
This file describes the new Lisp features of Emacs version 19 as first released to the
public. For Lisp changes in subsequent Emacs 19 releases, see the file NEWS.

0.1 New Features in the Lisp Language

• The new function delete is a traditional Lisp function. It takes two arguments, elt
and list, and deletes from list any elements that are equal to elt. It uses the function
equal to compare elements with elt.

• The new function member is a traditional Lisp function. It takes two arguments, elt
and list, and finds the first element of list that is equal to elt. It uses the function
equal to compare each list element with elt.

The value is a sublist of list, whose first element is the one that was found. If no
matching element is found, the value is nil.

• The new function indirect-function finds the effective function definition of an ob-
ject called as a function. If the object is a symbol, indirect-function looks in the
function definition of the symbol. It keeps doing this until it finds something that is
not a symbol.

• There are new escape sequences for use in character and string constants. The escape
sequence ‘\a’ is equivalent to ‘\C-g’, the ASCII BEL character (code 7). The escape
sequence ‘\x’ followed by a hexidecimal number represents the character whose ASCII
code is that number. There is no limit on the number of digits in the hexidecimal value.

• The function read when reading from a buffer now does not skip a terminator character
that terminates a symbol. It leaves that character to be read (or just skipped, if it is
whitespace) next time.

• When you use a function function as the input stream for read, it is usually called with
no arguments, and should return the next character. In Emacs 19, sometimes function
is called with one argument (always a character). When that happens, function should
save the argument and arrange to return it when called next time.

• random with integer argument n returns a random number between 0 and n−1.
• The functions documentation and documentation-property now take an additional

optional argument which, if non-nil, says to refrain from calling substitute-command-
keys. This way, you get the exact text of the documentation string as written, without
the usual substitutions. Make sure to call substitute-command-keys yourself if you
decide to display the string.

• The new function invocation-name returns as a string the program name that was
used to run Emacs, with any directory names discarded.

• The new function map-y-or-n-pmakes it convenient to ask a series of similar questions.
The arguments are prompter, actor, list, and optional help.

The value of list is a list of objects, or a function of no arguments to return either the
next object or nil meaning there are no more.

The argument prompter specifies how to ask each question. If prompter is a string,
the question text is computed like this:

(format prompter object)

where object is the next object to ask about.

If not a string, prompter should be a function of one argument (the next object to ask
about) and should return the question text.

The argument actor should be a function of one argument, which is called with each
object that the user says yes for. Its argument is always one object from list.

If help is given, it is a list (object objects action), where object is a string containing
a singular noun that describes the objects conceptually being acted on; objects is the
corresponding plural noun and action is a transitive verb describing actor. The default
is ("object" "objects" "act on").

Each time a question is asked, the user may enter y, Y, or SPC to act on that object;
n, N, or DEL to skip that object; ! to act on all following objects; ESC or q to exit (skip
all following objects); . (period) to act on the current object and then exit; or C-h to
get help.

map-y-or-n-p returns the number of objects acted on.

• You can now “set” environment variables with the setenv command. This works by
setting the variable process-environment, which getenv now examines in preference
to the environment Emacs received from its parent.

0.2 New Features for Loading Libraries

You can now arrange to run a hook if a particular Lisp library is loaded.

The variable after-load-alist is an alist of expressions to be evalled when particular
files are loaded. Each element looks like (filename forms...).

When load is run and the file name argument equals filename, the forms in the cor-
responding element are executed at the end of loading. filename must match exactly!
Normally filename is the name of a library, with no directory specified, since that is how
load is normally called.

An error in forms does not undo the load, but does prevent execution of the rest of the
forms.

The function eval-after-load provides a convenient way to add entries to the alist.
Call it with two arguments, file and a form to execute.

The function autoload now supports autoloading a keymap. Use keymap as the fourth
argument if the autoloaded function will become a keymap when loaded.

There is a new feature for specifying which functions in a library should be autoloaded
by writing special “magic” comments in that library itself.

Write ‘;;;###autoload’ on a line by itself before the real definition of the function, in
its autoloadable source file; then the command M-x update-file-autoloads automatically
puts the autoload call into loaddefs.el.

You can also put other kinds of forms into loaddefs.el, by writing ‘;;;###autoload’
followed on the same line by the form. M-x update-file-autoloads copies the form from
that line.

0.3 Compilation Features

• Inline functions.

You can define an inline function with defsubst. Use defsubst just like defun, and
it defines a function which you can call in all the usual ways. Whenever the function
thus defined is used in compiled code, the compiler will open code it.

You can get somewhat the same effects with a macro, but a macro has the limitation
that you can use it only explicitly; a macro cannot be called with apply, mapcar and so
on. Also, it takes some work to convert an ordinary function into a macro. To convert
it into an inline function, simply replace defun with defsubst.

Making a function inline makes explicit calls run faster. But it also has disadvantages.
For one thing, it reduces flexibility; if you change the definition of the function, calls
already inlined still use the old definition until you recompile them.

Another disadvantage is that making a large function inline can increase the size of
compiled code both in files and in memory. Since the advantages of inline functions
are greatest for small functions, you generally should not make large functions inline.

Inline functions can be used and open coded later on in the same file, following the
definition, just like macros.

• The command byte-compile-file now offers to save any buffer visiting the file you
are compiling.

• The new command compile-defun reads, compiles and executes the defun containing
point. If you use this on a defun that is actually a function definition, the effect is to
install a compiled version of that function.

• Whenever you load a Lisp file or library, you now receive a warning if the directory
contains both a ‘.el’ file and a ‘.elc’ file, and the ‘.el’ file is newer. This typically
indicates that someone has updated the Lisp code but forgotten to recompile it, so the
changes do not take effect. The warning is a reminder to recompile.

• The special form eval-when-compile marks the forms it contains to be evaluated
at compile time only. At top-level, this is analogous to the Common Lisp idiom
(eval-when (compile) ...). Elsewhere, it is similar to the Common Lisp ‘#.’ reader
macro (but not when interpreting).

If you’re thinking of using this feature, we recommend you consider whether provide
and require might do the job as well.

• The special form eval-and-compile is similar to eval-when-compile, but the whole
form is evaluated both at compile time and at run time.

If you’re thinking of using this feature, we recommend you consider whether provide
and require might do the job as well.

• Emacs Lisp has a new data type for byte-code functions. This makes them faster to
call, and also saves space. Internally, a byte-code function object is much like a vector;
however, the evaluator handles this data type specially when it appears as a function
to be called.

The printed representation for a byte-code function object is like that for a vector,
except that it starts with ‘#’ before the opening ‘[’. A byte-code function object must
have at least four elements; there is no maximum number, but only the first six elements
are actually used. They are:

arglist The list of argument symbols.

byte-code The string containing the byte-code instructions.

constants The vector of constants referenced by the byte code.

stacksize The maximum stack size this function needs.

docstring The documentation string (if any); otherwise, nil.

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It
is nil for a function that isn’t interactive.

The predicate byte-code-function-p tests whether a given object is a byte-code func-
tion.

You can create a byte-code function object in a Lisp program with the function
make-byte-code. Its arguments are the elements to put in the byte-code function
object.

You should not try to come up with the elements for a byte-code function yourself,
because if they are inconsistent, Emacs may crash when you call the function. Always
leave it to the byte compiler to create these objects; it, we hope, always makes the
elements consistent.

0.4 Floating Point Numbers

You can now use floating point numbers in Emacs, if you define the macro LISP_FLOAT_TYPE
when you compile Emacs.

The printed representation for floating point numbers requires either a decimal point
surrounded by digits, or an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’ and
‘1.5e3’ are four ways of writing a floating point number whose value is 1500.

The existing predicate numberp now returns t if the argument is any kind of number—
either integer or floating. The new predicates integerp and floatp check for specific types
of numbers.

You can do arithmetic on floating point numbers with the ordinary arithmetic functions,
+, -, * and /. If you call one of these functions with both integers and floating point numbers
among the arguments, the arithmetic is done in floating point. The same applies to the
numeric comparison functions such as = and <. The remainder function % does not accept
floating point arguments, and neither do the bitwise boolean operations such as logand or
the shift functions such as ash.

There is a new arithmetic function, abs, which returns the absolute value of its argument.
It handles both integers and floating point numbers.

To convert an integer to floating point, use the function float. There are four functions
to convert floating point numbers to integers; they differ in how they round. truncate

rounds toward 0, floor rounds down, ceil rounds up, and round produces the nearest
integer.

You can use logb to extract the binary exponent of a floating point number. More
precisely, it is the logarithm base 2, rounded down to an integer.

Emacs has several new mathematical functions that accept any kind of number as argu-
ment, but always return floating point numbers.

cos

sin

tan Trigonometric functions.

acos

asin

atan Inverse trigonometric functions.

exp The exponential function (power of e).

log Logarithm base e.

log10 Logarithm base 10

expt Raise x to power y.

sqrt The square root function.

The new function string-to-number now parses a string containing either an integer
or a floating point number, returning the number.

The format function now handles the specifications ‘%e’, ‘%f’ and ‘%g’ for printing floating
point numbers; likewise message.

The new variable float-output-format controls how Lisp prints floating point numbers.
Its value should be nil or a string.

If it is a string, it should contain a ‘%’-spec like those accepted by printf in C, but with
some restrictions. It must start with the two characters ‘%.’. After that comes an integer
which is the precision specification, and then a letter which controls the format.

The letters allowed are ‘e’, ‘f’ and ‘g’. Use ‘e’ for exponential notation
(‘dig.digitseexpt’). Use ‘f’ for decimal point notation (‘digits.digits’). Use ‘g’ to
choose the shorter of those two formats for the number at hand.

The precision in any of these cases is the number of digits following the decimal point.
With ‘e’, a precision of 0 means to omit the decimal point. 0 is not allowed with ‘f’ or ‘g’.

A value of nil means to use the format ‘%.20g’.

No matter what the value of float-output-format, printing ensures that the result fits
the syntax rules for a floating point number. If it doesn’t fit (for example, if it looks like
an integer), it is modified to fit. By contrast, the format function formats floating point
numbers without requiring the output to fit the syntax rules for floating point number.

0.5 New Features for Printing And Formatting Output

• The format function has a new feature: ‘%S’. This print spec prints any kind of Lisp
object, even a string, using its Lisp printed representation.

By contrast, ‘%s’ prints everything without quotation.

• prin1-to-string now takes an optional second argument which says not to print the
Lisp quotation characters. (In other words, to use princ instead of prin1.)

• The new variable print-level specifies the maximum depth of list nesting to print
before cutting off all deeper structure. A value of nil means no limit.

0.6 Changes in Basic Editing Functions

• There are two new primitives for putting text in the kill ring: kill-new and
kill-append.

The function kill-new adds a string to the front of the kill ring.

Use kill-append to add a string to a previous kill. The second argument before-p, if
non-nil, says to add the string at the beginning; otherwise, it goes at the end.

Both of these functions apply interprogram-cut-function to the entire string of
killed text that ends up at the beginning of the kill ring.

• The new function current-kill rotates the yanking pointer in the kill ring by n places,
and returns the text at that place in the ring. If the optional second argument do-not-
move is non-nil, it doesn’t actually move the yanking point; it just returns the nth
kill forward. If n is zero, indicating a request for the latest kill, current-kill calls
interprogram-paste-function (documented below) before consulting the kill ring.

All Emacs Lisp programs should either use current-kill, kill-new, and kill-append

to manipulate the kill ring, or be sure to call interprogram-paste-function and
interprogram-cut-function as appropriate.

• The variables interprogram-paste-function and interprogram-cut-function exist
so that you can provide functions to transfer killed text to and from other programs.

• The kill-region function can now be used in read-only buffers. It beeps, but adds
the region to the kill ring without deleting it.

