rpm

rpm

COLLABORATORS
TITLE :
rom
ACTION NAME DATE SIGNATURE
WRITTEN BY January 15, 2023
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Contents

1 rpm
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29

1
PMLEUIAE L e e e e e 1
rpm.guide/Introduction Lo e |
rpm.guide/OVEIVIEW o i L e e e e e e e e e e e e e 2
rpm.guide/General Information 3
rpm.guide/Acquiring RPMo 3
rpm.guide/Acquiring RPM for your Linux system- 3
rpm.guide/Acquiring RPM for your AmigaOS system- 4
rpm.guide/RPM Requirements o 0 i e e e e e e e e 4
rpm.guide/Installing RPM 0oL 5
rpm.guide/Installing RPMon Linux e 5
rpm.guide/Installing RPM on AmigaOS e 5
rpm.guide/Using RPM 000 6
rpm.guide/Now what can I “really’ dowith RPM? L 9
rpm.guide/Building RPMs L e 10
rpm.guide/The rpmrc File L o 11
rpm.guide/The Spec File o o e 12
rpm.guide/The Header e 13
rpm.guide/Prep L e e e 15
rpm.guide/Buildo 16
rpm.guide/Install oL e e e e e 17
rpm.guide/Optional pre and post Install-Uninstall Scripts 17
rpm.guide/Files e 17
rpm.guide/Building Ito 18
rpm.guide/The Source Directory Tree o e 18
rpm.guide/Test Building e e e 19
rpm.guide/Generating the File List L 19
rpm.guide/Building the Package with RPM 20
rpm.guide/Testing It o L L e e e e e 21

rpm.guide/What to do withyournew RPMs 0 L oo 21

rpm iv
1.30 rpm.guide/Advanced RPM Building e 21
1.31 rpm.guide/How to Get Started e 22
1.32 rpm.guide/Sub-Packages L e 24
1.33 rpm.guide/Adv The Header e 24
1.34 rpm.guide/Adv Prep L 24
1.35 rpm.guide/Adv Build 24
1.36 rpm.guide/Adv Install e 25
1.37 rpm.guide/Adv Optional pre and post Install-Uninstall Scripts 25
1.38 rpm.guide/Adv Files e 25
1.39 rpm.guide/What NOW? e e e e e 26
1.40 rpm.guide/Multi-architectural RPM Building oo 26
1.41 rpm.guide/Sample spec File e 26
1.42 rpm.guide/Optflags L e e e 27
143 rpm.guide/Macros o e e e e e e e e e e e e e e 28
1.44 rpm.guide/Excluding Architectures from Packages o o L. 28
1.45 rpm.guide/Finishing Up e 28
1.46 rpm.guide/Copyright NOtiCe o e e e e e e e e 29

1/29

Chapter 1

rpm

1.1

* k%

1.2

rpm.guide
RPM
Kristof Depraetere, ‘Kristof.Depraeterelrug.ac.be’
V1, August 15, 1996
Based on:

RPM HOWTO by Donnie Barnes, djb@redhat.com
Copyright 1995, Red Hat Software

Introduction

Overview

General Information

Installing RPM

Using RPM

Now what can I ‘really’ do with RPM?
Building RPMs

Advanced RPM Building
Multi-architectural RPM Building

Copyright Notice

rpm.guide/Introduction

rpm

2/29

Introduction

*kkkkhkkkkkkk*k

RPM is the ‘R’ed Hat ‘P’ackage 'M’anager. While it does contain Red
Hat in the name, it is completely intended to be an open packaging
system available for anyone to use. It allows users to take source
code for new software and package it into source and binary form such
that binaries can be easily installed and tracked and source can be
rebuilt easily. It also maintains a database of all packages and their
files that can be used for verifying packages and querying for
information about files and/or packages.

Red Hat Software encourages other distribution vendors to take the
time to look at RPM and use it for their own distributions. RPM is
quite flexible and easy to use, though it provides the base for a very
extensive system. It is also completely open and available, though we
would appreciate bug reports and fixes. Permission is granted to use
and distribute RPM royalty free under the GPL.

RPM can even provide an excellent method to upgrade an existing
system. The database won’t be as up to date as a machine that was
completely installed with RPM, but it will still contain anything
installed with RPM. It can also be used to package commercial software.

1.3 rpm.guide/Overview

Overview

* ok Kk kk ok xk

First, let me state some of the philosophy behind RPM. One design
goal was to allow the use of "pristine" sources. With RPP (our former
packaging system of which ‘none’ of RPM is derived), our source
packages were the "hacked" sources that we built from. Theoretically,
one could install a source RPP and then ‘make’ it with no problems.

But the sources were not the original ones, and there was no reference
as to what changes we had to make to get it to build. One had to
download the pristine sources separately. With RPM, you have the
pristine sources along with a patch that we used to compile from. We
see this as a big advantage. Why? Several reasons. For one, if a new
version of a program comes out, you don’t necessarily have to start
from scratch to get it to compile under RHL. You can look at the patch
to see what you ‘might’ need to do. All the compile-in defaults are
easily visible this way.

RPM is also designed to have powerful querying options. You can do
searches through your entire database for packages or Jjust certain
files. You can also easily find out what package a file belongs to and
where it came from. The RPM files themselves are compressed archives,
but you can query individual packages easily and ‘quickly’ because of a
custom binary header added to the package with everything you could
possibly need to know contained in uncompressed form. This allows for
‘fast’ querying.

rpm 3/29

Another powerful feature is the ability to verify packages. If you
are worried that you deleted an important file for some package, just
verify it. You will be notified of any anomalies. At that point, you
can reinstall the package if necessary. Any config files that you had
are preserved as well.

We would like to thank the folks from the BOGUS distribution for
many of their ideas and concepts that are included in RPM. While RPM

was completely written by Red Hat Software, its operation is based on
code written by BOGUS (PM and PMS).

