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SUMMARY

This paper describes a new approach to dynamic link/unlink editing. The basis of this

approach is a library of link editing functions that can add compiled object code to or

remove such code from a process anytime during its execution. Loading modules,

searching libraries, resolving external references, and allocating storage for global and

static data structures are all performed at run time. This approach provides the efficiency

of native machine code execution along with the flexibility to modify a program during

its execution, thereby making many new applications possible. This paper also describes

three sample applications of these dynamic link editing functions: program customiza-

tion, incremental program development, and support for debugging and testing. A proto-

type of this approach is implemented under UNIX as a library package called dld for the

C programming language and is available for VAX, Sun 3, and SPARCstation machines.
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INTRODUCTION

Many conventional operating systems—such as UNIX, DOS, and VMS—assume that

programs are static entities in the sense that construction of a program is completed

before its execution. A program’s functionality, control structures, number of subrou-

tines, and requirement on library functions are all well defined and do not change once

the program begins execution. However, some programming languages, such as LISP

and Prolog, take an alternative approach in which they allow new functions to be added

during the execution of a program. The assumption that programs are static therefore

makes it very difficult to translate these languages directly into native machine code.

Instead, they are interpreted by a runtime support system or pseudo-machine, which runs

more slowly than native code on a physical machine.

This paper presents an new approach to program construction that allows object

modules to be dynamically defined or redefined, and added to or removed from a pro-

cess during its execution. In other existing systems, object modules can at best be

dynamically loaded but not removed. Using this approach, the functionalities provided

by a program during its execution can therefore change with time or in response to the

environment. Thus, this approach retains the efficiency of executing native machine

code and adds the flexibility of modifying a program during its execution.

A dynamic link editor, called dld, implements this approach under the UNIX

operating system. It integrates or removes object modules at run time. Dld differs from

other dynamic linkers in that not only can object modules be added to but they can also

be removed from an executing process. Furthermore, these modules do not even have to

be known or exist when the execution begins. This paper describes several

applications—program customization, incremental program development, and support

for advanced debugging and testing features—that illustrate the usefulness of this

dynamic linking approach.

The major cost of dynamic linking is the onetime overhead in reading object

modules from disk. The processing time spent on link editing is actually very small.

Once the modules have been linked, the executing process runs at nearly the same speed

as the equivalent statically linked process. In fact, the only significant drawback of this

dynamic linking approach is that its flexibility makes it susceptible to misuse. For
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example, a process might be corrupted by linking in erroneous code, or careless use of

dynamic linking in privileged system programs might create security problems. A later

section discusses these drawbacks and possible remedies in more detail.



-- --

- 3 - October 15, 1990

BACKGROUND

This section presents some basic concepts of program compilation and link editing; it

also describes the structures of relocatable object files and executable files in general.

While the description of these structures and the example given in this section might not

directly apply to all operating systems, the underlying principles are all similar. Readers

already familiar with these concepts may proceed to the next section. Further details on

these basic concepts can be found in Reference 1.

Most contemporary programming environments do not convert programs written in

high-level programming languages directly into executable machine code. Typically, the

source of a program is contained in one or more files, or source modules, each of which

contains definitions of functions and data structures. These modules are first compiled

into object modules, which are then combined together into a single file. This file,

known as the executable file, has a well-defined format understood by the operating sys-

tem and can readily be turned into an executing process.

An object module is the machine code equivalent of its corresponding source

module. It contains a text segment (machine code for functions) and a data segment

(machine representations of global and static variables, string constants, etc.).

Throughout this paper, the term module is used whenever there is no ambiguity or need

to distinguish between a source module and an object module. When a source module is

compiled, the compiler generates an object file, which, in addition to the object module,

contains global symbol definitions and information that enables this module to be relo-

cated. This extra information is necessary because global symbols defined in a given

module might be referenced by other modules, which need to know the location of these

symbols. Furthermore, the compiler or assembler does not know the location in the

address space where the module will be loaded when it is combined with other modules.