• The new function compare-buffer-substrings lets you compare two substrings of
the same buffer or two different buffers. Its arguments look like this:

(compare-buffer-substrings buf1 beg1 end1 buf2 beg2 end2)

The first three arguments specify one substring, giving a buffer and two positions within
the buffer. The last three arguments specify the other substring in the same way.

The value is negative if the first substring is less, positive if the first is greater, and
zero if they are equal. The absolute value of the result is one plus the index of the first
different characters.

• Overwrite mode treats tab and newline characters specially. You can now turn off this
special treatment by setting overwrite-binary-mode to t.

• Once the mark “exists” in a buffer, it normally never ceases to exist. However, in
Transient Mark mode, it may become inactive. The variable mark-active, which is
always local in all buffers, indicates whether the mark is active: non-nil means yes.

When the mark is inactive, the function mark normally gets an error. However, (mark
t) returns the position of the inactive mark.

The function push-mark normally does not activate the mark. However, it accepts an
optional third argument activate which, if non-nil, says to activate.

A command can request deactivation of the mark upon return to the editor command
loop by setting deactivate-mark to a non-nil value. Transient Mark mode works by
causing the command loop to take note of deactivate-mark and actually deactivate
the mark.

Transient Mark mode enables highlighting of the region when the mark is active. This is
currently implemented only under the X Window System. A few other commands vary

their behavior slightly in this case, by testing transient-mark-mode. More specifically,
they avoid special display actions such as moving the cursor temporarily, which are not
needed when the region is shown by highlighting.

The variables activate-mark-hook and deactivate-mark-hook are normal hooks run,
respectively, when the mark becomes active and when it becomes inactive. The hook
activate-mark-hook is also run at the end of a command if the mark is active and
the region may have changed.

• The function move-to-column now accepts a second optional argument force, in addi-
tion to column; if the requested column column is in the middle of a tab character and
force is non-nil, move-to-column replaces the tab with the appropriate sequence of
spaces so that it can place point exactly at column.

• The search functions when successful now return the value of point rather than just t.
This affects the functions search-forward, search-backward, word-search-forward,
word-search-backward, re-search-forward, and re-search-backward.

• When you do regular expression searching or matching, there is no longer a limit to
how many ‘\(...\)’ pairs you can get information about with match-beginning and
match-end. Also, these parenthetical groupings may now be nested to any degree.

• In a regular expression, when you use an asterisk after a parenthetical grouping, and
then ask about what range was matched by the grouping, Emacs 19 reports just its
last occurrence. Emacs 18 used to report the range of all the repetitions put together.

For example,

(progn

(string-match "f\\(o\\)*" "foo")

(list (match-beginning 1)

(match-end 1)))

returns (2 3) in Emacs 19, corresponding to just the last repetition of ‘\(o\)’. In
Emacs 18, that expression returns (1 3), encompassing both repetitions.

If you want the Emacs 18 behavior, use a grouping containing the asterisk:
"f\\(o*\\)".

• The new special form save-match-data preserves the regular expression match status.
Usage: (save-match-data body...).

• The function translate-region applies a translation table to the characters in a part
of the buffer. Invoke it as (translate-region start end table); start and end bound
the region to translate.

The translation table table is a string; (aref table ochar) gives the translated char-
acter corresponding to ochar. If the length of table is less than 256, any characters
with codes larger than the length of table are not altered by the translation.

translate-region returns the number of characters which were actually changed by
the translation. This does not count characters which were mapped into themselves in
the translation table.

• There are two new hook variables that let you notice all changes in all buffers (or
in a particular buffer, if you make them buffer-local): before-change-function and
after-change-function.

If before-change-function is non-nil, then it is called before any buffer modifica-
tion. Its arguments are the beginning and end of the region that is going to change,
represented as integers. The buffer that’s about to change is always the current buffer.

If after-change-function is non-nil, then it is called after any buffer modification.
It takes three arguments: the beginning and end of the region just changed, and the
length of the text that existed before the change. (To get the current length, subtract
the region beginning from the region end.) All three arguments are integers. The buffer
that has just changed is always the current buffer.

Both of these variables are temporarily bound to nil during the time that either of
these hooks is running. This means that if one of these functions changes the buffer,
that change won’t run these functions. If you do want hooks to be run recursively,
write your hook functions to bind these variables back to their usual values.

• The hook first-change-hook is run using run-hooks whenever a buffer is changed
that was previously in the unmodified state.

• The second argument to insert-abbrev-table-description is now optional.

0.7 Text Properties

Each character in a buffer or a string can have a text property list, much like the property
list of a symbol. The properties belong to a particular character at a particular place,
such as, the letter ‘T’ at the beginning of this sentence. Each property has a name, which
is usually a symbol, and an associated value, which can be any Lisp object—just as for
properties of symbols.

You can use the property face to control the font and color of text. Several other
property names have special meanings. You can create properties of any name and examine
them later for your own purposes.

Copying text between strings and buffers preserves the properties along with the char-
acters; this includes such diverse functions as substring, insert, and buffer-substring.

Since text properties are considered part of the buffer contents, changing properties in
a buffer “modifies” the buffer, and you can also undo such changes.

Strings with text properties have a special printed representation which describes all the
properties. This representation is also the read syntax for such a string. It looks like this:

#("characters" property-data...)

where property-data is zero or more elements in groups of three as follows:

beg end plist

The elements beg and end are integers, and together specify a portion of the string; plist
is the property list for that portion.

0.7.1 Examining Text Properties

The simplest way to examine text properties is to ask for the value of a particular property
of a particular character. For that, use get-text-property. Use text-properties-at to
get the entire property list of a character.

(get-text-property pos prop object) returns the prop property of the character after
pos in object (a buffer or string). The argument object is optional and defaults to the current
buffer.

(text-properties-at pos object) returns the entire property list of the character af-
ter pos in the string or buffer object (which defaults to the current buffer).

0.7.2 Changing Text Properties

There are four primitives for changing properties of a specified range of text:

add-text-properties

This function puts on specified properties, leaving other existing properties
unaltered.

put-text-property

This function puts on a single specified property, leaving others unaltered.

remove-text-properties

This function removes specified properties, leaving other properties unaltered.

set-text-properties

This function replaces the entire property list, leaving no vestige of the prop-
erties that that text used to have.

All these functions take four arguments: start, end, props, and object. The last argument
is optional and defaults to the current buffer. The argument props has the form of a property
list.

0.7.3 Property Search Functions

In typical use of text properties, most of the time several or many consecutive characters
have the same value for a property. Rather than writing your programs to examine char-
acters one by one, it is much faster to process chunks of text that have the same property
value.

The functions next-property-change and previous-property-change scan forward
or backward from position pos in object, looking for a change in any property between two
characters scanned. They returns the position between those two characters, or nil if no
change is found.

The functions next-single-property-change and previous-single-property-

change are similar except that you specify a particular property and they look for changes
in the value of that property only. The property is the second argument, and object is
third.

0.7.4 Special Properties

If a character has a category property, we call it the category of the character. It should be
a symbol. The properties of the symbol serve as defaults for the properties of the character.

You can use the property face to control the font and color of text.

You can specify a different keymap for a portion of the text by means of a local-map

property. The property’s value, for the character after point, replaces the buffer’s local
map.

If a character has the property read-only, then modifying that character is not allowed.
Any command that would do so gets an error.

If a character has the property modification-hooks, then its value should be a list of
functions; modifying that character calls all of those functions. Each function receives two
arguments: the beginning and end of the part of the buffer being modified. Note that if
a particular modification hook function appears on several characters being modified by a
single primitive, you can’t predict how many times the function will be called.

Insertion of text does not, strictly speaking, change any existing character, so there is
a special rule for insertion. It compares the read-only properties of the two surrounding
characters; if they are eq, then the insertion is not allowed. Assuming insertion is allowed, it
then gets the modification-hooks properties of those characters and calls all the functions
in each of them. (If a function appears on both characters, it may be called once or twice.)

The special properties point-entered and point-left record hook functions that re-
port motion of point. Each time point moves, Emacs compares these two property values:

• the point-left property of the character after the old location, and

• the point-entered property of the character after the new location.

If these two values differ, each of them is called (if not nil) with two arguments: the old
value of point, and the new one.

The same comparison is made for the characters before the old and new locations. The
result may be to execute two point-left functions (which may be the same function)
and/or two point-entered functions (which may be the same function). The point-left
functions are always called before the point-entered functions.

A primitive function may examine characters at various positions without moving point
to those positions. Only an actual change in the value of point runs these hook functions.

0.8 New Features for Files

• The new function file-accessible-directory-p tells you whether you can open files
in a particular directory. Specify as an argument either a directory name or a file name
which names a directory file. The function returns t if you can open existing files in
that directory.

• The new function file-executable-p returns t if its argument is the name of a file
you have permission to execute.

• The function file-truename returns the “true name” of a specified file. This is the
name that you get by following symbolic links until none remain. The argument must
be an absolute file name.

• New functions make-directory and delete-directory create and delete directories.
They both take one argument, which is the name of the directory as a file.

• The function read-file-name now takes an additional argument which specifies an
initial file name. If you specify this argument, read-file-name inserts it along with
the directory name. It puts the cursor between the directory and the initial file name.

The user can then use the initial file name unchanged, modify it, or simply kill it with
C-k.

If the variable insert-default-directory is nil, then the default directory is not
inserted, and the new argument is ignored.

• The function file-relative-name does the inverse of expansion—it tries to return a
relative name which is equivalent to filename when interpreted relative to directory. (If
such a relative name would be longer than the absolute name, it returns the absolute
name instead.)

• The function file-newest-backup returns the name of the most recent backup file for
filename, or nil that file has no backup files.

• The list returned by file-attributes now has 12 elements. The 12th element is the
file system number of the file system that the file is in. This element together with the
file’s inode number, which is the 11th element, give enough information to distinguish
any two files on the system—no two files can have the same values for both of these
numbers.

• The new function set-visited-file-modtime updates the current buffer’s recorded
modification time from the visited file’s time.

This is useful if the buffer was not read from the file normally, or if the file itself has
been changed for some known benign reason.

If you give the function an argument, that argument specifies the new value for the
recorded modification time. The argument should be a list of the form (high . low)

or (high low) containing two integers, each of which holds 16 bits of the time. (This
is the same format that file-attributes uses to return time values.)

The new function visited-file-modtime returns the recorded last modification time,
in that same format.

• The function directory-files now takes an optional fourth argument which, if non-
nil, inhibits sorting the file names. Use this if you want the utmost possible speed and
don’t care what order the files are processed in.

If the order of processing is at all visible to the user, then the user will probably be
happier if you do sort the names.

• The variable directory-abbrev-alist contains an alist of abbreviations to use for file
directories. Each element has the form (from . to), and says to replace from with to
when it appears in a directory name. This replacement is done when setting up the
default directory of a newly visited file. The from string is actually a regular expression;
it should always start with ‘^’.

You can set this variable in site-init.el to describe the abbreviations appropriate
for your site.

• The function abbreviate-file-name applies abbreviations from directory-abbrev-

alist to its argument, and substitutes ‘~’ for the user’s home directory.

Abbreviated directory names are useful for directories that are normally accessed
through symbolic links. If you think of the link’s name as “the name” of the directory,
you can define it as an abbreviation for the directory’s official name; then ordinarily
Emacs will call that directory by the link name you normally use.

• write-region can write a given string instead of text from the buffer. Use the string
as the first argument (in place of the starting character position).

You can supply a second file name as the fifth argument (visit). Use this to write the
data to one file (the first argument, filename) while nominally visiting a different file

(the fifth argument, visit). The argument visit is used in the echo area message and
also for file locking; visit is stored in buffer-file-name.

• The value of write-file-hooks does not change when you switch to a new major
mode. The intention is that these hooks have to do with where the file came from, and
not with what it contains.

