
fd2inline

fd2inline ii

COLLABORATORS

TITLE :

fd2inline

ACTION NAME DATE SIGNATURE

WRITTEN BY January 15, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

fd2inline iii

Contents

1 fd2inline 1

1.1 fd2inline.guide . 1

1.2 fd2inline.guide/Introduction . 1

1.3 fd2inline.guide/Installation . 2

1.4 fd2inline.guide/Usage . 3

1.5 fd2inline.guide/Using inlines . 3

1.6 fd2inline.guide/Using fd2inline . 4

1.7 fd2inline.guide/Rebuilding . 6

1.8 fd2inline.guide/Internals . 7

1.9 fd2inline.guide/Background . 7

1.10 fd2inline.guide/Old format . 8

1.11 fd2inline.guide/New format . 10

1.12 fd2inline.guide/Stubs format . 12

1.13 fd2inline.guide/Authors . 12

1.14 fd2inline.guide/Index . 13

fd2inline 1 / 16

Chapter 1

fd2inline

1.1 fd2inline.guide

This is a user’s guide to ‘FD2Inline’ 1.0, a parser that ←↩
converts

Amiga shared libraries’ FD files to format accepted by GNU CC.

See file ‘COPYING’ for GNU General Public License.

Last updated 14 July 1996.

Introduction
What is this program for?

Installation
How to install it?

Usage
How to use ‘inlines’ and ‘FD2InLine’?

Rebuilding
How to recompile it?

Internals
How do ‘inlines’ work?

Authors
Or should it be called "History"?

Index
Concept index.

1.2 fd2inline.guide/Introduction

fd2inline 2 / 16

Introduction

‘FD2InLine’ is useful if you want to use ‘GCC’ for Amiga-specific
development and would like to make very efficient calls to Amiga shared
libraries’ functions.

Format of calls to Amiga shared libraries’ functions differs
substantially from the default format of C compilers (see

Background
).

Therefore, some tricks are necessary if you want to use these functions.

‘FD2InLine’ is a parser that converts ‘fd’ files and ‘clib’ files to
‘GCC inlines’.

‘fd’ and ‘clib’ files contain information about functions in shared
libraries (see

Background
).

‘FD2InLine’ reads these two files and outputs a file containing
information from input files merged in a special format, suitable to
use with ‘GCC’ compiler.

This output file contains so-called "inlines" -- one for each
function entry. Thanks to them ‘GCC’ can produce very efficient code
for Amiga shared libraries’ functions calls.

Note: the term ‘inlines’ is misleading -- ‘FD2InLine’ does not
use ‘__inline’ feature of ‘GCC’ any longer (see

New format
).

1.3 fd2inline.guide/Installation

Installation

I assume you have ‘fd2inline-1.0-bin.lha’ archive.

If you use recent release of ‘GCC’, you might not need to install
anything. Starting with ‘GCC’ 2.7.2, new format (see

New format
) of

‘inlines’ should be available with the compiler. However, the separate
‘fd2inline-1.0-bin.lha’ archive will always contain the latest version
of ‘FD2InLine’ and ‘inlines’, which might not be the truth in case of
‘ADE’ or ‘Aminet’ distributions.

Installation is very easy, so I didn’t bother writing an Installer
script :-).

fd2inline 3 / 16

If you have an older version of ‘inlines’ installed, please remove
it now, or you might later have problems. Typically, you’ll have to
remove the following subdirectories of ‘os-include’ directory:
‘inline’, ‘pragmas’ and ‘proto’.

Next, please change current directory to ‘ADE:’ and simply extract
‘fd2inline-1.0-bin.lha’ archive. This should install everything in
right places. More precisely, ‘inlines’ of standard system libraries
and devices will go to ‘include/inline’ directory and ‘inlines’ of 3rd
party libraries will go to ‘local/include/inline’ directory.
‘fd2inline’ executable will go to ‘bin’ directory and AmigaGuide
documentation to ‘guide’.

