linear development . 7

List, mailing list . 3

Locally modi�ed . 25

Locker keyword . 57

Locking �les . 25

locks, cvs . 29

Log (subcommand) . 84

Log information, saving . 102

Log keyword . 57

Log keyword, selecting comment leader 74

Log message entry . 9

Log message template . 101

Log message, correcting . 72

Log messages . 100

Log messages, editing . 98

Login (subcommand) . 19

loginfo (admin �le) . 100

LOGNAME . 106

M

Mail, automatic mail on commit 28

Mailing list . 3

Mailing log messages . 100

Main trunk (intro) . 7

Main trunk and branches . 33

Many repositories . 16

Markers, conict . 28

Merge, an example . 26

Merge, branch example . 39

Merging . 39

Merging a branch . 39

Merging a �le . 25

Merging two revisions . 41

Modi�cations, copying between branches 39

Module status . 96

Module, de�ning . 23

Modules (admin �le) . 95

Modules (intro) . 7

Modules �le . 15

Modules �le, changing . 23

Motivation for branches . 35

Moving directories . 53

Moving �les . 51

Multiple developers . 25

Multiple repositories . 16

N

Name keyword . 57

Name, symbolic (tag) . 33

Needing merge . 25

Needing update . 25

Newsgroups . 3

notify (admin �le) . 31

Nro� (selecting comment leader) 74

Number, branch . 7

Number, revision- . 7

O

option defaults . 65

Options, global . 66

Outdating revisions . 72

Overlap. 26

Overriding CVSREAD . 67

Overriding CVSROOT . 66

Overriding EDITOR . 66

Overriding RCSBIN . 66

P

Parallel repositories . 16

passwd (admin �le) . 18

password client, using . 19

password server, setting up. 18

PATH . 105

Per-module editor . 98

Policy . 63

Precommit checking . 98

Preface . 1

Pserver (subcommand). 18

R

RCS history �les . 14

RCS keywords . 57

RCS revision numbers . 33

RCS, CVS uses RCS . 14

RCS, importing �les from . 22

RCS-style locking . 72

RCSBIN . 105

RCSBIN, overriding . 66

RCS�le keyword . 57

rcsinfo (admin �le) . 101

RCSINIT . 106

Rdi� (subcommand) . 86

Read-only �les . 67

Read-only mode . 67

Recursive (directory descending) 43

Reference manual (�les) . 95

Reference manual for variables . 105

Reference, commands . 65

114 CVS|Concurrent Versions System

Release (subcommand). 87

Releases, revisions and versions . 8

Releasing your working copy . 10

Remote repositories . 17

Remove (subcommand) . 47

Removing a change . 41

Removing �les . 47

Removing your working copy . 10

Renaming directories . 53

Renaming �les . 51

Replacing a log message . 72

Reporting bugs (manual) . 2

Repositories, multiple . 16

Repositories, remote . 17

Repository (intro). 7

Repository, example . 13

Repository, setting up. 16

Repository, user parts . 14

Reserved checkouts . 72

Resetting sticky tags . 37

Resolving a conict . 28

Restoring old version of removed �le 37

Resurrecting old version of dead �le 37

Retrieving an old revision using tags 34

Revision keyword . 57

Revision management . 63

Revision numbers . 7

Revision tree. 7

Revision tree, making branches. 33

Revisions, merging di�erences between 41

Revisions, versions and releases . 8

Right-hand options . 67

rsh . 17

Rtag (subcommand) . 88

rtag, creating a branch using . 35

S

Saving space . 72

SCCS, importing �les from . 22

Security . 15

setgid . 15

Setting up a repository . 16

setuid . 15

Signum Support . 1

Source keyword . 57

Source, getting CVS source . 3

Source, getting from CVS . 9

Specifying dates . 67

Spreading information . 28

Starting a project with CVS . 21

State keyword . 57

Status (subcommand) . 90

Status of a �le . 25

Status of a module . 96

sticky date . 37

Sticky tags . 36

Sticky tags, resetting . 37

Storing log messages . 100

Structure . 65

Subdirectories . 43

Support, getting CVS support . 1

Symbolic name (tag) . 33

Syntax of info �les . 98

T

Tag (subcommand) . 90