• There is a new hook variable for saving files: write-contents-hooks. It works just
like write-file-hooks except that switching to a new major mode clears it back to
nil. Major modes should use this hook variable rather than write-file-hooks.

• The hook after-save-buffer-hook runs just after a buffer has been saved in its visited
file.

• The new function set-default-file-modes sets the file protection for new files created
with Emacs. The argument must be an integer. (It would be better to permit symbolic
arguments like the chmod program, but that would take more work than this function
merits.)

Use the new function default-file-modes to read the current default file mode.

• Call the new function unix-sync to force all pending disk output to happen as soon
as possible.

0.9 Making Certain File Names “Magic”

You can implement special handling for a class of file names. You must supply a regular
expression to define the class of names (all those which match the regular expression), plus
a handler that implements all the primitive Emacs file operations for file names that do
match.

The value of file-name-handler-alist is a list of handlers, together with regular
expressions that decide when to apply each handler. Each element has the form (regexp

. handler). If a file name matches regexp, then all work on that file is done by calling
handler.

All the Emacs primitives for file access and file name transformation check the given file
name against file-name-handler-alist, and call handler to do the work if appropriate.
The first argument given to handler is the name of the primitive; the remaining arguments
are the arguments that were passed to that primitive. (The first of these arguments is
typically the file name itself.) For example, if you do this:

(file-exists-p filename)

and filename has handler handler, then handler is called like this:

(funcall handler ’file-exists-p filename)

Here are the primitives that you can handle in this way:

add-name-to-file, copy-file, delete-directory, delete-file,
directory-file-name, directory-files, dired-compress-file,
dired-uncache, expand-file-name, file-accessible-directory-p,
file-attributes, file-directory-p, file-executable-p, file-exists-p,
file-local-copy, file-modes, file-name-all-completions, file-name-

as-directory, file-name-completion, file-name-directory, file-name-
nondirectory, file-name-sans-versions, file-newer-than-file-p,

file-readable-p, file-symlink-p, file-writable-p, insert-directory,
insert-file-contents, load, make-directory, make-symbolic-

link, rename-file, set-file-modes, set-visited-file-modtime,
unhandled-file-name-directory, verify-visited-file-modtime,
write-region.

The handler function must handle all of the above operations, and possibly others to be
added in the future. Therefore, it should always reinvoke the ordinary Lisp primitive when
it receives an operation it does not recognize. Here’s one way to do this:

(defun my-file-handler (operation &rest args)

;; First check for the specific operations
;; that we have special handling for.
(cond ((eq operation ’insert-file-contents) ...)

((eq operation ’write-region) ...)

...

;; Handle any operation we don’t know about.
(t (let (file-name-handler-alist)

(apply operation args)))))

The function file-local-copy copies file filename to the local site, if it isn’t there
already. If filename specifies a “magic” file name which programs outside Emacs cannot
directly read or write, this copies the contents to an ordinary file and returns that file’s
name.

If filename is an ordinary file name, not magic, then this function does nothing and
returns nil.

The function unhandled-file-name-directory is used to get a non-magic directory
name from an arbitrary file name. It uses the directory part of the specified file name if
that is not magic. Otherwise, it asks the file name’s handler what to do.

0.10 Frames

Emacs now supports multiple X windows via a new data type known as a frame.

A frame is a rectangle on the screen that contains one or more Emacs windows. Subdi-
viding a frame works just like subdividing the screen in earlier versions of Emacs.

There are two kinds of frames: terminal frames and X window frames. Emacs creates
one terminal frame when it starts up with no X display; it uses Termcap or Terminfo to
display using characters. There is no way to create another terminal frame after startup.
If Emacs has an X display, it does not make a terminal frame, and there is none.

When you are using X windows, Emacs starts out with a single X window frame. You
can create any number of X window frames using make-frame.

Use the predicate framep to determine whether a given Lisp object is a frame.

The function redraw-frame redisplays the entire contents of a given frame.

0.10.1 Creating and Deleting Frames

Use make-frame to create a new frame. This is the only primitive for creating frames. In
principle it could work under any window system which Emacs understands; the only one
we support is X.

make-frame takes just one argument, which is an alist specifying frame parameters.
Any parameters not mentioned in the argument alist default based on the value of

default-frame-alist; parameters not specified there default from the standard X
defaults file and X resources.

When you invoke Emacs, if you specify arguments for window appearance and so forth,
these go into default-frame-alist and that is how they have their effect.

You can specify the parameters for the initial startup X window frame by setting
initial-frame-alist in your .emacs file. If these parameters specify a separate
minibuffer-only frame, and you have not created one, Emacs creates one for you, using the
parameter values specified in minibuffer-frame-alist.

You can specify the size and position of a frame using the frame parameters left, top,
height and width. You must specify either both size parameters or neither. You must
specify either both position parameters or neither. The geometry parameters that you
don’t specify are chosen by the window manager in its usual fashion.

The function x-parse-geometry converts a standard X-style geometry string to an alist
which you can use as part of the argument to make-frame.

Use the function delete-frame to eliminate a frame. Frames are like buffers where
deletion is concerned; a frame actually continues to exist as a Lisp object until it is deleted
and there are no references to it, but once it is deleted, it has no further effect on the screen.

The function frame-live-p returns non-nil if the argument (a frame) has not been
deleted.

0.10.2 Finding All Frames

The function frame-list returns a list of all the frames that have not been deleted. It
is analogous to buffer-list. The list that you get is newly created, so modifying the
list doesn’t have any effect on the internals of Emacs. The function visible-frame-list

returns the list of just the frames that are visible.

next-frame lets you cycle conveniently through all the frames from an arbitrary starting
point. Its first argument is a frame. Its second argument minibuf says what to do about
minibuffers:

nil Exclude minibuffer-only frames.

a window Consider only the frames using that particular window as their minibuffer.

anything else
Consider all frames.

0.10.3 Frames and Windows

All the non-minibuffer windows in a frame are arranged in a tree of subdivisions; the root
of this tree is available via the function frame-root-window. Each window is part of one
and only one frame; you can get the frame with window-frame.

At any time, exactly one window on any frame is selected within the frame. You can get
the frame’s current selected window with frame-selected-window. The significance of this
designation is that selecting the frame selects for Emacs as a whole the window currently
selected within that frame.

Conversely, selecting a window for Emacs with select-window also makes that window
selected within its frame.

0.10.4 Frame Visibility

A frame may be visible, invisible, or iconified. If it is invisible, it doesn’t show in the screen,
not even as an icon. You can set the visibility status of a frame with make-frame-visible,
make-frame-invisible, and iconify-frame. You can examine the visibility status with
frame-visible-p—it returns t for a visible frame, nil for an invisible frame, and icon for
an iconified frame.

0.10.5 Selected Frame

At any time, one frame in Emacs is the selected frame. The selected window always resides
on the selected frame.

[Function]selected-frame
This function returns the selected frame.

The X server normally directs keyboard input to the X window that the mouse is in.
Some window managers use mouse clicks or keyboard events to shift the focus to various X
windows, overriding the normal behavior of the server.

Lisp programs can switch frames “temporarily” by calling the function select-frame.
This does not override the window manager; rather, it escapes from the window manager’s
control until that control is somehow reasserted. The function takes one argument, a frame,
and selects that frame. The selection lasts until the next time the user does something to
select a different frame, or until the next time this function is called.

Emacs cooperates with the X server and the window managers by arranging to select
frames according to what the server and window manager ask for. It does so by generating
a special kind of input event, called a focus event. The command loop handles a focus event
by calling internal-select-frame.

0.10.6 Frame Size and Position

The new functions frame-height and frame-width return the height and width of a spec-
ified frame (or of the selected frame), measured in characters.

The new functions frame-pixel-height and frame-pixel-width return the height and
width of a specified frame (or of the selected frame), measured in pixels.

The new functions frame-char-height and frame-char-width return the height and
width of a character in a specified frame (or in the selected frame), measured in pixels.

set-frame-size sets the size of a frame, measured in characters; its arguments
are frame, cols and rows. To set the size with values measured in pixels, you can use
modify-frame-parameters.

The function set-frame-position sets the position of the top left corner of a frame.
Its arguments are frame, left and top.

0.10.7 Frame Parameters

A frame has many parameters that affect how it displays. Use the function
frame-parameters to get an alist of all the parameters of a given frame. To alter
parameters, use modify-frame-parameters, which takes two arguments: the frame to
modify, and an alist of parameters to change and their new values. Each element of alist

has the form (parm . value), where parm is a symbol. Parameters that aren’t meaningful
are ignored. If you don’t mention a parameter in alist, its value doesn’t change.

Just what parameters a frame has depends on what display mechanism it uses. Here is
a table of the parameters of an X window frame:

name The name of the frame.

left The screen position of the left edge.

top The screen position of the top edge.

height The height of the frame contents, in pixels.

width The width of the frame contents, in pixels.

window-id

The number of the X window for the frame.

minibuffer

Whether this frame has its own minibuffer. t means yes, none means no, only
means this frame is just a minibuffer, a minibuffer window (in some other frame)
means the new frame uses that minibuffer.

font The name of the font for the text.

foreground-color

The color to use for the inside of a character. Use strings to designate colors;
the X server defines the meaningful color names.

background-color

The color to use for the background of text.

mouse-color

The color for the mouse cursor.

cursor-color

The color for the cursor that shows point.

border-color

The color for the border of the frame.

cursor-type

The way to display the cursor. There are two legitimate values: bar and box.
The value bar specifies a vertical bar between characters as the cursor. The
value box specifies an ordinary black box overlaying the character after point;
that is the default.

icon-type

Non-nil for a bitmap icon, nil for a text icon.

border-width

The width in pixels of the window border.

internal-border-width

The distance in pixels between text and border.

auto-raise

Non-nil means selecting the frame raises it.

auto-lower

Non-nil means deselecting the frame lowers it.

vertical-scroll-bars

Non-nil gives the frame a scroll bar for vertical scrolling.

0.10.8 Minibufferless Frames

Normally, each frame has its own minibuffer window at the bottom, which is used whenever
that frame is selected. However, you can also create frames with no minibuffers. These
frames must use the minibuffer window of some other frame.

The variable default-minibuffer-frame specifies where to find a minibuffer for frames
created without minibuffers of their own. Its value should be a frame which does have a
minibuffer.

You can also specify a minibuffer window explicitly when you create a frame; then
default-minibuffer-frame is not used.

0.11 X Window System Features

• The new functions mouse-position and set-mouse-position give access to the cur-
rent position of the mouse.

mouse-position returns a description of the position of the mouse. The value looks
like (frame x . y), where x and y are measured in pixels relative to the top left corner
of the inside of frame.

set-mouse-position takes three arguments, frame, x and y, and warps the mouse
cursor to that location on the screen.

• track-mouse is a new special form for tracking mouse motion. Use it in definitions of
mouse clicks that want pay to attention to the motion of the mouse, not just where
the buttons are pressed and released. Here is how to use it:

(track-mouse body...)

While body executes, mouse motion generates input events just as mouse clicks do.
body can read them with read-event or read-key-sequence.

track-mouse returns the value of the last form in body.

The format of these events is described under “New Input Event Formats.”

• x-set-selection sets a “selection” in the X server. It takes two arguments: a selection
type type, and the value to assign to it, data. If data is nil, it means to clear out
the selection. Otherwise, data may be a string, a symbol, an integer (or a cons of two
integers or list of two integers), or a cons of two markers pointing to the same buffer.
In the last case, the selection is considered to be the text between the markers. The
data may also be a vector of valid non-vector selection values.

Each possible type has its own selection value, which changes independently. The usual
values of type are PRIMARY and SECONDARY; these are symbols with upper-case names,
in accord with X protocol conventions. The default is PRIMARY.

