
m4

m4 ii

COLLABORATORS

TITLE :

m4

ACTION NAME DATE SIGNATURE

WRITTEN BY January 15, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

m4 iii

Contents

1 m4 1

1.1 m4.guide . 1

1.2 m4.guide/Preliminaries . 6

1.3 m4.guide/Intro . 7

1.4 m4.guide/History . 8

1.5 m4.guide/Invoking m4 . 8

1.6 m4.guide/Bugs . 11

1.7 m4.guide/Manual . 12

1.8 m4.guide/Syntax . 13

1.9 m4.guide/Names . 13

1.10 m4.guide/Quoted strings . 14

1.11 m4.guide/Other tokens . 14

1.12 m4.guide/Comments . 14

1.13 m4.guide/Macros . 15

1.14 m4.guide/Invocation . 15

1.15 m4.guide/Inhibiting Invocation . 16

1.16 m4.guide/Macro Arguments . 17

1.17 m4.guide/Quoting Arguments . 18

1.18 m4.guide/Macro expansion . 18

1.19 m4.guide/Definitions . 19

1.20 m4.guide/Define . 19

1.21 m4.guide/Arguments . 20

1.22 m4.guide/Pseudo Arguments . 21

1.23 m4.guide/Undefine . 22

1.24 m4.guide/Defn . 23

1.25 m4.guide/Pushdef . 24

1.26 m4.guide/Indir . 25

1.27 m4.guide/Builtin . 25

1.28 m4.guide/Conditionals . 26

1.29 m4.guide/Ifdef . 26

m4 iv

1.30 m4.guide/Ifelse . 26

1.31 m4.guide/Loops . 27

1.32 m4.guide/Debugging . 29

1.33 m4.guide/Dumpdef . 30

1.34 m4.guide/Trace . 30

1.35 m4.guide/Debug Levels . 31

1.36 m4.guide/Debug Output . 32

1.37 m4.guide/Input Control . 33

1.38 m4.guide/Dnl . 33

1.39 m4.guide/Changequote . 34

1.40 m4.guide/Changecom . 35

1.41 m4.guide/Changeword . 36

1.42 m4.guide/M4wrap . 37

1.43 m4.guide/File Inclusion . 38

1.44 m4.guide/Include . 38

1.45 m4.guide/Search Path . 39

1.46 m4.guide/Diversions . 40

1.47 m4.guide/Divert . 40

1.48 m4.guide/Undivert . 41

1.49 m4.guide/Divnum . 42

1.50 m4.guide/Cleardiv . 43

1.51 m4.guide/Text handling . 44

1.52 m4.guide/Len . 44

1.53 m4.guide/Index . 45

1.54 m4.guide/Regexp . 45

1.55 m4.guide/Substr . 46

1.56 m4.guide/Translit . 46

1.57 m4.guide/Patsubst . 47

1.58 m4.guide/Format . 48

1.59 m4.guide/Arithmetic . 49

1.60 m4.guide/Incr . 49

1.61 m4.guide/Eval . 49

1.62 m4.guide/UNIX commands . 52

1.63 m4.guide/Syscmd . 52

1.64 m4.guide/Esyscmd . 53

1.65 m4.guide/Sysval . 53

1.66 m4.guide/Maketemp . 54

1.67 m4.guide/Miscellaneous . 54

1.68 m4.guide/Errprint . 54

m4 v

1.69 m4.guide/M4exit . 55

1.70 m4.guide/Frozen files . 56

1.71 m4.guide/Compatibility . 58

1.72 m4.guide/Extensions . 58

1.73 m4.guide/Incompatibilities . 60

1.74 m4.guide/Other Incompat . 60

1.75 m4.guide/Concept index . 61

1.76 m4.guide/Macro index . 68

m4 1 / 71

Chapter 1

m4

1.1 m4.guide

GNU m4

GNU m4 is an implementation of the traditional UNIX macro processor.
It is mostly SVR4 compatible, although it has some extensions (for
example, handling more than 9 positional parameters to macros). m4
also has builtin functions for including files, running shell commands,
doing arithmetic, etc. Autoconf needs GNU m4 for generating configure
scripts, but not for running them.

GNU m4 was originally written by Ren’e Seindal, with subsequent
changes by Franc,ois Pinard and other volunteers on the Internet. All
names and email addresses can be found in the file THANKS from the GNU
m4 distribution.

This is release 1.4. It is now to be considered stable, future
releases are only meant to fix bugs, increase speed, or improve
documentation. However...

An experimental feature, which would improve m4 usefulness, allows
for changing the syntax for what is a word in m4. You should use:

./configure --enable-changeword

if you want this feature compiled in. The current implementation slows
down m4 considerably and is hardly acceptable. So, it might go away,
do not count on it yet.

Preliminaries
Introduction and preliminaries

Syntax
Lexical and syntactic conventions

Macros
How to invoke macros

m4 2 / 71

Definitions
How to define new macros

Conditionals
Conditionals and loops

Debugging
How to debug macros and input

Input Control
Input control

File Inclusion
File inclusion

Diversions
Diverting and undiverting output

Text handling
Macros for text handling

Arithmetic
Macros for doing arithmetic

UNIX commands
Macros for running UNIX commands

Miscellaneous
Miscellaneous builtin macros

Frozen files
Fast loading of frozen states

Compatibility
Compatibility with other versions of m4

Concept index
Index for many concepts

Macro index
Index for all m4 macros

-- The Detailed Node Listing --

Introduction and preliminaries

Intro
Introduction to m4

History
Historical references

m4 3 / 71

Invoking m4
Invoking m4

Bugs
Problems and bugs

Manual
Using this manual

Lexical and syntactic conventions

Names
Macro names

Quoted strings
Quoting input to m4

Other tokens
Other kinds of input tokens

Comments
Comments in m4 input

How to invoke macros

Invocation
Macro invocation

Inhibiting Invocation
Preventing macro invocation

Macro Arguments
Macro arguments

Quoting Arguments
On Quoting Arguments to macros

Macro expansion
Expanding macros

How to define new macros

Define
Defining a new macro

Arguments
Arguments to macros

Pseudo Arguments
Pseudo arguments to macros

Undefine

m4 4 / 71

Deleting a macro

Defn
Renaming macros

Pushdef
Temporarily redefining macros

Indir
Indirect call of macros

Builtin
Indirect call of builtins

Conditionals, loops and recursion

Ifdef
Testing if a macro is defined

Ifelse
If-else construct, or multibranch

Loops
Loops and recursion in m4

How to debug macros and input

Dumpdef
Displaying macro definitions

Trace
Tracing macro calls

Debug Levels
Controlling debugging output

Debug Output
Saving debugging output

Input control

Dnl
Deleting whitespace in input

Changequote
Changing the quote characters

Changecom
Changing the comment delimiters

Changeword
Changing the lexical structure of words

m4 5 / 71

M4wrap
Saving input until end of input

File inclusion

Include
Including named files

Search Path
Searching for include files

Diverting and undiverting output

Divert
Diverting output

Undivert
Undiverting output

Divnum
Diversion numbers

Cleardiv
Discarding diverted text

Macros for text handling

Len
Calculating length of strings

Index
Searching for substrings

Regexp
Searching for regular expressions

Substr
Extracting substrings

Translit
Translating characters

Patsubst
Substituting text by regular expression

Format
Formatting strings (printf-like)

Macros for doing arithmetic

Incr
Decrement and increment operators

m4 6 / 71

Eval
Evaluating integer expressions

Running UNIX commands

Syscmd
Executing simple commands

Esyscmd
Reading the output of commands

Sysval
Exit codes

Maketemp
Making names for temporary files

Miscellaneous builtin macros

Errprint
Printing error messages

M4exit
Exiting from m4

Compatibility with other versions of m4

Extensions
Extensions in GNU m4

Incompatibilities
Facilities in System V m4 not in GNU m4

Other Incompat
Other incompatibilities

1.2 m4.guide/Preliminaries

Introduction and preliminaries

This first chapter explains what is GNU m4, where m4 comes from, how
to read and use this documentation, how to call the m4 program and how
to report bugs about it. It concludes by giving tips for reading the
remainder of the manual.

The following chapters then detail all the features of the m4
language.

m4 7 / 71

Intro
Introduction to m4

History
Historical references

Invoking m4
Invoking m4

Bugs
Problems and bugs

Manual
Using this manual

1.3 m4.guide/Intro

Introduction to m4
==================

m4 is a macro processor, in the sense that it copies its input to
the output, expanding macros as it goes. Macros are either builtin or
user-defined, and can take any number of arguments. Besides just doing
macro expansion, m4 has builtin functions for including named files,
running UNIX commands, doing integer arithmetic, manipulating text in
various ways, recursion, etc... m4 can be used either as a front-end
to a compiler, or as a macro processor in its own right.

The m4 macro processor is widely available on all UNIXes. Usually,
only a small percentage of users are aware of its existence. However,
those who do often become commited users. The growing popularity of
GNU Autoconf, which prerequires GNU m4 for generating the configure
scripts, is an incentive for many to install it, while these people
will not themselves program in m4. GNU m4 is mostly compatible with the
System V, Release 3 version, except for some minor differences. See

Compatibility
for more details.

Some people found m4 to be fairly addictive. They first use m4 for
simple problems, then take bigger and bigger challenges, learning how
to write complex m4 sets of macros along the way. Once really
addicted, users pursue writing of sophisticated m4 applications even to
solve simple problems, devoting more time debugging their m4 scripts
than doing real work. Beware that m4 may be dangerous for the health
of compulsive programmers.

m4 8 / 71

1.4 m4.guide/History

Historical references
=====================

The historical notes included here are fairly incomplete, and not
authoritative at all. Please knowledgeable users help us to more
properly write this section.

GPM has been an important ancestor of m4. See C. Stratchey: "A
General Purpose Macro generator", Computer Journal 8,3 (1965), pp. 225
ff. GPM is also succintly described into David Gries classic "Compiler
Construction for Digital Computers".

While GPM was pure, m4 was meant to deal more with the true
intricacies of real life: macros could be recognized with being
pre-announced, skipping whitespace or end-of-lines was made easier,
more constructs were builtin instead of derived, etc.

Originally, m4 was the engine for Rational FORTRAN preprocessor,
that is, the ratfor equivalent of cpp.

1.5 m4.guide/Invoking m4

Invoking m4
===========

The format of the m4 command is:

m4 [OPTION...] [MACRO-DEFINITIONS...] [INPUT-FILE...]

All options begin with -, or if long option names are used, with a
--. A long option name need not be written completely, and
unambigous prefix is sufficient. m4 understands the following options:

--version
Print the version number of the program on standard output, then
immediately exit m4 without reading any INPUT-FILES.

--help
Print an help summary on standard output, then immediately exit m4
without reading any INPUT-FILES.

-G
--traditional

Suppress all the extensions made in this implementation, compared
to the System V version. See

Compatibility
, for a list of these.

-E
--fatal-warnings

Stop execution and exit m4 once the first warning has been issued,

m4 9 / 71

considering all of them to be fatal.