Therefore, relocation information must be recorded with the object file. Related groups

of object files of commonly used source modules—such as system services, input/output

operations, and mathematical functions—are often combined into archive files, or library

files. As a result, users can specify a large number of related object files by giving only

one file name.
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The activity of loading and relocating object modules into an executable file is gen-

erally referred to as link editing or simply linking. This activity maps each module to a

section of the virtual address space, resolves global symbol references across modules,

and allocates storage for the global data structures. Each module is then relocated

accordingly and the results are written out to a file in the executable format.

Object modules to be linked together can be taken from individual object files or

library files. A typical link editor usually handle these two types of files differently. For

a simple object file, the object module it contains is always loaded into the executable

file. For a library file, since not all modules it contains are generally needed, only those

modules defining an unresolved external reference are loaded. Since a module from a

library may itself contain references to other modules, loading it may generate additional

external references. Therefore, link editors are responsible to search through the library

files to ensure all required modules are loaded.

The ability for a linker to automatically select and load only the required modules

from a library file is very important: it alleviates the need for a user to keep track of

which modules are required. However, the executable file might still contain inaccessi-

ble functions or data because even if only one of the functions defined in a module is

needed, the linker loads complete the module.

Figure 1 shows an example of linking 3 files: main.o, sub.o, and libc.a. Main.o and

sub.o are object files and libc.a is a library archive, containing object files lib1.o, lib2.o, ...,

libn.o. As shown in the figure, main.o contains references to sub.o and the function foo,

which is defined in lib1.o. Function goo, also defined in lib1.o, contains a reference to hoo

defined in lib2.o. Since the smallest unit of linking is an object module, lib1.o is loaded

completely into the executable file, even though goo is actually not referenced at all.

Furthermore, lib2.o is also loaded because it defines hoo, which is referenced by goo. The

resultant executable file generated will contain 4 modules: main.o, sub.o, lib1.o, and lib2.o.
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call foo

main.o

sub.o

libn.o

hoo()

call hoo

lib2.o

lib1.o

goo()

foo()

libc.a

..

.

Figure 1: Linking of object and library files.
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DYNAMIC VS. STATIC LINKING

Static linking and its limitations

Most operating systems assume static linking. That is, the link editing step is carried out

only once to produce an executable file, which is loaded directly into memory when it is

executed. During the lifetime of an executing process, the (virtual) locations of the text

and data segments cannot change. As a result, these operating systems can safely allo-

cate the remaining address space for the stack and dynamic data storage area.

Systems that employ static linking require all global symbols to be well defined at

link time. This requirement is a disadvantage because all object and library files must be

available during the construction of an executable file. As a result, it is difficult to test

and debug portions of a large program incrementally before the whole program is com-

pletely written.† Furthermore, the entire program has to be relinked if any of the object

modules are modified, or if new modules are to be added. Relinking of all object

modules can be very time consuming. But unfortunately with static linking, it is una-

voidable even in situations where most of the object modules remain unchanged.

These drawbacks make static linking unsuitable for certain applications. For exam-

ple, a graph plotting program may permit users to specify their own arithmetic functions

to be plotted. It would be most convenient if users could define their own functions using

the programming language with which they were most familiar, and then incorporate

these new functions into the plotting program. However, the use of static linking pre-

cludes this obvious approach because the text segment of a program cannot be changed.

Instead, most plotting programs incorporate their own special interpreted language in

which users define their own functions. Consequently, users are forced to learn a new

language, which might not be as powerful as a general purpose programming language,

thus limiting the expressiveness of the users. Furthermore, the design and implementa-

tion of an interpreter for such a language increases the complexity and development cost

of the originally very simple program. Efficiency of the program is also degraded

because, in general, interpreted code executes more slowly than native machine code.
hhhhhhhhhhhhhhh

† The best a programmer can do is to write dummy routines for the unfinished part.
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Dynamic linking

Unlike static linking, dynamic linking allows a process to add, remove, replace, or relo-

cate object modules within its address space during its execution. In other words, pro-

grams are allowed to change. During the lifetime of its execution, a program may have

new modules added, old modules removed, or even evolve into a completely different

program. For compiled languages, the traditional concept that the code of a program

does not change is no longer valid.

