
TEXdraw
PostScript Drawings from TEX

Edition 1.5
April 1993

Peter Kabal

Copyright c© 1993 Peter Kabal

This is edition 1.5 of the documentation for the TEXdraw macros for the TEX typesetting
program.

Peter Kabal
Department of Electrical Engineering
McGill University
3480 University
Montreal, Quebec
Canada H3A2A7

kabal@TSP.EE.McGill.CA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

1

1 Introduction

TEX is a powerful typesetting program written by D. Knuth. It allows for complex text
layouts but by itself lacks a general graphics capability. However, when coupled with an
appropriate printing program, external graphics files can be inserted into the printed docu-
ment. In this mode, TEX is instructed to leave space for a drawing. The drawing is inserted
at print time by the print program. The TEXdraw macros generate the external graphics
file from within TEX and generate the instructions to the the print program to position the
graphics at the appropriate position on the page. In this way, TEXdraw produces drawings
from within TEX.

TEXdraw consists of a set of TEX macros that create line drawings and other figures.
The drawing primitives include solid lines, patterned lines, Bezier curves, circles and arrows.
Other commands allow for the filling of a region with a gray level. The drawing commands
generate PostScript code. This limits TEXdraw to systems which use PostScript printers.
TEXdraw also provides commands to position TEX text, including mathematics, on the
drawing. The final drawing, with text and graphics, can be positioned on the page like any
other TEX box.

TEXdraw generates an intermediate PostScript file for the drawing commands. This file
is included in the final printout by invoking the \special command provided by TEX. The
present version of TEXdraw uses the \special syntax recognized by the program dvips by
Tom Rokicki. The program dvips is used to process the device independent (dvi) output
file produced by TEX. The program dvips combines the PostScript drawing commands
from the intermediate PostScript file and the text positioning information from the dvi file
into a single PostScript file which can be printed on a PostScript printer. The program
dvips also automatically scales the PostScript figure to compensate for changes to the TEX
magnification, so that TEX text and the PostScript graphics remain aligned. The structure
of TEXdraw is such that only minor changes need be made to allow it to be used with other
dvi to PostScript drivers that allow for the inclusion of PostScript files, at least at nominal
magnification.

The basic TEXdraw macros provide only simple drawing commands. However, TEXdraw
provides a drawing segment environment which allows parameter changes and coordinate
scaling changes to be kept local to the drawing segment. This facility, together with TEX’s
macro capabilities allows one to modularize drawing units and extend TEXdraw by building
more complex graphics entities from simpler elements. New user commands can be defined
using the tools used to construct the basic TEXdraw commands.

1.1 History

The TEXdraw macros have evolved from the TEXgraph macros, written by Michael Ferguson
at INRS-Telecommunications, University of Quebec. In its first incarnation, TEXgraph
generated output for a QMS (QUIC graphics language) laser printer. A later version wrote
PostScript output directly to the dvi file for subsequent printing by a modified version of
the dvialw dvi to PostScript driver.

The functional interface for TEXdraw is largely based on TEXgraph. However, TEXdraw
writes PostScript commands to an intermediate file. This file is a PostScript file which can
be printed on its own, although the position of the drawing may be offset with respect to

2 TEXdraw

the the printed page. The intermediate file is printed as part of the document, correctly
positioned using the \special command mechanism.

1.2 Distribution information

The TEXdraw routines are provided free of charge without warranty of any kind. Note that
the TEXdraw routines are copyrighted. They may be distributed freely provided that the
recipients also acquire the right to distribute them freely. The notices to this effect must
be preserved when the source files are distributed.

3

2 Using the TEXdraw Commands

The TEXdraw macros (commands) are defined in file texdraw.tex. These macros enable
the TEXdraw environment within the TEX program. The following sections describe the
basic commands for TEXdraw.

2.1 Accessing TEXdraw

From within a TEX file, the user must read in the TEXdraw macros from the file
texdraw.tex.

\input texdraw % Read in the TeXdraw macros

...

\btexdraw

... % TeXdraw commands to generate a drawing

\etexdraw

The form of the user command to run the program TEX depends on which version of
TEX is being used, and which other macro packages are preloaded as format files. Typically,
installations have at least two versions of TEX — plain TEX which includes basic typesetting
macros (usually invoked as tex) and LaTEX which includes the LaTEX typesetting macros
(usually invoked as latex). The TEXdraw macros can be used with plain TEX or with
LaTEX. Alternate forms of a few TEXdraw commands for use with LaTEX are introduced
later (see Chapter 4 [Using TEXdraw with LaTEX], page 19). The TEX commands, including
TEXdraw commands, are processed by TEX to produce a device independent (dvi) file.
This file is passed to the program dvips which produces output that can be printed on
a PostScript printer. The output from dvips combines the results of the regular TEX
typesetting commands with the drawing produced by the TEXdraw commands.

As the TEXdraw commands are processed by TEX, an intermediate PostScript file is
generated. The intermediate PostScript has a name of the form name.ps1. The name part
is derived from the name of the main TEX file being processed. If more than one drawing
is produced, the digit in the file name extension is incremented.1

The high-level user interface to TEXdraw consists of four TEX macros. The basic macros
to invoke TEXdraw are the \btexdraw and \etexdraw commands. The TEXdraw commands
to produce a drawing are inserted between the \btexdraw and \etexdraw macros. These
macros create a TEX box of appropriate size containing the drawing generated by the
TEXdraw commands. The TEXdraw box can be positioned in a document like any other
TEX box.

The third macro is a convenient form which centers the box generated by TEXdraw.
The vertical space taken up is equal to the vertical size of the drawing. It is invoked
as \centertexdraw {...}. This macro is normally used in vertical mode (between para-
graphs). A \par command (a blank line will do also) before a \centertexdraw command
will terminate horizontal mode and return to vertical mode.

The \everytexdraw command can be used to define a set of TEXdraw commands that
will be executed at the beginning of every TEXdraw drawing. It is invoked as \everytexdraw
{ ...}, with the desired TEXdraw commands as arguments.

1 After the ninth PostScript file, the name of the intermediate PostScript file takes the form name.p10,
with the number increasing from 10 with each file.

4 TEXdraw

\btexdraw

Start a TEXdraw drawing. The drawing is terminated with an \etexdraw com-
mand.

\etexdraw

End a TEXdraw drawing started with a \btexdraw command. The resulting
TEXdraw drawing is placed in a box with height equal to the height of the
drawing and width equal to the width of the drawing. The depth of the box is
zero.

\centertexdraw { ... }

Center a TEXdraw box. The argument contains TEXdraw commands. The
resulting box has the horizontal size \hsize and height equal to the height of
the drawing.

\everytexdraw { ... }

Specify TEXdraw commands to be executed at the beginning of every TEXdraw
drawing.

2.2 Command syntax

Generally TEXdraw commands that take a single argument need a terminating blank or
newline after the argument. Arguments that are self-delimiting, such as coordinates within
parentheses and text within braces, do not need the terminating blank. However, even when
not needed by the defining syntax of the command, blanks following command arguments
are allowed and ignored within the TEXdraw environment.

On entering the TEXdraw environment, TEX is in internal vertical mode (vertical mode
inside a \vbox). In this mode, spaces can be placed freely between commands. However,
any other extraneous input not specifically intended for a TEXdraw command is disallowed.

Blank lines are interpreted as paragraph breaks, equivalent to a \par command. The
TEXdraw macro \centertexdraw is defined with the \long attribute to allow \par com-
mands and blank lines to be interspersed between TEXdraw commands. The \btexdraw

and \etexdraw commands also allow \par command and blank lines to be included. Note,
however, that enclosing macros may not be declared with \long and hence may not allow
blank lines as part of their argument.

2.3 TEXdraw coordinates

The TEXdraw coordinate system has increasing x to the right and increasing y upward. The
coordinates (without the unit) are floating point numbers. Integer values can be written
without a decimal point. The size of the drawing is determined by the maximum excursions
of the coordinates specified in TEXdraw commands.

y

x

Chapter 2: Using the TEXdraw Commands 5

Consider the following example of TEXdraw commands to draw a simple figure.

\centertexdraw{

\drawdim cm \linewd 0.02

\move(2 2) \lvec(3 3) \lvec(2 4) \lvec(1 3) \lvec(2 2)

\textref h:C v:C \htext(2 3){$\sum \rho_n$}

}

∑
ρn

This drawing uses units of centimetres, with a line width of 0.02 cm. The x coordinate
ranges between 1 and 3 while the y coordinate ranges between 2 and 4. When included into
a document, the size of the drawing is 2 cm by 2 cm. The drawing is placed in a TEX box,
with the lower lefthand corner of the box corresponding to TEXdraw coordinate (1 2) and
the upper righthand corner at (3 4). The \centertexdraw command horizontally centers
the drawing. The \textref command controls the centering of the text. The text in this
drawing is centered (both horizontally and vertically) at the coordinate (2 3).