1.4 rpm.guide/General Information

General Information

kA khhkhkhkkhkhkkhkkxkhkxkk*

Acquiring RPM

RPM Requirements

1.5 rpm.guide/Acquiring RPM

Acquiring RPM

Acquiring RPM for your Linux system-

Acquiring RPM for your AmigaOS system-—

1.6 rpm.guide/Acquiring RPM for your Linux system-

Acquiring RPM for your Linux system-

The best way to get RPM is to install Red Hat Linux. If you don’t
want to do that, you can still get and use RPM. It can be acquired

from any Official Red Hat Mirror. Some of those are:
FTP Site Directory
ftp.pht.com /pub/linux/redhat
sunsite.unc.edu /pub/Linux/distributions/redhat
sunsite.doc.ic.ac.uk /packages/linux/sunsite.unc-mirror/

distributions/redhat/redhat-2.0

rpm

4/29

ftp.cms.uncwil.edu /linux/redhat
ftp.wilmington.net /linux/redhat

ftp.caldera.com /pub/mirrors/redhat
ftp.lasermoon.co.uk /pub/distributions/RedHat
ftp.cc.gatech.edu /pub/linux/distributions/redhat
uiarchive.cso.uiuc.edu /pub/systems/linux/distributions/redhat
ftp.ibp.fr /pub/linux/distributions/redhat
ftp.gwdg.de /pub/linux/install/redhat
ftp.uoknor.edu /linux/redhat

ftp.msu.ru /pub/Linux/RedHat
linux.ucs.indiana.edu /pub/linux/redhat

ftp.cvut.cz /pub/linux/redhat
ftp.ton.tut.fi /pub/Linux/RedHat

ftp.funet.fi /pub/Linux/images/RedHat

We are unsure at this point where to find it past there, but it will
most likely just be a directory called RPM. We will make a tar file
available with a README containing all the install instructions you
should need.

1.7 rpm.guide/Acquiring RPM for your AmigaOS system-

Acquiring RPM for your AmigaOS system-

You can find an AmigaOS binary distribution of RPM on these sites:

FTP Site Directory
ftp.ninemoons.com /pub/ade/
ftp.grolier.fr /pub/amiga/ade/

1.8 rpm.guide/RPM Requirements

RPM Requirements

You must have a working copy of ‘cpio’, ‘tar’ and ‘gunzip’, which
most Linux distributions have now. While this system is intended for
use with Linux, it may very well be portable to other Unix systems who
meet the above conditions. It also works on the Amiga with AmigaOS and
IXEmul. Be warned, the binary packages generated on a different type of
Unix system will not be compatible.

Those are the minimal requirements to install RPMs. To build RPMs
from source, you also need everything normally required to build a
package, like ‘gcc’, ‘make’, etc.

rpm

5/29

1.9 rpm.guide/lnstalling RPM

Installing RPM
kkhkAkhkkhkkkkhkkKkkkKx*k

Installing RPM on Linux

Installing RPM on AmigaOS

1.10 rpm.guide/Installing RPM on Linux

Installing RPM on Linux

Before you start make sure that you have an Linux version of RPM. If
you got it, follow these steps carefully:

x cd /
* tar -zxvf rpm-2.2.2-bin.tar.gz
x makedir /var/lib/rpm

* edit the ‘rpmrc’ file in the ‘etc:’ directory. Change the ‘topdir’
directory to reflect your setup.

* create these directories in the ‘topdir’ directory:
* SOURCES

* SPECS
* SRPMS
* RPMS/1386

* now initialize the RPM database with the command:
rpm ——initdb

Everything is now setup for using RPM.

1.11 rpm.guide/Installing RPM on AmigaOS

Installing RPM on AmigaOS

Before you start make sure that you have an AmigaOS version of RPM.
If you got it, follow these steps carefully:

rpm 6/29

* cd <your-build-directory>

* tar —-xzvf rpm-2.2.4-src.tar.gz

* cd rpm-2.2.4

* configure —--prefix=/ade

* make

* make install

Now it’s time to edit the file "ade:lib/rpmrc" to correspond to your
system setup. Change the following entries:

* dppath: /ade/lib/rpm

* topdir: /place/where/you/want/to/store/RPM/packages

Also edit the file "etc:rpmrc". Replace the <topdir> entry with a
<builddir> entry (note UNIX style path names):

x builddir: /place/where/RPM/will/build/packages

It is recommended to let <topdir> and <builddir> point to two
different partitions.

Now create the following directories in <topdir>:
* RPMS

* RPMS/m68k

* SOURCES

* SRPMS

* SPECS

Create the "rpm" directory in "ade:1lib"

Now it’s time to initialise the rpm database with:
rpm ——-initdb

Everything is now setup for using RPM.

1.12 rpm.guide/Using RPM

Using RPM

Ak kKhkkk Kk kK

In its simplest form, RPM can be used to install packages:
rpm —-i foobar-1.0-1.i1i386.rpm

The next simplest command is to uninstall a package:
rpm —-u foobar

rpm 7/29

One of the more complex but ‘highly’ useful commands allows you to
install packages via FTP. If you are connected to the net and want to
install a new package, all you need to do is specify the file with a
valid URL, like so:
rpm -1 ftp://ftp.pht.com/pub/linux/redhat/rh-2.0-beta/RPMS/foobar <
-1.0-1.1386.rpm

Please note, however, that the current version of RPM will only do
installs via FTP. You cannot run any of the more complex query options
on packages at an FTP site.

While these are simple commands, rpm can be used in a multitude of
ways as seen from the ‘Usage’ message:
rpm version 1.4.5
Copyright (C) 1995 - Red Hat Software
This may be freely redistributed under the terms of the GNU Public License

usage: rpm {—-—-help}
rpm {--version}

rpm {-—-install -i} [-v] [--hash -h] [--percent] [--force] [--test]
[-—-search] [--root <dir>] filel.rpm ... filen.rpm
rpm {—-—-upgrade -U} [-v] [—-—hash -h] [—-—-percent] [-—-force] [—-—-test]
[-—-search] [--root <dir>] filel.rpm ... fileN.rpm
rpm {--query -q} [-afFpP] [-1i] [-1] [-s] [-d] [-c] [-V]
[-—root <dir>] [targets]
rpm {—--verify -V -y} [—-afFpP] [--root <dir>] [targets]
rpm {--uninstall -u} [--root <dir>] packagel package2 ... packageN
rpm {-b}[plcibal] [-v] [--short-circuit] [--clean] [-—-keep-temps]
[-—test] [-—-time-check <s>] specfile
rpm {—--rebuild} [-v] sourcel.rpm source2.rpm ... sourceN.rpm
rpm {--where} packagel package2 ... packageN

First, I’1l go through a synopsis of what all the options mean (don’t
worry, there may be alot of options, but we tried to make them all as
intuitive as possible).