Some existing systems support what they call dynamic linking but it is actually

load-time linking. For example, in SunOS version 4, link editing consists of two phases2.

After the static link phase, the executable file created contains only references to, but not

the actual code for the library routines. Integration of these routines with the executable

file is carried out by the load-time link phase, during which a linker is called to search

and load the missing routines from the library before control is passed to the main pro-

cedure. This system requires all global symbols to be declared in the library, though not

necessarily defined, during the static link phase. After execution begins and control is

passed to the main procedure, no modules can be added or removed. Furthermore, if any

external symbol reference cannot be resolved, the program will be aborted. A similar

approach is used by HP-UX3, UNIX System V Release 44, and VMS5. In addition to

load-time linking, OS/26 also supports run-time linking. But this scheme requires much

operating system support and dynamically linked modules cannot reference any external

symbols defined by other modules except the module entry point. Old systems such as

MULTICS7 and languages such as COBOL also support some kind of flexible

linking/loading mechanism. However, none of the systems mentioned above allows a

program to dynamically modify its functionality during the execution.

One incremental compilation system8 uses a different approach: it provides library

procedures that load additional object modules into the data area of a running process and

allows these modules to be executed. This system does not relocate or resolve external

symbol references. Instead, it locates every symbol indirectly through an on-line symbol

table pointed to by a special reserved register, thus causing a degradation in execution

speed. Furthermore, this system requires extensive modification to the compiler, assem-

bler, and the libraries to accomplish this special addressing scheme. While this system

allows modules to be added incrementally to an executing process, old modules cannot
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be removed. Consequently, using this system to implement applications such as interac-

tive program development may not be practical because obsolete modules accumulate

and may eventually fill the memory space.
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DLD — A GENUINE DYNAMIC LINKER

This section describes the major design and implementation issues of a software package

called dld that provides all the functionalities of a dynamic linking system. The current

implementation† of dld is a collection of library routines that are called by programs

written in C running under the UNIX operating system. No modification of the existing

compiler or assembler is necessary. The standard UNIX system linker is used only to

create the initial executable file. All the dynamic link editing is carried out by invoking

routines provided by dld. Although dld is targeted for C and UNIX, the underlying

concept—the use of library functions to build a dynamic linker—is applicable to many

other programming languages and operating systems.

An overview of dld

Dld’s two basic operations are ‘‘link’’ and ‘‘unlink’’. It also provides supporting func-

tions for looking up the addresses of global symbols and entry points of functions.

The link operation is performed by the function dlink(char *filename), where filename

specifies either a relocatable object file or an object library. If the specified file is a relo-

catable object file, it is completely loaded into memory. If it is a library file, only those

modules defining an unresolved external reference are loaded. Since a module in the

library may itself reference other routines in the library, loading it may generate more

unresolved external references (as was seen in the example in figure 1). Therefore, a

library file is searched repeatedly until a scan through all library members is made

without having to load any new modules. Since a UNIX process cannot expand its text

segment, dlink allocates storage for all these new modules from the dynamic data area—

the heap—using malloc, UNIX’s memory allocator (assuming the system has writable

executable memory). After all modules are loaded, dlink resolves as many external refer-

ences as possible. Note that some symbols might still be undefined at this stage, because

the modules defining them have not yet been loaded.

hhhhhhhhhhhhhhh
† A number of functions in the current implementation of dld are borrowed and modified from

the ld link editor developed by the GNU project of the Free Software Foundation.
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Unlinking a module is simply the reverse of the link operation. The specified

module is removed and the memory allocated to it is reclaimed. Additionally, resolution

of external references must be undone. For instance, if the module foo is to be unlinked,

all references to any symbols defined in foo from other parts of the program must be

marked ‘‘undefined’’. Dld provides two functions for unlinking a module:

unlink_by_file(char *filename, int hard) and unlink_by_symbol(char *symbol, int hard). The first

function requires as a parameter the filename corresponding to a module previously

linked in by dlink, while the second function unlinks the module that defines the specified

symbol.

Figure 2 shows a simple example illustrating some of the dld functions. This pro-

gram repeatedly reads from the standard input the name of an object file and that of the

user function to be executed. It then links in the specified file, executes the named func-

tion, and finally removes it from the memory.