1.4 fd2inline.guide/Usage

Usage

This chapter describes two aspects of using ‘FD2InLine’:

Using inlines
Making efficient function calls

Using fd2inline
Creating ‘inlines’

1.5 fd2inline.guide/Using inlines

Using inlines
=============

Using ‘inlines’ is very simple. If you want to use a library called
‘foo.library’ (or a device called ‘bar.device’), just include file
‘<proto/foo.h>’ (‘<proto/bar.h>’) and that’s it. For example:

#include <proto/dos.h>

int main(void)
{

Delay(100); /* Wait for 2 seconds */
}

Please *always* include ‘proto’ files, *not* ‘inline’ files -
‘proto’ files often fix some incompatibilities between system headers
and ‘GCC’. Besides, this technique makes your code more portable across

fd2inline 4 / 16

various Amiga compilers.

There are a few preprocessor symbols which alter the behaviour of
‘proto’ and ‘inlines’ files:

‘__NOLIBBASE__’
By default, ‘proto’ files make an external declaration of library
base pointer. You can disable this behaviour by defining
‘__NOLIBBASE__’ before including a ‘proto’ file.

‘__CONSTLIBBASEDECL__’
The external declarations described above declare plain pointer
variables. The disadvantage of this is that library base variable
has to be reloaded every time some function is called. If you
redefine ‘__CONSTLIBBASEDECL__’ to ‘const’, less reloading will be
necessary, so better code will be produced. However, declaring a
variable as ‘const’ makes altering it impossible, so some dirty
hacks are necessary (like defining variable as plain in one file
and altering it only there. This *won’t* work with base relative
code, though).

‘<library>_BASE_NAME’
Function definitions in ‘inline’ files refer to library base
variable through ‘<library>_BASE_NAME’ symbol
(‘AMIGAGUIDE_BASE_NAME’ for ‘amigaguide.library’, for example). On
top of ‘inlines’ file, this symbol is redefined to appropriate
library base variable name (‘AmigaGuideBase’, for example),

unless it’s already defined. This way, you can make inlines use
a field of a structure as a library base, for example.

‘NO_INLINE_STDARG’
This symbol prevents defining of inline macros for varargs
functions (see

Old format
).

‘_USEOLDEXEC_’
This one is used in ‘proto/exec.h’ only. Unlike in ‘SAS/C’,
‘proto/exec.h’ uses ‘SysBase’ variable as ‘Exec’ library base by
default. This is usually faster than direct dereferencing of
‘0x00000004’ (see

Background
), since it doesn’t require reading

from ‘CHIP’ memory (things might be even worse if you use
‘Enforcer’ or ‘CyberGuard’, which protect low memory region).
However, in some low-level cases (like startup code) you might
prefer dereferencing ‘0x00000004’. To do this, define
‘_USEOLDEXEC_’ before including ‘proto/exec.h’.

1.6 fd2inline.guide/Using fd2inline

Using fd2inline
===============

fd2inline 5 / 16

You invoke ‘FD2InLine’ by writing:

‘fd2inline’ [options] FD-FILE CLIB-FILE [[-o] OUTPUT-FILE]

Variables have the following meaning:

FD-FILE
A file name of an input ‘fd’ file.

CLIB-FILE
A file name of an input ‘clib’ file.

OUTPUT-FILE
A file name of an output ‘inlines’ file. If it is not specified
(or if ‘-’ is specified), standard output will be used instead.
The file name can be preceded with a ‘-o’, for compatibility with
most UN*X software.

The following options can be specified (anywhere on the command
line):

‘--new’
Produce new format ‘inlines’.

‘--old’
Produce old format ‘inlines’.

‘--stubs’
Produce library stubs.

See
Internals
, for more information.

Example:

fd2inline FD:exec_lib.fd ADE:os-include/clib/exec_protos.h -o ADE:include/ ←↩
inline/exec.h

This will build file ‘exec.h’ containing new format ‘inlines’ of
‘exec.library’ in ‘ADE:include/inline’ directory.

If you want to add support for ‘GCC’ to a library, creating
‘inlines’ is not enough -- you should also create ‘proto’ file.

Use one of existing files as a template. Some libraries (like for
example ‘dos.library’) have broken header files and ‘GCC’ generates
warning messages. In order to avoid them, you have to include various
headers in ‘proto’ file before including ‘clib’ file.

