
CVSClient/Server

This document describes the client/server protocol used by CVS. It does not describe how to

use or administer client/server CVS; see the regular CVS manual for that. This is version 1.8.7

of the protocol speci�cation|See Chapter 1 [Introduction], page 2, for more on what this version

number means.

1 Introduction

CVS is a version control system (with some additional con�guration management functionality).

It maintains a central repository which stores �les (often source code), including past versions,

information about who modi�ed them and when, and so on. People who wish to look at or modify

those �les, known as developers, use CVS to check out a working directory from the repository, to

check in new versions of �les to the repository, and other operations such as viewing the modi�cation

history of a �le. If developers are connected to the repository by a network, particularly a slow or

aky one, the most e�cient way to use the network is with the CVS-speci�c protocol described in

this document.

Developers, using the machine on which they store their working directory, run the CVS client

program. To perform operations which cannot be done locally, it connects to the CVS server

program, which maintains the repository. For more information on how to connect see Chapter 5

[Connection and Authentication], page 6.

This document describes the CVS protocol. Unfortunately, it does not yet completely document

one aspect of the protocol|the detailed operation of each CVS command and option|and one

must look at the CVS user documentation, `cvs.texinfo', for that information. The protocol

is non-proprietary (anyone who wants to is encouraged to implement it) and an implementation,

known as CVS, is available under the GNU Public License. The CVS distribution, containing this

implementation, `cvs.texinfo', and a copy (possibly more or less up to date than what you are

reading now) of this document, `cvsclient.texi', can be found at the usual GNU FTP sites, with

a �lename such as `cvs-version.tar.gz'.

This is version 1.8.7 of the protocol speci�cation. This version number is intended only to aid

in distinguishing di�erent versions of this speci�cation. Although the speci�cation is currently

maintained in conjunction with the CVS implementation, and carries the same version number, it

also intends to document what is involved with interoperating with other implementations (such as

other versions of CVS); see See Section 6.7 [Requirements], page 16. This version number should not

be used by clients or servers to determine what variant of the protocol to speak; they should instead

use the valid-requests and Valid-responses mechanism (see Chapter 6 [Protocol], page 7),

which is more exible.

2 Goals

� Do not assume any access to the repository other than via this protocol. It does not depend

on NFS, rdist, etc.

� Providing a reliable transport is outside this protocol. It is expected that it runs over TCP,

UUCP, etc.

� Security and authentication are handled outside this protocol (but see below about `cvs

kserver' and `cvs pserver').

� This might be a �rst step towards adding transactions to CVS (i.e. a set of operations is either

executed atomically or none of them is executed), improving the locking, or other features.

The current server implementation is a long way from being able to do any of these things.

The protocol, however, is not known to contain any defects which would preclude them.

� The server never has to have any CVS locks in place while it is waiting for communication

with the client. This makes things robust in the face of aky networks.

� Data is transferred in large chunks, which is necessary for good performance. In fact, currently

the client uploads all the data (without waiting for server responses), and then waits for one

server response (which consists of a massive download of all the data). There may be cases in

which it is better to have a richer interraction, but the need for the server to release all locks

whenever it waits for the client makes it complicated.

3 Notes on the Current Implementation

The client is built in to the normal cvs program, triggered by a specially-formatted CVSROOT

variable, for example :server:cygnus.com:/rel/cvsfiles.

The client stores what is stored in checked-out directories (including `CVS'). The way these

are stored is totally compatible with standard CVS. The server requires no storage other than the

repository, which also is totally compatible with standard CVS.

The current server implementation can use up huge amounts of memory when transmitting a

lot of data over a slow link (i.e. the network is slower than the server can generate the data). There

is some experimental code (see SERVER_FLOWCONTROL in options.h) which should help signi�cantly.

4 Notes on the Protocol

A number of enhancements are possible:

� The Modified request could be speeded up by sending di�s rather than entire �les. The client

would need some way to keep the version of the �le which was originally checked out; probably

requiring the use of "cvs edit" in this case is the most sensible course (the "cvs edit" could be

handled by a package like VC for emacs). This would also allow local operation of cvs diff

without arguments.