On line 13, the function dld_init(char *filename) performs the required initialization of

the dld package. It takes as argument the initial executable file of the program and loads

the symbol table information of this file into memory. Line 24 demonstrates how the

entry point of a dynamically-linked function can be obtained. The value returned by

get_func(char *func_name) can later be used as a pointer to the function, as shown in line

27. The predicate function function_executable_p(char *func_name) tells whether the

specified function can be safely executed, i.e., whether the execution of this function

might lead to referencing any undefined symbols. The precise definition of this predicate

function is described later. In this example (line 29), unlink_by_symbol is used to remove

the new module.

Semantics of unlink

As seen above, the unlink functions actually take two parameters. The first one is the

name of a symbol or file, while the second one is a boolean parameter. When the param-

eter hard is zero (soft unlink), the specified module is marked as removable but it is actu-

ally removed from memory only if it is not referenced by any other modules. On the

other hand, if the parameter hard is non-zero (hard unlink), this module is removed from

memory unconditionally. Since unlinking a module may leave some remaining remov-

able modules unreferenced, a garbage collector is always called to remove these
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1 /* The name of the object file and the function name are read from the
2 stdin. The named function is invoked through a pointer. For
3 illustrative purpose the object file is unlinked right after the
4 invocation.
5 */
6 #include <stdio.h>
7 #include "dld.h"
8
9 main (int argc, char **argv) {
10
11 char file_name[80], func_name[80];
12
13 dld_init (argv[0]);
14
15 printf ("object file? ");
16 while (gets(file_name) != NULL) {
17 register void (*func) ();
18
19 dlink (file_name);
20
21 printf ("function name? ");
22 gets(func_name);
23
24 func = (void (*) ()) get_func (func_name);
25
26 if (function_executable_p (func_name))
27 (*func) ();
28
29 unlink_by_symbol (func_name, 1);
30
31 printf ("object file? ");
32 }
33 }

Figure 2: Simple illustration of the dld functions.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

unreferenced modules. As a special case, library modules are always considered remov-

able and are garbage-collected whenever they are not referenced by other modules.†

hhhhhhhhhhhhhhh
† In the next version of dld, users will be allowed to explicitly keep a library module in

memory even if it is not referenced.
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(d2) hard unlink(d1) soft unlink

B

A

C C

A BA

(c)(b)(a)

C

B

Figure 3: Illustration of the two different unlink options.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The semantics of these two unlinking options can best be explained by an example.

Consider two modules, A and B, both containing a call to a function defined in C. These

modules are linked and removed in the order as shown in figure 3. A is linked in first (a).

Then C is also linked (b). When B is linked in, all its external symbol references are

resolved successfully because C has already been loaded into memory. Thus, C does not

need to be linked in again. Instead, it is shared by both A and B (c).

Now, suppose that A is unlinked, and in order to clean up any module referenced by

A, C is being unlinked, too. Should C, which is currently referenced by B, be removed



-- --

- 13 - October 15, 1990

from memory? Both possible semantics are reasonable. If unlinking a module means it

may be removed if it is not being referenced anymore, C should not be removed (d1)

because it is still referenced by B. On the other hand, if unlinking literally means remov-

ing the specified module, C should be removed, resulting in B’s reference to C becoming

unresolved (d2).

Applications might require either or both unlink options. Thus, dld supports both

options and leaves the decision to the programmer. For example, if the module defining

a commonly used function is to be replaced by an enhanced version, a hard unlink is

desirable. A new version could then be linked in, and all references to the original func-

tion would be modified to point to this new function. On the other hand, some modules

might be referenced from many different places in the program. It is not easy for a pro-

grammer to keep track whether a module is no longer referenced by others and thus safe

to be removed from memory. The programmer might even be unaware of some such

references. For example, functions such as strlen and malloc are referenced by at least a

dozen other library functions in the C library of BSD UNIX. Thus, these functions often

need to be kept in memory even if the main program does not invoke them explicitly. In

these cases, it is desirable to use soft unlink so that the specified module is removed only

when it is no longer needed.