To get the value of the selection, call x-get-selection. This function accesses se-
lections set up by Emacs and those set up by other X clients. It takes two optional
arguments, type and data-type. The default for type is PRIMARY.

The data-type argument specifies the form of data conversion to use; meaningful values
include TEXT, STRING, TARGETS, LENGTH, DELETE, FILE_NAME, CHARACTER_POSITION,
LINE_NUMBER, COLUMN_NUMBER, OWNER_OS, HOST_NAME, USER, CLASS, NAME, ATOM, and
INTEGER. (These are symbols with upper-case names in accord with X Windows con-
ventions.) The default for data-type is STRING.

• The X server has a set of numbered cut buffers which can store text or other data
being moved between applications. Use x-get-cut-buffer to get the contents of a
cut buffer; specify the cut buffer number as argument. Use x-set-cut-buffer with
argument string to store a new string into the first cut buffer (moving the other values
down through the series of cut buffers, kill-ring-style).

Cut buffers are considered obsolete, but Emacs supports them for the sake of X clients
that still use them.

• You can close the connection with the X server with the function x-close-current-

connection. This takes no arguments.

Then you can connect to a different X server with x-open-connection. The first
argument, display, is the name of the display to connect to.

The optional second argument xrm-string is a string of resource names and values, in
the same format used in the .Xresources file. The values you specify override the
resource values recorded in the X server itself. Here’s an example of what this string
might look like:

"*BorderWidth: 3\n*InternalBorder: 2\n"

• A series of new functions give you information about the X server and the screen you
are using.

x-display-screens

The number of screens associated with the current display.

x-server-version

The version numbers of the X server in use.

x-server-vendor

The vendor supporting the X server in use.

x-display-pixel-height

The height of this X screen in pixels.

x-display-mm-height

The height of this X screen in millimeters.

x-display-pixel-width

The width of this X screen in pixels.

x-display-mm-width

The width of this X screen in millimeters.

x-display-backing-store

The backing store capability of this screen. Values can be the symbols
always, when-mapped, or not-useful.

x-display-save-under

Non-nil if this X screen supports the SaveUnder feature.

x-display-planes

The number of planes this display supports.

x-display-visual-class

The visual class for this X screen. The value is one of the symbols
static-gray, gray-scale, static-color, pseudo-color, true-color,
and direct-color.

x-display-color-p

t if the X screen in use is a color screen.

x-display-color-cells

The number of color cells this X screen supports.

There is also a variable x-no-window-manager, whose value is t if no X window man-
ager is in use.

• The function x-synchronize enables or disables an X Windows debugging mode: syn-
chronous communication. It takes one argument, non-nil to enable the mode and nil

to disable.

In synchronous mode, Emacs waits for a response to each X protocol command before
doing anything else. This means that errors are reported right away, and you can
directly find the erroneous command. Synchronous mode is not the default because it
is much slower.

• The function x-get-resource retrieves a resource value from the X Windows defaults
database. Its three arguments are attribute, name and class. It searches using a key of
the form ‘instance.attribute’, with class ‘Emacs’, where instance is the name under
which Emacs was invoked.

The optional arguments component and subclass add to the key and the class, re-
spectively. You must specify both of them or neither. If you specify them, the key is
‘instance.component.attribute’, and the class is ‘Emacs.subclass’.

• x-display-color-p returns t if you are using an X server with a color display, and
nil otherwise.

x-color-defined-p takes as argument a string describing a color; it returns t if the
display supports that color. (If the color is "black" or "white" then even black-and-
white displays support it.)

• x-popup-menu has been generalized. It now accepts a keymap as the menu argument.
Then the menu items are the prompt strings of individual key bindings, and the item
values are the keys which have those bindings.

You can also supply a list of keymaps as the first argument; then each keymap makes
one menu pane (but keymaps that don’t provide any menu items don’t appear in the
menu at all).

x-popup-menu also accepts a mouse button event as the position argument. Then it
displays the menu at the location at which the event took place. This is convenient for
mouse-invoked commands that pop up menus.

• You can use the function x-rebind-key to change the sequence of characters generated
by the X server for one of the keyboard keys.

The first two arguments, keycode and shift-mask, should be numbers representing the
keyboard code and shift mask respectively. They specify what key to change.

The third argument, newstring, is the new definition of the key. It is a sequence of
characters that the key should produce as input.

The shift mask value is a combination of bits according to this table:

8 Control

4 Meta

2 Shift

1 Shift Lock

If you specify nil for shift-mask, then the key specified by keycode is redefined for all
possible shift combinations.

For the possible values of keycode and their meanings, see the file
/usr/lib/Xkeymap.txt. Keep in mind that the codes in that file are in
octal!

The related function x-rebind-keys redefines a single keyboard key, specifying the
behavior for each of the 16 shift masks independently. The first argument is keycode,
as in x-rebind-key. The second argument strings is a list of 16 elements, one for each
possible shift mask value; each element says how to redefine the key keycode with the
corresponding shift mask value. If an element is a string, it is the new definition. If an
element is nil, the definition does not change for that shift mask.

• The function x-parse-geometry parses a string specifying window size and position
in the usual X format. It returns an alist describing which parameters were specified,
and the values that were given for them.

The elements of the alist look like (parameter . value). The possible parameter
values are left, top, width, and height.

0.12 New Window Features

• The new function window-at tells you which window contains a given horizontal and
vertical position on a specified frame. Call it with three arguments, like this:

(window-at x column frame)

The function returns the window which contains that cursor position in the frame
frame. If you omit frame, the selected frame is used.

• The function coordinates-in-window-p takes two arguments and checks whether a
particular frame position falls within a particular window.

(coordinates-in-window-p coordinates window)

The argument coordinates is a cons cell of this form:

(x . y)

The two coordinates are measured in characters, and count from the top left corner of
the screen or frame.

The value of the function tells you what part of the window the position is in. The
possible values are:

(relx . rely)

The coordinates are inside window. The numbers relx and rely are equiv-
alent window-relative coordinates, counting from 0 at the top left corner
of the window.

mode-line

The coordinates are in the mode line of window.

vertical-split

The coordinates are in the vertical line between window and its neighbor
to the right.

nil The coordinates are not in any sense within window.

You need not specify a frame when you call coordinates-in-window-p, because it
assumes you mean the frame which window window is on.

• The function minibuffer-window now accepts a frame as argument and returns the
minibuffer window used for that frame. If you don’t specify a frame, the currently
selected frame is used. The minibuffer window may be on the frame in question, but if
that frame has no minibuffer of its own, it uses the minibuffer window of some other
frame, and minibuffer-window returns that window.

• Use window-live-p to test whether a window is still alive (that is, not deleted).

• Use window-minibuffer-p to determine whether a given window is a minibuffer or
not. It no longer works to do this by comparing the window with the result of
(minibuffer-window), because there can be more than one minibuffer window at
a time (if you have multiple frames).

• If you set the variable pop-up-frames non-nil, then the functions to show something
“in another window” actually create a new frame for the new window. Thus, you will
tend to have a frame for each window, and you can easily have a frame for each buffer.

The value of the variable pop-up-frame-function controls how new frames are made.
The value should be a function which takes no arguments and returns a frame. The
default value is a function which creates a frame using parameters from pop-up-frame-

alist.

• display-buffer is the basic primitive for finding a way to show a buffer on the screen.
You can customize its behavior by storing a function in the variable display-buffer-
function. If this variable is non-nil, then display-buffer calls it to do the work.
Your function should accept two arguments, as follows:

buffer The buffer to be displayed.

flag A flag which, if non-nil, means you should find another window to display
buffer in, even if it is already visible in the selected window.

The function you supply will be used by commands such as switch-to-buffer-other-
window and find-file-other-window as well as for your own calls to display-buffer.

• delete-window now gives all of the deleted window’s screen space to a single neighbor-
ing window. Likewise, enlarge-window takes space from only one neighboring window
until that window disappears; only then does it take from another window.

• next-window and previous-window accept another argument, all-frames.

These functions now take three optional arguments: window, minibuf and all-frames.
window is the window to start from (nil means use the selected window). minibuf
says whether to include the minibuffer in the windows to cycle through: t means yes,
nil means yes if it is active, and anything else means no.

Normally, these functions cycle through all the windows in the selected frame, plus the
minibuffer used by the selected frame even if it lies in some other frame.

If all-frames is t, then these functions cycle through all the windows in all the frames
that currently exist. If all-frames is neither t nor nil, then they limit themselves
strictly to the windows in the selected frame, excluding the minibuffer in use if it lies
in some other frame.

• The functions get-lru-window and get-largest-window now take an optional argu-
ment all-frames. If it is non-nil, the functions consider all windows on all frames.
Otherwise, they consider just the windows on the selected frame.

Likewise, get-buffer-window takes an optional second argument all-frames.

• The variable other-window-scroll-buffer specifies which buffer scroll-other-

window should scroll.

• You can now mark a window as “dedicated” to its buffer. Then Emacs will not try to
use that window for any other buffer unless you explicitly request it.

Use the new function set-window-dedicated-p to set the dedication flag of a window
window to the value flag. If flag is t, this makes the window dedicated. If flag is nil,
this makes the window non-dedicated.

Use window-dedicated-p to examine the dedication flag of a specified window.

• The new function walk-windows cycles through all visible windows, calling proc once
for each window with the window as its sole argument.

The optional second argument minibuf says whether to include minibuffer windows. A
value of t means count the minibuffer window even if not active. A value of nil means
count it only if active. Any other value means not to count the minibuffer even if it is
active.

If the optional third argument all-frames is t, that means include all windows in all
frames. If all-frames is nil, it means to cycle within the selected frame, but include
the minibuffer window (if minibuf says so) that that frame uses, even if it is on another
frame. If all-frames is neither nil nor t, walk-windows sticks strictly to the selected
frame.

• The function window-end is a counterpart to window-start: it returns the buffer
position of the end of the display in a given window (or the selected window).

• The function window-configuration-p returns non-nil when given an object that is
a window configuration (such as is returned by current-window-configuration).

0.13 Display Features

• baud-rate is now a variable rather than a function. This is so you can set it to reflect
the effective speed of your terminal, when the system doesn’t accurately know the
speed.

• You can now remove any echo area message and make the minibuffer visible. To do
this, call message with nil as the only argument. This clears any existing message, and
lets the current minibuffer contents show through. Previously, there was no reliable
way to make sure that the minibuffer contents were visible.

• The variable temp-buffer-show-hook has been renamed temp-buffer-show-

function, because its value is a single function (of one argument), not a normal
hook.

• The new function force-mode-line-update causes redisplay of the current buffer’s
mode line.

0.14 Display Tables

You can use the display table feature to control how all 256 possible character codes display
on the screen. This is useful for displaying European languages that have letters not in the
ASCII character set.

The display table maps each character code into a sequence of glyphs, each glyph being
an image that takes up one character position on the screen. You can also define how to
display each glyph on your terminal, using the glyph table.

0.14.1 Display Tables Proper

Use make-display-table to create a display table. The table initially has nil in all
elements.

A display table is actually an array of 261 elements. The first 256 elements of a display
table control how to display each possible text character. The value should be nil or a
vector (which is a sequence of glyphs; see below). nil as an element means to display that
character following the usual display conventions.

The remaining five elements of a display table serve special purposes (nil means use the
default stated below):

256 The glyph for the end of a truncated screen line (the default for this is ‘\’).

257 The glyph for the end of a continued line (the default is ‘$’).

258 The glyph for the indicating an octal character code (the default is ‘\’).

259 The glyph for indicating a control characters (the default is ‘^’).

260 The vector of glyphs for indicating the presence of invisible lines (the default is
‘...’).

Each buffer typically has its own display table. The display table for the current buffer
is stored in buffer-display-table. (This variable automatically becomes local if you set
it.) If this variable is nil, the value of standard-display-table is used in that buffer.