Options are nested, so the possible options are many. Here’s a
description in parallel with the ‘Usage’ message:
* ‘help’ prints the usage message

* ‘=i’ installs an rpm file.
« ‘-hash, -h’ is a very cool option for watching the package
install (much like "hash’ in ftp).

* ‘—-percent’ prints the percentages as a package installs (but
is only useful for interfacing with other tools...is not
really human readable) .

« ‘—force’ will force an install of a binary package even
though it may already exist in the database.

+ ‘—test’ will tell you if installing would work or not (do you
have a conflict with an already installed package).

* ‘—root’ will install a package using the root prefix
specified instead of using the default of ‘/’.

rpm

8/29

*

*

*

‘-install’ installs an rpm file.

‘-U’ upgrades a package. This option installs the new package and
then uninstalls the old one without hurting the new one. The
upgrade option takes the same options as the install option.

‘-g’ is the query option. In its simplest form, you can do ‘rpm
—-gq foobar’ which would return ‘foobar-1.0-1'". (1.0 is the version
number, 1 is the release number.)

Several options may be used with ‘-gq’:
* ‘—a’ will query all currently installed packages.

* ‘—f <file>’ will query the package owning <file>.

* ‘-=F’ is the same as ‘-f’ except you can give it filenames via
stdin (ie. ‘ls /usr/bin | rpm -gF’).

* ‘-p <packagefile>’ will query the package. It is really only
useful when combined with one of the Information Selection
Options below.

* ‘=P’ is like -p, except it takes its package filenames from
stdin (ie. ‘ls /mnt/redhat/redhat-2.0/RPMS | rpm —gP’).

* ‘—root’ will query a mounted filesystem.

Several Information Selection Options can be used with any
combination of the above options. If none is given, the package
name only is displayed.
* ‘=i’ displays package information such as Name, Description,
Release, etc.

* ‘=1’ will display the file list from the entire package (all
files that get installed). You can also use a ‘-v’ with this
to make the file list much more verbose.

* ‘—s’ shows you the state of all the files in the package.
There are only two possible states, normal and missing.

+ ‘=d’ outputs a list of just the files marked as documentation
(man pages, info pages, READMEs, etc). ‘-v’/ will give even
more info.

* ‘—c’ outputs a list of only the configuration files
(sendmail.cf, passwd, inittab, etc.) ‘-v’ will give more info
about the files.

‘{-V,-y,-verify}’ are the verify options. All are interchangeable.

They all take the same Package Specification and Information
Selection options as the ‘-gq’ option. I’11 list some examples:
* To verify a package containing particular file, do:
rpm -yf /bin/vi

* To verify ALL your files, do:
rpm -ya

rpm 9/29
* To verify files on your system versus the files in a .rpm
file, do:
rpm —-Vp foobar-1.0-1.rpm
* ‘-uninstall, -u <package>’ to uninstall a package
* ‘=b’ to build a package (from sources and a spec file). This
option will be discussed more at length in the next section,
Building RPMs.
* ‘=v’ be verbose in the output of what’s going on.
* ‘=vv’ be ‘very’ verbose in the output of what’s going on.
1.13 rpm.guide/Now what can | ‘really’ do with RPM?
Now what can I ‘really’ do with RPM?
R R IR b 2R 2 b S Sb b b db b 2 db b J Ih b dh b b db b b dh S dh I b db Sb 4
RPM is a very useful tool and, as you can see, has several options.
The best way to make sense of them is to look at some examples. I
covered simple install/uninstall above, so here are some more examples:
* Let’s say you delete some files by accident, but you aren’t sure
what you deleted. 1If you want to verify your entire system and
see what might be missing, you would do:
rpm —Va
* Let’s say you run across a file that you don’t recognize. To find
out which package owns it, you would do:
rpm —gf /usr/X11R6/bin/xjewel
The output would be:
xjewel-1.6-1
* You find a new koules RPM, but you don’t know what it is. To find
out some information on it, do:
rpm —gpi koules-1.0-1.i386.rpm
The output would be:
Name : koules Distribution: RHL 2.0
Version : 1.0 Vendor: Red Hat Software
Release 1 Build date: Tue Aug 29 <
12:53:21 1995
Install date: <not installed> Build host: daffy.redhat.com
Group : Games
Size : 403105

Description : well done SVGAlib game

* Now you want to see what files the koules RPM installs. You would
do:

rpm —-gpl koules-1.0-1.i386.rpm

The output is:
/usr/man/mané/koules.6

rpm 10/29

/usr/lib/games/kouleslib/start.raw
/usr/lib/games/kouleslib/end.raw
/usr/lib/games/kouleslib/destroy2.raw
/usr/lib/games/kouleslib/destroyl.raw
/usr/lib/games/kouleslib/creator2.raw
/usr/lib/games/kouleslib/creatorl.raw
/usr/lib/games/kouleslib/colize.raw
/usr/lib/games/kouleslib
/usr/games/koules

These are Jjust several examples. More creative ones can be thought
of really easy once you are familiar with RPM.

1.14 rpm.guide/Building RPMs

Building RPMs
kkhkAkkkhkkkkhkkKkkkK

Building RPMs is fairly easy to do, especially if you can get the
software you are trying to package to build on its own.

The basic procedure to build an RPM is as follows:
* Make sure your ‘/etc/rpmrc’ is setup for your system.

* Get the source code you are building the RPM for to build on your
system.

* Make a patch of any changes you had to make to the sources to get
them to build properly.

* Make a spec file for the package.
* Make sure everything is in its proper place.
* Build the package using RPM.