You might also want to create ‘pragmas’ file, which might be
necessary for badly written ‘SAS/C’ sources. ‘pragmas’ are generated
automatically during building of ‘FD2InLine’ by an ‘AWK’ script, so you
might either have a look at ‘fd2inline-1.0-src.lha’ archive or simply
create ‘pragmas’ by hand.

fd2inline 6 / 16

Creating a linker library with stubs might also be useful, in case
somebody didn’t want to, or couldn’t, use inline headers.

‘fd2inline-1.0-src.lha’ contains necessary support for this. For
example, to generate ‘libexec.a’ library with ‘exec.library’ stubs,
you’d have to type:

make alllib INCBASE=exec LIBBASE=exec

This would create two ‘libexec.a’ libraries: plain and base relative
one. Of course, this particular example doesn’t make much sense since
‘libamiga.a’ already contains this stubs.

‘INCBASE’ and ‘LIBBASE’ specify basenames of (input) ‘proto’ and
‘fd’ files and (output) library. This will often be the same, but not
always. For example, in case of ‘MUI’ ‘INCBASE’ has to be set to
‘muimaster’, but ‘LIBBASE’ might be set to ‘mui’.

1.7 fd2inline.guide/Rebuilding

Rebuilding

First, you have to download ‘fd2inline-1.0-src.lha’ archive.

Unarchive it. You might either build ‘FD2InLine’ in source archive
or in a separate, build archive. I suggest the latter. Type:

lha -mraxe x fd2inline-1.0-src.lha
mkdir fd2inline-bin
cd fd2inline-bin
sh ../fd2inline-1.0/configure --prefix=/ade
make

This should build ‘FD2InLine’ executable and ‘inlines’.

Please note that ‘fd’ files should be available in directory
‘ADE:os-lib/fd’. If you store them in some other place, you’ll have to
edit ‘Makefile’ before invoking ‘make’ (variable ‘FD_DIR’).

You can then type:

make install

This will install new ‘fd2inline’, ‘inlines’ and documentation in
appropriate subdirectories of ‘ADE:’.

‘fd2inline-1.0-src.lha’ archive contains three patches in context
diff format. They fix bugs in OS 3.1 headers and ‘fd’ files. Without
applying ‘amigaguide_lib.fd.diff’ you won’t be able to build ‘inlines’
for ‘amigaguide.library’. Two other patches rename an argument ‘true’
to ‘tf’, since ‘true’ is a reserved word in ‘C++’. Use ‘patch’ to apply
the patches, for example:

fd2inline 7 / 16

cd ADE:os-lib/fd
patch <amigaguide_lib.fd.diff

A few words about the source code:

I know, it’s not state-of-the-art ‘C’ programming example. However,
believe me, it was in *much* worse condition when I took it over. In
its current state it is at least readable (if you use tab size 3, as I
do :-). I think that rewriting it in ‘C++’ would clean it up
considerably (it’s already written in ‘OO’ fashion, so this should be
quite easy). Using ‘flex’ and ‘bison’ to create the parser would also
be a nice thing, I guess. However, I don’t think it’s worth the effort.
But, if somebody wanted to do it: feel free, I’ll be more than happy.

1.8 fd2inline.guide/Internals

Internals

This chapter describes the implementation details of ‘inlines’.

Background
Function calls in shared libraries.

Old format
Inlines that used ‘__inline’

New format
Inlines that use preprocessor.

Stubs format
Not really inlines, but...

1.9 fd2inline.guide/Background

Background
==========

This section describes calling conventions used in Amiga shared
libraries.

User-callable functions in AmigaOS are organized in "libraries".

From our point of view, most important part of a library is a
"library base". It always resides in RAM and contains library variables
and a "jump table". The location of library base varies. You can

fd2inline 8 / 16

obtain the library base location of main system library --
‘exec.library’ -- by dereferencing ‘0x00000004’. Locations of other
libraries’ bases can be obtained using ‘OpenLibrary’ function of
‘exec.library’.

Without providing unnecessary details, every function has a fixed
place in library’s jump table. In order to call a function, one has to
jump into this place.

Most functions require some arguments. In ‘C’, these are usually
passed on CPU stack. However, for some obscure reason, AmigaOS system
designers decided that arguments to shared libraries should be passed
in CPU registers.