Each window can have its own display table, which overrides the display table of the
buffer it is showing.

If neither the selected window nor the current buffer has a display table, and if
standard-display-table is nil, then Emacs uses the usual display conventions:

• Character codes 32 through 127 map to glyph codes 32 through 127.

• Codes 0 through 31 map to sequences of two glyphs, where the first glyph is the ASCII
code for ‘^’.

• Character codes 128 through 255 map to sequences of four glyphs, where the first glyph
is the ASCII code for ‘\’, and the others represent digits.

The usual display conventions are also used for any character whose entry in the active
display table is nil. This means that when you set up a display table, you need not specify
explicitly what to do with each character, only the characters for which you want unusual
behavior.

0.14.2 Glyphs

A glyph stands for an image that takes up a single character position on the screen. A
glyph is represented in Lisp as an integer.

The meaning of each integer, as a glyph, is defined by the glyph table, which is the value
of the variable glyph-table. It should be a vector; the gth element defines glyph code g.
The possible definitions of a glyph code are:

integer Define this glyph code as an alias for code integer. This is used with X Windows
to specify a face code.

string Send the characters in string to the terminal to output this glyph. This alter-
native is available only for character terminals, not with X.

nil This glyph is simple. On an ordinary terminal, the glyph code mod 256 is the
character to output. With X, the glyph code mod 256 is character to output,
and the glyph code divided by 256 specifies the face code to use while outputting
it.

Any glyph code beyond the length of the glyph table is automatically simple.

If glyph-table is nil, then all possible glyph codes are simple.

A face is a named combination of a font and a pair of colors (foreground and background).
A glyph code can specify a face id number to use for displaying that glyph.

0.14.3 ISO Latin 1

If you have a terminal that can handle the entire ISO Latin 1 character set, you can arrange
to use that character set as follows:

(require ’disp-table)

(standard-display-8bit 0 255)

If you are editing buffers written in the ISO Latin 1 character set and your terminal
doesn’t handle anything but ASCII, you can load the file iso-ascii to set up a display
table which makes the other ISO characters display as sequences of ASCII characters. For
example, the character “o with umlaut” displays as ‘{"o}’.

Some European countries have terminals that don’t support ISO Latin 1 but do support
the special characters for that country’s language. You can define a display table to work
one language using such terminals. For an example, see lisp/iso-swed.el, which handles
certain Swedish terminals.

You can load the appropriate display table for your terminal automatically by writing a
terminal-specific Lisp file for the terminal type.

0.15 Overlays

You can use overlays to alter the appearance of a buffer’s text on the screen. An overlay
is an object which belongs to a particular buffer, and has a specified beginning and end.
It also has properties which you can examine and set; these affect the display of the text
within the overlay.

0.15.1 Overlay Properties

Overlay properties are like text properties in some respects, but the differences are more
important than the similarities. Text properties are considered a part of the text; overlays
are specifically considered not to be part of the text. Thus, copying text between various
buffers and strings preserves text properties, but does not try to preserve overlays. Changing
a buffer’s text properties marks the buffer as modified, while moving an overlay or changing
its properties does not.

face This property specifies a face for displaying the text within the overlay.

priority This property’s value (which should be a nonnegative number) determines the
priority of the overlay. The priority matters when two or more overlays cover
the same character and both specify a face for display; the one whose priority
value is larger takes priority over the other, and its face attributes override the
face attributes of the lower priority overlay.

Currently, all overlays take priority over text properties. Please avoid using
negative priority values, as we have not yet decided just what they should
mean.

window If the window property is non-nil, then the overlay applies only on that win-
dow.

0.15.2 Overlay Functions

Use the functions overlay-get and overlay-put to access and set the properties of an
overlay. They take arguments like get and put, except that the first argument is an overlay
rather than a symbol.

To create an overlay, call (make-overlay start end). You can specify the buffer as the
third argument if you wish. To delete one, use delete-overlay.

Use overlay-start, overlay-end and overlay-buffer to examine the location and
range of an overlay. Use move-overlay to change them; its arguments are overlay, start,
end and (optionally) the buffer.

There are two functions to search for overlays: overlays-at and next-overlay-

change. overlays-at returns a list of all the overlays containing a particular position.
(next-overlay-change pos) returns the position of the next overlay beginning or end
following pos.

0.16 Faces

A face is a named collection of graphical attributes: font, foreground color, background
color and optional underlining. Faces control the display of text on the screen.

Each face has its own face id number which distinguishes faces at low levels within Emacs.
However, for most purposes, you can refer to faces in Lisp programs by their names.

Each face name is meaningful for all frames, and by default it has the same meaning in
all frames. But you can arrange to give a particular face name a special meaning in one
frame if you wish.

0.16.1 Choosing a Face for Display

Here are all the ways to specify which face to use for display of text:

• With defaults. Each frame has a default face, whose id number is zero, which is used
for all text that doesn’t somehow specify another face.

• With text properties. A character may have a face property; if so, it’s displayed with
that face. If the character has a mouse-face property, that is used instead of the face
property when the mouse is “near enough” to the character.

• With overlays. An overlay may have face and mouse-face properties too; they apply
to all the text covered by the overlay.

• With special glyphs. Each glyph can specify a particular face id number.

If these various sources together specify more than one face for a particular character,
Emacs merges the attributes of the various faces specified. The attributes of the faces of
special glyphs come first; then come attributes of faces from overlays, followed by those
from text properties, and last the default face.

When multiple overlays cover one character, an overlay with higher priority overrides
those with lower priority.

If an attribute such as the font or a color is not specified in any of the above ways, the
frame’s own font or color is used.

See Section “Face Functions” in The Emacs Lisp Reference Manual, for functions to
create and change faces.

0.17 New Input Event Formats

Mouse clicks, mouse movements and function keys no longer appear in the input stream as
characters; instead, other kinds of Lisp objects represent them as input.

• An ordinary input character event consists of a basic code between 0 and 255, plus any
or all of these modifier bits:

meta The 2**23 bit in the character code indicates a character typed with the
meta key held down.

control The 2**22 bit in the character code indicates a non-ASCII control char-
acter.

ASCII control characters such as C-a have special basic codes of their own,
so Emacs needs no special bit to indicate them. Thus, the code for C-a is
just 1.

But if you type a control combination not in ASCII, such as % with the
control key, the numeric value you get is the code for % plus 2**22 (assuming
the terminal supports non-ASCII control characters).

shift The 2**21 bit in the character code indicates an ASCII control character
typed with the shift key held down.

For letters, the basic code indicates upper versus lower case; for digits
and punctuation, the shift key selects an entirely different character with
a different basic code. In order to keep within the ASCII character set
whenever possible, Emacs avoids using the 2**21 bit for those characters.

However, ASCII provides no way to distinguish C-A from C-a, so Emacs
uses the 2**21 bit in C-A and not in C-a.

hyper The 2**20 bit in the character code indicates a character typed with the
hyper key held down.

super The 2**19 bit in the character code indicates a character typed with the
super key held down.

alt The 2**18 bit in the character code indicates a character typed with the
alt key held down. (On some terminals, the key labeled ALT is actually the
meta key.)

In the future, Emacs may support a larger range of basic codes. We may also move the
modifier bits to larger bit numbers. Therefore, you should avoid mentioning specific
bit numbers in your program. Instead, the way to test the modifier bits of a character
is with the function event-modifiers (see below).

• Function keys are represented as symbols. The symbol’s name is the function key’s
label. For example, pressing a key labeled F1 places the symbol f1 in the input stream.

There are a few exceptions to the symbol naming convention:

kp-add, kp-decimal, kp-divide, . . .
Keypad keys (to the right of the regular keyboard).

kp-0, kp-1, . . .
Keypad keys with digits.

kp-f1, kp-f2, kp-f3, kp-f4
Keypad PF keys.

left, up, right, down
Cursor arrow keys

You can use the modifier keys CTRL, META, HYPER, SUPER, ALT and SHIFT with function
keys. The way to represent them is with prefixes in the symbol name:

‘A-’ The alt modifier.

‘C-’ The control modifier.

‘H-’ The hyper modifier.

‘M-’ The meta modifier.

‘s-’ The super modifier.

‘S-’ The shift modifier.

Thus, the symbol for the key F3 with META held down is M-F3. When you use more
than one prefix, we recommend you write them in alphabetical order (though the order
does not matter in arguments to the key-binding lookup and modification functions).

• Mouse events are represented as lists.

If you press a mouse button and release it at the same location, this generates a “click”
event. Mouse click events have this form:

(button-symbol

(window (column . row)

buffer-pos timestamp))

Here is what the elements normally mean:

button-symbol
indicates which mouse button was used. It is one of the symbols mouse-1,
mouse-2, . . . , where the buttons are normally numbered left to right.

You can also use prefixes ‘A-’, ‘C-’, ‘H-’, ‘M-’, ‘S-’ and ‘s-’ for modifiers
alt, control, hyper, meta, shift and super, just as you would with function
keys.

window is the window in which the click occurred.

column
row are the column and row of the click, relative to the top left corner of

window, which is (0 . 0).

buffer-pos is the buffer position of the character clicked on.

timestamp
is the time at which the event occurred, in milliseconds. (Since this value
wraps around the entire range of Emacs Lisp integers in about five hours,
it is useful only for relating the times of nearby events.)

The meanings of buffer-pos, row and column are somewhat different when the event
location is in a special part of the screen, such as the mode line or a scroll bar.

If the position is in the window’s scroll bar, then buffer-pos is the symbol
vertical-scroll-bar, and the pair (column . row) is replaced with a pair (portion
. whole), where portion is the distance of the click from the top or left end of the
scroll bar, and whole is the length of the entire scroll bar.

If the position is on a mode line or the vertical line separating window from its neighbor
to the right, then buffer-pos is the symbol mode-line or vertical-line. In this case
row and column do not have meaningful data.

• Releasing a mouse button above a different character position generates a “drag” event,
which looks like this:

(button-symbol

(window1 (column1 . row1)

buffer-pos1 timestamp1)

(window2 (column2 . row2)

buffer-pos2 timestamp2))

The name of button-symbol contains the prefix ‘drag-’. The second and third elements
of the event give the starting and ending position of the drag.

The ‘drag-’ prefix follows the modifier key prefixes such as ‘C-’ and ‘M-’.

If read-key-sequence receives a drag event which has no key binding, and the corre-
sponding click event does have a binding, it changes the drag event into a click event
at the drag’s starting position. This means that you don’t have to distinguish between
click and drag events unless you want to.

• Click and drag events happen when you release a mouse button. Another kind of event
happens when you press a button. It looks just like a click event, except that the name
of button-symbol contains the prefix ‘down-’. The ‘down-’ prefix follows the modifier
key prefixes such as ‘C-’ and ‘M-’.

The function read-key-sequence, and the Emacs command loop, ignore any down
events that don’t have command bindings. This means that you need not worry about
defining down events unless you want them to do something. The usual reason to define
a down event is so that you can track mouse motion until the button is released.

• For example, if the user presses and releases the left mouse button over the same
location, Emacs generates a sequence of events like this:

(down-mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864320))

(mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864180))

Or, while holding the control key down, the user might hold down the second mouse
button, and drag the mouse from one line to the next. That produces two events, as
shown here:

(C-down-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219))

(C-drag-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219)

(#<window 18 on NEWS> 3510 (0 . 28) -729648))

Or, while holding down the meta and shift keys, the user might press the second mouse
button on the window’s mode line, and then drag the mouse into another window.
That produces an event like this:

(M-S-down-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844))

(M-S-drag-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844)

(#<window 20 on carlton-sanskrit.tex> 161 (33 . 3)

-453816))

• A key sequence that starts with a mouse click is read using the keymaps of the buffer
in the window clicked on, not the current buffer.