2.4 Coordinate specification

Coordinates are specified within parentheses, with blanks (but no comma) between the
values. Leading blanks and trailing blanks are permitted within the parentheses. The
coordinates refer to units, which are specified by the \drawdim command. The default is
inches, but any valid TEX dimension unit can be specified. Symbolic specification of saved
coordinate values will be discused later (see Section 3.3 [Saving positions], page 16).

\drawdim dim

Set the units to dim. The argument dim can be any valid TEX dimension unit.
The units are used to interpret coordinate values. Examples of valid units: cm,
mm, in, pt, and bp.

Examples of coordinate and scaling specifications:

\drawdim {cm} \move(2 2)

Set the units to centimetres, move to a position 2 cm to the right and 2 cm up
from the origin of the drawing coordinate system.

\drawdim bp

Set the units to big points.

\lvec (2.2 +5.5) \lvec(2.3 -2) \lvec(2.2 5.4)

Examples of acceptable coordinate specifications.

2.5 Line vectors

TEXdraw implements moves, line vectors and arrow vectors. There are both absolute and
relative motion versions of these vector commands. TEXdraw maintains a current position.
Lines are drawn from the current position to a new coordinate, with the new coordinate

6 TEXdraw

becoming the new current position. An explicit move can be used to establish an initial
current position. The position (0 0) is used if there is no move to an initial current position.

The \move and \rmove commands establish a new current position without drawing a
line. The \lvec and \rlvec commands draw a line from the current position to a new
position, which then becomes the new current position. The \avec and \ravec commands
draw a line with an arrowhead from the current position to a new coordinate, which then
becomes the new current position. The tip of the arrow is at the new current position. The
direction of the arrow follows the direction of the line. Since this direction is undefined
for zero length vectors, these are not allowed. Zero length arrow vectors will generate a
PostScript print error: undefinedresult. For any non-zero length vector, the full size
arrowhead is drawn, even if that arrowhead is longer than the line length.

The absolute motion versions of these commands specify the coordinate of the final
position.

\move (x y)

Move to coordinate (x y). The new current position is (x y).

\lvec (x y)

Draw a line from the current position to coordinate (x y). The new current
position is (x y).

\avec (x y)

Draw a line with an arrowhead from the current position to (x y). The new
current position is (x y). The arrowhead is aligned with the line, with the tip
at (x y).

The relative motion versions of these commands interpret the coordinates as displace-
ments relative to the current position. Given the displacements (dx dy) as a parameter,
each of the relative motion commands moves dx units in the x direction and dy units in
the y direction.

\rmove (dx dy)

Move from the current position, dx units in the x direction and dy units in the
y direction. The final position becomes the new current position.

\rlvec (dx dy)

Draw a line from the current position, dx units in the x direction and dy units
in the y direction. The final position becomes the new current position.

\ravec (dx dy)

Draw a line with an arrowhead from the current position, dx units in the x
direction and y units in the y direction. The final position becomes the new
current position. The arrowhead is aligned with the line, with the tip at the
new current position.

Lines can be customized with commands to change the line width, line pattern and line
gray level rendition. In addition, commands for changing the type and size of the arrowhead
are available.

\linewd width

Set the line width to width units. Initially width is 0.01 inches (corresponding
to 3 pixels at 300 pixels to the inch).

Chapter 2: Using the TEXdraw Commands 7

\lpatt (pattern)

Set lines to have the pattern (pattern). A pattern is a sequence of on/off
lengths separated by blanks and enclosed in parentheses. The lengths alter-
nately specify the length of a dash and the length of a gap between dashes.
Each length is interpreted using the current scaling and drawing units. The
pattern is used cyclically. The empty pattern signifies a solid line. The initial
line pattern is a solid line, corresponding to the empty pattern \lpatt ().

\setgray level

Set the gray level of lines. Gray levels are real values from 0 (black) through
intermediate values (gray) to 1 (white). The initial gray level is 0 corresponding
to black.

\arrowheadtype t:type

Set the arrowhead type to type, where type is one of F, T, W, V, or H. There
are two kinds of arrowheads. The first kind is a triangle. There are 3 variants:
type T is an empty triangle, type F is a filled triangle (using the current gray
level), type W is a triangle filled with white. The second kind of arrowhead is an
open ended Vee. There are 2 variants: type V has the stem continue to the tip,
type H has the stem stop at the base of the arrowhead. The initial arrowhead
type is T.

\arrowheadsize l:length w:width

Set the arrowhead size to be length units long and width units wide. The width
is measured across the “base” of the arrowhead. The initial arrowhead size has
a length of 0.16 inches and a width of 0.08 inches.

Note that the lines which outline the arrowhead will be drawn with the same line pattern
used for the stem. Normally, arrow vectors are drawn with the line pattern set for a solid
line. Note that the fill level used for the F variant of the arrowhead uses the same gray level
as used for lines. The difference between the T variant and the W variant only shows up if
the arrowhead is placed over non-white areas of the drawing. The W variant obliterates the
area under the arrowhead.

Examples of line parameter and arrowhead settings are shown in the following code.

\centertexdraw{

\drawdim in

\linewd 0.03 \setgray 0.6 \arrowheadtype t:F \avec(0 0.5)

\linewd 0.01 \setgray 0 \arrowheadtype t:V \avec(0.5 0.5)

\linewd 0.015 \lpatt(0.067 0.1) \lvec (1 0)

\linewd 0.02 \lpatt() \arrowheadtype t:T \avec(1.5 0.5)

\arrowheadtype t:H \avec(2.0 0.5)

\setgray 0.4 \arrowheadtype t:W \avec(3.0 0)

}

t:F t:V t:T t:H

t:W

8 TEXdraw

2.6 TEX text

Text may be superimposed on the drawing. The text argument of the \htext command is
in horizontal mode. This text can be ordinary text, math mode expressions, or even more
complicated boxes consisting of tables and the like. The resulting TEX text is placed in a
box. The reference point of the box can be chosen to be one of nine locations: horizontally
left, center or right; vertically top, center or bottom. The \htext command takes one of
two forms.

\htext (x y){text}

\htext {text}

The first form of this command places the TEX text text horizontally with the
text reference point at the coordinate (x y). The new current position is (x

y). The second form of this command places the TEX text text horizontally
with the text reference point at the current position. The text reference point
is set with the \textref command.

Text can be placed vertically using the \vtext command. The text argument is in
horizontal mode. The TEX text is placed in a box and then rotated counterclockwise. The
reference point is the point in the box, before rotation of the text.

\vtext (x y){text}

\vtext {text}

The first form of this command places the TEX text text vertically with the
text reference point at the coordinate (x y). The new current position is (x

y). The second form of this command places the TEX text text vertically with
the text reference point at the current position. In both cases, the TEX text is
placed in a box and the box is rotated counterclockwise by 90 degrees about
the text reference point. The text reference point is set with the \textref

command.

Text can be placed at an arbitrary angle using the \rtext command. The text argument
is in horizontal mode. The TEX text is placed in a box and then rotated counterclockwise.
The reference point is the point in the box, before rotation of the text.

\rtext td:angle (x y){text}

\rtext td:angle {text}

The first form of this command places the TEX text text at an angle with the
text reference point at the coordinate (x y). The new current position is (x y).
The second form of this command places the TEX text text at an angle with
the text reference point at the current position. In both cases, the TEX text is
placed in a box and the box is rotated counterclockwise by angle degrees about
the text reference point. The text reference point is set with the \textref

command.

The reference point for subsequent TEX text in a \htext, \vtext or \rtext command
is set with the \textref command.

\textref h:h-ref v:v-ref

Set the text reference point for subsequent text commands. The horizontal
reference point h-ref is one of L, C or R (left, center or right). The vertical

Chapter 2: Using the TEXdraw Commands 9

reference point v-ref is one of T, C or B (top, center or bottom). For rotated
text, the reference point is determined before rotation. The initial text reference
point corresponds to \textref h:L v:B.

Horizontal Text

h:C v:C
h:L v:C h:R v:C

h:C v:T

h:C v:B
h:L v:B

h:L v:T h:R v:T

h:R v:B

Rotated Text
h:C v:C

h:L v:C

h:R v:C

h:C v:T

h:C v:B

h:L v:B

h:L v:T

h:R v:T

h:R v:B

The font used to render the text is determined as for any other TEX text. Normally
the font used outside of TEXdraw is in effect. If desired, other fonts can be specified as
part of the text. Any font changes within a TEXdraw text command remain local to that
command.