-dFLAGS
--debug=FLAGS

Set the debug-level according to the flags FLAGS. The debug-level
controls the format and amount of information presented by the
debugging functions. See

Debug Levels
for more details on the

format and meaning of FLAGS.

-lNUM
--arglength=NUM

Restrict the size of the output generated by macro tracing. See

Debug Levels
for more details.

-oFILE
--error-output=FILE

Redirect debug and trace output to the named file. Error messages
are still printed on the standard error output. See

Debug Output
for more details.

-IDIR
--include=DIR

Make m4 search DIR for included files that are not found in the
current working directory. See

Search Path
for more details.

-e
--interactive

Makes this invocation of m4 interactive. This means that all
output will be unbuffered, and interrupts will be ignored.

-s
--synclines

Generate synchronisation lines, for use by the C preprocessor or
other similar tools. This is useful, for example, when m4 is used
as a front end to a compiler. Source file name and line number
information is conveyed by directives of the form #line LINENUM
"FILENAME", which are inserted as needed into the middle of the
input. Such directives mean that the following line originated or
was expanded from the contents of input file FILENAME at line
LINENUM. The "FILENAME" part is often omitted when the file name
did not change from the previous directive.

Synchronisation directives are always given on complete lines per
themselves. When a synchronisation discrepancy occurs in the
middle of an output line, the associated synchronisation directive
is delayed until the beginning of the next generated line.

-P
--prefix-builtins

Internally modify all builtin macro names so they all start with

m4 10 / 71

the prefix m4_. For example, using this option, one should write
m4_define instead of define, and m4___file__ instead of
__file__.

-WREGEXP
--word-regexp=REGEXP

Use an alternative syntax for macro names. This experimental
option might not be present on all GNU m4 implementations. (see

Changeword
).

-HN
--hashsize=N

Make the internal hash table for symbol lookup be N entries big.
The number should be prime. The default is 509 entries. It
should not be necessary to increase this value, unless you define
an excessive number of macros.

-LN
--nesting-limit=N

Artificially limit the nesting of macro calls to N levels,
stopping program execution if this limit is ever exceeded. When
not specified, nesting is limited to 250 levels.

The precise effect of this option might be more correctly
associated with textual nesting than dynamic recursion. It has
been useful when some complex m4 input was generated by mechanical
means. Most users would never need this option. If shown to be
obtrusive, this option (which is still experimental) might well
disappear.

This option does not have the ability to break endless rescanning
loops, while these do not necessarily consume much memory or stack
space. Through clever usage of rescanning loops, one can request
complex, time-consuming computations to m4 with useful results.
Putting limitations in this area would break m4 power. There are
many pathological cases: define(‘a’, ‘a’)a is only the simplest
example (but see

Compatibility
). Expecting GNU m4 to detect these

would be a little like expecting a compiler system to detect and
diagnose endless loops: it is a quite hard problem in general, if
not undecidable!

-Q
--quiet
--silent

Suppress warnings about missing or superflous arguments in macro
calls.

-B
-S
-T

These options are present for compatibility with System V m4, but
do nothing in this implementation.

m4 11 / 71

-NN
--diversions=N

These options are present only for compatibility with previous
versions of GNU m4, and were controlling the number of possible
diversions which could be used at the same time. They do nothing,
because there is no fixed limit anymore.

Macro definitions and deletions can be made on the command line, by
using the -D and -U options. They have the following format:

-DNAME
-DNAME=VALUE
--define=NAME
--define=NAME=VALUE

This enters NAME into the symbol table, before any input files are
read. If =VALUE is missing, the value is taken to be the empty
string. The VALUE can be any string, and the macro can be defined
to take arguments, just as if it was defined from within the input.

-UNAME
--undefine=NAME

This deletes any predefined meaning NAME might have. Obviously,
only predefined macros can be deleted in this way.

-tNAME
--trace=NAME

This enters NAME into the symbol table, as undefined but traced.
The macro will consequently be traced from the point it is defined.

-FFILE
--freeze-state FILE

Once execution is finished, write out the frozen state on the
specified FILE (see

Frozen files
).

-RFILE
--reload-state FILE

Before execution starts, recover the internal state from the
specified frozen FILE (see

Frozen files
).

The remaining arguments on the command line are taken to be input
file names. If no names are present, the standard input is read. A
file name of - is taken to mean the standard input.

The input files are read in the sequence given. The standard input
can only be read once, so the filename - should only appear once on the
command line.

1.6 m4.guide/Bugs

m4 12 / 71

Problems and bugs
=================

If you have problems with GNU m4 or think you’ve found a bug, please
report it. Before reporting a bug, make sure you’ve actually found a
real bug. Carefully reread the documentation and see if it really says
you can do what you’re trying to do. If it’s not clear whether you
should be able to do something or not, report that too; it’s a bug in
the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate
it to the smallest possible input file that reproduces the problem.
Then send us the input file and the exact results m4 gave you. Also
say what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you’ve got a precise problem, send e-mail to (Internet)
bug-gnu-utils@prep.ai.mit.edu or (UUCP)
mit-eddie!prep.ai.mit.edu!bug-gnu-utils. Please include the
version number of m4 you are using. You can get this information with
the command m4 --version.

Non-bug suggestions are always welcome as well. If you have
questions about things that are unclear in the documentation or are
just obscure features, please report them too.

1.7 m4.guide/Manual

Using this manual
=================

This manual contains a number of examples of m4 input and output,
and a simple notation is used to distinguish input, output and error
messages from m4. Examples are set out from the normal text, and shown
in a fixed width font, like this

This is an example of an example!

To distinguish input from output, all output from m4 is prefixed by
the string =>, and all error messages by the string error-->. Thus

Example of input line
=>Output line from m4
error-->and an error message

As each of the predefined macros in m4 is described, a prototype
call of the macro will be shown, giving descriptive names to the
arguments, e.g.,

regexp(STRING, REGEXP, opt REPLACEMENT)

All macro arguments in m4 are strings, but some are given special
interpretation, e.g., as numbers, filenames, regular expressions, etc.

m4 13 / 71

The opt before the third argument shows that this argument is
optional--if it is left out, it is taken to be the empty string. An
ellipsis (...) last in the argument list indicates that any number of
arguments may follow.

This document consistently writes and uses builtin, without an
hyphen, as if it were an English word. This is how the builtin
primitive is spelled within m4.

1.8 m4.guide/Syntax

Lexical and syntactic conventions

As m4 reads its input, it separates it into tokens. A token is
either a name, a quoted string, or any single character, that is not a
part of either a name or a string. Input to m4 can also contain
comments.

Names
Macro names

Quoted strings
Quoting input to m4

Other tokens
Other kinds of input tokens

Comments
Comments in m4 input

1.9 m4.guide/Names

Names
=====

A name is any sequence of letters, digits, and the character _
(underscore), where the first character is not a digit. If a name has
a macro definition, it will be subject to macro expansion (see

Macros
).

Examples of legal names are: foo, _tmp, and name01.

m4 14 / 71

1.10 m4.guide/Quoted strings

Quoted strings
==============

A quoted string is a sequence of characters surrounded by the quotes
‘ and ’, where the number of start and end quotes within the string
balances. The value of a string token is the text, with one level of
quotes stripped off. Thus

‘’

is the empty string, and

‘‘quoted’’

is the string

‘quoted’

The quote characters can be changed at any time, using the builtin
macro changequote. See

Changequote
for more information.

1.11 m4.guide/Other tokens

Other tokens
============

Any character, that is neither a part of a name, nor of a quoted
string, is a token by itself.

1.12 m4.guide/Comments

Comments
========

Comments in m4 are normally delimited by the characters # and
newline. All characters between the comment delimiters are ignored,
but the entire comment (including the delimiters) is passed through to
the output--comments are not discarded by m4.

Comments cannot be nested, so the first newline after a # ends the
comment. The commenting effect of the begin comment character can be
inhibited by quoting it.

The comment delimiters can be changed to any string at any time,
using the builtin macro changecom. See

m4 15 / 71

Changecom
for more information.

1.13 m4.guide/Macros

How to invoke macros

This chapter covers macro invocation, macro arguments and how macro
expansion is treated.

Invocation
Macro invocation

Inhibiting Invocation
Preventing macro invocation

Macro Arguments
Macro arguments

Quoting Arguments
On Quoting Arguments to macros

Macro expansion
Expanding macros

1.14 m4.guide/Invocation

Macro invocation
================

Macro invocations has one of the forms

name

which is a macro invocation without any arguments, or

name(arg1, arg2, ..., argN)

which is a macro invocation with N arguments. Macros can have any
number of arguments. All arguments are strings, but different macros
might interpret the arguments in different ways.

The opening parenthesis must follow the NAME directly, with no
spaces in between. If it does not, the macro is called with no
arguments at all.

m4 16 / 71

For a macro call to have no arguments, the parentheses must be left
out. The macro call

name()

is a macro call with one argument, which is the empty string, not a call
with no arguments.

1.15 m4.guide/Inhibiting Invocation

Preventing macro invocation
===========================

An innovation of the m4 language, compared to some of its
predecessors (like Stratchey’s GPM, for example), is the ability to
recognize macro calls without resorting to any special, prefixed
invocation character. While generally useful, this feature might
sometimes be the source of spurious, unwanted macro calls. So, GNU m4
offers several mechanisms or techniques for inhibiting the recognition
of names as macro calls.

First of all, many builtin macros cannot meaningfully be called
without arguments. For any of these macros, whenever an opening
parenthesis does not immediately follow their name, the builtin macro
call is not triggered. This solves the most usual cases, like for
include or eval. Later in this document, the sentence "This macro
is recognized only when given arguments" refers to this specific
provision.

There is also a command call option (--prefix-builtins, or -P) which
requires all builtin macro names to be prefixed by m4_ for them to be
recognized. The option has no effect whatsoever on user defined
macros. For example, with this option, one has to write m4_dnl and
even m4_m4exit.

If your version of GNU m4 has the changeword feature compiled in,
there it offers far more flexibility in specifying the syntax of macro
names, both builtin or user-defined. See

Changeword
for more

information on this experimental feature.

Of course, the simplest way to prevent a name to be interpreted as a
call to an existing macro is to quote it. The remainder of this
section studies a little more deeply how quoting affects macro
invocation, and how quoting can be used to inhibit macro invocation.

Even if quoting is usually done over the whole macro name, it can
also be done over only a few characters of this name. It is also
possible to quote the empty string, but this works only inside the name.
For example:

‘divert’

m4 17 / 71

‘d’ivert
di‘ver’t
div‘’ert

all yield the string divert. While in both:

‘’divert
divert‘’

the divert builtin macro will be called.

The output of macro evaluations is always rescanned. The following
example would yield the string de, exactly as if m4 has been given
substr(abcde, 3, 2) as input:

define(‘x’, ‘substr(ab’)
define(‘y’, ‘cde, 3, 2)’)
x‘’y

Unquoted strings on either side of a quoted string are subject to
being recognized as macro names. In the following example, quoting the
empty string allows for the dnl macro to be recognized as such:

define(‘macro’, ‘di$1’)
macro(v)‘’dnl

Without the quotes, this would rather yield the string divdnl followed
by an end of line.