This does not imply that clicking in a window selects that window or its buffer. The
execution of the command begins with no change in the selected window or current
buffer. However, the command can switch windows or buffers if programmed to do so.

• Mouse motion events are represented by lists. During the execution of the body of a
track-mouse form, moving the mouse generates events that look like this:

(mouse-movement (window (column . row)

buffer-pos timestamp))

The second element of the list describes the current position of the mouse, just as in a
mouse click event.

Outside of track-mouse forms, Emacs does not generate events for mere motion of the
mouse, and these events do not appear.

• Focus shifts between frames are represented by lists.

When the mouse shifts temporary input focus from one frame to another, Emacs gen-
erates an event like this:

(switch-frame new-frame)

where new-frame is the frame switched to.

In X windows, most window managers are set up so that just moving the mouse into a
window is enough to set the focus there. As far as the user is concerned, Emacs behaves
consistently with this. However, there is no need for the Lisp program to know about
the focus change until some other kind of input arrives. So Emacs generates the focus
event only when the user actually types a keyboard key or presses a mouse button in
the new frame; just moving the mouse between frames does not generate a focus event.

The global key map usually binds this event to the internal-select-frame function,
so that characters typed at a frame apply to that frame’s selected window.

If the user switches frames in the middle of a key sequence, then Emacs delays the
switch-frame event until the key sequence is over. For example, suppose C-c C-a

is a key sequence in the current buffer’s keymaps. If the user types C-c, moves the
mouse to another frame, and then types C-a, read-key-sequence returns the sequence
"\C-c\C-a", and the next call to read-event or read-key-sequence will return the
switch-frame event.

0.18 Working with Input Events

• Functions which work with key sequences now handle non-character events. Functions
like define-key, global-set-key, and local-set-key used to accept strings repre-
senting key sequences; now, since events may be arbitrary lisp objects, they also accept
vectors. The function read-key-sequence may return a string or a vector, depending
on whether or not the sequence read contains only characters.

List events may be represented by the symbols at their head; to bind clicks of the left
mouse button, you need only present the symbol mouse-1, not an entire mouse click
event. If you do put an event which is a list in a key sequence, only the event’s head
symbol is used in key lookups.

For example, to globally bind the left mouse button to the function mouse-set-point,
you could evaluate this:

(global-set-key [mouse-1] ’mouse-set-point)

To bind the sequence C-c F1 to the command tex-view in tex-mode-map, you could
evaluate this:

(define-key tex-mode-map [?\C-c f1] ’tex-view)

To find the binding for the function key labeled NEXT in minibuffer-local-map, you
could evaluate this:

(lookup-key minibuffer-local-map [next])

⇒ next-history-element

If you call the function read-key-sequence and then press C-x C-F5, here is how it
behaves:

(read-key-sequence "Press ‘C-x C-F5’: ")

⇒ [24 C-f5]

Note that ‘24’ is the character C-x.

• The documentation functions (single-key-description, key-description, etc.)
now handle the new event types. Wherever a string of keyboard input characters was
acceptable in previous versions of Emacs, a vector of events should now work.

• Special parts of a window can have their own bindings for mouse events.

When mouse events occur in special parts of a window, such as a mode line or a
scroll bar, the event itself shows nothing special—only the symbol that would normally
represent that mouse button and modifier keys. The information about the screen
region is kept in other parts of the event list. But read-key-sequence translates
this information into imaginary prefix keys, all of which are symbols: mode-line,
vertical-line, and vertical-scroll-bar.

For example, if you call read-key-sequence and then click the mouse on the window’s
mode line, this is what happens:

(read-key-sequence "Click on the mode line: ")
⇒ [mode-line (mouse-1 (#<window 6 on NEWS> mode-line

(40 . 63) 5959987))]

You can define meanings for mouse clicks in special window regions by defining key
sequences using these imaginary prefix keys. For example, here is how to bind the third
mouse button on a window’s mode line delete the window:

(global-set-key [mode-line mouse-3] ’mouse-delete-window)

Here’s how to bind the middle button (modified by META) on the vertical line at the
right of a window to scroll the window to the left.

(global-set-key [vertical-line M-mouse-2] ’scroll-left)

• Decomposing an event symbol.

Each symbol used to identify a function key or mouse button has a property named
event-symbol-elements, which is a list containing an unmodified version of the sym-
bol, followed by modifiers the symbol name contains. The modifiers are symbols; they
include shift, control, and meta. In addition, a mouse event symbol has one of
click, drag, and down. For example:

(get ’f5 ’event-symbol-elements)

⇒ (f5)

(get ’C-f5 ’event-symbol-elements)

⇒ (f5 control)

(get ’M-S-f5 ’event-symbol-elements)

⇒ (f5 meta shift)

(get ’mouse-1 ’event-symbol-elements)

⇒ (mouse-1 click)

(get ’down-mouse-1 ’event-symbol-elements)

⇒ (mouse-1 down)

Note that the event-symbol-elements property for a mouse click explicitly contains
click, but the event symbol name itself does not contain ‘click’.

• Use read-event to read input if you want to accept any kind of event. The old function
read-char now discards events other than keyboard characters.

• last-command-char and last-input-char can now hold any kind of event.

• The new variable unread-command-events is much like unread-command-char. Its
value is a list of events of any type, to be processed as command input in order of
appearance in the list.

• The function this-command-keys may return a string or a vector, depending on
whether or not the sequence read contains only characters. You may need to upgrade
code which uses this function.

The function recent-keys now returns a vector of events. You may need to upgrade
code which uses this function.

• A keyboard macro’s definition can now be either a string or a vector. All that really
matters is what elements it has. If the elements are all characters, then the macro can
be a string; otherwise, it has to be a vector.

• The variable last-event-frame records which frame the last input event was directed
to. Usually this is the frame that was selected when the event was generated, but
if that frame has redirected input focus to another frame, last-event-frame is the
frame to which the event was redirected.

• The interactive specification now allows a new code letter ‘e’ to simplify commands
bound to events which are lists. This code supplies as an argument the complete event
object.

You can use ‘e’ more than once in a single command’s interactive specification. If the
key sequence which invoked the command has n events with parameters, the nth ‘e’
provides the nth parameterized event. Events which are not lists, such as function keys
and ASCII keystrokes, do not count where ‘e’ is concerned.

• You can extract the starting and ending position values from a mouse button or motion
event using the two functions event-start and event-end. These two functions return
different values for drag and motion events; for click and button-down events, they both
return the position of the event.

• The position, a returned by event-start and event-end, is a list of this form:

(window buffer-position (col . row) timestamp)

You can extract parts of this list with the functions posn-window, posn-point,
posn-col-row, and posn-timestamp.

• The function scroll-bar-scale is useful for computing where to scroll to in response
to a mouse button event from a scroll bar. It takes two arguments, ratio and total,
and in effect multiplies them. We say “in effect” because ratio is not a number; rather
a pair (num . denom).

Here’s the usual way to use scroll-bar-scale:

(scroll-bar-scale (posn-col-row (event-start event))

(buffer-size))

0.19 Putting Keyboard Events in Strings

In most of the places where strings are used, we conceptualize the string as containing
text characters—the same kind of characters found in buffers or files. Occasionally Lisp
programs use strings which conceptually contain keyboard characters; for example, they
may be key sequences or keyboard macro definitions. There are special rules for how to put
keyboard characters into a string, because they are not limited to the range of 0 to 255 as
text characters are.

A keyboard character typed using the META key is called a meta character. The numeric
code for such an event includes the 2**23 bit; it does not even come close to fitting in a

string. However, earlier Emacs versions used a different representation for these characters,
which gave them codes in the range of 128 to 255. That did fit in a string, and many Lisp
programs contain string constants that use ‘\M-’ to express meta characters, especially as
the argument to define-key and similar functions.

We provide backward compatibility to run those programs with special rules for how to
put a keyboard character event in a string. Here are the rules:

• If the keyboard event value is in the range of 0 to 127, it can go in the string unchanged.

• The meta variants of those events, with codes in the range of 2**23 to 2**23+127, can
also go in the string, but you must change their numeric values. You must set the 2**7
bit instead of the 2**23 bit, resulting in a value between 128 and 255.

• Other keyboard character events cannot fit in a string. This includes keyboard events
in the range of 128 to 255.

Functions such as read-key-sequence that can construct strings containing events fol-
low these rules.

When you use the read syntax ‘\M-’ in a string, it produces a code in the range of 128
to 255—the same code that you get if you modify the corresponding keyboard event to put
it in the string. Thus, meta events in strings work consistently regardless of how they get
into the strings.

New programs can avoid dealing with these rules by using vectors instead of strings for
key sequences when there is any possibility that these issues might arise.

The reason we changed the representation of meta characters as keyboard events is to
make room for basic character codes beyond 127, and support meta variants of such larger
character codes.

0.20 Menus

You can now define menus conveniently as keymaps. Menus are normally used with the
mouse, but they can work with the keyboard also.

0.20.1 Defining Menus

A keymap is suitable for menu use if it has an overall prompt string, which is a string
that appears as an element of the keymap. It should describes the purpose of the menu.
The easiest way to construct a keymap with a prompt string is to specify the string as an
argument when you run make-keymap or make-sparse-keymap.

The individual bindings in the menu keymap should also have prompt strings; these
strings are the items in the menu. A binding with a prompt string looks like this:

(char string . real-binding)

As far as define-key is concerned, the string is part of the character’s binding—the
binding looks like this:

(string . real-binding).

However, only real-binding is used for executing the key.

You can also supply a second string, called the help string, as follows:

(char string help-string . real-binding)

Currently Emacs does not actually use help-string ; it knows only how to ignore help-
string in order to extract real-binding. In the future we hope to make help-string serve as
longer documentation for the menu item, available on request.

The prompt string for a binding should be short—one or two words. Its meaning should
describe the command it corresponds to.

If real-binding is nil, then string appears in the menu but cannot be selected.

If real-binding is a symbol, and has a non-nil menu-enable property, that property is
an expression which controls whether the menu item is enabled. Every time the keymap
is used to display a menu, Emacs evaluates the expression, and it enables the menu item
only if the expression’s value is non-nil. When a menu item is disabled, it is displayed in
a “fuzzy” fashion, and cannot be selected with the mouse.

0.20.2 Menus and the Mouse

The way to make a menu keymap produce a menu is to make it the definition of a prefix
key.

When the prefix key ends with a mouse event, Emacs handles the menu keymap by
popping up a visible menu that you can select from with the mouse. When you click on
a menu item, the event generated is whatever character or symbol has the binding which
brought about that menu item.

A single keymap can appear as multiple panes, if you explicitly arrange for this. The
way to do this is to make a keymap for each pane, then create a binding for each of those
maps in the main keymap of the menu. Give each of these bindings a prompt string that
starts with ‘@’. The rest of the prompt string becomes the name of the pane. See the file
lisp/mouse.el for an example of this. Any ordinary bindings with prompt strings are
grouped into one pane, which appears along with the other panes explicitly created for the
submaps.

You can also get multiple panes from separate keymaps. The full definition of a prefix key
always comes from merging the definitions supplied by the various active keymaps (minor
modes, local, and global). When more than one of these keymaps is a menu, each of them
makes a separate pane or panes.

0.20.3 Menus and the Keyboard

When a prefix key ending with a keyboard event (a character or function key) has a definition
that is a menu keymap, you can use the keyboard to choose a menu item.

Emacs displays the menu alternatives in the echo area. If they don’t all fit at once, type
SPC to see the next line of alternatives. If you keep typing SPC, you eventually get to the
end of the menu and then cycle around to the beginning again.

When you have found the alternative you want, type the corresponding character—the
one whose binding is that alternative.