Implementation of unlink

The implementation of the unlink functions is built around a simple garbage collector.

For each module x, a reference count records the number of modules that reference any

symbol defined in x. If x is explicitly linked in by dlink (as opposed to implicit linking in

the case for library modules), it is considered being referenced by the process itself, and

thus its reference count is at least one. A soft unlink of x causes its reference count to be

decremented by one, while a hard unlink simply resets the count to zero. Furthermore, if

x’s reference count becomes zero, the reference counts of all modules that x references

are also decremented by one. When all reference counts have been updated, modules

whose reference counts are zero are actually removed by the garbage collector.

In addition to the garbage collector, dld maintains data structures to hold informa-

tion necessary to support unlinking. Corresponding to each module is a list of symbols

that it references, a list of symbols that it defines, and a list of relocation instructions
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(known as an nlist in UNIX). This information is needed to update the online symbol

table in order to reflect the disappearance of the unlinked modules from the program.

When a module y is to be removed from memory, its reference list is used to locate those

modules whose reference counts should be decremented. Symbols defined by y should

be deleted from the symbol table. Other modules that reference any symbol defined by y

now contain undefined references. These modules should be ‘‘reversely’’ patched so that

instructions pointing to locations previously in y’s address space are reset. In short, all

dld’s data structures have to be set to the state as if y had never been linked into the pro-

gram.

Finally, side-effects—such as modification of global variables, input/output opera-

tions, and allocations of new memory blocks—caused by the execution of any function in

a module are not reversed when the module is unlinked. If these side-effects need to be

undone, they must be undone explicitly by the programmers.

Deciding if a function is executable

Since dld allows modules to be added to or removed from an executing process dynami-

cally, some global symbols may not be defined. As a result, an invocation of a function

might reference an undefined symbol. To solve this problem, dld provides a predicate

function function_executable_p, which, as shown earlier in figure 2, takes as argument a

function name and returns non-zero only if the named function is executable.

A function is executable if and only if all its external references have been fully

resolved and all functions that it might call are executable. This recursive definition sug-

gests that determining whether a given function is executable is non-trivial. Since each

function might invoke other functions, the number of functions that can be reached from

the original invocation can be very large. If any of these functions is not executable, the

original invocation is also not executable. Consequently, determining if a function is

executable could involve the examination of a large number of other functions. For

example, the executable file for gdb, a popular UNIX debugger, contains 174 modules

(object files) and 635 global functions. The efficiency of the algorithm† used to
hhhhhhhhhhhhhhh

† An optimal algorithm with respect to the order of complexity exists, but its detailed descrip-
tion is beyond the scope of this paper. Furthermore, the current implementation employs a sub-
optimal but much simpler solution. This solution has a very small overhead and thus works faster
than the optimal solution as long as the number of modules is not too large.
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implement function_executable_p is thus of practical concern.

Several methods can be used to speed up this algorithm. First, the executability for

each function could be actually calculated only once, and the results kept in a table. Sub-

sequent calls to function_executable_p would then involve only a table lookup. This table

would be invalidated whenever a link or unlink operation is performed, and would not be

updated until the next call to function_executable_p. As a result, unnecessary recomputa-

tion of the table between consecutive link or unlink operations could be avoided.

Second, when new modules are added or removed, minimal changes to the table of exe-

cutable functions should be made. There is no need to rewrite the whole table. Only

those functions affected by the changes should be examined. Lastly, although an algo-

rithm that finds out the executability of a given function can be used repeatedly on every

defined function, this method is in general very inefficient because a lot of the computa-

tion is duplicated. Instead, a different algorithm that finishes all the computation in one

single pass could be used.
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APPLICATIONS OF DLD

The flexibility provided by dld allows a new style in writing programs using compiled-

based programming languages and makes many new kinds of applications possible. In

particular, dynamic linking combines the efficiency of executing native machine code

with the flexibility of runtime program modification. Dld is especially useful for highly

interactive programs whose functionalities change in response to their user’s input. This

section describes several interesting applications of dld.