� Have the client keep a copy of some part of the repository. This allows all of cvs diff and

large parts of cvs update and cvs ci to be local. The local copy could be made consistent

with the master copy at night (but if the master copy has been updated since the latest nightly

re-sync, then it would read what it needs to from the master).

� The current procedure for cvs update is highly sub-optimal if there are many modi�ed �les.

One possible alternative would be to have the client send a �rst request without the contents

of every modi�ed �le, then have the server tell it what �les it needs. Note the server needs

to do the what-needs-to-be-updated check twice (or more, if changes in the repository mean

it has to ask the client for more �les), because it can't keep locks open while waiting for the

network. Perhaps this whole thing is irrelevant if client-side repositories are implemented, and

the rcsmerge is done by the client.

5 How toConnect to andAuthenticate Oneself to the

CVS server

Connection and authentication occurs before the CVS protocol itself is started. There are several

ways to connect.

server If the client has a way to execute commands on the server, and provide input to the

commands and output from them, then it can connect that way. This could be the

usual rsh (port 514) protocol, Kerberos rsh, SSH, or any similar mechanism. The client

may allow the user to specify the name of the server program; the default is cvs. It is

invoked with one argument, server. Once it invokes the server, the client proceeds to

start the cvs protocol.

kserver The kerberized server listens on a port (in the current implementation, by having

inetd call "cvs kserver") which defaults to 1999. The client connects, sends the usual

kerberos authentication information, and then starts the cvs protocol. Note: port 1999

is o�cially registered for another use, and in any event one cannot register more than

one port for CVS, so the kerberized client and server should be changed to use port 2401

(see below), and send a di�erent string in place of `BEGIN AUTH REQUEST' to identify the

authentication method in use. However, noone has yet gotten around to implementing

this.

pserver The password authenticated server listens on a port (in the current implementation, by

having inetd call "cvs pserver") which defaults to 2401 (this port is o�cially registered).

The client connects, sends the string `BEGIN AUTH REQUEST', a linefeed, the cvs root,

a linefeed, the username, a linefeed, the password trivially encoded (see scramble.c in

the cvs sources), a linefeed, the string `END AUTH REQUEST', and a linefeed. The server

responds with `I LOVE YOU' and a linefeed if the authentication is successful or `I HATE

YOU' and a linefeed if the authentication fails. After receiving `I LOVE YOU', the client

proceeds with the cvs protocol. If the client wishes to merely authenticate without

starting the cvs protocol, the procedure is the same, except `BEGIN AUTH REQUEST'

is replaced with `BEGIN VERIFICATION REQUEST', `END AUTH REQUEST' is replaced with

`END VERIFICATION REQUEST', and upon receipt of `I LOVE YOU' the connection is closed

rather than continuing.

6 TheCVS client/server protocol

In the following, `\n' refers to a linefeed and `\t' refers to a horizontal tab.

6.1 Entries Lines

Entries lines are transmitted as:

/ name / version / conict / options / tag or date

tag or date is either `T' tag or `D' date or empty. If it is followed by a slash, anything after the

slash shall be silently ignored.

version can be empty, or start with `0' or `-', for no user �le, new user �le, or user �le to be

removed, respectively.

conict, if it starts with `+', indicates that the �le had conicts in it. The rest of conict is `=' if

the timestamp matches the �le, or anything else if it doesn't. If conict does not start with a `+',

it is silently ignored.

6.2 Modes

A mode is any number of repetitions of

mode-type = data

separated by `,'.

mode-type is an identi�er composed of alphanumeric characters. Currently speci�ed: `u' for

user, `g' for group, `o' for other (see below for discussion of whether these have their POSIX

meaning or are more loose). Unrecognized values of mode-type are silently ignored.

data consists of any data not containing `,', `\0' or `\n'. For `u', `g', and `o' mode types, data

consists of alphanumeric characters, where `r' means read, `w' means write, `x' means execute, and

unrecognized letters are silently ignored.