In a menu intended for keyboard use, each menu item must clearly indicate what char-
acter to type. The best convention to use is to make the character the first letter of the
menu item prompt string. That is something users will understand without being told.

0.20.4 The Menu Bar

Under XWindows, each frame can have amenu bar—a permanently displayed menu stretch-
ing horizontally across the top of the frame. The items of the menu bar are the subcommands
of the fake “function key” menu-bar, as defined by all the active keymaps.

To add an item to the menu bar, invent a fake “function key” of your own (let’s call it
key), and make a binding for the key sequence [menu-bar key]. Most often, the binding
is a menu keymap, so that pressing a button on the menu bar item leads to another menu.

In order for a frame to display a menu bar, its menu-bar-lines property must be greater
than zero. Emacs uses just one line for the menu bar itself; if you specify more than one
line, the other lines serve to separate the menu bar from the windows in the frame. We
recommend you try one or two as the menu-bar-lines value.

0.21 Keymaps

• The representation of keymaps has changed to support the new event types. All
keymaps now have the form (keymap element element ...). Each element takes one
of the following forms:

prompt-string
A string as an element of the keymap marks the keymap as a menu, and
serves as the overall prompt string for it.

(key . binding)

A cons cell binds key to definition. Here key may be any sort of event
head—a character, a function key symbol, or a mouse button symbol.

vector A vector of 128 elements binds all the ASCII characters; the nth element
holds the binding for character number n.

(t . binding)

A cons cell whose car is t is a default binding; anything not bound by
previous keymap elements is given binding as its binding.

Default bindings are important because they allow a keymap to bind all
possible events without having to enumerate all the possible function keys
and mouse clicks, with all possible modifier prefixes.

The function lookup-key (and likewise other functions for examining a
key binding) normally report only explicit bindings of the specified key
sequence; if there is none, they return nil, even if there is a default binding
that would apply to that key sequence if it were actually typed in. However,
these functions now take an optional argument accept-defaults which, if
non-nil, says to consider default bindings.

Note that if a vector in the keymap binds an ASCII character to nil (thus
making it “unbound”), the default binding does not apply to the character.
Think of the vector element as an explicit binding of nil.

Note also that if the keymap for a minor or major mode contains a default
binding, it completely masks out any lower-priority keymaps.

• A keymap can now inherit from another keymap. To do this, make the latter keymap
the “tail” of the new one. Such a keymap looks like this:

(keymap bindings... . other-keymap)

The effect is that this keymap inherits all the bindings of other-keymap, but can add
to them or override them with bindings. Subsequent changes in the bindings of other-
keymap do affect this keymap.

For example,

(setq my-mode-map (cons ’keymap text-mode-map))

makes a keymap that by default inherits all the bindings of Text mode—whatever they
may be at the time a key is looked up. Any bindings made explicitly in my-mode-map

override the bindings inherited from Text mode, however.

• Minor modes can now have local keymaps. Thus, a key can act a special way when a
minor mode is in effect, and then revert to the major mode or global definition when
the minor mode is no longer in effect. The precedence of keymaps is now: minor modes
(in no particular order), then major mode, and lastly the global map.

The new current-minor-mode-maps function returns a list of all the keymaps of cur-
rently enabled minor modes, in the other that they apply.

To set up a keymap for a minor mode, add an element to the alist minor-mode-map-
alist. Its elements look like this:

(symbol . keymap)

The keymap keymap is active whenever symbol has a non-nil value. Use for symbol
the variable which indicates whether the minor mode is enabled.

When more than one minor mode keymap is active, their order of precedence is the
order of minor-mode-map-alist. But you should design minor modes so that they
don’t interfere with each other, and if you do this properly, the order will not matter.

The function minor-mode-key-binding returns a list of all the active minor mode
bindings of key. More precisely, it returns an alist of pairs (modename . binding),
where modename is the the variable which enables the minor mode, and binding is
key ’s definition in that mode. If key has no minor-mode bindings, the value is nil.

If the first binding is a non-prefix, all subsequent bindings from other minor modes are
omitted, since they would be completely shadowed. Similarly, the list omits non-prefix
bindings that follow prefix bindings.

• The new function copy-keymap copies a keymap, producing a new keymap with the
same key bindings in it. If the keymap contains other keymaps directly, these sub-
keymaps are copied recursively.

If you want to, you can define a prefix key with a binding that is a symbol whose
function definition is another keymap. In this case, copy-keymap does not look past
the symbol; it doesn’t copy the keymap inside the symbol.

• substitute-key-definition now accepts an optional fourth argument, which is a
keymap to use as a template.

(substitute-key-definition olddef newdef keymap oldmap)

finds all characters defined in oldmap as olddef, and defines them in keymap as newdef.

In addition, this function now operates recursively on the keymaps that define prefix
keys within keymap and oldmap.

0.22 Minibuffer Features

The minibuffer input functions read-from-minibuffer and completing-read have new
features.

0.22.1 Minibuffer History

A new optional argument hist specifies which history list to use. If you specify a variable (a
symbol), that variable is the history list. If you specify a cons cell (variable . startpos),
then variable is the history list variable, and startpos specifies the initial history position
(an integer, counting from zero which specifies the most recent element of the history).

If you specify startpos, then you should also specify that element of the history as initial-
input, for consistency.

If you don’t specify hist, then the default history list minibuffer-history is used. Other
standard history lists that you can use when appropriate include query-replace-history,
command-history, and file-name-history.

The value of the history list variable is a list of strings, most recent first. You should set
a history list variable to nil before using it for the first time.

read-from-minibuffer and completing-read add new elements to the history list
automatically, and provide commands to allow the user to reuse items on the list. The
only thing your program needs to do to use a history list is to initialize it and to pass its
name to the input functions when you wish. But it is safe to modify the list by hand when
the minibuffer input functions are not using it.

0.22.2 Other Minibuffer Features

The initial argument to read-from-minibuffer and other minibuffer input functions can
now be a cons cell (string . position). This means to start off with string in the mini-
buffer, but put the cursor position characters from the beginning, rather than at the end.

In read-no-blanks-input, the initial argument is now optional; if it is omitted, the
initial input string is the empty string.

0.23 New Features for Defining Commands

• If the interactive specification begins with ‘@’, this means to select the window under
the mouse. This selection takes place before doing anything else with the command.

You can use both ‘@’ and ‘*’ together in one command; they are processed in order of
appearance.

• Prompts in an interactive specification can incorporate the values of the preceding
arguments. Emacs replaces ‘%’-sequences (as used with the format function) in the
prompt with the interactive arguments that have been read so far. For example, a
command with this interactive specification

(interactive "sReplace: \nsReplace %s with: ")

prompts for the first argument with ‘Replace: ’, and then prompts for the second
argument with ‘Replace foo with: ’, where foo is the string read as the first argument.

• If a command name has a property enable-recursive-minibuffers which is non-nil,
then the command can use the minibuffer to read arguments even if it is invoked from

the minibuffer. The minibuffer command next-matching-history-element (normally
bound to M-s in the minibuffer) uses this feature.

0.24 New Features for Reading Input

• The function set-input-mode now takes four arguments. The last argument is op-
tional. Their names are interrupt, flow, meta and quit.

The argument interrupt says whether to use interrupt-driven input. Non-nil means
yes, and nil means no (use CBREAK mode).

The argument flow says whether to enable terminal flow control. Non-nil means yes.

The argument meta controls support for input character codes above 127. If meta is
t, Emacs converts characters with the 8th bit set into Meta characters. If meta is nil,
Emacs disregards the 8th bit; this is necessary when the terminal uses it as a parity
bit. If meta is neither t nor nil, Emacs uses all 8 bits of input unchanged. This is
good for terminals using European 8-bit character sets.

If quit non-nil, it is the character to use for quitting. (Normally this is C-g.)

• The variable meta-flag has been deleted; use set-input-mode to enable or disable
support for a META key. This change was made because set-input-mode can send the
terminal the appropriate commands to enable or disable operation of the META key.

• The new variable extra-keyboard-modifiers lets Lisp programs “press” the modifier
keys on the keyboard. The value is a bit mask:

1 The SHIFT key.

2 The LOCK key.

4 The CTL key.

8 The META key.

When you use X windows, the program can press any of the modifier keys in this way.
Otherwise, only the CTL and META keys can be virtually pressed.

• You can use the new function keyboard-translate to set up keyboard-translate-

table conveniently.

• Y-or-n questions using the y-or-n-p function now accept C-] (usually mapped to
abort-recursive-edit) as well as C-g to quit.

• The variable num-input-keys is the total number of key sequences that the user has
typed during this Emacs session.

• A new Lisp variable, function-key-map, holds a keymap which describes the character
sequences sent by function keys on an ordinary character terminal. This uses the same
keymap data structure that is used to hold bindings of key sequences, but it has a
different meaning: it specifies translations to make while reading a key sequence.

If function-key-map “binds” a key sequence k to a vector v, then when k appears as
a subsequence anywhere in a key sequence, it is replaced with v.

For example, VT100 terminals send ESC O P when the “keypad” PF1 key is pressed.
Thus, on a VT100, function-key-map should “bind” that sequence to [pf1]. This
specifies translation of ESC O P into PF1 anywhere in a key sequence.

Thus, typing C-c PF1 sends the character sequence C-c ESC O P, but read-key-

sequence translates this back into C-c PF1, which it returns as the vector [?\C-c

PF1].

Entries in function-key-map are ignored if they conflict with bindings made in the
minor mode, local, or global keymaps.

The value of function-key-map is usually set up automatically according to the ter-
minal’s Terminfo or Termcap entry, and the terminal-specific Lisp files. Emacs comes
with a number of terminal-specific files for many common terminals; their main pur-
pose is to make entries in function-key-map beyond those that can be deduced from
Termcap and Terminfo.

• The variable key-translation-map works like function-key-map except for two
things:

• key-translation-map goes to work after function-key-map is finished; it receives
the results of translation by function-key-map.

• key-translation-map overrides actual key bindings.

The intent of key-translation-map is for users to map one character set to another,
including ordinary characters normally bound to self-insert-command.

0.25 New Syntax Table Features

• You can use two new functions to move across characters in certain syntax classes.

skip-syntax-forward moves point forward across characters whose syntax classes are
mentioned in its first argument, a string. It stops when it encounters the end of the
buffer, or position lim (the optional second argument), or a character it is not supposed
to skip. The function skip-syntax-backward is similar but moves backward.

• The new function forward-comment moves point by comments. It takes one argument,
count; it moves point forward across count comments (backward, if count is negative).
If it finds anything other than a comment or whitespace, it stops, leaving point at the
far side of the last comment found. It also stops after satisfying count.

• The new variable words-include-escapes affects the behavior of forward-word and
everything that uses it. If it is non-nil, then characters in the “escape” and “character
quote” syntax classes count as part of words.

• There are two new syntax flags for use in syntax tables.

- The prefix flag.

The ‘p’ flag identifies additional “prefix characters” in Lisp syntax. You can set
this flag with modify-syntax-entry by including the letter ‘p’ in the syntax spec-
ification.

These characters are treated as whitespace when they appear between expressions.
When they appear withing an expression, they are handled according to their usual
syntax codes.

The function backward-prefix-chars moves back over these characters, as well
as over characters whose primary syntax class is prefix (‘’’).

- The ‘b’ comment style flag.

Emacs can now supports two comment styles simultaneously. (This is for the sake
of C++.) More specifically, it can recognize two different comment-start sequences.
Both must share the same first character; only the second character may differ.
Mark the second character of the ‘b’-style comment start sequence with the ‘b’
flag. You can set this flag with modify-syntax-entry by including the letter ‘b’
in the syntax specification.