Under normal operation, RPM builds both binary and source packages.

The rpmrc File
The Spec File
The Header
Prep

Build

Install

Optional pre and post Install-Uninstall Scripts

rpm

11/29

Files
Building It
Testing It

What to do with your new RPMs

1.15 rpm.guide/The rpmrc File

The rpmrc File

Right now, the only configuration of RPM is available via the

‘/etc/rpmrc’ file. An example one looks like:

require_vendor: 1

require_distribution: 1

require_group: 1

distribution: RHL 2.0

vendor: Red Hat Software

arch_sensitive: 1

topdir: /usr/src/redhat-2.0

optflags: 1386 —-02 -m486
optflags: axp -02

The ‘require_vendor’ line causes RPM to require that it find a
vendor line. This can come from the ‘/etc/rpmrc’ or from the header of
the spec file itself. To turn this off, change the number to ‘0’. The
same holds true for the ‘require_distribution’ and ‘require_group’
lines.

The next line is the ‘distribution’ line. You can define that here

or later in the header of the spec file. When building for a particular

distribution, it’s a good idea to make sure this line is correct, even
though it is not required. The ‘vendor’ 1line works much the same way,
but can be anything (ie. Joe’s Software and Rock Music Emporium) .

The next line is ‘arch_sensitive’. This specifies where the binary
RPMs go and what they are named. Right now, 1386 is defined as a type
within RPM. That means if you are building on an Intel machine and
have this value set to true, your RPMs will go in
‘/usr/src/redhat-2.0/RPMS/1386/’ and their name will be something like
‘foobar-1.0-1.1i386.rpm’. If you set this value to ‘0’, the RPMs will
be placed in ‘/usr/src/redhat-2.0/RPMS/’ and will be named something
like ' foobar-1.0-1.bin.rpm’. This does not affect the name or
placement of the source RPM, however.

RPM also now has support for building packages on multiple
architectures. The ‘rpmrc’ file can hold an "optflags" variable for
building things that require architecture specific flags when building.
See later sections for how to use this wvariable.

In addition to the above macros, there are several more. You can

rpm

12/29

use:

1.16

‘topdir’ to specify the top level directory for building. In Red
Hat 2.0, this directory is ‘/usr/src/redhat-2.0'.

‘specdir’ 1is the directory under topdir to use for the spec files.
The default for this is ‘SPECS’.

‘' builddir’ specifies the top level of the build directory. The
default for this is ‘BUILD’.

‘sourcedir’ specifies the top level of the source directory. The
default for this is ‘SOURCES’. This is where the pristine tar

files, the patches, and the icons go.

‘rpmdir’ sets the directory for the binary RPMs. The default for
this is ‘RPMS’.

‘srcrpmdir’ sets the directory for the source RPMs. The default
for this is ‘SRPMS’.

‘docdir’ specifies where the documentation should be installed.
By default, this is ‘/usr/doc’.

‘libdir’ sets the path for the RPM database. By default, this is
‘/var/lib/rpm’ .

‘timecheck’ sets whether or not to do a timecheck by default.

rpm.guide/The Spec File

The Spec File

We’1ll begin with discussion of the spec file. Spec files are
required to build a package. The spec file is a description of the
software along with instructions on how to build it and a file list for

all the binaries that get installed.

You’ll want to name your spec file according to a standard
convention. It should be the package name-dash-version
number-dash-release number-dot-spec.

Here is a small spec file (vim-3.0-1.spec):
Description: VIsual editor iMproved
Name: vim
Version: 3.0
Release: 1
Icon: vim.gif

Source: sunsite.unc.edu:/pub/Linux/apps/editors/vi/vim-3.0.tar.gz

Patch: vim-3.0-make.patch
Copyright: distributable
Group: Applications/Editors

sprep

rpm

13/29

$setup

$patch -pl

cd src

cp makefile.unix makefile

Sbuild
cd src
make

%$install

rm —-f /bin/vim

cd src

make install

In -sf vim /bin/vi

$files

$doc doc/reference.doc doc/unix.doc tutor/tutor
/bin/vim

/bin/vi

/usr/man/manl/vim.1

/usr/lib/vim.hlp

1.17 rpm.guide/The Header

The Header

There are a few caveats as well. The fields must be filled in as
follows:
* ‘Description:’ This one is kind of obvious. You can span multiple

The header has some standard fields in it that you need to fill in.

lines by ending each line with a backslash.

* ‘Name:’ This must be the name string from the rpm filename you

plan to use.

* ‘Wersion:’ This must be the version string from the rpm filename
you plan to use.

* ‘Release:’ This is the release number for a package of the same
version (ie. if we make a package and find it to be slightly
broken and need to make it again, the next package would be
release number 2).

* ‘Icon:’ This is the name of the icon file for use by other high
level installation tools (like Red Hat’s "glint"). It must be a
gif and resides in the SOURCES directory.

* ‘Source:’ This line points at the HOME location of the pristine

source file. It is used if you ever want to get the source again

or check for newer versions. Caveat: The filename in this line
MUST match the filename you have on your own system (ie. don’t
download the source file and change its name). You can also
specify more than one source file using lines like:

rpm

14/ 29

Source0: blah-0.tar.gz
Sourcel: blah-1l.tar.gz
Source2: fooblah.tar.gz

These files would go in the ‘SOURCES’ directory. (The directory
structure is discussed in a later section, "The Source Directory
Tree".)

‘Patch:’ This is the place you can find the patch if you need to
download it again. Caveat: The filename here must match the one
you use when you make YOUR patch. You may also want to note that
you can have multiple patch files much as you can have multiple
sources.] You would have something like:

PatchO: blah-0.patch

Patchl: blah-1.patch

Patch2: fooblah.patch

These files would go in the ‘SOURCES’ directory.
‘Copyright:’ This line tells how a package is copyrighted. You
should use something like GPL, BSD, MIT, public domain,

distributable, or commercial.

‘Root:’ This line allows you to specify a directory as the "root"
for building and installing the new package. You can use this to

help test your package before having it installed on your machine.