The two most obvious ways in which the mode matters are: (1) is it writeable? This is used by the

developer communication features, and is implemented even on OS/2 (and could be implemented

on DOS), whose notion of mode is limited to a readonly bit. (2) is it executable? Unix CVS users

need CVS to store this setting (for shell scripts and the like). The current CVS implementation

on unix does a little bit more than just maintain these two settings, but it doesn't really have a

nice general facility to store or version control the mode, even on unix, much less across operating

systems with diverse protection features. So all the ins and outs of what the mode means across

operating systems haven't really been worked out (e.g. should the VMS port use ACLs to get

POSIX semantics for groups?).

6.3 Conventions regarding transmission of �le names

In most contexts, `/' is used to separate directory and �le names in �lenames, and any use of

other conventions (for example, that the user might type on the command line) is converted to that

form. The only exceptions might be a few cases in which the server provides a magic cookie which

the client then repeats verbatim, but as the server has not yet been ported beyond unix, the two

rules provide the same answer (and what to do if future server ports are operating on a repository

like e:/foo or CVS ROOT:[FOO.BAR] has not been carefully thought out).

6.4 Requests

By convention, requests which begin with a capital letter do not elicit a response from the server,

while all others do { save one. The exception is `gzip-file-contents'. Unrecognized requests will

always elicit a response from the server, even if that request begins with a capital letter.

File contents (noted below as �le transmission) can be sent in one of two forms. The simpler

form is a number of bytes, followed by a newline, followed by the speci�ed number of bytes of �le

contents. These are the entire contents of the speci�ed �le. Second, if both client and server support

`gzip-file-contents', a `z' may precede the length, and the `�le contents' sent are actually

compressed with `gzip'. The length speci�ed is that of the compressed version of the �le.

In neither case are the �le content followed by any additional data. The transmission of a �le

will end with a newline i� that �le (or its compressed form) ends with a newline.

Root pathname \n

Response expected: no. Tell the server which CVSROOT to use. Note that pathname is

a local directory and not a fully quali�ed CVSROOT variable. pathname must already

exist; if creating a new root, use the init request, not Root. pathname does not

include the hostname of the server, how to access the server, etc.; by the time the CVS

protocol is in use, connection, authentication, etc., are already taken care of.

Valid-responses request-list \n

Response expected: no. Tell the server what responses the client will accept. request-

list is a space separated list of tokens.

valid-requests \n

Response expected: yes. Ask the server to send back a Valid-requests response.

Repository repository \n

Response expected: no. Tell the server what repository to use. This should be a

directory name from a previous server response. Note that this both gives a default

for Entry and Modified and also for ci and the other commands; normal usage is to

send a Repository for each directory in which there will be an Entry or Modified ,

and then a �nal Repository for the original directory, then the command.

Directory local-directory \n

Additional data: repository \n. Response expected: no. This is like Repository, but

the local name of the directory may di�er from the repository name. If the client uses

this request, it a�ects the way the server returns pathnames; see Section 6.5 [Responses],

page 12. local-directory is relative to the top level at which the command is occurring

(i.e. the last Directory or Repository which is sent before the command); to indicate

that top level, `.' should be send for local-directory.

Max-dotdot level \n

Response expected: no. Tell the server that level levels of directories above the directory

which Directory requests are relative to will be needed. For example, if the client is

planning to use a Directory request for `../../foo', it must send a Max-dotdot

request with a level of at least 2. Max-dotdot must be sent before the �rst Directory

request.

Static-directory \n

Response expected: no. Tell the server that the directory most recently speci�ed with

Repository or Directory should not have additional �les checked out unless explicitly

requested. The client sends this if the Entries.Static ag is set, which is controlled

by the Set-static-directory and Clear-static-directory responses.

Sticky tagspec \n

Response expected: no. Tell the server that the directory most recently speci�ed with

Repository has a sticky tag or date tagspec. The �rst character of tagspec is `T' for a

tag, or `D' for a date. The remainder of tagspec contains the actual tag or date.

Checkin-prog program \n

Response expected: no. Tell the server that the directory most recently speci�ed

with Directory has a checkin program program. Such a program would have been

previously set with the Set-checkin-prog response.

Update-prog program \n

Response expected: no. Tell the server that the directory most recently speci�ed

with Directory has an update program program. Such a program would have been

previously set with the Set-update-prog response.

Entry entry-line \n

Response expected: no. Tell the server what version of a �le is on the local machine.