Only the coordinate of the text reference point in a \htext, \vtext or \rtext command
is used in calculating the size of the drawing. This means that text itself can spill outside
of the drawing area determined by TEXdraw. The area of the drawing can be increased to
enclose the text by issuing additional \move commands.

\centertexdraw{

\avec(-0.75 -0.25) \textref h:R v:C \htext{H-text}

\move(0 0) \avec(-0.75 +0.25) \textref h:R v:B \htext{H-text}

\move(0 0) \avec(0 +0.5) \textref h:L v:T \vtext{V-text}

\move(0 0) \avec(+0.75 +0.25) \textref h:L v:B \htext{H-text}

\move(0 0) \avec(+0.75 -0.25) \textref h:L v:C \htext{H-text}

}

Superimposed on this example is a shaded region showing the limits of the TEXdraw box
as determined by the coordinates specified.

H-text

H-text
V-text

H-text

H-text

10 TEXdraw

2.7 Circles, ellipses and arcs

TEXdraw supplies commands to generate circles, ellipses and arcs. There are two forms
of the circle command. The \lcir command draws a circle of given radius. The \fcir

command draws a filled circle. In the latter case, the circle is filled by a specified gray level.
For the filled circle, the line defining the circumference of the circle is not drawn. Note that
the gray level area filled in by the \fcir command is opaque, even if the fill is chosen to be
white. For either form of the circle command, the drawing size is increased if necessary to
contain the circle.

The \lellip command generates an ellipse specified by the radius of the ellipse in the
x direction and the radius of the ellipse in the y direction. The ellipse is symmetrical about
horizontal and vertical lines drawn through the current point. The \fellip command draws
a filled ellipse. In the latter case, the ellipse is filled by a specified gray level. For the filled
ellipse, the line defining the boundary of the ellipse is not drawn. For either form of teh
ellipse command, the drawing size is increased if necessary to contain the ellipse.

The \larc command generates a counterclockwise arc specified by a start angle in de-
grees and an end angle in degrees. The center of the arc is the current position. Only the
arc is drawn, not the line joining the center to the beginning of the arc. Note that the
\larc command does not affect the size of the drawing.

\lcir r:radius

Draw a circle with center at the current position. The radius is specified by
radius. This command draws a line along the circumference of the circle. The
drawing size is increased if necessary to contain the circle.

\fcir f:level r:radius

Draw a filled circle with center at the current position. The radius is specified
by radius. The circle is painted with the gray level specified by level. A gray
level of 1 corresponds to white, with decreasing values getting darker. The level
0 is full black. This command does not draw a line along the circumference.
The drawing size is increased if necessary to contain the circle.

\lellip rx:x-radius ry:y-radius

Draw an ellipse with center at the current position. The radius in the x direction
is specified by x-radius. The radius in the y direction is specified by y-radius.
The drawing size is increased if necessary to contain the ellipse.

\fellip f:level rx:x-radius ry:y-radius

Draw a filled ellipse with center at the current position. The radius in the x
direction is specified by x-radius. The radius in the y direction is specified by
y-radius. The ellipse is painted with the gray level specified by level. A gray
level of 1 corresponds to white, with decreasing values getting darker. The level
0 is full black. This command does not draw a line along the boundary of the
ellipse. The drawing size is increased if necessary to contain the ellipse.

\larc r:radius sd:start-angle ed:end-angle

Draw a counterclockwise arc. The center of the arc is at the current position.
The radius is specified by radius. The start and end angles (in degrees) are
specified by start-angle and end-angle. This command does not affect the limits
(size) of the drawing.

Chapter 2: Using the TEXdraw Commands 11

As an example, the following commands draw a filled circle, and superimpose an arc.

\centertexdraw{

\linewd 0.02

\fcir f:0.7 r:1

\larc r:1 sd:45 ed:135

\lvec (+0.707 +0.707) \move (0 0) \lvec (-0.707 +0.707)

}

Note that for the arc command, the resulting figure can spill outside of the TEXdraw box
as determined by the maximum excursions of the coordinates. Extra moves can be used to
compensate for the size of the arc.

2.8 Bezier curves

Bezier curves in TEXdraw use 4 reference coordinates, two as the end points and two others
to control the shape of the curve. Let the 4 points be (x0 y0), (x1 y1), (x2 y2) and (x3

y3). The curve starts out tangent to the line joining the first two points and ends up
tangent to the line joining the second two points. The control points “pull” at the curve to
control the curvature. The amount of pull increases with the distance of the control point
from the endpoint.

As the parameter µ varies from 0 to 1, the coordinates of the Bezier curve are given by
a pair of parametric cubic equations,

x(µ) = (1− µ)3x0+ 3µ(1− µ)2x1+ 3µ2(1− µ)x2+ µ3x3

y(µ) = (1− µ)3y0+ 3µ(1− µ)2y1+ 3µ2(1− µ)y2+ µ3y3 .

\clvec (x1 y1)(x2 y2)(x3 y3)

Draw a Bezier curve from the current position to the coordinate (x3 y3) which
becomes the new current position. The coordinates (x1 y1) and (x2 y2) serve
as control points for the curve. Only the last coordinate given is used to update
the size of the drawing.

Note that only 3 coordinate pairs are specified. The other point is the current position
before the \clvec command is executed. Only the last coordinate specified in the \clvec

command is used to determine the extent of the drawing. While the Bezier curve passes

12 TEXdraw

through the old current position and the new current position, in general the curve will not
reach the intermediate control points. The curve is always entirely enclosed by the convex
quadrilateral defined by the two end points and the two control points. Note that the curve
may pass outside the limits of the drawing as determined by the end point of the curve.

A simple Bezier curve is produced by the following example.

\btexdraw

\move (0 0)

\clvec (0 1)(1 0)(1 1)

\etexdraw

This example is the rightmost of the following Bezier curves. The drawings also show
the end points and the control points for each curve.

0

1 2

3 0

1 2

3 0

1

2

3

2.9 Fill commands

PostScript deals with paths consisting of line segments. The paths can be closed and the
interior of the closed region filled. From TEXdraw, paths start with a \move or \rmove

command and continue with \lvec, \rlvec or \clvec commands. The TEXdraw fill com-
mands close the path and fill the interior of the closed region. Closing the path means that
effectively another \lvec line is drawn from the last point specified to the initial point.
TEXdraw provides two forms of the fill command. The \ifill fills the interior of the region
with the given gray level. The lines defining the path are not drawn. The \lfill command
fills the region defined by the closed path and draws a line along the enclosing path. Note
for both forms of the fill command, the gray level used for filling is opaque, even if the gray
level is chosen to be white.

\lfill f:level

Close the current path, draw the line around the path using the current grey
level for lines and paint the interior of the region with specified gray level level.
Gray levels are real values from 0 (black) through intermediate values (grays)
to 1 (white).

\ifill f:level

Close the current path and paint the interior of the region with gray level level.
The line around the path is not drawn. Gray levels are real values from 0
(black) through intermediate values (grays) to 1 (white).

The following example draws a “flag” with the interior filled in. The path around the
boundary is given in a clockwise order to define a closed path. We could take advantage
of the fact that the fill command will close an open path to eliminate one of the \lvec

commands.

Chapter 2: Using the TEXdraw Commands 13

\centertexdraw{

\move (0.5 0)

\lvec (0 0.5) \clvec (0.5 0.85)(1 0.65)(1.5 1)

\lvec (2 0.5) \clvec (1.5 0.15)(1 0.35)(0.5 0)

\lfill f:0.8

}

In TEXdraw, the \move command always terminates any previous paths and starts a new
path. Commands that change line parameters (e.g. \setgray or \lpatt) also terminate
paths and start new paths. The circle, ellipse and arc commands do not affect the definition
of the current path. The \avec command is not appropriate for defining a path to be filled.
It ends a subpath at its tail and begins a new subpath at its tip. Filling a region defined
by a path with subpaths is more complicated in that each subpath is closed before filling.

15

3 Drawing Segments and Scaling

TEXdraw provides individually scaled segments which can be used to create relocatable
drawing modules.

3.1 Drawing segments

A TEXdraw drawing segment allows for local modifications of parameters and relative po-
sitioning. A TEXdraw segment is delimited by a \bsegment command and an \esegment

command. Inside the segment, the initial current position is (0 0). Any changes to param-
eters such as the gray level and the line width, remain local to the segment. Segments are
implemented in TEX using a \begingroup and \endgroup. Segments can be nested.

\bsegment

Start a drawing segment. The coordinate system is shifted such that the current
position corresponds to the coordinate (0 0). Changes to scaling, position and
line parameters stay local to the drawing segment.