‘Group:’ This line is used to tell high level installation

programs (such as Red Hat’s "glint") where to place this particular

program in its hierarchical structure. The group tree currently
looks something like this:
Applications
Communications
Editors
Emacs
Engineering
Spreadsheets
Databases
Graphics
Networking
Mail
Math
News
Publishing
TeX
Base
Kernel
Utilities
Archiving
Console
File
System
Terminal
Text
Daemons
Documentation
X11

rpm

15/29

XFree86
Servers
Applications
Graphics
Networking
Games
Strategy
Video
Amusements
Utilities
Libraries
Window Managers
Libraries
Networking
Admin
Daemons
News
Utilities
Development
Debuggers
Libraries
Libc
Languages
Fortran
Tcl
Building
Version Control
Tools
Shells
Games

1.18 rpm.guide/Prep

Prep

This is the second section in the spec file. It is used to get the
sources ready to build. Here you need to do anything necessary to get
the sources patched and setup like they need to be setup to do a ‘make’.

One thing to note: Each of these sections is really just a place to
execute shell scripts. You could simply make an ‘sh’ script and put it
after the ‘“$prep’ tag to unpack and patch your sources. We have made
macros to aid in this, however.

The first of these macros is the ‘%$setup’ macro. In its simplest
form (no command line options), it simply unpacks the sources and ‘cd"s
into the source directory. It also takes the following options:

* ‘-n name’ will set the name of the build directory to the listed
‘name’ . The default is ‘$NAME-SVERSION’. Other possibilities
include ‘S$SNAME’, ‘${NAME}S${VERSION}’, or whatever the main tar file
uses.

rpm

16 /29

* ‘—c’ will create and cd to the named directory ‘before’ doing the
untar.

x ‘-b #’ will untar Source# ‘before’ cd’ing into the directory (and
this makes no sense with ‘-c¢’ so don’t do it). This is only
useful with multiple source files.

* ‘—a #’ will untar Source# ‘after’ cd’ing into the directory.

* ‘=T’ This option overrides the default action of untarring the
Source and requires a ‘-b 0’ or ‘-a 0’ to get the main source file
untarred. You need this when there are secondary sources.

* ‘=D’ Do ‘not’ delete the directory before unpacking. This is only
useful where you have more than one setup macro. It should ‘only’
be used in setup macros ‘after’ the first one (but never in the
first one).

The next of the available macros is the ‘$patch’ macro. This macro
helps automate the process of applying patches to the sources. It takes

several options, listed below:
* “#’ will apply Patch# as the patch file.

* ‘-p #’ specifies the number of directories to strip for the
patch(l) command.

* ‘=P’ The default action is to apply ‘Patch’ (or ‘Patch0’). This
flag inhibits the default action and will require a ‘0’ to get the
main source file untarred. This option is useful in a second (or

later) ‘$patch’ macro that required a different number than the
first macro.

* You can also do ‘%$patch#’ instead of doing the real command:
‘$patch # -P’

That should be all the macros you need. After you have those right,
you can also do any other setup you need to do via ‘sh’ type scripting.
Anything you include up until the ‘%build’ macro (discussed in the next
section) is executed via ‘sh’. Look at the example above for the types
of things you might want to do here.

1.19 rpm.guide/Build

There aren’t really any macros for this section. You should just put
any commands here that you would need to use to build the software once
you had untarred the source, patched it, and cd’ed into the directory.
This is just another set of commands passed to ‘sh’, so any legal ‘sh’
commands can go here (including comments). Your current working
directory is reset in each of these sections to the toplevel of the
source directory, so keep that in mind. You can ‘cd’ into
subdirectories if necessary.

rpm 17 /29

1.20 rpm.guide/Install

Install

There aren’t really any macros here, either. You basically just
want to put whatever commands here that are necessary to install. If
you have ‘make install’ available to you in the package you are
building, put that here. If not, you can either patch the makefile for
a ‘make install’ and just do a ‘make install’ here, or you can hand
install them here with ‘sh’ commands. You can consider your current
directory to be the toplevel of the source directory.

1.21 rpm.guide/Optional pre and post Install-Uninstall Scripts

Optional pre and post Install/Uninstall Scripts

You can put scripts in that get run before and after the installation

and uninstallation of binary packages. A main reason for this is to do
things like run ‘ldconfig’ after installing or removing packages that
contain shared libraries. The macros for each of the scripts is as
follows:

* ‘%pre’ 1is the macro to do pre—-install scripts.

* ‘$post’ is the macro to do post-install scripts.

x ‘%preun’ 1is the macro to do pre-uninstall scripts.

* ‘%postun’ 1s the macro to do post-uninstall scripts.

The contents of these sections should just be any ‘sh’ style script,
though you do ‘not’ need the ‘#!/bin/sh’.

1.22 rpm.guide/Files

This is the section where you ‘must’ list the files for the binary
package. RPM has no way to know what binaries get installed as a
result of ‘make install’. There is ‘NO’ way to do this. Some have
suggested doing a ‘find’ before and after the package install. With a
multiuser system, this is unacceptable as other files may be created
during a package building process that have nothing to do with the
package itself.

rpm

18/29

There are some macros available to do some special things as well.
They are listed and described here:

*

‘$doc’ is used to mark documentation in the source package that
you want installed in a binary install. The documents will be
installed in ‘/usr/doc/S$SNAME-SVERSION-SRELEASE’. You can list
multiple documents on the command line with this macro, or you can
list them all separately using a macro for each of them.

‘3config’ is used to mark configuration files in a package. This
includes files like sendmail.cf, passwd, etc. If you later

uninstall a package containing config files, any unchanged files
will be removed and any changed files will get moved to their old
name with a ‘.rpmsave’ appended to the filename. You can list
multiple files with this macro as well.

‘$dir’ marks a single directory in a file list to be included as
being owned by a package. By default, if you list a directory
name ‘WITHOUT’ a ‘%dir’ macro, ‘EVERYTHING’ in that directory is
included in the file list and later installed as part of that
package.

The biggest caveat in the file list is listing directories. If you

list

‘/usr/bin’ by accident, your binary package will contain ‘every’

file in ‘/usr/bin’ on your system.