Program customization

Many sophisticated software packages usually allow some form of customization by the

user. Depending on their personal preference, users can specify how these programs

should interact with them. Usually these programs provide a group of different options

from which users can select those that suit their needs. For example, in the UNIX editor

vi9 a user can specify whether the input text should be wrapped around automatically to

the next line when input gets past a certain column. As another example, some versions

of the UNIX command interpreter csh provide an option to log out the user automatically

when it has been idle for a user-specified number of minutes.

This method of providing program customization is limited in the sense that users

can only choose their preference from a set of predefined options. Whatever is not antici-

pated will not be available. For example, it is not possible to customize vi so that when it

breaks up a long line, it also right-justifies the current line to a specific column. Like-

wise, it is not possible to tell csh to automatically log out at, say, 5:30pm simply because

the need for this functionality was not anticipated. One possible solution is to let the

users modify these programs according to their own preference and have separate private

copies for each of them. Obviously, this method requires a lot of disk space and makes

system software very hard to maintain and upgrade.

Dld provides a better solution by allowing users to add or remove new functions or

modify the application programs to suit their own preference. The system then needs to

keep only one copy of each program that is loaded with default options. If users are not

satisfied with any of the options provided, they can then link in their own routines and

tell the program to use these user-defined functions instead of the defaults. Referring to
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the previous csh example, if dld is used, a user could perform the following steps to cus-

tomize the autologout feature:

g Use unlink_by_symbol to unlink the function that handles autologout.

g Modify the way the autologout function interprets its argument. For

example, "17:30" means logout at 5:30pm while "17" means logout if csh

has been idle for 17 minutes. Also make necessary adjustments so that

the alarm clock is set correctly.

g Compile this new autologout function.

g Use dlink to link this function into csh.

Note that this method requires users to have some knowledge on the implementa-

tion of the application programs. Alternatively, the application programs can provide

‘‘hooks’’ or some well-defined, uniform interface to which the users can attach their own

customized routines. Users should follow the specified convention when writing their

own functions and the application programs may provide a special routine to handle the

loading of the user-defined functions. This routine should hide from the users the details

of invoking dld and of setting up the function entry points.

Incremental program development

Since dld does not require all source modules to be available when creating an execut-

able file, it makes incremental program development possible. Programmers can start

testing their programs before they finish writing the complete program without providing

dummy definitions for the missing procedures. As long as the test input data does not

cause the program to reference modules that have not yet been linked (i.e., does not

invoke a function f such that function_executable_p(f) returns zero), the execution will

proceed smoothly. Programmers can therefore develop programs incrementally and

carry out thorough tests on individual modules before working on the next one. Further-

more, when new modules are added incrementally, the dynamic linker needs only to

resolve external symbol references related to these new modules. In contrast, if static

linking is used, link editing of the whole program has to be started anew. In other words,

the use of dynamic linking can in general speed up the program development cycle.
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Some systems10, 11 support incremental program development by providing an

interactive interpreter for the underlying programming language. These systems allow

programs to be written, tested, and modified interactively. However, interpreted code

usually runs more slowly than native machine code. The performance of an interpreter is

often unacceptable when executing computationally intensive programs. With dynamic

linking, interpreted and (possibly optimized) compiled code can be mixed together. Pro-

grammers might use compiled versions of the parts of the program that have been tested,

while at the same time they can use interpreted versions of the modules on which they

are currently working. The compiled modules are dynamically linked into the interpreter

of these systems. These systems also provide the necessary interface for the interactions

between the interpreted and compiled code.

As an example, suppose a graphical front end is to be added to an existing chess

playing program, which is computationally intensive. During its development, code for

this graphical front end is frequently modified, and so it is best run under an interactive

interpreter. However, executing the chess playing routines under the interpreter would

be unreasonably slow. With dld, compiled code for the chess program itself can be

dynamically linked into the interpreter, and can be executed at the same speed as if it

were statically linked. Thus, dld combines the ability of an interpreter to flexibly and

completely control the execution of the still developing routines with the high execution

efficiency achieved by the optimized machine code.