The name in entry-line is a name relative to the directory most recently speci�ed with

Repository. If the user is operating on only some �les in a directory, Entry requests

for only those �les need be included. If an Entry request is sent without Modified,

Unchanged, or Lost for that �le the meaning depends on whether UseUnchanged has

been sent; if it has been it means the �le is lost, if not it means the �le is unchanged.

Modified �lename \n

Response expected: no. Additional data: mode, \n, �le transmission. Send the server

a copy of one locally modi�ed �le. �lename is relative to the most recent repository

sent with Repository. If the user is operating on only some �les in a directory, only

those �les need to be included. This can also be sent without Entry, if there is no

entry for the �le.

Lost �lename \n

Response expected: no. Tell the server that �lename no longer exists. The name is

relative to the most recent repository sent with Repository. This is used for any case

in which Entry is being sent but the �le no longer exists. If the client has issued the

UseUnchanged request, then this request is not used.

Unchanged �lename \n

Response expected: no. Tell the server that �lename has not been modi�ed in the

checked out directory. The name is relative to the most recent repository sent with

Repository. This request can only be issued if UseUnchanged has been sent.

UseUnchanged \n

Response expected: no. Tell the server that the client will be indicating unmodi�ed

�les with Unchanged, and that �les for which no information is sent are nonexistent

on the client side, not unchanged. This is necessary for correct behavior since only the

server knows what possible �les may exist, and thus what �les are nonexistent.

Notify �lename \n

Response expected: no. Tell the server that a edit or unedit command has taken place.

The server needs to send a Notified response, but such response is deferred until the

next time that the server is sending responses. Response expected: no. Additional

data:

noti�cation-type \t time \t clienthost \t

working-dir \t watches \n

where noti�cation-type is `E' for edit or `U' for unedit, time is the time at which the

edit or unedit took place, clienthost is the name of the host on which the edit or unedit

took place, and working-dir is the pathname of the working directory where the edit

or unedit took place. watches are the temporary watches to set; if it is followed by \t

then the tab and the rest of the line are ignored.

Questionable �lename \n

Response expected: no. Additional data: no. Tell the server to check whether �lename

should be ignored, and if not, next time the server sends responses, send (in a M

response) `?' followed by the directory and �lename. �lename must not contain `/'; it

needs to be a �le in the directory named by the most recent Directory request.

Case \n Response expected: no. Tell the server that �lenames should be matched against

ignore patterns in a case-insensitive fashion. Note that this does not apply to other

comparisons|for example the �lenames given in Entry and Modified requests for the

same �le must match in case regardless of whether the Case request is sent.

Argument text \n

Response expected: no. Save argument for use in a subsequent command. Argu-

ments accumulate until an argument-using command is given, at which point they are

forgotten.

Argumentx text \n

Response expected: no. Append \n followed by text to the current argument being

saved.

Global_option option \n

Response expected: no. Transmit one of the global options `-q', `-Q', `-l', `-t', `-r', or

`-n'. option must be one of those strings, no variations (such as combining of options)

are allowed. For graceful handling of valid-requests, it is probably better to make

new global options separate requests, rather than trying to add them to this request.

Gzip-stream level \n

Response expected: no. Use RFC 1950/1951 compression to compress all further

communication between the client and the server. After this request is sent, all further

communication must be compressed. All further data received from the server will also

be compressed. The level argument suggests to the server the level of compression that

it should apply; it should be an integer between 1 and 9, inclusive, where a higher

number indicates more compression.

Kerberos-encrypt \n

Response expected: no. Use Kerberos encryption to encrypt all further communication

between the client and the server. This will only work if the connection was made

over Kerberos in the �rst place. If both the Gzip-stream and the Kerberos-encrypt

requests are used, the Kerberos-encrypt request should be used �rst. This will make

the client and server encrypt the compressed data, as opposed to compressing the

encrypted data. Encrypted data is generally incompressible.

Set variable=value \n

Response expected: no. Set a user variable variable to value.

expand-modules \n

Response expected: yes. Expand the modules which are speci�ed in the arguments.