Tag program . 96

tag, command, introduction . 33

tag, example . 33

Tag, retrieving old revisions . 34

Tag, symbolic name . 33

taginfo . 55

Tags . 33

Tags, sticky . 36

tc, Trivial Compiler (example) . 9

Team of developers . 25

TEMP . 106

Template for log message . 101

temporary �les, location of . 106

Third-party sources . 49

Time . 67

TMP . 106

TMPDIR . 106

Trace . 67

Traceability . 55

Tracking sources . 49

Transactions, atomic, lack of . 29

Trivial Compiler (example) . 9

Typical repository . 13

U

Undoing a change . 41

unedit (subcommand) . 32

Up-to-date . 25

Update (subcommand) . 91

Update program . 96

update, introduction . 25

Updating a �le. 25

USER . 106

User modules . 14

users (admin �le) . 31

V

Vendor . 49

Vendor branch . 49

Versions, revisions and releases . 8

Viewing di�erences . 10

W

watch add (subcommand) . 30

watch o� (subcommand) . 30

watch on (subcommand) . 30

watch remove (subcommand) . 31

watchers (subcommand) . 32

Watches . 29

Index 115

Wdi� (import example) . 49

What (shell command) . 58

What branches are good for . 35

What is CVS? . 3

When to commit . 63

Work-session, example of . 9

Working copy . 25

Working copy, removing . 10

Wrappers . 96

116 CVS|Concurrent Versions System

i

Short Contents

About this manual . 1

1 What is CVS? . 3

2 Basic concepts . 7

3 A sample session . 9

4 The Repository . 13

5 Starting a project with CVS . 21

6 Multiple developers . 25

7 Branches . 33

8 Merging . 39

9 Recursive behavior . 43

10 Adding �les to a module . 45

11 Removing �les from a module . 47

12 Tracking third-party sources . 49

13 Moving and renaming �les . 51

14 Moving and renaming directories . 53

15 History browsing . 55

16 Keyword substitution . 57

17 Handling binary �les . 61

18 Revision management . 63

Appendix A Reference manual for CVS commands 65

Appendix B Reference manual for the Administrative �les 95

Appendix C All environment variables which a�ect CVS 105

Appendix D Troubleshooting . 107

Appendix E GNU GENERAL PUBLIC LICENSE 109

Index . 111

ii CVS|Concurrent Versions System

iii

Table of Contents

About this manual . 1

Checklist for the impatient reader . 1

Credits . 2

BUGS . 2

1 What is CVS? . 3

CVS is not: : : . 3

2 Basic concepts . 7

2.1 Revision numbers . 7

2.2 Versions, revisions and releases . 8

3 A sample session . 9

3.1 Getting the source. 9

3.2 Committing your changes . 9

3.3 Cleaning up . 10

3.4 Viewing di�erences . 10

4 The Repository . 13

4.1 User modules . 14

4.1.1 File permissions . 15

4.2 The administrative �les . 15

4.2.1 Editing administrative �les . 16

4.3 Multiple repositories . 16

4.4 Creating a repository . 16

4.5 Remote repositories . 17

4.5.1 Connecting with rsh . 17

4.5.2 Direct connection with password authentication 17

4.5.2.1 Setting up the server for password authentication

. 18

4.5.2.2 Using the client with password authentication . . 19

4.5.2.3 Security considerations with password

authentication . 19

4.5.3 Direct connection with kerberos. 20

5 Starting a project with CVS . 21

5.1 Setting up the �les . 21

5.1.1 Creating a directory tree from a number of �les 21

5.1.2 Creating Files From Other Version Control Systems 22

5.1.3 Creating a directory tree from scratch 22

5.2 De�ning the module . 23

6 Multiple developers . 25

6.1 File status . 25

6.2 Bringing a �le up to date . 25

6.3 Conicts example . 26

6.4 Informing others about commits . 28

6.5 Several developers simultaneously attempting to run CVS 29

6.6 Mechanisms to track who is editing �les . 29

iv CVS|Concurrent Versions System

6.6.1 Telling CVS to watch certain �les . 30

6.6.2 Telling CVS to notify you . 30

6.6.3 How to edit a �le which is being watched 31

6.6.4 Information about who is watching and editing 32