1.23

1.24

rpm.guide/Building It

Building It

The Source Directory Tree
Test Building
Generating the File List

Building the Package with RPM

rpm.guide/The Source Directory Tree

The Source Directory Tree

The first thing you need is a properly configured build tree. This
is configurable using the ‘/etc/rpmrc’ file. Most people will just use
‘/usr/src’ .

rpm

19/29

You may need to create the following directories to make a build
tree:
* ‘BUILD’ is the directory where all building occurs by RPM. You
don’t have to do your test building anywhere in particular, but
this is where RPM will do it’s building.

* ‘SOURCES’ is the directory where you should put your original
source tar files and your patches. This is where RPM will look by
default.

* ‘SPECS’ 1is the directory where all spec files should go.
* ‘RPMS’ is where RPM will put all binary RPMs when built.

* ‘SRPMS’ 1is where all source RPMs will be put.

1.25 rpm.guide/Test Building

Test Building

The first thing you’ll probably want to to is get the source to
build cleanly without using RPM. To do this, unpack the sources, and
change the directory name to $NAME.orig. Then unpack the source again.
Use this source to build from. Go into the source directory and
follow the instructions to build it. If you have to edit things,
you’ll need a patch. Once you get it to build, clean the source
directory. Make sure and remove any files that get made from a

‘./configure’. Then ‘cd’ back out of the source directory to its
parent. Then you’ll do something like:
diff -uNr dirname.orig dirname > ../SOURCES/dirname-linux.patch

This will create a patch for you that you can use in your spec file.
Note that the "linux" that you see in the patch name is just an
identifier. You might want to use something more descriptive like
"config" or "bugs" to describe ‘why’ you had to make a patch. It’s
also a good idea to look at the patch file you are creating before
using it to make sure no binaries were included by accident.

1.26 rpm.guide/Generating the File List

Generating the File List

Now that you have source that will build and you know how to do it,
build it and install it. Look at the output of the install sequence and
build your file list from that to use in the spec file. We usually
build the spec file in parallel with all of these steps. You can
create the initial one and fill in the easy parts, and then fill in the
other steps as you go.

rpm

20/29

1.27 rpm.guide/Building the Package with RPM

Building the Package with RPM

Once you have a spec file, you are ready to try and build your
package. The most useful way to do it is with a command like the
following:

rpm —-ba -v foobar-1.0.spec

There are other options useful with the ‘-b’ switch as well:
* ‘p’ means just run the ‘prep’ section of the specfile.

* Y1’ is a list check that does some checks on ‘%files’.

c’ do a prep and compile. This is useful when you are unsure of
whether your source will build at all. It seems useless because
you might want to just keep playing with the source itself until
it builds and then start using RPM, but once you become accustomed
to using RPM you will find instances when you will use it.

i’ do a prep, compile, and install.

* ‘b’ prep, compile, install, and build a binary package only.

* ‘a’ build it all (both source and binary packages).

There are several modifiers to the ‘-b’ switch. They are as follows:

* ‘-short-circuit’ will skip straight to a specified stage (can only
be used with ¢ and 1i).

* ‘—clean’ removes the build tree when done.

* ‘—keep-temps’ will keep all the temp files and scripts that were
made in /tmp. You can actually see what files were created in
/tmp using the ‘-v’ option.

* ‘—test’ does not execute any real stages, but does keep-temp.

* ‘—time-check #’ is very useful. By default, the time-check value

is 7200 seconds (two hours). What this does is check all the
files in ‘%$files’ and warns you if they are more than ‘#’ seconds
old (or the default). This lets you make sure that the newly

created binaries are getting installed and not old ones that Jjust
happen to be still lying around. This author can attest to the
value of this feature after having to release several RPP updates
because old binaries were accidentally included. You can also
turn this off (useful when building binary only packages of
commercial software) by setting the value to zero.

rpm 21/29

1.28 rpm.guide/Testing It

Testing It

Once you have a source and binary rpm for your package, you need to
test it. The easiest and best way is to use a totally different machine
from the one you are building on to test. After all, you’ve just done
a lot of ‘make install"s on your own machine, so it should be installed
fairly well.

You can do an ‘rpm -u packagename’ on the package to test, but that
can be deceiving because in building the package, you did a ‘make
install’. TIf you left something out of your file list, it will not get
uninstalled. You’ll then reinstall the binary package and your system
will be complete again, but your rpm still isn’t. Make sure and keep
in mind that just because you do a ‘rpm -ba package’, most people
installing your package will Jjust be doing the ‘rpm -i package’. Make
sure you don’t do anything in the ‘build’ or ‘install’ sections that
will need to be done when the binaries are installed by themselves.

1.29 rpm.guide/What to do with your new RPMs

What to do with your new RPMs

Once you’ve made your own RPM of something (assuming its something
that hasn’t already been RPM’ed), you can contribute your work to
others (also assuming you RPM’ed something freely distributable). To
do so, you’ll want to upload it to an FTP site somewhere. We hope RPM
will become a standard that everyone starts using. If that is the
case, you should probably upload your RPMs to sunsite.unc.edu. Until
then, please upload them to our official Red Hat Mirror,
ftp.pht.com:/pub/linux/redhat/Incoming. We are currently mirrored on
several other sites, and this is the best place to find new RPMs.