Returns the data in Module-expansion responses. Note that the server can assume

that this is checkout or export, not rtag or rdi�; the latter do not access the working

directory and thus have no need to expand modules on the client side.

co \n

ci \n

diff \n

tag \n

status \n

log \n

add \n

remove \n

rdiff \n

rtag \n

admin \n

export \n

history \n

watchers \n

editors \n

annotate \n

Response expected: yes. Actually do a cvs command. This uses any previous Argument,

Repository, Entry, Modified, or Lost requests, if they have been sent. The last

Repository sent speci�es the working directory at the time of the operation. No

provision is made for any input from the user. This means that ci must use a -m

argument if it wants to specify a log message.

init root-name \n

Response expected: yes. If it doesn't already exist, create a cvs repository root-name.

Note that root-name is a local directory and not a fully quali�ed CVSROOT variable.

The Root request need not have been previously sent.

update \n Response expected: yes. Actually do a cvs update command. This uses any previous

Argument, Repository, Entry, Modified, or Lost requests, if they have been sent.

The last Repository sent speci�es the working directory at the time of the operation.

The -I option is not used{�les which the client can decide whether to ignore are not

mentioned and the client sends the Questionable request for others.

import \n Response expected: yes. Actually do a cvs import command. This uses any previous

Argument, Repository, Entry, Modified, or Lost requests, if they have been sent.

The last Repository sent speci�es the working directory at the time of the operation.

The �les to be imported are sent in Modified requests (�les which the client knows

should be ignored are not sent; the server must still process the CVSROOT/cvsignore

�le unless -I ! is sent). A log message must have been speci�ed with a -m argument.

watch-on \n

watch-off \n

watch-add \n

watch-remove \n

Response expected: yes. Actually do the cvs watch on, cvs watch off, cvs watch

add, and cvs watch remove commands, respectively. This uses any previous Argument,

Repository, Entry, Modified, or Lost requests, if they have been sent. The last

Repository sent speci�es the working directory at the time of the operation.

release \n

Response expected: yes. Note that a cvs release command has taken place and

update the history �le accordingly.

noop \n Response expected: yes. This request is a null command in the sense that it doesn't

do anything, but merely (as with any other requests expecting a response) sends back

any responses pertaining to pending errors, pending Notified responses, etc.

update-patches \n

Response expected: yes. This request does not actually do anything. It is used as a

signal that the server is able to generate patches when given an update request. The

client must issue the -u argument to update in order to receive patches.

gzip-file-contents level \n

Response expected: no. Note that this request does not follow the response convention

stated above. This request asks the server to �lter �les it sends to the client through

the `gzip' program, using the speci�ed level of compression. If this request is not made,

the server must not do any compression.

This is only a hint to the server. It may still decide (for example, in the case of very

small �les, or �les that already appear to be compressed) not to do the compression.

Compression is indicated by a `z' preceding the �le length.

Availability of this request in the server indicates to the client that it may compress

�les sent to the server, regardless of whether the client actually uses this request.

other-request text \n

Response expected: yes. Any unrecognized request expects a response, and does not

contain any additional data. The response will normally be something like `error

unrecognized request', but it could be a di�erent error if a previous command which

doesn't expect a response produced an error.

When the client is done, it drops the connection.

6.5 Responses

After a command which expects a response, the server sends however many of the following

responses are appropriate. The server should not send data at other times (the current implemen-

tation may violate this principle in a few minor places, where the server is printing an error message

and exiting|this should be investigated further).

Pathnames are of the actual �les operated on (i.e. they do not contain `,v' endings), and are

suitable for use in a subsequent Repository request. However, if the client has used the Directory

request, then it is instead a local directory name relative to the directory in which the command

was given (i.e. the last Directory before the command). Then a newline and a repository name

(the pathname which is sent if Directory is not used). Then the slash and the �lename. For

example, for a �le `i386.mh' which is in the local directory `gas.clean/config' and for which the

repository is `/rel/cvsfiles/devo/gas/config':

gas.clean/config/

/rel/cvsfiles/devo/gas/config/i386.mh

Any response always ends with `error' or `ok'. This indicates that the response is over.

Valid-requests request-list \n

Indicate what requests the server will accept. request-list is a space separated list of

tokens. If the server supports sending patches, it will include `update-patches' in this

list. The `update-patches' request does not actually do anything.