Quoting may prevent recognizing as a macro name the concatenation of
a macro expansion with the surrounding characters. In this example:

define(‘macro’, ‘di$1’)
macro(v)‘ert’

the input will produce the string divert. If the quote was removed,
the divert builtin would be called instead.

1.16 m4.guide/Macro Arguments

Macro arguments
===============

When a name is seen, and it has a macro definition, it will be
expanded as a macro.

If the name is followed by an opening parenthesis, the arguments
will be collected before the macro is called. If too few arguments are
supplied, the missing arguments are taken to be the empty string. If
there are too many arguments, the excess arguments are ignored.

Normally m4 will issue warnings if a builtin macro is called with an
inappropriate number of arguments, but it can be suppressed with the -Q

m4 18 / 71

command line option. For user defined macros, there is no check of the
number of arguments given.

Macros are expanded normally during argument collection, and whatever
commas, quotes and parentheses that might show up in the resulting
expanded text will serve to define the arguments as well. Thus, if FOO
expands to , b, c, the macro call

bar(a foo, d)

is a macro call with four arguments, which are a , b, c and d. To
understand why the first argument contains whitespace, remember that
leading unquoted whitespace is never part of an argument, but trailing
whitespace always is.

1.17 m4.guide/Quoting Arguments

Quoting macro arguments
=======================

Each argument has leading unquoted whitespace removed. Within each
argument, all unquoted parentheses must match. For example, if FOO is
a macro,

foo(() (‘(’) ‘(’)

is a macro call, with one argument, whose value is () (() (.

It is common practice to quote all arguments to macros, unless you
are sure you want the arguments expanded. Thus, in the above example
with the parentheses, the ‘right’ way to do it is like this:

foo(‘() (() (’)

It is, however, in certain cases necessary to leave out quotes for
some arguments, and there is nothing wrong in doing it. It just makes
life a bit harder, if you are not careful.

1.18 m4.guide/Macro expansion

Macro expansion
===============

When the arguments, if any, to a macro call have been collected, the
macro is expanded, and the expansion text is pushed back onto the input
(unquoted), and reread. The expansion text from one macro call might
therefore result in more macros being called, if the calls are included,
completely or partially, in the first macro calls’ expansion.

Taking a very simple example, if FOO expands to bar, and BAR expands

m4 19 / 71

to Hello world, the input

foo

will expand first to bar, and when this is reread and expanded, into
Hello world.

1.19 m4.guide/Definitions

How to define new macros

Macros can be defined, redefined and deleted in several different
ways. Also, it is possible to redefine a macro, without losing a
previous value, which can be brought back at a later time.

Define
Defining a new macro

Arguments
Arguments to macros

Pseudo Arguments
Pseudo arguments to macros

Undefine
Deleting a macro

Defn
Renaming macros

Pushdef
Temporarily redefining macros

Indir
Indirect call of macros

Builtin
Indirect call of builtins

1.20 m4.guide/Define

Defining a macro
================

The normal way to define or redefine macros is to use the builtin

m4 20 / 71

define:

define(NAME [, EXPANSION])

which defines NAME to expand to EXPANSION. If EXPANSION is not given,
it is taken to be empty.

The expansion of define is void.

The following example defines the macro FOO to expand to the text
Hello World..

define(‘foo’, ‘Hello world.’)
=>
foo
=>Hello world.

The empty line in the output is there because the newline is not a
part of the macro definition, and it is consequently copied to the
output. This can be avoided by use of the macro dnl. See

Dnl
, for

details.

The macro define is recognized only with parameters.

1.21 m4.guide/Arguments

Arguments to macros
===================

Macros can have arguments. The Nth argument is denoted by $n in the
expansion text, and is replaced by the Nth actual argument, when the
macro is expanded. Here is a example of a macro with two arguments.
It simply exchanges the order of the two arguments.

define(‘exch’, ‘$2, $1’)
=>
exch(arg1, arg2)
=>arg2, arg1

This can be used, for example, if you like the arguments to define
to be reversed.

define(‘exch’, ‘$2, $1’)
=>
define(exch(‘‘expansion text’’, ‘‘macro’’))
=>
macro
=>expansion text

See
Quoting Arguments

m4 21 / 71

, for an explanation of the double quotes.

GNU m4 allows the number following the $ to consist of one or more
digits, allowing macros to have any number of arguments. This is not
so in UNIX implementations of m4, which only recognize one digit.

As a special case, the zero’th argument, $0, is always the name of
the macro being expanded.

define(‘test’, ‘‘Macro name: $0’’)
=>
test
=>Macro name: test

If you want quoted text to appear as part of the expansion text,
remember that quotes can be nested in quoted strings. Thus, in

define(‘foo’, ‘This is macro ‘foo’.’)
=>
foo
=>This is macro foo.

The foo in the expansion text is not expanded, since it is a quoted
string, and not a name.

1.22 m4.guide/Pseudo Arguments

Special arguments to macros
===========================

There is a special notation for the number of actual arguments
supplied, and for all the actual arguments.

The number of actual arguments in a macro call is denoted by $# in
the expansion text. Thus, a macro to display the number of arguments
given can be

define(‘nargs’, ‘$#’)
=>
nargs
=>0
nargs()
=>1
nargs(arg1, arg2, arg3)
=>3

The notation $* can be used in the expansion text to denote all the
actual arguments, unquoted, with commas in between. For example

define(‘echo’, ‘$*’)
=>
echo(arg1, arg2, arg3 , arg4)
=>arg1,arg2,arg3 ,arg4

m4 22 / 71

Often each argument should be quoted, and the notation $@ handles
that. It is just like $*, except that it quotes each argument. A
simple example of that is:

define(‘echo’, ‘$@’)
=>
echo(arg1, arg2, arg3 , arg4)
=>arg1,arg2,arg3 ,arg4

Where did the quotes go? Of course, they were eaten, when the
expanded text were reread by m4. To show the difference, try

define(‘echo1’, ‘$*’)
=>
define(‘echo2’, ‘$@’)
=>
define(‘foo’, ‘This is macro ‘foo’.’)
=>
echo1(foo)
=>This is macro This is macro foo..
echo2(foo)
=>This is macro foo.

See
Trace
, if you do not understand this.

A $ sign in the expansion text, that is not followed by anything m4
understands, is simply copied to the macro expansion, as any other text
is.

define(‘foo’, ‘$$$ hello $$$’)
=>
foo
=>$$$ hello $$$

If you want a macro to expand to something like $12, put a pair of
quotes after the $. This will prevent m4 from interpreting the $ sign
as a reference to an argument.

1.23 m4.guide/Undefine

Deleting a macro
================

A macro definition can be removed with undefine:

undefine(NAME)

which removes the macro NAME. The macro name must necessarily be
quoted, since it will be expanded otherwise.

m4 23 / 71

The expansion of undefine is void.

foo
=>foo
define(‘foo’, ‘expansion text’)
=>
foo
=>expansion text
undefine(‘foo’)
=>
foo
=>foo

It is not an error for NAME to have no macro definition. In that
case, undefine does nothing.

The macro undefine is recognized only with parameters.

1.24 m4.guide/Defn

Renaming macros
===============

It is possible to rename an already defined macro. To do this, you
need the builtin defn:

defn(NAME)

which expands to the quoted definition of NAME. If the argument is not
a defined macro, the expansion is void.

If NAME is a user-defined macro, the quoted definition is simply the
quoted expansion text. If, instead, NAME is a builtin, the expansion
is a special token, which points to the builtin’s internal definition.
This token is only meaningful as the second argument to define (and
pushdef), and is ignored in any other context.

Its normal use is best understood through an example, which shows
how to rename undefine to zap:

define(‘zap’, defn(‘undefine’))
=>
zap(‘undefine’)
=>
undefine(‘zap’)
=>undefine(zap)

In this way, defn can be used to copy macro definitions, and also
definitions of builtin macros. Even if the original macro is removed,
the other name can still be used to access the definition.

The macro defn is recognized only with parameters.

m4 24 / 71

1.25 m4.guide/Pushdef

Temporarily redefining macros
=============================

It is possible to redefine a macro temporarily, reverting to the
previous definition at a later time. This is done with the builtins
pushdef and popdef:

pushdef(NAME [, EXPANSION])
popdef(NAME)

which are quite analogous to define and undefine.

These macros work in a stack-like fashion. A macro is temporarily
redefined with pushdef, which replaces an existing definition of NAME,
while saving the previous definition, before the new one is installed.
If there is no previous definition, pushdef behaves exactly like define.

If a macro has several definitions (of which only one is accessible),
the topmost definition can be removed with popdef. If there is no
previous definition, popdef behaves like undefine.

define(‘foo’, ‘Expansion one.’)
=>
foo
=>Expansion one.
pushdef(‘foo’, ‘Expansion two.’)
=>
foo
=>Expansion two.
popdef(‘foo’)
=>
foo
=>Expansion one.
popdef(‘foo’)
=>
foo
=>foo

If a macro with several definitions is redefined with define, the
topmost definition is replaced with the new definition. If it is
removed with undefine, all the definitions are removed, and not only
the topmost one.

define(‘foo’, ‘Expansion one.’)
=>
foo
=>Expansion one.
pushdef(‘foo’, ‘Expansion two.’)
=>
foo
=>Expansion two.
define(‘foo’, ‘Second expansion two.’)
=>
foo

m4 25 / 71

=>Second expansion two.
undefine(‘foo’)
=>
foo
=>foo

It is possible to temporarily redefine a builtin with pushdef and
defn.

The macros pushdef and popdef are recognized only with parameters.

1.26 m4.guide/Indir

Indirect call of macros
=======================

Any macro can be called indirectly with indir:

indir(NAME, ...)

which results in a call to the macro NAME, which is passed the rest of
the arguments. This can be used to call macros with "illegal" names
(define allows such names to be defined):

define(‘$$internal$macro’, ‘Internal macro (name ‘$0’)’)
=>
$$internal$macro
=>$$internal$macro
indir(‘$$internal$macro’)
=>Internal macro (name $$internal$macro)

The point is, here, that larger macro packages can have private
macros defined, that will not be called by accident. They can only be
called through the builtin indir.

1.27 m4.guide/Builtin

Indirect call of builtins
=========================

Builtin macros can be called indirectly with builtin:

builtin(NAME, ...)

which results in a call to the builtin NAME, which is passed the rest
of the arguments. This can be used, if NAME has been given another
definition that has covered the original.

The macro builtin is recognized only with parameters.

m4 26 / 71

1.28 m4.guide/Conditionals

Conditionals, loops and recursion

Macros, expanding to plain text, perhaps with arguments, are not
quite enough. We would like to have macros expand to different things,
based on decisions taken at run-time. E.g., we need some kind of
conditionals. Also, we would like to have some kind of loop construct,
so we could do something a number of times, or while some condition is
true.