6.6.5 Using watches with old versions of CVS 32

7 Branches . 33

7.1 Tags{Symbolic revisions . 33

7.2 What branches are good for . 35

7.3 Creating a branch . 35

7.4 Sticky tags . 36

8 Merging . 39

8.1 Merging an entire branch . 39

8.2 Merging from a branch several times . 40

8.3 Merging di�erences between any two revisions 41

9 Recursive behavior . 43

10 Adding �les to a module . 45

11 Removing �les from a module 47

12 Tracking third-party sources . 49

12.1 Importing a module for the �rst time . 49

12.2 Updating a module with the import command 49

12.3 How to handle binary �les with cvs import . 50

13 Moving and renaming �les . 51

13.1 The Normal way to Rename . 51

13.2 Moving the history �le . 51

13.3 Copying the history �le . 52

14 Moving and renaming directories 53

15 History browsing . 55

15.1 Log messages . 55

15.2 The history database . 55

15.3 User-de�ned logging . 55

15.4 Annotate command . 55

16 Keyword substitution . 57

16.1 RCS Keywords . 57

16.2 Using keywords . 57

16.3 Avoiding substitution . 58

16.4 Substitution modes . 59

16.5 Problems with the Log keyword. 59

17 Handling binary �les . 61

18 Revision management . 63

18.1 When to commit? . 63

v

Appendix A Reference manual for CVS commands

. 65

A.1 Overall structure of CVS commands . 65

A.2 Default options and the ~/.cvsrc �le . 65

A.3 Global options . 66

A.4 Common command options . 67

A.5 add|Add a new �le/directory to the repository 69

A.5.1 add options . 70

A.5.2 add examples . 70

A.6 admin|Administration front end for rcs . 71

A.6.1 admin options . 71

A.6.2 admin examples . 73

A.6.2.1 Outdating is dangerous . 73

A.6.2.2 Comment leaders . 74

A.7 checkout|Check out sources for editing . 74

A.7.1 checkout options . 75

A.7.2 checkout examples . 76

A.8 commit|Check �les into the repository . 76

A.8.1 commit options . 76

A.8.2 commit examples . 77

A.8.2.1 New major release number 77

A.8.2.2 Committing to a branch . 78

A.8.2.3 Creating the branch after editing 78

A.9 di�|Run di�s between revisions . 79

A.9.1 di� options . 79

A.9.2 di� examples . 80

A.10 export|Export sources from CVS, similar to checkout 80

A.10.1 export options . 80

A.11 history|Show status of �les and users . 81

A.11.1 history options . 81

A.12 import|Import sources into CVS, using vendor branches 83

A.12.1 import options . 83

A.12.2 import examples . 84

A.13 log|Print out log information for �les . 84

A.13.1 log options . 84

A.13.2 log examples . 85

A.14 rdi�|'patch' format di�s between releases . 86

A.14.1 rdi� options . 86

A.14.2 rdi� examples. 87

A.15 release|Indicate that a Module is no longer in use 87

A.15.1 release options . 87

A.15.2 release output . 88

A.15.3 release examples . 88

A.16 rtag|Add a symbolic tag to a module . 88

A.16.1 rtag options . 89

A.17 status|Display status information on checked out �les 89

A.17.1 status options . 90

A.18 tag|Add a symbolic tag to checked out versions of �les 90

A.18.1 tag options . 91

A.19 update|Bring work tree in sync with repository 91

A.19.1 update options . 91

A.19.2 update output . 92

A.19.3 update examples . 93

vi CVS|Concurrent Versions System

Appendix B Reference manual for the Administrative

�les . 95

B.1 The modules �le . 95

B.2 The cvswrappers �le . 96

B.3 The commit support �les . 97

B.3.1 The common syntax . 98

B.4 Commitinfo . 98

B.5 Editinfo . 98

B.5.1 Editinfo example . 99

B.6 Loginfo . 100

B.6.1 Loginfo example . 100

B.7 Rcsinfo . 101

B.8 Ignoring �les via cvsignore . 101

B.9 The history �le . 102

B.10 Expansions in administrative �les . 102

Appendix C All environment variables which a�ect

CVS. 105

Appendix D Troubleshooting . 107

D.1 Magic branch numbers . 107

Appendix E GNU GENERAL PUBLIC LICENSE

. 109

Index . 111