Support for debugging and testing

A dynamic linker also makes possible the implementation of many useful debugging

features. A debugger can be used as an interactive interface to control the reconstruction

of the user program and the execution of the inferior process, i.e., the process executing

the program being debugged. For example, a programmer can use a debugger to stop the

inferior process and invoke dld to remove the erroneous routines, correct them, and then

link them in again. New debugging routines can be linked into the inferior process on

demand. This feature is particularly useful when the need for such debugging routines is

not realized until the program has been executing for a long time and finally arrives at

some state of critical importance for debugging.
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Just as incremental program testing is made possible, dld allows unfinished frag-

ments of a program to be debugged. For example, a programmer might want to debug

and test the symbol table routines of a compiler before moving on to finish the rest of the

program. S/he might set up a debugger for the program shown in figure 2, and specify

that these functions are to be linked in and invoked. The programmer could then set

breakpoints, examine or modify program variables, or single step through the execution

of statements in these functions in the same way as debugging a complete program. Note

that information such as line numbers or variable names of these functions would not be

known by the debugger, and must be loaded explicitly if source-level debugging is

desired. Incremental loading of symbol table information is supported by some state-of-

the-art debuggers, such as Dalek12 and gdb13.

Another important debugging application for dld is to help speed up the interaction

between the debugger and the inferior process. Under most operating systems, a

debugger can only control the execution or modify the memory image of the inferior pro-

cess through a protected system call, e.g., ptrace in UNIX. This system call usually

involves a considerable amount of overhead. For example, each call to ptrace results in

two context switches between the debugger and the inferior processes. However, with

the help of dynamic linking, a debugger can inject the most frequently used debugging

functions into the inferior process’s address space, insert calls to these functions at

appropriate locations in the inferior’s code, and then allow the inferior process to execute

without any intervention from the debugger. Control is passed back to the debugger only

when necessary.

For example, consider a conditional breakpoint that is put into the inferior process.

That is, the inferior process is allowed to execute and the breakpoint is effective only

when some specified condition is satisfied. Evaluation of the condition might involve a

large amount of data, e.g., checking if an array is sorted. Also, the inferior process might

hit the breakpoint many times before the given condition becomes true. If all the

required information is transferred via a system call to the debugger everytime the infe-

rior process hits the breakpoint, the overhead involved would be very high. With dld, a

conditional breakpoint can be implemented by inserting code for the evaluation of the

condition into the inferior process. Only when the specified condition is satisfied will

control be passed back to the debugger. This scheme can be achieved as follows: First,
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the debugging code is linked into the inferior process’s address space. Second, a branch

instruction is overwritten into the location of the breakpoint so that the debugging code is

executed instead. Lastly, the machine instructions that were originally in this location

are moved to the end of the debugging code. By cleverly rearranging and relocating a

few machine instructions, the insertion of the branch to and from the debugging code

becomes transparent to the original execution. Since many unnecessary context switches

and data transfers between the debugger and the inferior are eliminated, the efficiency of

interactive debugging is greatly improved.

An alternative way dynamic linking can be used to speed up the interaction between

the debugger and the inferior process involves the use of shared memory14. A large

block of memory is allocated and shared between the debugger and the inferior process.

Then the program to be debugged is dynamically linked and loaded into this shared

memory. Control of the inferior process is then passed to the main procedure of this pro-

gram. As a result, any update of data made by this program is readily observed by the

debugger without any system call. Also, instructions of this program can easily be

modified because they are loaded in the shared memory, to which the debugger has direct

write access.
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DISCUSSION

The ability to dynamically link and unlink object modules from an executing process

provides much flexibility in the construction of a program. This ability allows the build-

ing blocks of a program to change or evolve with time: it turns a ‘‘program’’ into a

dynamic entity. The functionalities of such a program can be changed in response to its

interactions with the environment. As a result, dynamic link editing makes possible

many new kinds of applications that would otherwise be very hard to implement.

Systems with similar capabilities have been introduced before. For example, pro-

grams written in languages such as LISP or Prolog can load in and execute new functions

at any time during their execution. However, with only static linking, these systems have

to be built on top of an interpreter or a simulated machine, which always runs many

times slower than real machines. Dynamic link editing, on the other hand, combines the

high execution speed of native machine code with the flexibility of dynamically

modifiable programs.