Checked-in pathname \n

Additional data: New Entries line, \n. This means a �le pathname has been success-

fully operated on (checked in, added, etc.). name in the Entries line is the same as the

last component of pathname.

New-entry pathname \n

Additional data: New Entries line, \n. Like Checked-in, but the �le is not up to date.

Updated pathname \n

Additional data: New Entries line, \n, mode, \n, �le transmission. A new copy of the

�le is enclosed. This is used for a new revision of an existing �le, or for a new �le, or for

any other case in which the local (client-side) copy of the �le needs to be updated, and

after being updated it will be up to date. If any directory in pathname does not exist,

create it. This response is not used if Created and Update-existing are supported.

Created pathname \n

This is just like Updated and takes the same additional data, but is used only if no

Entry, Modified, or Unchanged request has been sent for the �le in question. The

distinction between Created and Update-existing is so that the client can give an

error message in several cases: (1) there is a �le in the working directory, but not

one for which Entry, Modified, or Unchanged was sent (for example, a �le which was

ignored, or a �le for which Questionable was sent), (2) there is a �le in the working

directory whose name di�ers from the one mentioned in Created in ways that the client

is unable to use to distinguish �les. For example, the client is case-insensitive and the

names di�er only in case.

Update-existing pathname \n

This is just like Updated and takes the same additional data, but is used only if a

Entry, Modified, or Unchanged request has been sent for the �le in question.

Merged pathname \n

This is just like Updated and takes the same additional data, with the one di�erence

that after the new copy of the �le is enclosed, it will still not be up to date. Used for

the results of a merge, with or without conicts.

Patched pathname \n

This is just like Updated and takes the same additional data, with the one di�erence

that instead of sending a new copy of the �le, the server sends a patch. This patch

is produced by `diff -c' for cvs 1.6 and later (see POSIX.2 for a description of this

format), or `diff -u' for previous versions of cvs; clients are encouraged to accept

either format. The client must apply this patch to the existing �le. This will only be

used when the client has an exact copy of an earlier revision of a �le. This response is

only used if the update command is given the `-u' argument.

Mode mode \n

This mode applies to the next �le mentioned in Checked-in. It does not apply to

any request which follows a Checked-in, New-entry, Updated, Merged, or Patched

response.

Checksum checksum\n

The checksum applies to the next �le sent over via Updated, Merged, or Patched. In

the case of Patched, the checksum applies to the �le after being patched, not to the

patch itself. The client should compute the checksum itself, after receiving the �le or

patch, and signal an error if the checksums do not match. The checksum is the 128

bit MD5 checksum represented as 32 hex digits. This response is optional, and is only

used if the client supports it (as judged by the Valid-responses request).

Copy-file pathname \n

Additional data: newname \n. Copy �le pathname to newname in the same directory

where it already is. This does not a�ect CVS/Entries.

Removed pathname \n

The �le has been removed from the repository (this is the case where cvs prints `file

foobar.c is no longer pertinent').

Remove-entry pathname \n

The �le needs its entry removed from CVS/Entries, but the �le itself is already gone

(this happens in response to a ci request which involves committing the removal of a

�le).

Set-static-directory pathname \n

This instructs the client to set the Entries.Static ag, which it should then send

back to the server in a Static-directory request whenever the directory is operated

on. pathname ends in a slash; its purpose is to specify a directory, not a �le within a

directory.

Clear-static-directory pathname \n

Like Set-static-directory, but clear, not set, the ag.

Set-sticky pathname \n

Additional data: tagspec \n. Tell the client to set a sticky tag or date, which should

be supplied with the Sticky request for future operations. pathname ends in a slash;

its purpose is to specify a directory, not a �le within a directory. The �rst character of

tagspec is `T' for a tag, or `D' for a date. The remainder of tagspec contains the actual

tag or date.

Clear-sticky pathname \n

Clear any sticky tag or date set by Set-sticky.

Template pathname \n

Additional data: �le transmission (note: compressed �le transmissions are not sup-

ported). pathname ends in a slash; its purpose is to specify a directory, not a �le

within a directory. Tell the client to store the �le transmission as the template log

message, and then use that template in the future when prompting the user for a log

message.