All the information required to make function calls are provided in
"fd" files. Every shared library should have such a file. It provides
information about the name a library base variable should have and, for
every function separately, about offset in jump table where the
function resides and about registers in which arguments should be
passed.

In order to check if arguments passed to function have correct type,
C compiler needs function prototypes. These are provided in "clib"
files -- every library should have such a file.

Starting with AmigaOS release 2.0, some functions have been provided
which accept variable number of arguments (so-called "varargs
functions"). Actually, these are only ‘C’ language stubs. Internally,
all optional arguments have to be put into an array of ‘long ints’ and
address of this array is passed to fixed args library function.

To implement calls to shared libraries’ functions, compiler vendors
have to either use some compiler-dependent tricks to make this calls
directly (so-called "in line"), or provide linker libraries with
functions stubs, usually written in assembler. In the latter case,
function call from user’s code is compiled as usual -- arguments are
passed on stack. Then, in linking stage, a library stub gets linked in,
and when it’s called, it moves arguments from stack to appropriate
registers and jumps to library jump table. Needless to say, this is
slower than making a call in line.

1.10 fd2inline.guide/Old format

Old format
==========

extern __inline APTR
OpenAmigaGuideA(BASE_PAR_DECL struct NewAmigaGuide *nag, struct TagItem * ←↩

attrs)
{

BASE_EXT_DECL
register APTR res __asm("d0");
register struct Library *a6 __asm("a6") = BASE_NAME;
register struct NewAmigaGuide *a0 __asm("a0") = nag;

fd2inline 9 / 16

register struct TagItem *a1 __asm("a1") = attrs;
__asm volatile ("jsr a6@(-0x36:W)"
: "=r" (res)
: "r" (a6), "r" (a0), "r" (a1)
: "d0", "d1", "a0", "a1", "cc", "memory");
return res;

}

In this implementation, Amiga shared libraries’ function stubs are
external functions. They are defined as ‘__inline’, what makes ‘GCC’
insert them at every place of call. Mysterious ‘BASE_PAR_DECL’ and
‘BASE_EXT_DECL’ defines are hacks necessary for local library base
support (which is quite hard to achieve, so I won’t describe it here).
The biggest disadvantage of this ‘inlines’ is the fact that ‘GCC’
becomes very slow and requires huge amount of memory when compiling
them. Besides, inlining works with optimization enabled only.

#ifndef NO_INLINE_STDARG
#define OpenAmigaGuide(a0, tags...) \

({ULONG _tags[] = { tags }; OpenAmigaGuideA((a0), (struct TagItem *)_tags) ←↩
;})

#endif /* !NO_INLINE_STDARG */

This is how ‘varargs’ functions are implemented. Handling them
cannot be made using ‘__inline’ functions, since ‘__inline’ functions
require fixed number of arguments. Therefore, unique features of GCC
preprocessor (such as ‘varargs macros’) have to be used, instead. This
has some drawbacks, unfortunately. Since this are actually preprocessor
macros and not function calls, you can’t make tricky things that
involve preprocessor inside them. For example:

#include <proto/amigaguide.h>

#define OPENAG_BEG OpenAmigaGuide(
#define OPENAG_END , TAG_DONE)

void f(void)
{

OPENAG_BEG "a_file.guide" OPENAG_END;
OpenAmigaGuide(

#ifdef ABC
"abc.guide",

#else
"def.guide",

#endif
TAG_DONE);

}

Neither of ‘OpenAmigaGuide()’ calls above is handled correctly.

In case of the first call, you get an error:

unterminated macro call

By the time preprocessor attempts to unwind ‘OpenAmigaGuide’ macro,
‘OPENAG_END’ is not yet unwound, so preprocessor can’t find closing
bracket. This code might look artificial, but ‘MUI’ for example defines

fd2inline 10 / 16

such macros to make code look more pretty.