As a positive side effect, dld helps speed up the program development cycle by

allowing incremental program construction and online maintenance. As the sample

applications illustrate, when new modules are added to a program, only part of the pro-

gram needs to be modified—the rest of the program need not be relinked. Incremental

linking can save a considerable amount of time, especially for large programs that often

take many minutes to link. Furthermore, the size of the executable files and the disk

storage requirements can be reduced because the system can now keep only one copy for

the commonly used library routines and have them dynamically linked into the executing

process on demand.

Another potential optimization of storage requirement is to allow commonly used

library routines to be shared among multiple processes. Many new versions of

UNIX2, 3, 4, 6 already support shared library. Although the current implementation of dld

allocates storage for the dynamically linked library modules in the private data area of

individual process, a simple modification would allow the process to use the shared copy

instead.

The price for the flexibility provided by dld is perhaps the overhead in processing

time for the link editing and the extra memory required for holding the symbol table and



-- --

- 22 - October 15, 1990

other bookkeeping information. In practice, the time spent in performing both the link

and the unlink operations is very small when compared with that spent in executing the

program itself. Once the linking is finished, the program can execute at the same speed

as if it were statically linked. Although a dynamically linked function must be invoked

indirectly through a pointer (as shown in figure 2), this indirection involves only one

extra pointer reference. That extra cost is negligible compared with the cost of executing

typically hundreds of machine instructions in the body of a function. In addition, prelim-

inary studies show that the vast majority of the time spent in dlink is for reading the object

files or libraries from disk. In other words, the overhead in resolving external symbol

references and maintaining the symbol table is insignificant.

The current implementation of function_executable_p is not complete according to the

given definition of executability. External references through pointers are not traced.

That is, this function will still return non-zero if the named function uses a pointer to

indirectly call another function that has already been unlinked. Furthermore, if one

external reference of an object module is unresolved, all functions defined in this module

are considered unexecutable. This approximation results in a very efficient implementa-

tion, albeit conservative.

Like many other powerful tools, there is always a danger that dld could be misused.

Similar to its static counterpart, a dynamic linker simply combines object modules

together and does not provide any extra protection on the existing code against corrup-

tion. For example, dld does not check if a function to be unlinked is still active (i.e., has

a corresponding activation record on the stack). If such a function is unlinked, the exe-

cuting process might crash when control is passed back to it because the memory origi-

nally holding the code for the function might have been garbage collected and reallo-

cated. Also, a function that was executable at one point in time might not be so when

other routines are removed. Therefore, the executability of a function should in general

be verified everytime before it is called, or everytime after modules are added or

removed.

Another potential hazard occurs when a dynamically linked routine is erroneous and

its invocation could crash the executing process. Thus, programs that allow user custom-

ization by means of dynamic linking expose themselves to potential misuse or destruc-

tion. In particular, privileged system commands should never allow user modification for
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the same reason that privileged UNIX commands should not allow shell escapes15. Oth-

erwise, an intruder can easily gain unauthorized access to system resources by modifying

an existing privileged command. For other application programs, a well-defined, simple

interface should be designed for users to hook-in their own functions.
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CONCLUSION

This paper describes a concept of genuine dynamic link editing and the implementation

of a working dynamic linker dld. This new approach of dynamic link editing allows

users to add, remove, or modify compiled object modules of a program while it is being

executed. As a result, application programs using dynamic linking enjoy both the

efficiency of executing native machine code and the flexibility of modifying their func-

tionalities in response to the changing environment. A large number of new applications,

such as those presented, are thus made possible.

Dld has been implemented for VAX machines running Ultrix, and for SUN 3 and

SPARC workstations running Sun Operating System version 3.4 or 4.0. It is a package

of library functions callable by C programs; it requires no modification of existing

software, such as the compiler and the assembler. Programs using dld suffer a slight

overhead in loading new modules from disk and performing runtime link editing. Once

these steps are completed, statements in the newly added routines execute at the same

speed as if they were statically linked. Dld can be obtained free of charge from the

authors.
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