Ifdef
Testing if a macro is defined

Ifelse
If-else construct, or multibranch

Loops
Loops and recursion in m4

1.29 m4.guide/Ifdef

Testing macro definitions
=========================

There are two different builtin conditionals in m4. The first is
ifdef:

ifdef(NAME, STRING-1, opt STRING-2)

which makes it possible to test whether a macro is defined or not. If
NAME is defined as a macro, ifdef expands to STRING-1, otherwise to
STRING-2. If STRING-2 is omitted, it is taken to be the empty string
(according to the normal rules).

ifdef(‘foo’, ‘‘foo’ is defined’, ‘‘foo’ is not defined’)
=>foo is not defined
define(‘foo’, ‘’)
=>
ifdef(‘foo’, ‘‘foo’ is defined’, ‘‘foo’ is not defined’)
=>foo is defined

The macro ifdef is recognized only with parameters.

1.30 m4.guide/Ifelse

m4 27 / 71

Comparing strings
=================

The other conditional, ifelse, is much more powerful. It can be
used as a way to introduce a long comment, as an if-else construct, or
as a multibranch, depending on the number of arguments supplied:

ifelse(COMMENT)
ifelse(STRING-1, STRING-2, EQUAL, opt NOT-EQUAL)
ifelse(STRING-1, STRING-2, EQUAL, ...)

Used with only one argument, the ifelse simply discards it and produces
no output. This is a common m4 idiom for introducing a block comment,
as an alternative to repeatedly using dnl. This special usage is
recognized by GNU m4, so that in this case, the warning about missing
arguments is never triggered.

If called with three or four arguments, ifelse expands into EQUAL,
if STRING-1 and STRING-2 are equal (character for character), otherwise
it expands to NOT-EQUAL.

ifelse(foo, bar, ‘true’)
=>
ifelse(foo, foo, ‘true’)
=>true
ifelse(foo, bar, ‘true’, ‘false’)
=>false
ifelse(foo, foo, ‘true’, ‘false’)
=>true

However, ifelse can take more than four arguments. If given more
than four arguments, ifelse works like a case or switch statement in
traditional programming languages. If STRING-1 and STRING-2 are equal,
ifelse expands into EQUAL, otherwise the procedure is repeated with
the first three arguments discarded. This calls for an example:

ifelse(foo, bar, ‘third’, gnu, gnats, ‘sixth’, ‘seventh’)
=>seventh

Naturally, the normal case will be slightly more advanced than these
examples. A common use of ifelse is in macros implementing loops of
various kinds.

The macro ifelse is recognized only with parameters.

1.31 m4.guide/Loops

Loops and recursion
===================

There is no direct support for loops in m4, but macros can be
recursive. There is no limit on the number of recursion levels, other
than those enforced by your hardware and operating system.

m4 28 / 71

Loops can be programmed using recursion and the conditionals
described previously.

There is a builtin macro, shift, which can, among other things, be
used for iterating through the actual arguments to a macro:

shift(...)

It takes any number of arguments, and expands to all but the first
argument, separated by commas, with each argument quoted.

shift(bar)
=>
shift(foo, bar, baz)
=>bar,baz

An example of the use of shift is this macro, which reverses the
order of its arguments:

define(‘reverse’, ‘ifelse($#, 0, , $#, 1, ‘‘$1’’,
‘reverse(shift($@)), ‘$1’’)’)

=>
reverse
=>
reverse(foo)
=>foo
reverse(foo, bar, gnats, and gnus)
=>and gnus, gnats, bar, foo

While not a very interesting macro, it does show how simple loops
can be made with shift, ifelse and recursion.

Here is an example of a loop macro that implements a simple forloop.
It can, for example, be used for simple counting:

forloop(‘i’, 1, 8, ‘i ’)
=>1 2 3 4 5 6 7 8

The arguments are a name for the iteration variable, the starting
value, the final value, and the text to be expanded for each iteration.
With this macro, the macro i is defined only within the loop. After
the loop, it retains whatever value it might have had before.

For-loops can be nested, like

forloop(‘i’, 1, 4, ‘forloop(‘j’, 1, 8, ‘(i, j) ’)
’)
=>(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)
=>(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)
=>(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8)
=>(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8)
=>

The implementation of the forloop macro is fairly straightforward.
The forloop macro itself is simply a wrapper, which saves the previous
definition of the first argument, calls the internal macro _forloop,

m4 29 / 71

and re-establishes the saved definition of the first argument.

The macro _forloop expands the fourth argument once, and tests to
see if it is finished. If it has not finished, it increments the
iteration variable (using the predefined macro incr, see

Incr
), and

recurses.

Here is the actual implementation of forloop:

define(‘forloop’,
‘pushdef(‘$1’, ‘$2’)_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)popdef(‘$1’)’)

define(‘_forloop’,
‘$4‘’ifelse($1, ‘$3’, ,

‘define(‘$1’, incr($1))_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)’)’)

Notice the careful use of quotes. Only three macro arguments are
unquoted, each for its own reason. Try to find out why these three
arguments are left unquoted, and see what happens if they are quoted.

Now, even though these two macros are useful, they are still not
robust enough for general use. They lack even basic error handling of
cases like start value less than final value, and the first argument
not being a name. Correcting these errors are left as an exercise to
the reader.

1.32 m4.guide/Debugging

How to debug macros and input

When writing macros for m4, most of the time they woould not work as
intended (as is the case with most programming languages). There is a
little support for macro debugging in m4.

Dumpdef
Displaying macro definitions

Trace
Tracing macro calls

Debug Levels
Controlling debugging output

Debug Output
Saving debugging output

m4 30 / 71

1.33 m4.guide/Dumpdef

Displaying macro definitions
============================

If you want to see what a name expands into, you can use the builtin
dumpdef:

dumpdef(...)

which accepts any number of arguments. If called without any arguments,
it displays the definitions of all known names, otherwise it displays
the definitions of the names given. The output is printed directly on
the standard error output.

The expansion of dumpdef is void.

define(‘foo’, ‘Hello world.’)
=>
dumpdef(‘foo’)
error-->foo: ‘Hello world.’
=>
dumpdef(‘define’)
error-->define: <define>
=>

The last example shows how builtin macros definitions are displayed.

See
Debug Levels
for information on controlling the details of the

display.

1.34 m4.guide/Trace

Tracing macro calls
===================

It is possible to trace macro calls and expansions through the
builtins traceon and traceoff:

traceon(...)
traceoff(...)

When called without any arguments, traceon and traceoff will turn
tracing on and off, respectively, for all defined macros. When called
with arguments, only the named macros are affected.

The expansion of traceon and traceoff is void.

Whenever a traced macro is called and the arguments have been
collected, the call is displayed. If the expansion of the macro call

m4 31 / 71

is not void, the expansion can be displayed after the call. The output
is printed directly on the standard error output.

define(‘foo’, ‘Hello World.’)
=>
define(‘echo’, ‘$@’)
=>
traceon(‘foo’, ‘echo’)
=>
foo
error-->m4trace: -1- foo -> ‘Hello World.’
=>Hello World.
echo(gnus, and gnats)
error-->m4trace: -1- echo(‘gnus’, ‘and gnats’) -> ‘‘gnus’,‘and gnats’’
=>gnus,and gnats

The number between dashes is the depth of the expansion. It is one
most of the time, signifying an expansion at the outermost level, but it
increases when macro arguments contain unquoted macro calls.

See
Debug Levels
for information on controlling the details of the

display.

1.35 m4.guide/Debug Levels

Controlling debugging output
============================

The -d option to m4 controls the amount of details presented, when
using the macros described in the preceding sections.

The FLAGS following the option can be one or more of the following:

t
Trace all macro calls made in this invocation of m4.

a
Show the actual arguments in each macro call. This applies to all
macro calls if the t flag is used, otherwise only the macros
covered by calls of traceon.

e
Show the expansion of each macro call, if it is not void. This
applies to all macro calls if the t flag is used, otherwise only
the macros covered by calls of traceon.

q
Quote actual arguments and macro expansions in the display with the
current quotes.

c

m4 32 / 71

Show several trace lines for each macro call. A line is shown
when the macro is seen, but before the arguments are collected; a
second line when the arguments have been collected and a third
line after the call has completed.

x
Add a unique ‘macro call id’ to each line of the trace output.
This is useful in connection with the c flag above.

f
Show the name of the current input file in each trace output line.

l
Show the the current input line number in each trace output line.

p
Print a message when a named file is found through the path search
mecanism (see

Search Path
), giving the actual filename used.

i
Print a message each time the current input file is changed,
giving file name and input line number.

V
A shorthand for all of the above flags.

If no flags are specified with the -d option, the default is aeq.
The examples in the previous two sections assumed the default flags.

There is a builtin macro debugmode, which allows on-the-fly control
of the debugging output format:

debugmode(opt FLAGS)

The argument FLAGS should be a subset of the letters listed above. As
special cases, if the argument starts with a +, the flags are added to
the current debug flags, and if it starts with a -, they are removed.
If no argument is present, the debugging flags are set to zero (as if
no -d was given), and with an empty argument the flags are reset to the
default.

1.36 m4.guide/Debug Output

Saving debugging output
=======================

Debug and tracing output can be redirected to files using either the
-o option to m4, or with the builtin macro debugfile:

debugfile(opt FILENAME)

m4 33 / 71

will send all further debug and trace output to FILENAME. If FILENAME
is empty, debug and trace output are discarded and if debugfile is
called without any arguments, debug and trace output are sent to the
standard error output.

1.37 m4.guide/Input Control

Input control

This chapter describes various builtin macros for controlling the
input to m4.

Dnl
Deleting whitespace in input

Changequote
Changing the quote characters

Changecom
Changing the comment delimiters

Changeword
Changing the lexical structure of words

M4wrap
Saving input until end of input

1.38 m4.guide/Dnl

Deleting whitespace in input
============================

The builtin dnl reads and discards all characters, up to and
including the first newline:

dnl

and it is often used in connection with define, to remove the newline
that follow the call to define. Thus

define(‘foo’, ‘Macro ‘foo’.’)dnl A very simple macro, indeed.
foo
=>Macro foo.

The input up to and including the next newline is discarded, as
opposed to the way comments are treated (see

m4 34 / 71

Comments
).

Usually, dnl is immediately followed by an end of line or some other
whitespace. GNU m4 will produce a warning diagnostic if dnl is
followed by an open parenthesis. In this case, dnl will collect and
process all arguments, looking for a matching close parenthesis. All
predictable side effects resulting from this collection will take
place. dnl will return no output. The input following the matching
close parenthesis up to and including the next newline, on whatever
line containing it, will still be discarded.

1.39 m4.guide/Changequote

Changing the quote characters
=============================

The default quote delimiters can be changed with the builtin
changequote:

changequote(opt START, opt END)

where START is the new start-quote delimiter and END is the new
end-quote delimiter. If any of the arguments are missing, the default
quotes (‘ and ’) are used instead of the void arguments.

The expansion of changequote is void.

changequote([,])
=>
define([foo], [Macro [foo].])
=>
foo
=>Macro foo.