In case of the second call, you’ll see:

warning: preprocessing directive not recognized within macro arg

A workaround would be to either surround whole function calls with
conditions, or to conditionally define a preprocessor symbol ‘GUIDE’
somewhere above and simply put ‘GUIDE’ as a function argument:

#ifdef ABC
#define GUIDE "abc.guide"
#else
#define GUIDE "def.guide"
#endif

void f(void)
{
#ifdef ABC

OpenAmigaGuide("abc.guide", TAG_DONE);
#else

OpenAmigaGuide("def.guide", TAG_DONE);
#endif

OpenAmigaGuide(GUIDE, TAG_DONE);
}

Because of this drawbacks, ‘varargs inlines’ can be disabled by
defining ‘NO_INLINE_STDARG’ before including ‘proto’ file. You’ll need
a library with function stubs in such case.

1.11 fd2inline.guide/New format

New format
==========

#define OpenAmigaGuideA(nag, attrs) \
LP2(0x36, APTR, OpenAmigaGuideA, struct NewAmigaGuide *, nag, a0, struct ←↩

TagItem *, attrs, a1, \
, AMIGAGUIDE_BASE_NAME)

As you can see, this implementation is much more compact. ‘LP2’
macro (and others) are defined in ‘inline/macros.h’, which is being
included at the beginning of every ‘inline’ file.

#define LP2(offs, rt, name, t1, v1, r1, t2, v2, r2, bt, bn) \
({ \

t1 _##name##_v1 = (v1); \
t2 _##name##_v2 = (v2); \
{ \

register rt _##name##_re __asm("d0"); \
register struct Library *const _##name##_bn __asm("a6") = (struct ←↩

Library*)(bn);\
register t1 _n1 __asm(#r1) = _##name##_v1; \
register t2 _n2 __asm(#r2) = _##name##_v2; \

fd2inline 11 / 16

__asm volatile ("jsr a6@(-"#offs":W)" \
: "=r" (_##name##_re) \
: "r" (_##name##_bn), "r"(_n1), "r"(_n2) \
: "d0", "d1", "a0", "a1", "cc", "memory"); \
_##name##_re; \

} \
})

If you compare this with old inlines (see
Old format
) you’ll notice

many similarities. Indeed, both implementations use the same tricks.

However, with new inlines, inlining is performed very early, at
preprocessing stage. This makes compilation much faster, less memory
hungry and independent of optimization options used. This also makes it
very easy to use local library bases -- all that’s needed is defining a
local variable with the same name as library base.

Unfortunately, using preprocessor instead of compiler for making
function calls has its drawback, as described earlier (see

Old format
).

There is nothing you can do about it but modify your code, I’m afraid.

Depending on the type of function, ‘fd2inline’ generates calls to
different ‘LP’ macros.

Macros are distinguished by one or more of qualifiers described
below:

‘digit’
As you might have already guessed, digit indicates the number of
arguments a function accepts. Therefore, it’s mandatory.

‘NR’
This indicates "no return" (‘void’) function.

‘A4, A5’
These two are used when one of the arguments has to be in either
‘a4’ or ‘a5’ register. In certain situations, these registers have
special meaning and have to be handled more carefully.

‘UB’
This indicates "user base" -- library base pointer has to be
specified explicitly by user. Currently, this is used for
‘cia.resource’ only. Since there are two ‘CIA’ chips, programmer
has to specify which one [s]he wants to use.

‘FP’
This means that one of the arguments has a "pointer to function"
type. To overcome strange ‘C’ syntax rules in this case, inside
‘FP’ macros a ‘typedef’ to ‘__fpt’ is performed. ‘inline’ file
passes ‘__fpt’ as argument’s type to ‘LP’ macro. The actual type
of the argument, in a form suitable for a ‘typedef’, is passed as
an additional, last argument.

fd2inline 12 / 16

As you can see, there could be more than a hundred different
variations of ‘LP’ macros. ‘inline/macros.h’ contains only 34, which
are used in current OS version and supported 3rd party libraries. More
macros will be added in future, if needed.

If you had a careful look at the definition of ‘OpenAmigaGuideA’ on
the beginning of this section, you might have noticed that next to last
argument to ‘LP’ macro is not used. New inlines were not implemented in
one evening and they came through many modifications. This unused
argument (which was once a type of library base pointer) is provided
for backwards compatibility. Actually, there are more unnecessary
arguments, like function and argument names, but we decided to left
them in peace.