1.30 rpm.guide/Advanced RPM Building

Advanced RPM Building
kAhkAkhkkhkkhkhAkkhkkhkhk kA rhkhhkxk*k

RPM has some very advanced features available for larger, more
complex packages. It has the ability to build and output multiple
binary subpackages. An example of this is the ability to produce
separate Tcl/Tk binary packages from one spec file. Another example is
the ability to use one spec file to create a single XFree86 package with
no servers, and a separate package for each of the servers.

rpm 22/29

How to Get Started

Sub-Packages

Adv The Header

Adv Prep

Adv Build

Adv Install

Adv Optional pre and post Install-Uninstall Scripts
Adv Files

What Now?
What to do with your create RPM file

1.31 rpm.guide/How to Get Started

How to Get Started

The best way to get started is to look at an example spec file. The
following tcl/tk spec file is a good one to start with (though you can
also view the spec file of any package by installing the sources and
looking in ‘/usr/src/redhat-2.0/SPECS’):

%$package tcl

Description: Tool Command Language

Name: tcltk

Version: 7.4_4.0

Release: 1

Icon: tcl.gif

Source0: ftp.cs.berkeley.com:/pub/tcl/tcl7.4.tar.Z
Sourcel: ftp.cs.berkeley.com:/pub/tcl/tk4.0.tar.Z
Copyright: BSD

Group: Development/Languages/Tcl

PatchO: sunsite.unc.edu:/pub/Linux/devel/tcl7.4-1.diff.gz
Patchl: sunsite.unc.edu:/pub/Linux/devel/tk4.0-1.diff.gz
%$package tk

Icon: tk.gif

Description: Tk toolkit

Group: Development/Languages/Tcl

%prep

%$setup -T -c -a 0
$setup -T -D -a 1
$patch0 —-p0
$patchl -p0

$Sbuild
cd tcl7.4

23/29

./configure —--prefix=/usr
make

cd ../tk4.0

./configure —--prefix=/usr
make

$install

cd tcl7.4

make install

In -sf libtcl7.4.a /usr/lib/libtcl.a

In -sf libtcl7.4.s0.1 /usr/lib/libtcl.so.1l
In —-sf 1libtk4.0.a /usr/lib/libtk.a

In —-sf 1libtk4.0.so0.1 /usr/lib/libtk.so.l
cd ../tk4.0

make install

$post tcl
/sbin/ldconfig

%$post tk
/sbin/ldconfig

$postun tcl
/sbin/ldconfig

%$postun tk
/sbin/ldconfig

$files tcl
/usr/lib/libtcl7.4.a
/usr/lib/libtcl.a
/usr/lib/libtcl7.4.s0.1
/usr/lib/libtcl.so.1
/usr/include/tcl/tclx*
/usr/bin/tclsh
/usr/bin/tclsh7.4
/usr/lib/tcl7.4
/usr/man/manl/xtcl
/usr/man/man3/*tcl

$files tk
/usr/lib/1libtk4.0.a
/usr/lib/libtk.a
/usr/lib/libtk4.0.s0.1
/usr/lib/libtk.so.1
/usr/include/tcl/ks_names.h
/usr/include/tcl/default.h
/usr/include/tcl/tk«*
/usr/1lib/tk4.0
/usr/man/manl/*tk
/usr/man/man3/*tk
/usr/bin/wish
/usr/bin/wish4.0

rpm 24 /29

1.32 rpm.guide/Sub-Packages

Sub-Packages

One of the main advanced features of RPM is the ability to build
subpackages. They are easy to build as for most macros you can just
add the subpackage name as a parameter for anything specific to a
subpackage (and if you leave it off the section will apply to the main
package) .

1.33 rpm.guide/Adv The Header

The Header

The header only has one major difference, the ‘%package’ macro.
This macro is used in the header to tell which subpackage name to match
the description with. If you omit the macro in the initial part of the
header, you will get a main package with no change to the name. In the
XFree86 package, however, there is no ‘%$package’ macro in the top of
the header. This is because we wanted a base XFree86 package with all
the common stuff in it and then several subpackages (XFree86-SVGA,
etc.) with the servers. Tcl/Tk does not need a main package, so the
macro is at the top.

Another difference is the fact that this package has multiple source
and patch lines. If you’ll notice, there is now a ‘Source(O’ line
instead of just ‘Source’. They are functionally equivalent, though it
is a good idea to use ‘Source(’ when there is more than one source file
(and the same applies to patches as well).

1.34 rpm.guide/Adv Prep

Prep

Prep is basically the same as in the simple example, except it uses
more of the options available to the setup and patch macros.

1.35 rpm.guide/Adv Build

Build is basically the same, with the exception that the setup macro

rpm 25/29

above used the ‘-T’ option. Because of that, you have to do a manual
‘cd’ to get into the source directory.

You will also notice that the build does a ‘configure’ before it can

build. This is the section where any of this type of configuration
should go.

1.36 rpm.guide/Adv Install

Install

Again, everything is pretty normal with the exception of the fact
that you must manually ‘cd’ into the source directories.

1.37 rpm.guide/Adv Optional pre and post Install-Uninstall Scripts

Optional pre and post Install/Uninstall Scripts

This section is almost the same as in a simple RPM case (see the
above section). It has two post install scripts that run ldconfig for
each of the subpackages upon install. It ‘should’ have two post
uninstall scripts to run ldconfig as well.

1.38 rpm.guide/Adv Files

Here you will declare which files go in which packages. You really
have multiple file sections, each started with a new ‘%files’ macro and
the name of the subpackage (except in the case where you have a main
package...that ‘%files’ macro will have no argument given to it). The
other macros (doc, config, etc) work exactly the same as in the simple
case.

You also have the option to use the ‘x’ to glob filenames out of a
directory. You need to be careful with this (perhaps test it first) so
as not to include files you didn’t mean to. The above example does
this with the man pages.

rpm 26/29

1.39 rpm.guide/What Now?

What Now?

Please see the above sections on Testing and What to do with new
RPMs. We want all the RPMs available we can get, and we want them to
be good RPMs. Please take the time to test them well, and then take
the time to upload them for everyone’s benefit. Also, ‘please’ make
sure you are only uploading ‘freely available software’. Commercial
software and shareware should ‘not’ be uploaded unless they have a
copyright expressly stating that this is allowed.

1.40 rpm.guide/Multi-architectural RPM Building

Multi-architectural RPM Building

R R I b b b S b I b b S b S b b I SE b I S db S b b4

RPM can now be used to build packages for the Intel i386, the Digital
Alpha running Linux, and the Sparc. It has been reported to work on
SGI’'s and HP workstations as well. There are several features that
make building packages on all platforms easy. The first of these is
the "optflags" directive in the ‘/etc/rpmrc’. It can be used to set
flags used when building software to architecture specific values.
Another feature is the "arch" macros in the spec file. They can be used
to do different things depending on the architecture you are building
on. Another feature is the "Exclude" directive in the header.