If no single character is appropriate, START and END can be of any
length.

changequote([[,]])
=>
define([[foo]], [[Macro [[[foo]]].]])
=>
foo
=>Macro [foo].

Changing the quotes to the empty strings will effectively disable the
quoting mechanism, leaving no way to quote text.

define(‘foo’, ‘Macro ‘FOO’.’)
=>
changequote(,)
=>
foo

m4 35 / 71

=>Macro ‘FOO’.
‘foo’
=>‘Macro ‘FOO’.’

There is no way in m4 to quote a string containing an unmatched left
quote, except using changequote to change the current quotes.

Neither quote string should start with a letter or _ (underscore),
as they will be confused with names in the input. Doing so disables
the quoting mechanism.

1.40 m4.guide/Changecom

Changing comment delimiters
===========================

The default comment delimiters can be changed with the builtin macro
changecom:

changecom(opt START, opt END)

where START is the new start-comment delimiter and END is the new
end-comment delimiter. If any of the arguments are void, the default
comment delimiters (# and newline) are used instead of the void
arguments. The comment delimiters can be of any length.

The expansion of changecom is void.

define(‘comment’, ‘COMMENT’)
=>
A normal comment
=># A normal comment
changecom(‘/*’, ‘*/’)
=>
Not a comment anymore
=># Not a COMMENT anymore
But: /* this is a comment now */ while this is not a comment
=>But: /* this is a comment now */ while this is not a COMMENT

Note how comments are copied to the output, much as if they were
quoted strings. If you want the text inside a comment expanded, quote
the start comment delimiter.

Calling changecom without any arguments disables the commenting
mechanism completely.

define(‘comment’, ‘COMMENT’)
=>
changecom
=>
Not a comment anymore
=># Not a COMMENT anymore

m4 36 / 71

1.41 m4.guide/Changeword

Changing the lexical structure of words
=======================================

The macro changeword and all associated functionnality is
experimental. It is only available if the --enable-changeword
option was given to configure, at GNU m4 installation time. The
functionnality might change or even go away in the future. Do not
rely on it. Please direct your comments about it the same way you
would do for bugs.

A file being processed by m4 is split into quoted strings, words
(potential macro names) and simple tokens (any other single character).
Initially a word is defined by the following regular expression:

[_a-zA-Z][_a-zA-Z0-9]*

Using changeword, you can change this regular expression. Relaxing
m4’s lexical rules might be useful (for example) if you wanted to
apply translations to a file of numbers:

changeword(‘[_a-zA-Z0-9]+’)
define(1, 0)
=>1

Tightening the lexical rules is less useful, because it will
generally make some of the builtins unavailable. You could use it to
prevent accidental call of builtins, for example:

define(‘_indir’, defn(‘indir’))
changeword(‘_[_a-zA-Z0-9]*’)
esyscmd(foo)
_indir(‘esyscmd’, ‘ls’)

Because m4 constructs its words a character at a time, there is a
restriction on the regular expressions that may be passed to
changeword. This is that if your regular expression accepts
foo, it must also accept f and fo.

changeword has another function. If the regular expression supplied
contains any bracketed subexpressions, then text outside the first of
these is discarded before symbol lookup. So:

changecom(‘/*’, ‘*/’)
changeword(‘#\([_a-zA-Z0-9]*\)’)
#esyscmd(ls)

m4 now requires a # mark at the beginning of every macro invocation,
so one can use m4 to preprocess shell scripts without getting shift
commands swallowed, and plain text without losing various common words.

m4’s macro substitution is based on text, while TeX’s is based on
tokens. changeword can throw this difference into relief. For
example, here is the same idea represented in TeX and m4. First, the
TeX version:

m4 37 / 71

\def\a{\message{Hello}}
\catcode‘@=0
\catcode‘\=12
=>@a
=>@bye

Then, the m4 version:

define(a, ‘errprint(‘Hello’)’)
changeword(‘@\([_a-zA-Z0-9]*\)’)
=>@a

In the TeX example, the first line defines a macro a to print the
message Hello. The second line defines @ to be usable instead of \ as
an escape character. The third line defines \ to be a normal printing
character, not an escape. The fourth line invokes the macro a. So,
when TeX is run on this file, it displays the message Hello.

When the m4 example is passed through m4, it outputs
errprint(Hello). The reason for this is that TeX does lexical
analysis of macro definition when the macro is defined. m4 just stores
the text, postponing the lexical analysis until the macro is used.

You should note that using changeword will slow m4 down by a factor
of about seven.

1.42 m4.guide/M4wrap

Saving input
============

It is possible to ‘save’ some text until the end of the normal input
has been seen. Text can be saved, to be read again by m4 when the
normal input has been exhausted. This feature is normally used to
initiate cleanup actions before normal exit, e.g., deleting temporary
files.

To save input text, use the builtin m4wrap:

m4wrap(STRING, ...)

which stores STRING and the rest of the arguments in a safe place, to
be reread when end of input is reached.

define(‘cleanup’, ‘This is the ‘cleanup’ actions.
’)
=>
m4wrap(‘cleanup’)
=>
This is the first and last normal input line.
=>This is the first and last normal input line.
^D
=>This is the cleanup actions.

m4 38 / 71

The saved input is only reread when the end of normal input is seen,
and not if m4exit is used to exit m4.

It is safe to call m4wrap from saved text, but then the order in
which the saved text is reread is undefined. If m4wrap is not used
recursively, the saved pieces of text are reread in the opposite order
in which they were saved (LIFO--last in, first out).

1.43 m4.guide/File Inclusion

File inclusion

m4 allows you to include named files at any point in the input.

Include
Including named files

Search Path
Searching for include files

1.44 m4.guide/Include

Including named files
=====================

There are two builtin macros in m4 for including files:

include(FILENAME)
sinclude(FILENAME)

both of which cause the file named FILENAME to be read by m4. When the
end of the file is reached, input is resumed from the previous input
file.

The expansion of include and sinclude is therefore the contents of
FILENAME.

It is an error for an included file not to exist. If you do not
want error messages about non-existent files, sinclude can be used to
include a file, if it exists, expanding to nothing if it does not.

include(‘no-such-file’)
=>
error-->30.include:2: m4: Cannot open no-such-file: No such file or directory
sinclude(‘no-such-file’)

m4 39 / 71

=>

Assume in the following that the file incl.m4 contains the lines:
Include file start
foo
Include file end

Normally file inclusion is used to insert the contents of a file into
the input stream. The contents of the file will be read by m4 and
macro calls in the file will be expanded:

define(‘foo’, ‘FOO’)
=>
include(‘incl.m4’)
=>Include file start
=>FOO
=>Include file end
=>

The fact that include and sinclude expand to the contents of the
file can be used to define macros that operate on entire files. Here
is an example, which defines bar to expand to the contents of incl.m4:

define(‘bar’, include(‘incl.m4’))
=>
This is ‘bar’: >>>bar<<<
=>This is bar: >>>Include file start
=>foo
=>Include file end
=><<<

This use of include is not trivial, though, as files can contain
quotes, commas and parentheses, which can interfere with the way the m4
parser works.

The builtin macros include and sinclude are recognized only when
given arguments.

1.45 m4.guide/Search Path

Searching for include files
===========================

GNU m4 allows included files to be found in other directories than
the current working directory.

If a file is not found in the current working directory, and the file
name is not absolute, the file will be looked for in a specified search
path. First, the directories specified with the -I option will be
searched, in the order found on the command line. Second, if the
M4PATH environment variable is set, it is expected to contain a
colon-separated list of directories, which will be searched in order.

If the automatic search for include-files causes trouble, the p

m4 40 / 71

debug flag (see
Debug Levels
) can help isolate the problem.

1.46 m4.guide/Diversions

Diverting and undiverting output

Diversions are a way of temporarily saving output. The output of m4
can at any time be diverted to a temporary file, and be reinserted into
the output stream, undiverted, again at a later time.

Numbered diversions are counted from 0 upwards, diversion number 0
being the normal output stream. The number of simultaneous diversions
is limited mainly by the memory used to describe them, because GNU m4
tries to keep diversions in memory. However, there is a limit to the
overall memory usable by all diversions taken altogether (512K,
currently). When this maximum is about to be exceeded, a temporary
file is opened to receive the contents of the biggest diversion still
in memory, freeing this memory for other diversions. So, it is
theoretically possible that the number of diversions be limited by the
number of available file descriptors.

Divert
Diverting output

Undivert
Undiverting output

Divnum
Diversion numbers

Cleardiv
Discarding diverted text

1.47 m4.guide/Divert

Diverting output
================

Output is diverted using divert:

divert(opt NUMBER)

where NUMBER is the diversion to be used. If NUMBER is left out, it is

m4 41 / 71

assumed to be zero.

The expansion of divert is void.

When all the m4 input will have been processed, all existing
diversions are automatically undiverted, in numerical order.

divert(1)
This text is diverted.
divert
=>
This text is not diverted.
=>This text is not diverted.
^D
=>
=>This text is diverted.

Several calls of divert with the same argument do not overwrite the
previous diverted text, but append to it.

If output is diverted to a non-existent diversion, it is simply
discarded. This can be used to suppress unwanted output. A common
example of unwanted output is the trailing newlines after macro
definitions. Here is how to avoid them.

divert(-1)
define(‘foo’, ‘Macro ‘foo’.’)
define(‘bar’, ‘Macro ‘bar’.’)
divert
=>

This is a common programming idiom in m4.

1.48 m4.guide/Undivert

Undiverting output
==================

Diverted text can be undiverted explicitly using the builtin
undivert:

undivert(opt NUMBER, ...)

which undiverts the diversions given by the arguments, in the order
given. If no arguments are supplied, all diversions are undiverted, in
numerical order.

The expansion of undivert is void.

divert(1)
This text is diverted.
divert
=>
This text is not diverted.

m4 42 / 71

=>This text is not diverted.
undivert(1)
=>
=>This text is diverted.
=>

Notice the last two blank lines. One of them comes from the newline
following undivert, the other from the newline that followed the
divert! A diversion often starts with a blank line like this.

When diverted text is undiverted, it is not reread by m4, but rather
copied directly to the current output, and it is therefore not an error
to undivert into a diversion.

When a diversion has been undiverted, the diverted text is discarded,
and it is not possible to bring back diverted text more than once.

divert(1)
This text is diverted first.
divert(0)undivert(1)dnl
=>
=>This text is diverted first.
undivert(1)
=>
divert(1)
This text is also diverted but not appended.
divert(0)undivert(1)dnl
=>
=>This text is also diverted but not appended.

Attempts to undivert the current diversion are silently ignored.

GNU m4 allows named files to be undiverted. Given a non-numeric
argument, the contents of the file named will be copied, uninterpreted,
to the current output. This complements the builtin include (see

Include
). To illustrate the difference, assume the file foo contains

the word bar:

define(‘bar’, ‘BAR’)
=>
undivert(‘foo’)
=>bar
=>
include(‘foo’)
=>BAR
=>

1.49 m4.guide/Divnum

Diversion numbers
=================

m4 43 / 71

The builtin divnum:

divnum

expands to the number of the current diversion.