The two styles of comment can have different comment-end sequences. A comment-
end sequence (one or two characters) applies to the ‘b’ style if its first character
has the ‘b’ flag set; otherwise, it applies to the ‘a’ style.

The appropriate comment syntax settings for C++ are as follows:

‘/’ ‘124b’

‘*’ ‘23’

newline ‘>b’

Thus ‘/*’ is a comment-start sequence for ‘a’ style, ‘//’ is a comment-start sequence
for ‘b’ style, ‘*/’ is a comment-end sequence for ‘a’ style, and newline is a comment-
end sequence for ‘b’ style.

0.26 The Case Table

You can customize case conversion using the new case table feature. A case table is a
collection of strings that specifies the mapping between upper case and lower case letters.
Each buffer has its own case table. You need a case table if you are using a language which
has letters that are not standard ASCII letters.

A case table is a list of this form:

(downcase upcase canonicalize equivalences)

where each element is either nil or a string of length 256. The element downcase says how
to map each character to its lower-case equivalent. The element upcase maps each character
to its upper-case equivalent. If lower and upper case characters are in 1-1 correspondence,
use nil for upcase; then Emacs deduces the upcase table from downcase.

For some languages, upper and lower case letters are not in 1-1 correspondence. There
may be two different lower case letters with the same upper case equivalent. In these cases,
you need to specify the maps for both directions.

The element canonicalize maps each character to a canonical equivalent; any two char-
acters that are related by case-conversion have the same canonical equivalent character.

The element equivalences is a map that cyclicly permutes each equivalence class (of
characters with the same canonical equivalent).

You can provide nil for both canonicalize and equivalences, in which case both are
deduced from downcase and upcase.

Here are the functions for working with case tables:

case-table-p is a predicate that says whether a Lisp object is a valid case table.

set-standard-case-table takes one argument and makes that argument the case table
for new buffers created subsequently. standard-case-table returns the current value of
the new buffer case table.

current-case-table returns the case table of the current buffer. set-case-table sets
the current buffer’s case table to the argument.

set-case-syntax-pair is a convenient function for specifying a pair of letters, upper
case and lower case. Call it with two arguments, the upper case letter and the lower case
letter. It modifies the standard case table and a few syntax tables that are predefined
in Emacs. This function is intended as a subroutine for packages that define non-ASCII
character sets.

Load the library iso-syntax to set up the syntax and case table for the 256 bit ISO
Latin 1 character set.

0.27 New Features for Dealing with Buffers

• The new function buffer-modified-tick returns a buffer’s modification-count that
ticks every time the buffer is modified. It takes one optional argument, which is the
buffer you want to examine. If the argument is nil (or omitted), the current buffer is
used.

• buffer-disable-undo is a new name for the function formerly known as
buffer-flush-undo. This turns off recording of undo information in the buffer given
as argument.

• The new function generate-new-buffer-name chooses a name that would be unique
for a new buffer—but does not create the buffer. Give it one argument, a starting
name. It produces a name not in use for a buffer by appending a number inside of
‘<...>’.

• The function rename-buffer now takes an optional second argument which tells
it that if the specified new name corresponds to an existing buffer, it should use
generate-new-buffer-name to modify the name to be unique, rather than signaling
an error.

rename-buffer now returns the name to which the buffer was renamed.

• The function list-buffers now looks at the local variable list-buffers-directory
in each non-file-visiting buffer, and shows its value where the file would normally go.
Dired sets this variable in each Dired buffer, so the buffer list now shows which directory
each Dired buffer is editing.

• The function other-buffer now takes an optional second argument visible-ok which,
if non-nil, indicates that buffers currently being displayed in windows may be returned
even if there are other buffers not visible. Normally, other-buffer returns a currently
visible buffer only as a last resort, if there are no suitable nonvisible buffers.

• The hook kill-buffer-hook now runs whenever a buffer is killed.

0.28 Local Variables Features

• If a local variable name has a non-nil permanent-local property, then kill-all-

local-variables does not kill it. Such local variables are “permanent”—they remain
unchanged even if you select a different major mode.

Permanent locals are useful when they have to do with where the file came from or
how to save it, rather than with how to edit the contents.

• The function make-local-variable now never changes the value of the variable that
it makes local. If the variable had no value before, it still has no value after becoming
local.

• The new function default-boundp tells you whether a variable has a default value (as
opposed to being unbound in its default value). If (default-boundp ’foo) returns
nil, then (default-value ’foo) would get an error.

default-boundp is to default-value as boundp is to symbol-value.

• The special forms defconst and defvar, when the variable is local in the current
buffer, now set the variable’s default value rather than its local value.

0.29 New Features for Subprocesses

• call-process and call-process-region now return a value that indicates how the
synchronous subprocess terminated. It is either a number, which is the exit status of
a process, or a signal name represented as a string.

• process-status now returns open and closed as the status values for network con-
nections.

• The standard asynchronous subprocess features work on VMS now, and the special
VMS asynchronous subprocess functions have been deleted.

• You can use the transaction queue feature for more convenient communication with
subprocesses using transactions.

Call tq-create to create a transaction queue communicating with a specified process.
Then you can call tq-enqueue to send a transaction. tq-enqueue takes these five
arguments:

(tq-enqueue tq question regexp closure fn)

tq is the queue to use. (Specifying the queue has the effect of specifying the process to
talk to.) The argument question is the outgoing message which starts the transaction.
The argument fn is the function to call when the corresponding answer comes back; it
is called with two arguments: closure, and the answer received.

The argument regexp is a regular expression to match the entire answer; that’s how
tq-enqueue tells where the answer ends.

Call tq-close to shut down a transaction queue and terminate its subprocess.

• The function signal-process sends a signal to process pid, which need not be a child
of Emacs. The second argument signal specifies which signal to send; it should be an
integer.

0.30 New Features for Dealing with Times And Time Delays

• The new function current-time returns the system’s time value as a list of three
integers: (high low microsec). The integers high and low combine to give the number
of seconds since 0:00 January 1, 1970, which is high * 2**16 + low.

microsec gives the microseconds since the start of the current second (or 0 for systems
that return time only on the resolution of a second).

• The function current-time-string accepts an optional argument time-value. If given,
this specifies a time to format instead of the current time. The argument should
be a cons cell containing two integers, or a list whose first two elements are inte-
gers. Thus, you can use times obtained from current-time (see above) and from
file-attributes.

• You can now find out the user’s time zone using current-time-zone.

The value has the form (OFFSET name). Here offset is an integer giving the number of
seconds ahead of UTC (east of Greenwich). A negative value means west of Greenwich.
The second element, name is a string giving the name of the time zone. Both elements
change when daylight savings time begins or ends; if the user has specified a time zone
that does not use a seasonal time adjustment, then the value is constant through time.

If the operating system doesn’t supply all the information necessary to compute the
value, both elements of the list are nil.

The optional argument time-value, if given, specifies a time to analyze instead of the
current time. The argument should be a cons cell containing two integers, or a list whose
first two elements are integers. Thus, you can use times obtained from current-time

and from file-attributes.

• sit-for, sleep-for now let you specify the time period in milliseconds as well as in
seconds. The first argument gives the number of seconds, as before, and the optional
second argument gives additional milliseconds. The time periods specified by these two
arguments are added together.

Not all systems support this; you get an error if you specify nonzero milliseconds and
it isn’t supported.

sit-for also accepts an optional third argument nodisp. If this is non-nil, sit-for
does not redisplay. It still waits for the specified time or until input is available.

• accept-process-output now accepts a timeout specified by optional second and third
arguments. The second argument specifies the number of seconds, while the third
specifies the number of milliseconds. The time periods specified by these two arguments
are added together.

Not all systems support this; you get an error if you specify nonzero milliseconds and
it isn’t supported.

The function returns nil if the timeout expired before output arrived, or non-nil if it
did get some output.

• You can set up a timer to call a function at a specified future time. To do so, call
run-at-time, like this:

(run-at-time time repeat function args...)

Here, time is a string saying when to call the function. The argument function is the
function to call later, and args are the arguments to give it when it is called.

The argument repeat specifies how often to repeat the call. If repeat is nil, there are
no repetitions; function is called just once, at time. If repeat is an integer, it specifies
a repetition period measured in seconds.

Absolute times may be specified in a wide variety of formats; The form ‘hour:min:sec
timezone month/day/year’, where all fields are numbers, works; the format that
current-time-string returns is also allowed.

To specify a relative time, use numbers followed by units. For example:

‘1 min’ denotes 1 minute from now.

‘1 min 5 sec’
denotes 65 seconds from now.

‘1 min 2 sec 3 hour 4 day 5 week 6 fortnight 7 month 8 year’
denotes exactly 103 months, 123 days, and 10862 seconds from now.

If time is an integer, that specifies a relative time measured in seconds.

To cancel the requested future action, pass the value that run-at-time returned to the
function cancel-timer.

0.31 Profiling Lisp Programs

You can now make execution-time profiles of Emacs Lisp programs using the profile

library. See the file profile.el for instructions; if you have written a Lisp program big
enough to be worth profiling, you can surely understand them.

0.32 New Features for Lisp Debuggers

• You can now specify which kinds of errors should invoke the Lisp debugger by setting
the variable debug-on-error to a list of error conditions. For example, if you set it to
the list (void-variable), then only errors about a variable that has no value invoke
the debugger.

• The variable command-debug-status is used by Lisp debuggers. It records the de-
bugging status of current interactive command. Each time a command is called in-
teractively, this variable is bound to nil. The debugger can set this variable to leave
information for future debugger invocations during the same command.

The advantage of this variable over some other variable in the debugger itself is that
the data will not be visible for any other command invocation.

• The function backtrace-frame is intended for use in Lisp debuggers. It returns infor-
mation about what a frame on the Lisp call stack is doing. You specify one argument,
which is the number of stack frames to count up from the current execution point.

If that stack frame has not evaluated the arguments yet (or is a special form), the value
is (nil function arg-forms...).

If that stack frame has evaluated its arguments and called its function already, the
value is (t function arg-values...).

In the return value, function is whatever was supplied as car of evaluated list, or a
lambda expression in the case of a macro call. If the function has a &rest argument,
that is represented as the tail of the list arg-values.

If the argument is out of range, backtrace-frame returns nil.

0.33 Memory Allocation Changes

The list that garbage-collect returns now has one additional element. This is a cons cell
containing two numbers. It gives information about the number of used and free floating

point numbers, much as the first element gives such information about the number of used
and free cons cells.

The new function memory-limit returns an indication of the last address allocated by
Emacs. More precisely, it returns that address divided by 1024. You can use this to get a
general idea of how your actions affect the memory usage.

0.34 Hook Changes

• Expanding an abbrev first runs the new hook pre-abbrev-expand-hook.

• The editor command loop runs the normal hook pre-command-hook before each com-
mand, and runs post-command-hook after each command.

• Auto-saving runs the new hook auto-save-hook before actually starting to save any
files.

• The new variable revert-buffer-insert-file-contents-function holds a function
that revert-buffer now uses to read in the contents of the reverted buffer—instead
of calling insert-file-contents.

• The variable lisp-indent-hook has been renamed to lisp-indent-function.

• The variable auto-fill-hook has been renamed to auto-fill-function.

• The variable blink-paren-hook has been renamed to blink-paren-function.

• The variable temp-buffer-show-hook has been renamed to temp-buffer-show-

function.

• The variable suspend-hook is now a normal hook. It used to be a special kind of hook;
its value had to be a single function, and if the function returned a non-nil value, then
suspension was inhibited.

• The new function add-hook provides a handy way to add a function to a hook variable.
For example,

(add-hook ’text-mode-hook ’my-text-hook-function)

arranges to call my-text-hook-function when entering Text mode or related modes.

add-hook takes an optional third argument which says to add the new hook function
at the end of the list (normally, it goes at the beginning).