Sample spec File

Optflags

Macros

Excluding Architectures from Packages

Finishing Up

1.41 rpm.guide/Sample spec File

Sample spec File

The following is the spec file for the "zoneinfo" package. It is
setup to build on both the Alpha and the Intel.
Description: Time zone utilities and data
Name: zoneinfo
Version: 95e

rpm 27129

Release: 2

Copyright: Distributable

Group: Utilities/System

Source0: elsie.nci.nih.gov:/pub/tzcode95e.tar.gz
Sourcel: elsie.nci.nih.gov:/pub/tzdata95i.tar.gz
PatchO: zoneinfo-95e-make.patch

Patchl: zoneinfo-95e-64bit.patch

$prep
%$setup -c¢ —-a 1
$patch0 -pl

$ifarch axp
%$patchl -pl
%endif

Sbuild
make RPM_OPT_FLAGS="${RPM_OPT_FLAGS}"

$install
rm -rf /usr/lib/zoneinfo

make install

rm —-f /usr/lib/zoneinfo/localtime /usr/lib/zoneinfo/posixrules /usr/lib/ <
zoneinfo/posixtime

In -sf ../../../etc/localtime /usr/lib/zoneinfo/localtime

In -sf localtime /usr/lib/zoneinfo/posixrules

In —-sf localtime /usr/lib/zoneinfo/posixtime

strip /usr/sbin/zic /usr/sbin/zdump

$files

$doc README Theory
/usr/lib/zoneinfo
/usr/lib/libz.a
/usr/sbin/zic
/usr/sbin/zdump
/usr/man/man3/newctime.3
/usr/man/man3/newtzset.3
/usr/man/manb5/tzfile.5
/usr/man/man8/zdump. 8
/usr/man/man8/zic.8

1.42 rpm.guide/Optflags

Optflags

In this example, you see how the "optflags" directive is used from
the ‘/etc/rpmrc’. Depending on which architecture you are building on,
the proper value is given to ‘RPM_OPT_FLAGS’. You must patch the
Makefile for your package to use this variable in place of the normal
directives you might use (like ‘-m486’ and ‘-02’). You can get a

rpm

28/29

better feel for what needs to be done by installing this source package
and then unpacking the source and examine the Makefile. Then look at
the patch for the Makefile and see what changes must be made.

1.43 rpm.guide/Macros

Macros

The ‘%ifarch’ macro is very important to all of this. Most times you
will need to make a patch or two that is specific to one architecture
only. In this case, RPM will allow you to apply that patch to just one
architecture only.

In the above example, zoneinfo has a patch for 64 bit machines.
Obviously, this should only be applied on the Alpha at the moment. So,
we add an ‘$ifarch’ macro around the 64 bit patch like so:

%$ifarch axp
$patchl -pl
%endif

This will insure that the patch is not applied on any architecture
except the alpha.

1.44 rpm.guide/Excluding Architectures from Packages

Excluding Architectures from Packages

So that you can maintain source RPMs in one directory for all
platforms, we have implemented the ability to "exclude" packages from
being built on certain architectures. This is so you can still do
things like

rpm —-rebuild /usr/src/SRPMS/x*.rpm

and have the right packages build. TIf you haven’t yet ported an
application to a certain platform, all you have to do is add a line
like:
Exclude: axp

to the header of the spec file of the source package. Then rebuild
the package on the platform that it does build on. You’ll then have a
source package that builds on an Intel and can easily be skipped on an
Alpha.

1.45 rpm.guide/Finishing Up

rpm 29/29

Finishing Up

Using RPM to make multi-architectural packages is usually easier to
do than getting the package itself to build both places. As more of
the hard packages get built this is getting much easier, however. As
always, the best help when you get stuck building an RPM is to look a
similar source package.

1.46 rpm.guide/Copyright Notice

Copyright Notice

*hkhkhkhkhkhkkkkkkkxK

This document and its contents are copyright protected.
Redistribution of this document is permitted as long as the content
remains completely intact and unchanged. In other words, you may
reformat and reprint or redistribute only.

This document is a modified version of RPM HOWTO written by Donnie
Barnes, ‘djb@redhat.com’, copyright (C) 1995 Red Hat Software.

	rpm
	rpm.guide
	rpm.guide/Introduction
	rpm.guide/Overview
	rpm.guide/General Information
	rpm.guide/Acquiring RPM
	rpm.guide/Acquiring RPM for your Linux system-
	rpm.guide/Acquiring RPM for your AmigaOS system-
	rpm.guide/RPM Requirements
	rpm.guide/Installing RPM
	rpm.guide/Installing RPM on Linux
	rpm.guide/Installing RPM on AmigaOS
	rpm.guide/Using RPM
	rpm.guide/Now what can I `really' do with RPM?
	rpm.guide/Building RPMs
	rpm.guide/The rpmrc File
	rpm.guide/The Spec File
	rpm.guide/The Header
	rpm.guide/Prep
	rpm.guide/Build
	rpm.guide/Install
	rpm.guide/Optional pre and post Install-Uninstall Scripts
	rpm.guide/Files
	rpm.guide/Building It
	rpm.guide/The Source Directory Tree
	rpm.guide/Test Building
	rpm.guide/Generating the File List
	rpm.guide/Building the Package with RPM
	rpm.guide/Testing It
	rpm.guide/What to do with your new RPMs
	rpm.guide/Advanced RPM Building
	rpm.guide/How to Get Started
	rpm.guide/Sub-Packages
	rpm.guide/Adv The Header
	rpm.guide/Adv Prep
	rpm.guide/Adv Build
	rpm.guide/Adv Install
	rpm.guide/Adv Optional pre and post Install-Uninstall Scripts
	rpm.guide/Adv Files
	rpm.guide/What Now?
	rpm.guide/Multi-architectural RPM Building
	rpm.guide/Sample spec File
	rpm.guide/Optflags
	rpm.guide/Macros
	rpm.guide/Excluding Architectures from Packages
	rpm.guide/Finishing Up
	rpm.guide/Copyright Notice