\esegment

End a drawing segment. The current position in effect before the corresponding
\bsegment command is restored. The scaling and line parameter values revert
to those in effect before the corresponding \bsegment command was invoked.

3.2 Drawing paths

Certain subtle interactions occur between drawing segments and fill operations. In Post-
Script, lines are drawn by first defining a path, then later stroking the path to draw the line.
In TEXdraw, this stroking occurs when the line is terminated, say by a \move command.
PostScript paths are interrupted by, but continue after a drawing segment. This means
that a path started before a segment may not be stroked (drawn) until after the segment
ends. Consider the following example.

\move (0 0)

\lvec (1 1)

\bsegment

\move (-0.25 -0.25)

\fcir f:0.8 r:0.5

\esegment

\move (0 0)

A PostScript path is started at (0 0) and continues with a line to (1 1). This path is
interrupted by the segment. The filled circle is drawn next. After the segment, the path
continues and is not stroked until the \move (0 0) command after the end of the segment.
This means that the line appears on top of the filled region.

If the fill operation is to cover the line, the path must be stroked before the fill operation.
From TEXdraw, the move commands \move and \rmove, and the end TEXdraw command
\etexdraw terminate a path and cause it to be stroked. Within a segment, the end segment
command \esegment also terminates and strokes a path. In the example above, the line
can be stroked by inserting a move command (such as a \rmove (0 0) which does not affect
the position), before the start of the segment.

16 TEXdraw

3.3 Saving positions

The \savecurrpos command saves the current position. The saved position is an absolute
position, not one relative to a segment. The position saving mechanism is global; the
position can be saved within a nested segment and then used outside of the segment. The x
and y coordinates of the position are saved separately as named coordinates. The names are
of the form *name, with the leading * being obligatory. A companion command, \savepos,
saves a given coordinate (relative to the current segment) as an absolute symbolic position.

\savecurrpos (*px *py)

Save the current position as the absolute position referenced by (*px *py).

\savepos (x y)(*px *py)

Save the coordinate position (x y) as the absolute position referenced by (*px

*py). The coordinate (x y) is interpreted in the normal fashion as a coordinate
relative to the current segment, using the current scaling factors and drawing
unit.

The symbolic names used to specify a saved position can consist of any characters that
are not special to TEX, but must start with a * character. The symbolic names can be used
as the x and/or y coordinate in any command that needs a coordinate. Symbolic coordinates
are not normally used with relative motion commands such as \rlvec or \rmove. If used
with relative motion, the corresponding displacement is equal to the symbolic coordinate
value.

On exit from a segment, the position and graphics state on entry is restored. Any
changes to line types, scaling and position are discarded. However, it is sometimes useful
alter the position on exit from a segment. The \savepos command allows for the saving of a
position within the segment. This position can be restored after the \esegment with a \move
command using the saved symbolic position. This approach can be used to build modules
which operate in a manner analogous to the basic relative motion line vector commands.

The following example defines a macro which draws a box 0.75 inches wide by 0.5 inches
high containing centered text. On leaving the macro the position will be set at a point on
the righthand side of the box.

\def\tbox #1{\bsegment

\lvec (0 +0.25) \lvec (0.75 +0.25)

\lvec (0.75 -0.25) \lvec (0 -0.25) \lvec (0 0)

\textref h:C v:C \htext (0.375 0){#1}

\savepos (0.75 0)(*ex *ey)

\esegment

\move (*ex *ey)}

With this definition, we can treat \tbox in the same way as the basic vector commands,
stringing them together to form a block diagram as in this example.

\centertexdraw{

\ravec (1 0) \tbox{$H(z)$} \ravec (1 0)

}

H(z)

Chapter 3: Drawing Segments and Scaling 17

3.4 Scaling coordinates

There are two scale factors available, the unit scale factor and the segment scale factor. The
overall scale factor is the product of these two. There are absolute and relative versions of
commands to change these scale factors.

The unit scale factor is normally used to affect global scale changes. Changes to the unit
scale factor remains local to a segment, but propagate to inferior segments. The default
value is unity.

The segment scale factor is used for local scale changes. It remains local to a segment.
The segment scale factor is reset to unity on entry into each segment. This means that
changes to the segment scale factor do not propagate to inferior segments.

\setunitscale scale

Set the unit scaling to scale. The argument scale is a real number which is used
to scale coordinate values. The overall scaling factor is the product of the unit
scale factor and the segment scale factor.

\relunitscale value

Adjust the unit scale factor by multiplying by value. This has the effect of
multiplying the overall scale factor by the same factor. The overall scaling
factor is the product of the unit scale factor and the segment scale factor.

\setsegscale scale

Set the segment scale factor. The argument scale is a real number which is
used to scale coordinate values. The overall scale factor is the product of the
unit scale factor and the segment scale factor.

\relsegscale value

Adjust the segment scale factor by multiplying by value. This has the effect
of multiplying the current overall scale factor by the same factor. The overall
scaling factor is the product of the unit scale factor and the segment scale
factor.

In addition to the unit scale factor and the segment scale factor, the scaling can be
controlled by the choice of drawing units with the command \drawdim (see Section 2.4
[Coordinate specification], page 5).

\drawdim cm \setunitscale 2.54

Set the units to centimetres scaled by 2.54. Together these commands are
effectively the same as \drawdim in.

The segment scale can be used to allow scale changes in segments so that values are in
more convenient units. For example suppose dimensions in a segment are multiples of one
third of an inch. The segment scale can be set once to make 1 drawing unit equal 0.3333
inches. From that point on, coordinates can be specified with integer values.

The following example defines a macro to draw a rectangular box which is twice as wide
as it is high. The width is specified as an argument.

18 TEXdraw

\def\mybox #1{\bsegment

\setsegscale #1

\lvec (0 +0.25) \lvec (1 +0.25) \lvec (1 -0.25)

\lvec (0 -0.25) \lvec (0 0)

\esegment}

3.5 Drawing size

The effective size of the drawing is determined by the maximum excursions of the coordinates
supplied to TEXdraw commands. The minimum and maximum scaled x and y coordinates
are tallied. Note that \move commands contribute to the determination of the calculated
size of the drawing, even though they do not generate visible lines. The circle and ellipse
commands add a compensation for the radii of circles and ellipses. The final TEXdraw
drawing is placed in a TEX box with lower lefthand corner corresponding to (x-min y-min)
and upper righthand corner at (x-max y-max).

Text generated by \htext, \vtext or \rtext can spill outside the box as determined
above. Only the text reference point is guaranteed to be in the drawing box. Arcs can
also spill outside the drawing box. Note also that the widths of lines, and the sizes of
arrowheads do not affect the size of the drawing. The calculated size of the drawing will
never be larger than the actual size of the drawing. In extreme cases in which text or lines
extend far outside the drawing, extra \move commands should be used to establish the size
of the drawing so that the TEXdraw box includes all of the drawing.

TEXdraw provides the \drawbb command to draw a box which indicates the effective
size of the drawing. Whenever \drawbb is invoked, a ruled box is drawn around the drawing
as it has been sized up to that point. Normally \drawbb is invoked just before the end of a
drawing to indicate the effective size of the final drawing.

\drawbb Draw a ruled box around the effective size of a drawing produced by TEXdraw
commands.

3.6 Initial current position

The first operation in a drawing should be a move to establish the current position. The
current position can be established explicitly through a \move command or a text positioning
command such as \htext with a coordinate. However, if an attempt is made to use a
drawing command which needs a current position and none has been established, TEXdraw
implicitly sets the initial current position to (0 0). The size of the TEXdraw figure is
normally determined from the sequence of coordinates specified, but will include the implicit
initial position in case another initial position has not been explicitly specified.

19

4 Using TEXdraw with LaTEX

The LaTEX typesetting system uses a structured approach to declaring typesetting envi-
ronments. An interface to TEXdraw which follows these structuring conventions is provided
on top of the basic TEXdraw commands. Using this interface, TEXdraw is enabled as a
document-style option, then invoked as a typesetting environment. The TEXdraw environ-
ment is started with a \begin{texdraw} command and terminated with an \end{texdraw}

command. As an example, a LaTEX document to be typeset using the article style with
the 12pt option invokes TEXdraw as follows.

\documentstyle [12pt,texdraw]{article}

...

\begin{document}

...

\begin{texdraw}

... % TeXdraw commands to generate a drawing

\end{texdraw}

...

\end{document}

4.1 Alternate command forms for LaTEX

All of the basic TEXdraw commands can be used with LaTEX. However, there are
alternate forms for the commands used to invoke TEXdraw for use with LaTEX. The
\begin{texdraw} and \end{texdraw} commands are alternate forms for the \btexdraw

and \etexdraw commands.

\begin{texdraw}

Start a TEXdraw drawing. The drawing is terminated with an \end{texdraw}

command. This command is for use with LaTEX.