Initial divnum
=>Initial 0
divert(1)
Diversion one: divnum
divert(2)
Diversion two: divnum
divert
=>
^D
=>
=>Diversion one: 1
=>
=>Diversion two: 2

The last call of divert without argument is necessary, since the
undiverted text would otherwise be diverted itself.

1.50 m4.guide/Cleardiv

Discarding diverted text
========================

Often it is not known, when output is diverted, whether the diverted
text is actually needed. Since all non-empty diversion are brought back
on the main output stream when the end of input is seen, a method of
discarding a diversion is needed. If all diversions should be
discarded, the easiest is to end the input to m4 with divert(-1)
followed by an explicit undivert:

divert(1)
Diversion one: divnum
divert(2)
Diversion two: divnum
divert(-1)
undivert
^D

No output is produced at all.

Clearing selected diversions can be done with the following macro:

define(‘cleardivert’,
‘pushdef(‘_num’, divnum)divert(-1)undivert($@)divert(_num)popdef(‘_num’)’)
=>

It is called just like undivert, but the effect is to clear the
diversions, given by the arguments. (This macro has a nasty bug! You

m4 44 / 71

should try to see if you can find it and correct it.)

1.51 m4.guide/Text handling

Macros for text handling

There are a number of builtins in m4 for manipulating text in
various ways, extracting substrings, searching, substituting, and so on.

Len
Calculating length of strings

Index
Searching for substrings

Regexp
Searching for regular expressions

Substr
Extracting substrings

Translit
Translating characters

Patsubst
Substituting text by regular expression

Format
Formatting strings (printf-like)

1.52 m4.guide/Len

Calculating length of strings
=============================

The length of a string can be calculated by len:

len(STRING)

which expands to the length of STRING, as a decimal number.

len()
=>0
len(‘abcdef’)
=>6

m4 45 / 71

The builtin macro len is recognized only when given arguments.

1.53 m4.guide/Index

Searching for substrings
========================

Searching for substrings is done with index:

index(STRING, SUBSTRING)

which expands to the index of the first occurrence of SUBSTRING in
STRING. The first character in STRING has index 0. If SUBSTRING does
not occur in STRING, index expands to -1.

index(‘gnus, gnats, and armadillos’, ‘nat’)
=>7
index(‘gnus, gnats, and armadillos’, ‘dag’)
=>-1

The builtin macro index is recognized only when given arguments.

1.54 m4.guide/Regexp

Searching for regular expressions
=================================

Searching for regular expressions is done with the builtin regexp:

regexp(STRING, REGEXP, opt REPLACEMENT)

which searches for REGEXP in STRING. The syntax for regular
expressions is the same as in GNU Emacs. See
Syntax of Regular Expressions.

If REPLACEMENT is omitted, regexp expands to the index of the first
match of REGEXP in STRING. If REGEXP does not match anywhere in
STRING, it expands to -1.

regexp(‘GNUs not Unix’, ‘\<[a-z]\w+’)
=>5
regexp(‘GNUs not Unix’, ‘\<Q\w*’)
=>-1

If REPLACEMENT is supplied, regexp changes the expansion to this
argument, with \N substituted by the text matched by the Nth
parenthesized sub-expression of REGEXP, \& being the text the entire
regular expression matched.

regexp(‘GNUs not Unix’, ‘\w\(\w+\)$’, ‘*** \& *** \1 ***’)

m4 46 / 71

=>*** Unix *** nix ***

The builtin macro regexp is recognized only when given arguments.

1.55 m4.guide/Substr

Extracting substrings
=====================

Substrings are extracted with substr:

substr(STRING, FROM, opt LENGTH)

which expands to the substring of STRING, which starts at index FROM,
and extends for LENGTH characters, or to the end of STRING, if LENGTH
is omitted. The starting index of a string is always 0.

substr(‘gnus, gnats, and armadillos’, 6)
=>gnats, and armadillos
substr(‘gnus, gnats, and armadillos’, 6, 5)
=>gnats

The builtin macro substr is recognized only when given arguments.

1.56 m4.guide/Translit

Translating characters
======================

Character translation is done with translit:

translit(STRING, CHARS, REPLACEMENT)

which expands to STRING, with each character that occurs in CHARS
translated into the character from REPLACEMENT with the same index.

If REPLACEMENT is shorter than CHARS, the excess characters are
deleted from the expansion. If REPLACEMENT is omitted, all characters
in STRING, that are present in CHARS are deleted from the expansion.

Both CHARS and REPLACEMENT can contain character-ranges, e.g., a-z
(meaning all lowercase letters) or 0-9 (meaning all digits). To
include a dash - in CHARS or REPLACEMENT, place it first or last.

It is not an error for the last character in the range to be ‘larger’
than the first. In that case, the range runs backwards, i.e., 9-0
means the string 9876543210.

translit(‘GNUs not Unix’, ‘A-Z’)
=>s not nix

m4 47 / 71

translit(‘GNUs not Unix’, ‘a-z’, ‘A-Z’)
=>GNUS NOT UNIX
translit(‘GNUs not Unix’, ‘A-Z’, ‘z-a’)
=>tmfs not fnix

The first example deletes all uppercase letters, the second converts
lowercase to uppercase, and the third ‘mirrors’ all uppercase letters,
while converting them to lowercase. The two first cases are by far the
most common.

The builtin macro translit is recognized only when given arguments.

1.57 m4.guide/Patsubst

Substituting text by regular expression
=======================================

Global substitution in a string is done by patsubst:

patsubst(STRING, REGEXP, opt REPLACEMENT)

which searches STRING for matches of REGEXP, and substitutes
REPLACEMENT for each match. The syntax for regular expressions is the
same as in GNU Emacs.

The parts of STRING that are not covered by any match of REGEXP are
copied to the expansion. Whenever a match is found, the search
proceeds from the end of the match, so a character from STRING will
never be substituted twice. If REGEXP matches a string of zero length,
the start position for the search is incremented, to avoid infinite
loops.

When a replacement is to be made, REPLACEMENT is inserted into the
expansion, with \N substituted by the text matched by the Nth
parenthesized sub-expression of REGEXP, \& being the text the entire
regular expression matched.

The REPLACEMENT argument can be omitted, in which case the text
matched by REGEXP is deleted.

patsubst(‘GNUs not Unix’, ‘^’, ‘OBS: ’)
=>OBS: GNUs not Unix
patsubst(‘GNUs not Unix’, ‘\<’, ‘OBS: ’)
=>OBS: GNUs OBS: not OBS: Unix
patsubst(‘GNUs not Unix’, ‘\w*’, ‘(\&)’)
=>(GNUs)() (not)() (Unix)
patsubst(‘GNUs not Unix’, ‘\w+’, ‘(\&)’)
=>(GNUs) (not) (Unix)
patsubst(‘GNUs not Unix’, ‘[A-Z][a-z]+’)
=>GN not

Here is a slightly more realistic example, which capitalizes
individual word or whole sentences, by substituting calls of the macros
upcase and downcase into the strings.

m4 48 / 71

define(‘upcase’, ‘translit(‘$*’, ‘a-z’, ‘A-Z’)’)dnl
define(‘downcase’, ‘translit(‘$*’, ‘A-Z’, ‘a-z’)’)dnl
define(‘capitalize1’,

‘regexp(‘$1’, ‘^\(\w\)\(\w*\)’, ‘upcase(‘\1’)‘’downcase(‘\2’)’)’)dnl
define(‘capitalize’,

‘patsubst(‘$1’, ‘\w+’, ‘capitalize1(‘\&’)’)’)dnl
capitalize(‘GNUs not Unix’)
=>Gnus Not Unix

The builtin macro patsubst is recognized only when given arguments.

1.58 m4.guide/Format

Formatted output
================

Formatted output can be made with format:

format(FORMAT-STRING, ...)

which works much like the C function printf. The first argument is a
format string, which can contain % specifications, and the expansion of
format is the formatted string.

Its use is best described by a few examples:

define(‘foo’, ‘The brown fox jumped over the lazy dog’)
=>
format(‘The string "%s" is %d characters long’, foo, len(foo))
=>The string "The brown fox jumped over the lazy dog" is 38 characters long

Using the forloop macro defined in See
Loops
, this example shows how

format can be used to produce tabular output.

forloop(‘i’, 1, 10, ‘format(‘%6d squared is %10d
’, i, eval(i**2))’)
=> 1 squared is 1
=> 2 squared is 4
=> 3 squared is 9
=> 4 squared is 16
=> 5 squared is 25
=> 6 squared is 36
=> 7 squared is 49
=> 8 squared is 64
=> 9 squared is 81
=> 10 squared is 100

The builtin format is modeled after the ANSI C printf function, and
supports the normal % specifiers: c, s, d, o, x, X, u, e, E and f; it
supports field widths and precisions, and the modifiers +, -, , 0, #,
h and l. For more details on the functioning of printf, see

m4 49 / 71

the C Library Manual.

1.59 m4.guide/Arithmetic

Macros for doing arithmetic

Integer arithmetic is included in m4, with a C-like syntax. As
convenient shorthands, there are builtins for simple increment and
decrement operations.

Incr
Decrement and increment operators

Eval
Evaluating integer expressions

1.60 m4.guide/Incr

Decrement and increment operators
=================================

Increment and decrement of integers are supported using the builtins
incr and decr:

incr(NUMBER)
decr(NUMBER)

which expand to the numerical value of NUMBER, incremented, or
decremented, respectively, by one.

incr(4)
=>5
decr(7)
=>6

The builtin macros incr and decr are recognized only when given
arguments.

1.61 m4.guide/Eval

m4 50 / 71

Evaluating integer expressions
==============================

Integer expressions are evaluated with eval:

eval(EXPRESSION, opt RADIX, opt WIDTH)

which expands to the value of EXPRESSION.

Expressions can contain the following operators, listed in order of
decreasing precedence.

-
Unary minus

**
Exponentiation

* / %
Multiplication, division and modulo

+ -
Addition and subtraction

<< >>
Shift left or right

== != > >= < <=
Relational operators

!
Logical negation

~
Bitwise negation

&
Bitwise and

^
Bitwise exclusive-or

|
Bitwise or

&&
Logical and

||
Logical or

All operators, except exponentiation, are left associative.

Note that many m4 implementations use ^ as an alternate operator for
the exponentiation, while many others use ^ for the bitwise
exclusive-or. GNU m4 changed its behavior: it used to exponentiate for

m4 51 / 71

^, it now computes the bitwise exclusive-or.

Numbers without special prefix are given decimal. A simple 0 prefix
introduces an octal number. 0x introduces an hexadecimal number. 0b
introduces a binary number. 0r introduces a number expressed in any
radix between 1 and 36: the prefix should be immediately followed by
the decimal expression of the radix, a colon, then the digits making
the number. For any radix, the digits are 0, 1, 2, Beyond 9, the
digits are a, b ... up to z. Lower and upper case letters can be used
interchangeably in numbers prefixes and as number digits.

Parentheses may be used to group subexpressions whenever needed.
For the relational operators, a true relation returns 1, and a false
relation return 0.