1.12 fd2inline.guide/Stubs format

Stubs format
============

Stubs format is very similar to old format (see
Old format
). The

functions are not defined as ‘extern’, however.

The main difference is format of ‘varargs’ functions -- they are
actual functions, not preprocessor macros.

APTR OpenAmigaGuide(struct NewAmigaGuide *nag, int tag, ...)
{

return OpenAmigaGuideA(nag, (struct TagItem *)&tag);
}

This format is not suitable for inlining, and it is not provided for
this purpose. It is provided for building of linker libraries with
stubs (see

Using fd2inline
).

1.13 fd2inline.guide/Authors

Authors

First parser for ‘GCC inlines’ was written in ‘Perl’ by Markus Wild.

It had several limitations, which were apparently hard to fix in
‘Perl’. That’s why Wolfgang Baron decided to write a new parser in ‘C’.

fd2inline 13 / 16

However, for some reason he has never finished it. In early 1995
Rainer F. Trunz took over its development and "improved, updated,
simply made it workable" (it’s a quote from changes log). It still
contained quite a lot of bugs, though.

In more-or-less the same time I started a discussion on
‘amiga-gcc-port’ mailing list about improving quality of ‘inlines’. The
most important idea came from Matthias Fleischer -- he introduced new
format of ‘inlines’ (see

New format
). Since I started the discussion,

I volunteered to make improvements to ‘inlines’ parser. Having no idea
about programming in ‘Perl’, I decided to modify the parser written in
‘C’. I fixed all the bugs known to me, added some new features and
wrote this terribly long documentation :-).

Not all of the files distributed in ‘FD2InLine’ archives were
created by me or ‘FD2InLine’. Most of the files in ‘include/proto’, as
well as a few files in ‘include/inline’ (‘alib.h’, ‘strsub.h’ and
‘stubs.h’) were written by Gunther Nikl (with some modifications by
Joerg Hoehle).

If you have any comments concerning this work, please write to:

ade-gcc@ninemoons.com

This is a list where most of ADE GCC developers and activists are
subscribed, so you are practically guaranteed to get a reply.

However, if you for some reason wanted to contact me personally, do
it in one of the following ways:

* E-mail (preferred :-):

iskra@student.uci.agh.edu.pl

Should be valid until October 1999 (at least I hope so :-).

* Snail-mail (expect to wait long for a reply :-):

Kamil Iskra
Luzycka 51/258
30-658 Krakow
Poland

Latest version of this package should always be available on my WWW
page:

http://student.uci.agh.edu.pl/~iskra

1.14 fd2inline.guide/Index

fd2inline 14 / 16

Index

<library>_BASE_NAME
Using inlines

__CONSTLIBBASEDECL__
Using inlines

__NOLIBBASE__
Using inlines

USEOLDEXEC
Using inlines

Address
Authors

Authors
Authors

Background
Background

CLIB files
Background

Creating inlines
Using fd2inline

FD files
Background

Function arguments
Background

Function calls format in shared libraries
Background

History
Authors

Installation
Installation

Internals
Internals

Introduction
Introduction

Jump table
Background

Latest version
Authors

fd2inline 15 / 16

Libraries
Background

Library base
Background

Linker libraries
Background

Making efficient calls
Using inlines

New inline format
New format

Old inline format
Old format

Other parsers
Authors

Preprocessor symbols
Using inlines

Rebuilding
Rebuilding

Reporting bugs
Authors

Source code
Rebuilding

Stubs inline format
Stubs format

Usage
Usage

Using FD2Inline
Using fd2inline

Using inlines
Using inlines

Varargs functions
Background

Varargs problems
Old format

What FD2InLine is
Introduction

Where to put it
Installation

fd2inline 16 / 16

	fd2inline
	fd2inline.guide
	fd2inline.guide/Introduction
	fd2inline.guide/Installation
	fd2inline.guide/Usage
	fd2inline.guide/Using inlines
	fd2inline.guide/Using fd2inline
	fd2inline.guide/Rebuilding
	fd2inline.guide/Internals
	fd2inline.guide/Background
	fd2inline.guide/Old format
	fd2inline.guide/New format
	fd2inline.guide/Stubs format
	fd2inline.guide/Authors
	fd2inline.guide/Index