\end{texdraw}

End a TEXdraw drawing started with a \begin{texdraw} command. The
resulting TEXdraw drawing is placed in a box with height equal to the height
of the drawing and width equal to the width of the drawing. The depth of the
box is zero. This command is for use with LaTEX.

A LaTEX specific variant of an earlier example can be constructed as follows.

20 TEXdraw

\newcommand{\tbox}[1]{%

\bsegment

\lvec (0 +0.25) \lvec (0.75 +0.25)

\lvec (0.75 -0.25) \lvec (0 -0.25) \lvec (0 0)

\textref h:C v:C \htext (0.375 0){#1}

\savepos (0.75 0)(*ex *ey)

\esegment

\move (*ex *ey)}

\begin{center}

\begin{texdraw}

\ravec (1 0) \tbox{$H(z)$} \ravec (1 0)

\end{texdraw}

\end{center}

This example illustrates the use of the LaTEX command \newcommand as an alternative
to the plain TEX command \def. Instead of the basic TEXdraw command \centertexdraw,
a nested combination of the LaTEX centering environment and the TEXdraw environment
is used.

21

5 More Details

The first part of this chapter offers some suggestions for strategies to isolate errors in TEX
and TEXdraw input. The second part of this chapter discusses implementational issues. An
awareness of these issues is useful if the TEXdraw package is to be extended.

5.1 Problems arising from TEXdraw

TEX input is notoriously difficult to debug. If TEX reports errors, so much the better. If the
cause is not immediately obvious, consider using a binary search strategy, removing sections
of code with the premature insertion of the \bye command (with the appropriate closing
of any open groups and the like). Other strategies include the insertion of \message{I am

here} at appropriate places. Try using \tracingmacros=1. Many problems turn out to be
due to incorrect numbers of macro arguments or incorrectly delimited macro arguments.
The \tracingmacros=1 option writes the macro arguments and macro expansions to the
TEX log file.

Certain errors may not manifest themselves until well after the offending command. For
instance, if a closing parenthesis is missing from a TEXdraw coordinate, TEX continues
searching for the parenthesis. If one is found, perhaps many lines later, the TEXdraw error
message invalid coordinate will be printed at this later point.

All input in the TEXdraw environment should be intended for interpretation by TEXdraw
commands. TEXdraw places text inside a zero size box (the text itself extends outside the
box). Extraneous input manifests itself as a non-zero size TEXdraw text box. This causes
the TEXdraw text and the PostScript graphics to be displaced from one another. An error
message is issued if a non-zero width TEXdraw text box is detected. If this error message
appears, look for unintended character sequences amongst the commands to TEXdraw.

Several TEXdraw commands pass their arguments “raw” to the PostScript file. That
means that invalid arguments can generate PostScript errors when the document is printed.
For instance the argument of the \setgray command is passed straight through to the
PostScript file. If this argument is non-numeric, a PostScript error results. Not all Post-
Script printers report errors back to the user. The print may just stop prematurely. One
approach to debugging is to use a PostScript previewer on a workstation. That way, one
can determine at which point in the drawing the PostScript error occurs.

5.2 Extending TEXdraw

TEXdraw is implemented using a combination of TEX commands and PostScript code. This
section discusses some of the implementational issues as they relate to extending TEXdraw.

TEXdraw as implemented, offers a basic set of drawing features. These are adequate
for certain tasks such as producing block diagrams. There are different approaches to
extending TEXdraw to include other functions. In some cases, the desired functionality can
be achieved by writing a TEX macro which builds on top of the existing TEXdraw commands.
As these extensions become more complex, the limitations of TEX for computations become
increasingly evident. In other cases, access to different features of PostScript is desired. The
appropriate approach would be to write new PostScript procedures which can be accessed
by TEX macros.

22 TEXdraw

Included with TEXdraw are a set of macros for directly accessing PostScript functions.
These are described in an appendix (see Appendix A [PostScript Commands], page 25).

TEXdraw also comes with a toolbox of routines for handling much of the user interface,
converting between different coordinate representations and the like. The macros for coor-
dinate decoding and for computations involving coordinates are described in an appendix
(see Appendix B [TEXdraw Toolbox], page 27).

5.2.1 Scaling

The scaling commands provided in TEXdraw are designed to affect only the coordinate
values specified in commands. For instance, changing the \setunitscale value changes
the interpretation of the coordinate in an \avec (x y) command, but does not change the
line width or arrowhead sizes in effect. None of the TEXdraw scaling commands affect
the size of TEX text produced by, for instance, the \htext command. Scale changes will
however affect the positioning of text for subsequent commands.

The line parameters are changed only if the corresponding commands to change them
are issued. If the \linewd command is given, the current coordinate scaling is used to
determine the line width. To achieve a behaviour more like a global scaling, whenever the
scale factor is changed, the line parameters must be set again.

5.2.2 Resolution

TEXdraw scales coordinates before passing them to PostScript. Keeping track of the co-
ordinate scaling is necessary, in any event, to allow TEXdraw to compute the maximum
excursions of the coordinates. TEXdraw uses pixel units in its PostScript code. These units
correspond to 1/300 of an inch. TEXdraw issues PostScript commands which use integer
numbers of pixel units. This sets the positioning resolution for TEXdraw. The passing of
integer valued coefficients which correspond to the device resolution keeps lines aligned with
the device grid. Parallel lines of the same width will be rendered with the same width.

The position saving mechanism in TEXdraw (see Section 3.3 [Saving positions], page 16)
associates the pixel coordinates of a position with the specified name.

TEXdraw uses the limited real number representation provided by TEX. These operations
are based on the representation of dimensions as real-valued numbers of points. Internally in
TEX, dimensions are stored 32-bit values, normalized so that 1 pt corresponds to the scaled
point (sp) value of 65536. Dimensions with magnitudes between 0.000015 pt and 32767 pt
can be represented. This is also the dynamic range of the TEXdraw pixel coordinates passed
to PostScript. TEXdraw must convert from user supplied coordinates using the scaling factor
(which itself consists of two components, the unit scale and the segment scale) and a pixel
conversion factor. The use of limited precision real numbers in these computations can
cause accumulation of error when relative scaling is used repeatedly.

5.2.3 Text placement

While in the TEXdraw environment, TEX text is placed directly in a TEX box while Post-
Script code is being written to the intermediate file. On leaving the TEXdraw environment,
the size of the drawing is determined. A TEX \vbox of this size is created. The TEX
\special mechanism is used to tell the dvi to PostScript driver to position the PostScript
drawing information from the intermediate file in this area. Next, the text generated by
TEXdraw is positioned and placed in the box. To adapt most of TEXdraw to another dvi to

Chapter 5: More Details 23

PostScript driver, only the \special command to position the PostScript include file need
be modified.

Note that when the document is printed, the PostScript drawing is placed on the page
before the TEX text, independently of the relative order of the text and drawing commands.
Generating TEX text after the PostScript plot places text on top of filled areas.

Rotated text is treated in a different manner. The rotation is carried out with in-line
PostScript code which does not appear in the intermediate PostScript file. This code is sent
to the dvi to PostScript driver with a \special command. In effect this PostScript code is
part of the dvi file. To adapt this part of TEXdraw to another dvi to PostScript driver, a
\special syntax for in-line PostScript compatible with the driver must be used. However,
some dvi to PostScript drivers do not process the commands in sequence (for instance in
OzTeX), or do not allow the effect of in-line PostScript to persist. For those drivers, this
method of rotating text will not work.

5.2.4 The output PostScript file

The intermediate PostScript file consists of a header, a body and a trailer following En-
capsulated PostScript File (EPSF) standards. The header sets up PostScript definitions
and default parameter values. The trailer includes BoundingBox information which gives
the coordinates in default PostScript units (72 per inch) for the lower lefthand corner and
the upper righthand corner of the drawing. The body of the intermediate PostScript file
contains the PostScript commands generated by TEXdraw.

Many moves in TEXdraw serve only to position text or to reset saved positions. TEXdraw
buffers move commands in order to be able to collapse runs of moves. Only the last move
of a run of moves is actually written to the PostScript file. However the intermediate moves
still affect the size of the drawing. The expunging of moves means that the PostScript file
BoundingBox information may indicate a drawing size larger than the PostScript commands
themselves would warrant.

Drawing segments in TEXdraw show up in the PostScript file as saves and restores of the
PostScript graphics state. Segment starts are also buffered and only written out if necessary.
This way “empty” segments do not generate output to the PostScript file. These empty
segments arise if a segment contains only moves and text commands. The moves inside the
segment are not needed since they are local to the segment, and the text commands do not
generate output to the PostScript file.