Here are a few examples of use of eval.

eval(-3 * 5)
=>-15
eval(index(‘Hello world’, ‘llo’) >= 0)
=>1
define(‘square’, ‘eval(($1)**2)’)
=>
square(9)
=>81
square(square(5)+1)
=>676
define(‘foo’, ‘666’)
=>
eval(‘foo’/6)
error-->51.eval:14: m4: Bad expression in eval: foo/6
=>
eval(foo/6)
=>111

As the second to last example shows, eval does not handle macro
names, even if they expand to a valid expression (or part of a valid
expression). Therefore all macros must be expanded before they are
passed to eval.

If RADIX is specified, it specifies the radix to be used in the
expansion. The default radix is 10. The result of eval is always
taken to be signed. The WIDTH argument specifies a minimum output
width. The result is zero-padded to extend the expansion to the
requested width.

eval(666, 10)
=>666
eval(666, 11)
=>556
eval(666, 6)
=>3030
eval(666, 6, 10)
=>0000003030
eval(-666, 6, 10)
=>-000003030

m4 52 / 71

Take note that RADIX cannot be larger than 36.

The builtin macro eval is recognized only when given arguments.

1.62 m4.guide/UNIX commands

Running UNIX commands

There are a few builtin macros in m4 that allow you to run UNIX
commands from within m4.

Syscmd
Executing simple commands

Esyscmd
Reading the output of commands

Sysval
Exit codes

Maketemp
Making names for temporary files

1.63 m4.guide/Syscmd

Executing simple commands
=========================

Any shell command can be executed, using syscmd:

syscmd(SHELL-COMMAND)

which executes SHELL-COMMAND as a shell command.

The expansion of syscmd is void, not the output from SHELL-COMMAND!
Output or error messages from SHELL-COMMAND are not read by m4. See

Esyscmd
if you need to process the command output.

Prior to executing the command, m4 flushes its output buffers. The
default standard input, output and error of SHELL-COMMAND are the same
as those of m4.

The builtin macro syscmd is recognized only when given arguments.

m4 53 / 71

1.64 m4.guide/Esyscmd

Reading the output of commands
==============================

If you want m4 to read the output of a UNIX command, use esyscmd:

esyscmd(SHELL-COMMAND)

which expands to the standard output of the shell command SHELL-COMMAND.

Prior to executing the command, m4 flushes its output buffers. The
default standard input and error output of SHELL-COMMAND are the same
as those of m4. The error output of SHELL-COMMAND is not a part of the
expansion: it will appear along with the error output of m4.

Assume you are positioned into the checks directory of GNU m4
distribution, then:

define(‘vice’, ‘esyscmd(grep Vice ../COPYING)’)
=>
vice
=> Ty Coon, President of Vice
=>

Note how the expansion of esyscmd has a trailing newline.

The builtin macro esyscmd is recognized only when given arguments.

1.65 m4.guide/Sysval

Exit codes
==========

To see whether a shell command succeeded, use sysval:

sysval

which expands to the exit status of the last shell command run with
syscmd or esyscmd.

syscmd(‘false’)
=>
ifelse(sysval, 0, zero, non-zero)
=>non-zero
syscmd(‘true’)
=>
sysval
=>0

m4 54 / 71

1.66 m4.guide/Maketemp

Making names for temporary files
================================

Commands specified to syscmd or esyscmd might need a temporary file,
for output or for some other purpose. There is a builtin macro,
maketemp, for making temporary file names:

maketemp(TEMPLATE)

which expands to a name of a non-existent file, made from the string
TEMPLATE, which should end with the string XXXXXX. The six X’s are
then replaced, usually with something that includes the process id of
the m4 process, in order to make the filename unique.

maketemp(‘/tmp/fooXXXXXX’)
=>/tmp/fooa07346
maketemp(‘/tmp/fooXXXXXX’)
=>/tmp/fooa07346

As seen in the example, several calls of maketemp might expand to
the same string, since the selection criteria is whether the file exists
or not. If a file has not been created before the next call, the two
macro calls might expand to the same name.

The builtin macro maketemp is recognized only when given arguments.

1.67 m4.guide/Miscellaneous

Miscellaneous builtin macros

This chapter describes various builtins, that do not really belong in
any of the previous chapters.

Errprint
Printing error messages

M4exit
Exiting from m4

1.68 m4.guide/Errprint

m4 55 / 71

Printing error messages
=======================

You can print error messages using errprint:

errprint(MESSAGE, ...)

which simply prints MESSAGE and the rest of the arguments on the
standard error output.

The expansion of errprint is void.

errprint(‘Illegal arguments to forloop
’)
error-->Illegal arguments to forloop
=>

A trailing newline is not printed automatically, so it must be
supplied as part of the argument, as in the example. (BSD flavored
m4’s do append a trailing newline on each errprint call).

To make it possible to specify the location of the error, two
utility builtins exist:

__file__
__line__

which expands to the quoted name of the current input file, and the
current input line number in that file.

errprint(‘m4:’__file__:__line__: ‘Input error
’)
error-->m4:56.errprint:2: Input error
=>

1.69 m4.guide/M4exit

Exiting from m4
===============

If you need to exit from m4 before the entire input has been read,
you can use m4exit:

m4exit(opt CODE)

which causes m4 to exit, with exit code CODE. If CODE is left out, the
exit code is zero.

define(‘fatal_error’, ‘errprint(‘m4: ’__file__: __line__‘: fatal error: $*
’)m4exit(1)’)
=>
fatal_error(‘This is a BAD one, buster’)
error-->m4: 57.m4exit: 5: fatal error: This is a BAD one, buster

m4 56 / 71

After this macro call, m4 will exit with exit code 1. This macro is
only intended for error exits, since the normal exit procedures are not
followed, e.g., diverted text is not undiverted, and saved text (see

M4wrap
) is not reread.

1.70 m4.guide/Frozen files

Fast loading of frozen states

Some bigger m4 applications may be built over a common base
containing hundreds of definitions and other costly initializations.
Usually, the common base is kept in one or more declarative files,
which files are listed on each m4 invocation prior to the user’s input
file, or else, include’d from this input file.

Reading the common base of a big application, over and over again,
may be time consuming. GNU m4 offers some machinery to speed up the
start of an application using lengthy common bases. Presume the user
repeatedly uses:

m4 base.m4 input.m4

with a varying contents of input.m4, but a rather fixed contents for
base.m4. Then, the user might rather execute:

m4 -F base.m4f base.m4

once, and further execute, as often as needed:

m4 -R base.m4f input.m4

with the varying input. The first call, containing the -F option, only
reads and executes file base.m4, so defining various application macros
and computing other initializations. Only once the input file base.m4
has been completely processed, GNU m4 produces on base.m4f a frozen
file, that is, a file which contains a kind of snapshot of the m4
internal state.

Later calls, containing the -R option, are able to reload the
internal state of m4’s memory, from base.m4f, prior to reading any
other input files. By this mean, instead of starting with a virgin
copy of m4, input will be read after having effectively recovered the
effect of a prior run. In our example, the effect is the same as if
file base.m4 has been read anew. However, this effect is achieved a
lot faster.

Only one frozen file may be created or read in any one m4
invocation. It is not possible to recover two frozen files at once.
However, frozen files may be updated incrementally, through using -R

m4 57 / 71

and -F options simultaneously. For example, if some care is taken, the
command:

m4 file1.m4 file2.m4 file3.m4 file4.m4

could be broken down in the following sequence, accumulating the same
output:

m4 -F file1.m4f file1.m4
m4 -R file1.m4f -F file2.m4f file2.m4
m4 -R file2.m4f -F file3.m4f file3.m4
m4 -R file3.m4f file4.m4

Some care is necessary because not every effort has been made for
this to work in all cases. In particular, the trace attribute of
macros is not handled, nor the current setting of changeword. Also,
interactions for some options of m4 being used in one call and not for
the next, have not been fully analyzed yet. On the other end, you may
be confident that stacks of pushdef’ed definitions are handled
correctly, so are undefine’d or renamed builtins, changed strings for
quotes or comments.

When an m4 run is to be frozen, the automatic undiversion which
takes place at end of execution is inhibited. Instead, all positively
numbered diversions are saved into the frozen file. The active
diversion number is also transmitted.

A frozen file to be reloaded need not reside in the current
directory. It is looked up the same way as an include file (see

Search Path
).

Frozen files are sharable across architectures. It is safe to write
a frozen file one one machine and read it on another, given that the
second machine uses the same, or a newer version of GNU m4. These are
simple (editable) text files, made up of directives, each starting with
a capital letter and ending with a newline (NL). Wherever a directive
is expected, the character # introduces a comment line, empty lines are
also ignored. In the following descriptions, LENGTHs always refer to
corresponding STRINGs. Numbers are always expressed in decimal. The
directives are:

V NUMBER NL
Confirms the format of the file. NUMBER should be 1.

C LENGTH1 , LENGTH2 NL STRING1 STRING2 NL
Uses STRING1 and STRING2 as the beginning comment and end comment
strings.

Q LENGTH1 , LENGTH2 NL STRING1 STRING2 NL
Uses STRING1 and STRING2 as the beginning quote and end quote
strings.

F LENGTH1 , LENGTH2 NL STRING1 STRING2 NL
Defines, through pushdef, a definition for STRING1 expanding to
the function whose builtin name is STRING2.

m4 58 / 71

T LENGTH1 , LENGTH2 NL STRING1 STRING2 NL
Defines, though pushdef, a definition for STRING1 expanding to the
text given by STRING2.

D NUMBER, LENGTH NL STRING NL
Selects diversion NUMBER, making it current, then copy STRING in
the current diversion. NUMBER may be a negative number for a
non-existing diversion. To merely specify an active selection,
use this command with an empty STRING. With 0 as the diversion
NUMBER, STRING will be issued on standard output at reload time,
however this may not be produced from within m4.

1.71 m4.guide/Compatibility

Compatibility with other versions of m4

This chapter describes the differences between this implementation of
m4, and the implementation found under UNIX, notably System V,
Release 3.

There are also differences in BSD flavors of m4. No attempt is made
to summarize these here.

Extensions
Extensions in GNU m4

Incompatibilities
Facilities in System V m4 not in GNU m4

Other Incompat
Other incompatibilities

1.72 m4.guide/Extensions

Extensions in GNU m4
====================

This version of m4 contains a few facilities, that do not exist in
System V m4. These extra facilities are all suppressed by using the -G
command line option, unless overridden by other command line options.

* In the $ N notation for macro arguments, N can contain several
digits, while the System V m4 only accepts one digit. This allows
macros in GNU m4 to take any number of arguments, and not only

m4 59 / 71

nine (see
Arguments
).

* Files included with include and sinclude are sought in a user
specified search path, if they are not found in the working
directory. The search path is specified by the -I option and the
M4PATH environment variable (see

Search Path
).

* Arguments to undivert can be non-numeric, in which case the named
file will be included uninterpreted in the output (see

Undivert
).

* Formatted output is supported through the format builtin, which is
modeled after the C library function printf (see

Format
).