Set-checkin-prog dir \n

Additional data: prog \n. Tell the client to set a checkin program, which should be

supplied with the Checkin-prog request for future operations.

Set-update-prog dir \n

Additional data: prog \n. Tell the client to set an update program, which should be

supplied with the Update-prog request for future operations.

Notified pathname \n

Indicate to the client that the noti�cation for pathname has been done. There should

be one such response for every Notify request; if there are several Notify requests

for a single �le, the requests should be processed in order; the �rst Notified response

pertains to the �rst Notify request, etc.

Module-expansion pathname \n Return a file or directory

which is included in a particular module. pathname is relative to cvsroot, unlike most

pathnames in responses. pathname should be used to look and see whether some or

all of the module exists on the client side; it is not necessarily suitable for passing as

an argument to a co request (for example, if the modules �le contains the `-d' option,

it will be the directory speci�ed with `-d', not the name of the module).

M text \n A one-line message for the user.

E text \n Same as M but send to stderr not stdout.

F \n Flush stderr. That is, make it possible for the user to see what has been written to

stderr (it is up to the implementation to decide exactly how far it should go to ensure

this).

error errno-code ` ' text \n

The command completed with an error. errno-code is a symbolic error code (e.g.

ENOENT); if the server doesn't support this feature, or if it's not appropriate for this

particular message, it just omits the errno-code (in that case there are two spaces after

`error'). Text is an error message such as that provided by strerror(), or any other

message the server wants to use.

ok \n The command completed successfully.

6.6 Example

Lines beginning with `c>' are sent by the client; lines beginning with `s>' are sent by the server;

lines beginning with `#' are not part of the actual exchange.

c> Root /rel/cvsfiles

In actual practice the lists of valid responses and requests would

be longer

c> Valid-responses Updated Checked-in M ok error

c> valid-requests

s> Valid-requests Root co Modified Entry Repository ci Argument Argumentx

s> ok

cvs co devo/foo

c> Argument devo/foo

c> co

s> Updated /rel/cvsfiles/devo/foo/foo.c

s> /foo.c/1.4/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

s> 26

s> int mein () { abort (); }

s> Updated /rel/cvsfiles/devo/foo/Makefile

s> /Makefile/1.2/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

s> 28

s> foo: foo.c

s> $(CC) -o foo $<

s> ok

The current implementation would break the connection here and make a

new connection for the next command. However, the protocol allows it

to keep the connection open and continue, which is what we show here.

c> Repository /rel/cvsfiles/devo/foo

foo.c relative to devo/foo just set as Repository.

c> Entry /foo.c/1.4/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

c> Entry /Makefile/1.2/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

c> Modified foo.c

c> 26

c> int main () { abort (); }

cvs ci -m <log message> foo.c

c> Argument -m

c> Argument Well, you see, it took me hours and hours to find this typo and I

c> Argumentx searched and searched and eventually had to ask John for help.

c> Argument foo.c

c> ci

s> Checked-in /rel/cvsfiles/devo/foo/foo.c

s> /foo.c/1.5/ Mon Apr 19 15:54:22 CDT 1993//

s> M Checking in foo.c;

s> M /cygint/rel/cvsfiles/devo/foo/foo.c,v <-- foo.c

s> M new revision: 1.5; previous revision: 1.4

s> M done

s> ok

6.7 Required versus optional parts of the protocol

The following are part of every known implementation of the CVS protocol and it is considered

reasonable behavior to completely fail to work if you are connected with an implementation which

attempts to not support them. Requests: Root, Valid-responses, valid-requests, Repository, Entry,

Modi�ed, Argument, Argumentx, ci, co, update. Responses: ok, error, Valid-requests, Checked-in,

Updated, Merged, Removed, M, E.

Failure to support the Directory, UseUnchanged, and Unchanged requests is deprecated. CVS

1.5 and later have supported these requests and in the future it will be considered reasonable

behavior to completely fail to work with an implementation which attempts to not support them.

Support for the Repository and Lost requests is deprecated; CVS clients 1.5 and later will not use

them if communicating with a server which supports Directory and UseUnchanged.