If TEXdraw is used only for moves and text, no intermediate PostScript file will be
created.

The PostScript file produced by TEXdraw can be saved and used as an EPSF file to be
included in documents. As noted above, this file does not contain the commands to create
the TEX text. Some procedures for including EPSF files will only look for the BoundingBox
information in the header. In that case, the BoundingBox statement must be moved from
the trailer to the header of the EPSF file, replacing the %%BoundingBox: (at end) line in
the header.

5.3 How TEXdraw merges graphics and text

An understanding of the mechanism used by TEXdraw to put text and graphics together
is useful for porting TEXdraw to other dvi to PostScript drivers. The final result of a

24 TEXdraw

sequence of TEXdraw commands will be placed within a TEX box. Both the graphics from
the intermediate PostScript file and the TEX text will be placed in that box.

The graphics file that has been created by TEXdraw has the graphics contained within
a box with lower lefthand corner at PostScript coordinates given by \llxbp and \llybp.
These are integer values in PostScript native units, referred to in TEX as big points (bp).
There are 72 bp to one inch.

A simplified version of the code to place graphics and text appears below.

\vbox {\vskip \vdrawsize

\special {psfile=\psfile\space % graphics file

hoffset=\the\llxbp\space

voffset=\the\llybp}

\vskip \llypos

\hbox {\hskip -\llxpos

\box\txdbox % TeX text

\hskip \llxpos}

\hskip \hdrawsize

\vskip -\llypos}}

In this code fragment, a TEX \vbox is placed at the current position on the page. The
size of this box is the drawing size (\vdrawsize high and \hdrawsize wide).

After moving down vertically in the \vbox by the height of the box, the position for the
\special command is at the bottom lefthand corner of the box. The PostScript graphics
contained in the file \psfile will be placed at this location. With no further offset, this
would place the origin of the PostScript space at that point. However, the drawing has the
lower lefthand corner at the PostScript position given by the PostScript coordinates \llxbp
and \llybp. The \special command instructs the dvi to PostScript driver to offset the
graphics by this amount. In this code, the dvi to PostScript driver is being asked to do
the shifting. An alternate approach is shift the position within TEX before invoking the
\special command. In fact, moving the \special command to immediately precede the
TEX text placement command (\box\txdbox) results in the shifting being performed within
TEX.

The TEX text to be overlaid on the TEXdraw graphics is contained in a box (box \txdbox)
of zero size, with the text extending outside this box. The reference point for this box is
TEXdraw coordinate (0 0), so this box must be shifted to place the text correctly. This
is done by temporarily shifting the position both horizontally and vertically, placing the
box, and then restoring the position. The shift amounts, \llxpos and \llypos, are TEX
dimensions corresponding to the PostScript coordinate values \llxbp and \llybp.

25

Appendix A PostScript Commands

This appendix describes a set of macros for accessing some of the PostScript builtin func-
tions. Each of these macros issues a single PostScript command. The extra services provided
by TEXdraw are the interpretation of coordinates in user units relative to the current draw-
ing segment and the writing of a pending TEXdraw move to the PostScript file. This last
operation establishes the current point in PostScript. The user of these commands should
be familiar with the concepts of path construction and filling in PostScript. Further details
on the PostScript functions used can found in the PostScript Language Reference Manual,
Second Edition, Adobe Systems, Addison-Wesley, 1990.

These macros are distributed in file txdps.tex.

The \PSsetlinecap and \PSsetlinejoin commands control the way line ends and line
joins are rendered. The default values set by TEXdraw (round caps and round join) are
appropriate for most drawings. Changes to these parameters apply to the current and
subsequent paths.

\PSsetlinecap type

Set the line cap parameter. The value 0 gives a butt cap; 1 gives a round cap;
and 2 gives a projecting square cap. The initial value is corresponds to a round
cap.

\PSsetlinejoin type

Set the line join parameter. The value 0 gives a miter join; 1 gives a round join;
and 2 gives a bevel join. The initial value corresponds to a round join.

PostScript paths and fill operations can be controlled by a number of functions. By
design, TEXdraw always maintains a defined PostScript current point. Some of the following
macros cause the PostScript current point to become undefined. The PostScript current
point must be set again (say with a \PSmoveto command) before invoking basic TEXdraw
commands.

\PSstroke

Stroke a PostScript path. The current path is stroked with the current gray
level (set with \setgray) and the current line pattern (set with \lpatt). The
PostScript current point becomes undefined.

\PSnewpath

Establish a new path. The PostScript current point becomes undefined.

\PSclosepath

Close a subpath. A new subpath is started.

\PSfill Fill a region defined by a path. Each subpath is closed and the enclosed regions
painted with the current gray level. The PostScript current point becomes
undefined. The gray level can be set with the TEXdraw command \setgray.

The following line commands interpret coordinates relative to the current TEXdraw scal-
ing and drawing segment. The specified coordinate affects the drawing size as determined
by TEXdraw.

26 TEXdraw

\PSlineto (x y)

Add a line segment to the current path. This command is identical to the
TEXdraw command \lvec. The PostScript current point must be defined before
this command is issued.

\PSmoveto (x y)

Move to the coordinate specified by (x y). The PostScript current point be-
comes defined.

The following macros provide access to the general arc commands in PostScript. The
coordinates are interpreted relative to the current TEXdraw scaling and drawing segment.
The specified coordinate affects the drawing size as determined by TEXdraw.

\PSarc r:radius sd:start-angle ed:end-angle (x y)

Draw a counterclockwise arc. The center of the arc is at the given position. The
radius is specified by radius. The start and end angles (in degrees) are specified
by start-angle and end-angle. If the PostScript current point is defined, this
command also draws the line from the current point to the beginning of the arc.
The line and arc become part of the current path. The current point becomes
defined.

\PSarcn r:radius sd:start-angle ed:end-angle (x y)

Draw a clockwise arc. The center of the arc is at the given position. The
radius is specified by radius. The start and end angles (in degrees) are specified
by start-angle and end-angle. If the PostScript current point is defined, this
command also draws the line from the current point to the beginning of the arc.
The line and arc become part of the current path. The current point becomes
defined.

The macro \writeps provides the general facility to write arbitrary PostScript com-
mands to the PostScript file. This macro is used by the preceding commands and by the
TEXdraw commands themselves. This facility has to be used with care since any changes
in position or scaling resulting from the PostScript commands are not known to TEXdraw.

\writeps {<ps-commands>}

Write PostScript commands to the intermediate PostScript file. Before the
commands are inserted, any pending TEXdraw move is written to the PostScript
file. The PostScript scaling gives 300 units/inch.

27

Appendix B TEXdraw Toolbox

This appendix describes some of the macros supplied with TEXdraw which can be used to
define additional commands for creating drawings. The macros described here work in the
user specified coordinate system. Some of these toolbox macros are used by the TEXdraw
commands themselves, others are supplied in an auxiliary file txdtools.tex.

B.1 Coordinate parsing

The coordinate parsing macro \getpos is useful for creating new commands. This macro
takes care of stripping leading and trailing blanks from coordinates specified between paren-
theses. In addition, symbolic coordinates are translated to the corresponding relative coor-
dinate using the segment offset and scaling in effect.

The macro \currentpos returns the relative coordinates of the current position. The
returned values are relative to the current segment and the current scaling. The macro
\cossin returns the real-valued cosine and sine of the direction of the line joining two
points. The macro \vectlen returns the length of a vector. The results appear as the value
of user supplied macro names.

\getpos (x y)\mx\my

Decode coordinate values. The coordinates specified by (x y) are decoded.
Symbolic coordinates are translated to the corresponding relative coordinate
using the current segment offset and scaling. The resulting character strings
representing the real-valued coordinates are assigned to the macros specified by
\mx and \my.

\currentpos \mx\my

Return the coordinates of the current position. The coordinates are relative to
the current segment offset and scaling. The resulting character strings repre-
senting the real-valued coordinates are assigned to the macros specified by \mx

and \my.

\cossin (x1 y1)(x2 y2)\cosa\sina

Return the cosine and sine of the direction of a vector joining two points. The
cosine and sine of the angle of the vector which goes from (x1 y1) to (x2 y2).
The character strings representing these real-valued quantities are assigned to
the macros specified by \cosa and \sina.

\vectlen (x1 y1)(x2 y2)\len

Return the length of a vector joining two points. The length of the vector is
relative to the current scaling. The character string representing the real-valued
length is assigned to the macro specified by \len.

B.2 Real arithmetic

The TEXdraw toolbox supplies macros to perform real arithmetic on coordinate values. The
result appears as the value of a user supplied macro name.

\realadd {value1} {value2} \sum

Add two real quantities, assigning the resultant character string representing
the sum to the macro \sum.