* Searches and text substitution through regular expressions are
supported by the regexp (see

Regexp
) and patsubst (see
Patsubst
)

builtins.

* The output of shell commands can be read into m4 with esyscmd (see

Esyscmd
).

* There is indirect access to any builtin macro with builtin (see

Builtin
).

* Macros can be called indirectly through indir (see
Indir
).

* The name of the current input file and the current input line
number are accessible through the builtins __file__ and __line__
(see

Errprint
).

* The format of the output from dumpdef and macro tracing can be
controlled with debugmode (see

Debug Levels
).

* The destination of trace and debug output can be controlled with
debugfile (see

Debug Output

m4 60 / 71

).

In addition to the above extensions, GNU m4 implements the following
command line options: -F, -G, -I, -L, -R, -V, -W, -d, -l, -o and -t.
See

Invoking m4
, for a description of these options.

Also, the debugging and tracing facilities in GNU m4 are much more
extensive than in most other versions of m4.

1.73 m4.guide/Incompatibilities

Facilities in System V m4 not in GNU m4
=======================================

The version of m4 from System V contains a few facilities that have
not been implemented in GNU m4 yet.

* System V m4 supports multiple arguments to defn. This is not
implemented in GNU m4. Its usefulness is unclear to me.

1.74 m4.guide/Other Incompat

Other incompatibilities
=======================

There are a few other incompatibilities between this implementation
of m4, and the System V version.

* GNU m4 implements sync lines differently from System V m4, when
text is being diverted. GNU m4 outputs the sync lines when the
text is being diverted, and System V m4 when the diverted text is
being brought back.

The problem is which lines and filenames should be attached to
text that is being, or has been, diverted. System V m4 regards
all the diverted text as being generated by the source line
containing the undivert call, whereas GNU m4 regards the diverted
text as being generated at the time it is diverted.

I expect the sync line option to be used mostly when using m4 as a
front end to a compiler. If a diverted line causes a compiler
error, the error messages should most probably refer to the place
where the diversion were made, and not where it was inserted again.

* GNU m4 makes no attempt at prohiting autoreferential definitions
like:

m4 61 / 71

define(‘x’, ‘x’)
define(‘x’, ‘x ’)

There is nothing inherently wrong with defining x to return x.
The wrong thing is to expand x unquoted. In m4, one might use
macros to hold strings, as we do for variables in other
programming languages, further checking them with:

ifelse(defn(‘HOLDER’), ‘VALUE’, ...)

In cases like this one, an interdiction for a macro to hold its own
name would be a useless limitation. Of course, this leave more
rope for the GNU m4 user to hang himself! Rescanning hangs may be
avoided through careful programming, a little like for endless
loops in traditional programming languages.

* GNU m4 without -G option will define the macro __gnu__ to expand
to the empty string.

On UNIX systems, GNU m4 without the -G option will define the
macro __unix__, otherwise the macro unix. Both will expand to the
empty string.

1.75 m4.guide/Concept index

Concept index

Arguments to macros
Arguments

arguments to macros
Macro Arguments

arguments to macros, special
Pseudo Arguments

arguments, quoted macro
Quoting Arguments

arithmetic
Arithmetic

builtins, indirect call of
Builtin

call of builtins, indirect
Builtin

call of macros, indirect
Indir

changing comment delimiters

m4 62 / 71

Changecom

changing the quote delimiters
Changequote

characters, translating
Translit

command line, filenames on the
Invoking m4

command line, macro definitions on the
Invoking m4

command line, options
Invoking m4

commands, exit code from UNIX
Sysval

commands, running UNIX
UNIX commands

comment delimiters, changing
Changecom

comments
Comments

comments, copied to output
Changecom

comparing strings
Ifelse

compatibility
Compatibility

conditionals
Ifdef

controlling debugging output
Debug Levels

counting loops
Loops

debugging output, controlling
Debug Levels

debugging output, saving
Debug Output

decrement operator
Incr

defining new macros

m4 63 / 71

Definitions

definitions, displaying macro
Dumpdef

deleting macros
Undefine

deleting whitespace in input
Dnl

discarding diverted text
Cleardiv

displaying macro definitions
Dumpdef

diversion numbers
Divnum

diverted text, discarding
Cleardiv

diverting output to files
Divert

dumping into frozen file
Frozen files

error messages, printing
Errprint

evaluation, of integer expressions
Eval

executing UNIX commands
UNIX commands

exit code from UNIX commands
Sysval

exiting from m4
M4exit

expansion of macros
Macro expansion

expansion, tracing macro
Trace

expressions, evaluation of integer
Eval

extracting substrings
Substr

fast loading of frozen files

m4 64 / 71

Frozen files

file inclusion <1>
Undivert

file inclusion
File Inclusion

filenames, on the command line
Invoking m4

files, diverting output to
Divert

files, names of temporary
Maketemp

forloops
Loops

formatted output
Format

frozen files for fast loading
Frozen files

GNU extensions <1>
Indir

GNU extensions <2>
Search Path

GNU extensions <3>
Undivert

GNU extensions <4>
Esyscmd

GNU extensions <5>
Regexp

GNU extensions <6>
Builtin

GNU extensions <7>
Arguments

GNU extensions <8>
Extensions

GNU extensions <9>
Patsubst

GNU extensions <10>
Frozen files

GNU extensions <11>

m4 65 / 71

Format

GNU extensions <12>
Debug Output

GNU extensions
Debug Levels

included files, search path for
Search Path

inclusion, of files <1>
File Inclusion

inclusion, of files
Undivert

increment operator
Incr

indirect call of builtins
Builtin

indirect call of macros
Indir

initialization, frozen states
Frozen files

input tokens
Syntax

input, saving
M4wrap

integer arithmetic
Arithmetic

integer expression evaluation
Eval

length of strings
Len

lexical structure of words
Changeword

loops
Loops

loops, counting
Loops

macro definitions, on the command line
Invoking m4

macro expansion, tracing

m4 66 / 71

Trace

macro invocation
Invocation

macros, arguments to <1>
Arguments

macros, arguments to
Macro Arguments

macros, displaying definitions
Dumpdef

macros, expansion of
Macro expansion

macros, how to define new
Definitions

macros, how to delete
Undefine

macros, how to rename
Defn

macros, indirect call of
Indir

macros, quoted arguments to
Quoting Arguments

macros, recursive
Loops

macros, special arguments to
Pseudo Arguments

macros, temporary redefinition of
Pushdef

messages, printing error
Errprint

multibranches
Ifelse

names
Names

options, command line
Invoking m4

output, diverting to files
Divert

output, formatted

m4 67 / 71

Format

output, saving debugging
Debug Output

pattern substitution
Patsubst

printing error messages
Errprint

quote delimiters, changing the
Changequote

quoted macro arguments
Quoting Arguments

quoted string
Quoted strings

recursive macros
Loops

redefinition of macros, temporary
Pushdef

regular expressions <1>
Patsubst

regular expressions
Regexp

reloading a frozen file
Frozen files

renaming macros
Defn

running UNIX commands
UNIX commands

saving debugging output
Debug Output

saving input
M4wrap

search path for included files
Search Path

special arguments to macros
Pseudo Arguments

strings, length of
Len

substitution by regular expression

m4 68 / 71

Patsubst

substrings, extracting
Substr

temporary filenames
Maketemp

temporary redefinition of macros
Pushdef

tokens
Syntax

tracing macro expansion
Trace

translating characters
Translit

undefining macros
Undefine

UNIX commands, exit code from
Sysval

UNIX commands, running
UNIX commands

words, lexical structure of
Changeword

1.76 m4.guide/Macro index

Macro index

References are exclusively to the places where a builtin is
introduced the first time. Names starting and ending with __ have these
characters removed in the index.

builtin
Builtin

changecom
Changecom

changequote
Changequote

m4 69 / 71

changeword
Changeword

debugfile
Debug Output

debugmode
Debug Levels

decr
Incr

define
Define

defn
Defn

divert
Divert

divnum
Divnum

dnl
Dnl

dumpdef
Dumpdef

errprint
Errprint

esyscmd
Esyscmd

eval
Eval

file
Errprint

format
Format

gnu
Other Incompat

ifdef
Ifdef

ifelse
Ifelse

include
Include

m4 70 / 71

incr
Incr

index
Index

indir
Indir

len
Len

line
Errprint

m4exit
M4exit

m4wrap
M4wrap

maketemp
Maketemp

patsubst
Patsubst

popdef
Pushdef

pushdef
Pushdef

regexp
Regexp

shift
Loops

sinclude
Include

substr
Substr

syscmd
Syscmd

sysval
Sysval

traceoff
Trace

traceon
Trace

m4 71 / 71

translit
Translit

undefine
Undefine

undivert
Undivert

unix
Other Incompat

	m4
	m4.guide
	m4.guide/Preliminaries
	m4.guide/Intro
	m4.guide/History
	m4.guide/Invoking m4
	m4.guide/Bugs
	m4.guide/Manual
	m4.guide/Syntax
	m4.guide/Names
	m4.guide/Quoted strings
	m4.guide/Other tokens
	m4.guide/Comments
	m4.guide/Macros
	m4.guide/Invocation
	m4.guide/Inhibiting Invocation
	m4.guide/Macro Arguments
	m4.guide/Quoting Arguments
	m4.guide/Macro expansion
	m4.guide/Definitions
	m4.guide/Define
	m4.guide/Arguments
	m4.guide/Pseudo Arguments
	m4.guide/Undefine
	m4.guide/Defn
	m4.guide/Pushdef
	m4.guide/Indir
	m4.guide/Builtin
	m4.guide/Conditionals
	m4.guide/Ifdef
	m4.guide/Ifelse
	m4.guide/Loops
	m4.guide/Debugging
	m4.guide/Dumpdef
	m4.guide/Trace
	m4.guide/Debug Levels
	m4.guide/Debug Output
	m4.guide/Input Control
	m4.guide/Dnl
	m4.guide/Changequote
	m4.guide/Changecom
	m4.guide/Changeword
	m4.guide/M4wrap
	m4.guide/File Inclusion
	m4.guide/Include
	m4.guide/Search Path
	m4.guide/Diversions
	m4.guide/Divert
	m4.guide/Undivert
	m4.guide/Divnum
	m4.guide/Cleardiv
	m4.guide/Text handling
	m4.guide/Len
	m4.guide/Index
	m4.guide/Regexp
	m4.guide/Substr
	m4.guide/Translit
	m4.guide/Patsubst
	m4.guide/Format
	m4.guide/Arithmetic
	m4.guide/Incr
	m4.guide/Eval
	m4.guide/UNIX commands
	m4.guide/Syscmd
	m4.guide/Esyscmd
	m4.guide/Sysval
	m4.guide/Maketemp
	m4.guide/Miscellaneous
	m4.guide/Errprint
	m4.guide/M4exit
	m4.guide/Frozen files
	m4.guide/Compatibility
	m4.guide/Extensions
	m4.guide/Incompatibilities
	m4.guide/Other Incompat
	m4.guide/Concept index
	m4.guide/Macro index