28 TEXdraw

\realmult {value1} {value2} \prod

Multiply two real quantities, assigning the resultant character string represent-
ing the product to the macro \prod.

\realdiv {value1} {value2} \result

Divide two real quantities, assigning the resultant character string representing
the result of value1/value2 to the macro \result.

B.3 Arrow curve

This example illustrates the use of the TEXdraw toolbox routines to do computations with
the coordinates. The problem will be tackled in two parts. First, we will produce a macro
to place an arrowhead on a Bezier curve. Then given this macro, we will produce a macro
which can draw a “wiggly” line from the current position to a given coordinate.

tip at (1 1) tip at (2 1)

tip at (2 0)

The first macro, \cavec, uses the \cossin command to determine the the cosine and
sine of the angle of the line joining the second control point to the end point of the Bezier
curve. Recall that the Bezier curve is tangent to this line at the end point. After drawing
the Bezier curve, the scaling is set locally to absolute units of 0.05 inches. We go back down
the line from the end point by 0.05 inches and draw an arrow vector to the end point from
there. This arrow vector is mostly arrowhead, with little or no tail.

\def\cavec (#1 #2)(#3 #4)(#5 #6){

\clvec (#1 #2)(#3 #4)(#5 #6)

\cossin (#3 #4)(#5 #6)\cosa\sina

\rmove (0 0)

\bsegment

\drawdim in \setsegscale 0.05

\move ({-\cosa} -\sina) \avec (0 0)

\esegment}

Note the use of macros as arguments to a \move command. Minus signs are put in
front of the macros. However, the value of the macro \cosa or \sina could be negative.
Fortunately, TEX accepts two minus signs in a row and interprets the result as positive.
Note that the \rmove (0 0) command before the beginning of the segment ensures that the
Bezier curve is stroked before the arrowhead is drawn.

The second macro \caw builds on \cavec. The goal is to produce a wiggly vector that
can be used as a pointer in a drawing. Consider the following normalized Bezier curve.

\centertexdraw{ \move (0 0) \cavec (1.4 0.1)(-0.4 -0.1)(1 0) }

This curve has the appropriate wiggle. Now we want to be able to draw this curve,
appropriately scaled and rotated. The macro \caw needs to do computations on the coor-
dinates. First, \caw uses the macros \getpos and \currentpos to get the positions of the

Appendix B: TEXdraw Toolbox 29

end and start of the curve. Next, the length of the vector is calculated using the macro
\vectlen. A local macro \rotatecoord is used to rotate a coordinate pair about the ori-
gin, using the cosine and sine of the rotation angle. The vector length is used to scale the
normalized curve. The remaining code draws the rotated, normalized curve.

\def\caw (#1 #2){

\currentpos \xa\ya

\cossin ({\xa} \ya)(#1 #2)\cosa\sina

%

% calculate the length of the vector, and the x and y displacements

\vectlen ({\xa} \ya)(#1 #2)\len

\getpos (#1 #2)\xb\yb

\realadd \xb {-\xa} \dx \realadd \yb {-\ya} \dy

%

% calculate the offsets

\rotatecoord (0.4 0.1)\cosa\sina \du\dv

%

% draw the curve in normalized units

\bsegment

\setsegscale {\len}

\realadd \cosa \du \tmpa \realadd \sina \dv \tmpb

\cavec ({\tmpa} \tmpb)({-\du} -\dv)({\cosa} \sina)

\esegment

\move (#1 #2)}

\def\rotatecoord (#1 #2)#3#4#5#6{

\getpos (#1 #2)\xarg\yarg

\realmult \xarg {#3} \tmpa \realmult \yarg {#4} \tmpb

\realadd \tmpa {-\tmpb} #5

\realmult \xarg {#4} \tmpa \realmult \yarg {#3} \tmpb

\realadd \tmpa \tmpb #6}

Finally, the new macro can be used as follows.

\centertexdraw{

\arrowheadtype t:W

\move (0 0)

\cavec (1.4 0.1)(-0.4 -0.1)(1 0)

\move (1 0) \caw (1 1) \htext{tip at \tt (1 1)}

\move (1 0) \caw (2 1) \htext{tip at \tt (2 1)}

\move (1 0) \caw (2 0) \htext{tip at \tt (2 0)}

}

Note that the Bezier curve in the macro \cavec lies below the arrowhead. The example
then draws an arrowhead of type W to erase the part of the line below the arrowhead.

31

Appendix C Examples

This appendix shows examples of the use of TEXdraw.

C.1 Block diagram of a lattice filter

The block diagram of a lattice filter uses a library of extended commands built from the
basic TEXdraw commands.

x(n)

+

−

z−1
+

−

f0(n) f1(n)

b0(n) b1(n)

K1

K1

· · ·

· · ·

+

−
e(n)

z−1
+

−

fP−1(n) fP (n)

bP−1(n) bP (n)

KP

KP

The block diagram uses a “delay” block. This is defined as a segment which leaves
the current position at the end of this block. A second macro, \bdot, draws a “big” dot
which is used to mark junctions of lines. The \Ttext command centers text above a given
point. The offset to position the text is local to a segment, resulting in no change to the
current point. Similar macros to position text below a point (\Btext), to the left of a point
(\Ltext) and to the right of a point (\Rtext) are used in the final drawing.

\def\delay {\bsegment

\setsegscale 0.3

\lvec (0 +0.5) \lvec (1 +0.5) \lvec (1 -0.5)

\lvec (0 -0.5) \lvec (0 0)

\textref h:C v:C \htext (0.5 0){z^{-1}}

\savepos (1 0)(*ex *ey)

\esegment

\move (*ex *ey)}

\def\bdot {\fcir f:0 r:0.02 }

\def\Ttext #1{\bsegment

\textref h:C v:B \htext (0 +0.06){#1}

\esegment}

Several of the block diagram elements scale with the size of the summing nodes. The
radius of the circles for the summing nodes is defined as the macro \cradius. The summing
nodes will have enclosed plus signs, appropriately scaled. The plus sign is drawn by the
macro \pluss. The macro \pcir draws both the circle and the plus sign. The incoming
lines to a summing node will be labelled with plus or minus signs (characters this time),
placed at the appropriate position with respect to the center of the summing node. These
positions are given in terms of compass directions. The macro \putwnw places text west by
north-west relative to the center of the summing node.

\def\cradius {0.08}

\def\pluss {\bsegment

\setsegscale {\cradius}

32 TEXdraw

\move (-0.5 0) \lvec (+0.5 0)

\move (0 -0.5) \lvec (0 +0.5)

\esegment}

\def\pcir {\lcir r:{\cradius} \pluss}

\def\puttext (#1 #2)#3{\bsegment

\setsegscale {\cradius}

\textref h:C v:C \htext (#1 #2){#3}

\esegment}

\def\putwnw #1{\puttext (-1.7 +1.2){#1}}

The block diagram has vectors arriving and departing from the summing nodes (circles).
One could calculate the points of intersection of the lines with the circles, and then enter
the values into the TEXdraw code. However, in this example, we implement an automated
procedure. Two macros are needed, an arrow vector to a circle (\avectoc) and an arrow
vector leaving from a circle (\avecfrc). The macros will calculate the point of intersection
with the circle and start or end the vector at the intersection point.

The arrow macros use scaling and relative positioning inside of a drawing segment. In
the case of the macro \avectoc, a move is made to the final point (center of the circle),
then within a drawing segment, a scaled move is made back towards the start to find the
intersection point with the circle.

\def\avectoc (#1 #2){\currentpos \xa\ya

\cossin ({\xa} \ya)(#1 #2)\cosa\sina

\savepos (#1 #2)(*tx *ty)

\bsegment

\move (*tx *ty)

\setsegscale {\cradius}

\rmove ({-\cosa} -\sina)

\savecurrpos (*ex *ey)

\esegment

\avec (*ex *ey)

\move (#1 #2)}

\def\avecfrc (#1 #2){\currentpos \xa\ya

\cossin ({\xa} \ya)(#1 #2)\cosa\sina

\bsegment

\setsegscale {\cradius}

\move ({\cosa} \sina)

\savecurrpos (*ex *ey)

\esegment

\move (*ex *ey)

\avec (#1 #2)}

Using these macros, we are ready to draw the block diagram. The first and last sections
of the lattice filter are very similar, differing mainly in the text labels. With more effort,
code could be shared between the commands used to draw these blocks.

\centertexdraw{

\drawdim in

\arrowheadtype t:F \arrowheadsize l:0.08 w:0.04

\def\pl {{\sevenrm \char43}} \def\mn {{\sevensy \char0}}

Appendix C: Examples 33

\move (0 +0.63) \move (0 -0.60) \move (0 0) % compensate for the text size

% Input to the first stage

\bsegment

\Ltext{$x(n)$}

\lvec (0.3 0) \bdot \lvec (0.3 +0.4) \move (0.3 0) \lvec (0.3 -0.4)

\savepos (0.3 0)(*ex *ey)

\esegment

\move (*ex *ey)

% first lattice stage

\bsegment

\move (0 +0.4) \avectoc (1.7 +0.4)

\pcir \putwnw{\pl} \puts{\mn}

\avecfrc (2.1 +0.4)

\move (0 -0.4) \avec (0.4 -0.4) \delay \avectoc (1.7 -0.4)

\pcir \putwsw{\pl} \putn{\mn}

\avecfrc (2.1 -0.4)

\move (0.9 +0.4) \bdot \avectoc (1.7 -0.4)

\move (0.9 -0.4) \bdot \avectoc (1.7 +0.4)

\move (0.1 +0.42) \Ttext {$f_0(n)$}

\move (2.0 +0.42) \Ttext {$f_1(n)$}

\move (0.1 -0.4) \Btext {$b_0(n)$}

\move (2.0 -0.4) \Btext {$b_1(n)$}

\textref h:L v:B \htext (1.15 +0.2){K_1}

\textref h:L v:T \htext (1.15 -0.2){K_1}

\savepos (2.1 0)(*ex *ey)

\esegment

\move (*ex *ey)

% center section

\bsegment

\textref h:C v:C \htext (0.3 +0.4){\cdots}

\htext (0.3 -0.4){\cdots}

\savepos (0.6 0)(*ex *ey)

\esegment

\move (*ex *ey)

% last lattice stage

\bsegment

\move (0 +0.4) \avectoc (1.7 +0.4)

\pcir \putwnw{\pl} \puts{\mn}

\avecfrc (2.3 +0.4) \Rtext{$e(n)$}

\move (0 -0.4) \avec (0.4 -0.4) \delay \avectoc (1.7 -0.4)

\pcir \putwsw{\pl} \putn{\mn}

\avecfrc (2.1 -0.4)

34 TEXdraw

\move (0.9 +0.4) \bdot \avectoc (1.7 -0.4)

\move (0.9 -0.4) \bdot \avectoc (1.7 +0.4)

\move (0.1 +0.42) \Ttext {$f_{P-1}(n)$}

\move (2.0 +0.42) \Ttext {$f_P(n)$}

\move (0.1 -0.4) \Btext {$b_{P-1}(n)$}

\move (2.0 -0.4) \Btext {$b_P(n)$}

\textref h:L v:B \htext (1.15 +0.2){K_P}

\textref h:L v:T \htext (1.15 -0.2){K_P}

\esegment

}

The macros used in this example are similar to the block diagram macros defined in the
file blockdiagram.tex.

C.2 Filter response graph

This example shows the response of a canonical filter. TEXdraw is not well suited for general
purpose graphing — it has no coordinate translation facility nor does it have separate x
and y scaling. However, for certain simple graphs, TEXdraw is adequate.

ω
0 π

2N

ωs π

N

In this example, macro \ticklab places a labelled axis tick at a given position. The
data is specified in a straightforward manner, having been scaled beforehand to give the
desired aspect ratio for the graph.

\centertexdraw{

\arrowheadtype t:F \arrowheadsize l:0.08 w:0.04

\def\ds {\displaystyle}

\def\ticklab (#1 #2)#3{\move(#1 #2)

\bsegment

\lvec (0 0.05)

\textref h:C v:T \htext (0 -0.05){#3}

\esegment}

\def\Rtext #1{\bsegment

\textref h:L v:C \htext (+0.08 0){#1}

\esegment}

\move (2.4 -0.3) % move to set the size

Appendix C: Examples 35

\move (0 0)

% Axes

\avec (0 +1.4)

\move (0 0) \avec (2.2 0) \Rtext{ω}

\ticklab (0 0) {0}

\ticklab (0.8 0) {$\ds {\pi \over 2N} $}

\ticklab (1.2 0) {ω_s}

\ticklab (1.6 0) {$\ds {\pi \over N} $}

\linewd 0.025

\move (0 1)

\lvec (0.4 1)

\lvec (0.44 0.998)

\lvec (0.48 0.988)

\lvec (0.52 0.973)

\lvec (0.56 0.951)

...

\lvec (1.08 0.233)

\lvec (1.12 0.156)

\lvec (1.16 0.078)

\lvec (1.20 0)

\lvec (1.9 0)

}

C.3 Geometric construction

This example shows a geometric construction which places an ellipse tangent to an enclosing
circle. The size of the ellipse is determined from geometric considerations. Macros are used
to modularize the code. The example alters the unit scale factor. This allows the drawing
to be carried out in units normalized to the radius of the circle.

36 TEXdraw

O

X

β2

|β1+β3|
|β1−β3|

\centertexdraw{

\arrowheadtype t:V \arrowheadsize l:0.08 w:0.04

\linewd 0.01

\setunitscale 1.5 % circle will have radius 1.5 inches

\def\Btext #1{\bsegment

\textref h:C v:T \htext (0 -0.04){#1}

\esegment}

\def\Ttext #1{\bsegment

\textref h:C v:B \htext (0 +0.04){#1}

\esegment}

\def\Ltext #1{\bsegment

\textref h:R v:C \htext (-0.04 0){#1}

\esegment}

\def\bdot {\fcir f:0 r:0.0133 }

\def\vtick {\bsegment

\move (0 -0.05) \lvec (0 +0.05)

\esegment}

\def\htick {\bsegment

\move (-0.05 0) \lvec (+0.05 0)

\esegment}

\def\Hlen (#1 #2)(#3 #4){\move (#1 #2) \vtick

\move (#3 #4) \vtick

\avec (#1 #2) \avec (#3 #4)}

\def\Vlen (#1 #2)(#3 #4){\move (#1 #2) \htick

\move (#3 #4) \htick

\avec (#1 #2) \avec (#3 #4)}

\lcir r:1 % circle

\move (-1.05 0) \lvec (1.05 0) % axes

Appendix C: Examples 37

\move (0 -1.05) \lvec (0 1.05)

\move (0.707 0.707) \bdot \move (0.707 -0.707) \bdot

\textref h:R v:T \htext(-0.02 -0.02){O}

\textref h:L v:B \htext(0.725 0.725){X}

\move (0 0) \lvec (0.707 0.707)

\move (0.5 0) % center of ellipse

\bsegment

\lellip rx:0.435 ry:0.804

\bdot \Btext {β_2}

\Hlen (0 0.15)(0.435 0.15) \move (0.218 0.15) \Ttext{$|\beta_1{+}\beta_3|$}

\Vlen (-0.7 0)(-0.7 0.804) \move (-0.7 0.402) \Ltext{$|\beta_1{-}\beta_3|$}

\esegment

}

39

Appendix D Alphabetic listing of commands

\arrowheadsize l:length w:width

Set the arrowhead size to be length units long and width units wide. The width
is measured across the “base” of the arrowhead. The initial arrowhead size has
a length of 0.16 inches and a width of 0.08 inches.

\arrowheadtype t:type

Set the arrowhead type to type, where type is one of F, T, W, V, or H. There
are two kinds of arrowheads. The first kind is a triangle. There are 3 variants:
type T is an empty triangle, type F is a filled triangle (using the current gray
level), type W is a triangle filled with white. The second kind of arrowhead is an
open ended Vee. There are 2 variants: type V has the stem continue to the tip,
type H has the stem stop at the base of the arrowhead. The initial arrowhead
type is T.

\avec (x y)

Draw a line with an arrowhead from the current position to (x y). The new
current position is (x y). The arrowhead is aligned with the line, with the tip
at (x y).

\begin{texdraw}

Start a TEXdraw drawing. The drawing is terminated with an \end{texdraw}

command. This command is for use with LaTEX.

\bsegment

Start a drawing segment. The coordinate system is shifted such that the current
position corresponds to the coordinate (0 0). Changes to scaling, position and
line parameters stay local to the drawing segment.

\btexdraw

Start a TEXdraw drawing. The drawing is terminated with an \etexdraw com-
mand.

\centertexdraw { ... }

Center a TEXdraw box. The argument contains TEXdraw commands. The
resulting box has the horizontal size \hsize and height equal to the height of
the drawing.

\clvec (x1 y1)(x2 y2)(x3 y3)

Draw a Bezier curve from the current position to the coordinate (x3 y3) which
becomes the new current position. The coordinates (x1 y1) and (x2 y2) serve
as control points for the curve. Only the last coordinate given is used to update
the size of the drawing.

\drawbb Draw a ruled box around the effective size of a drawing produced by TEXdraw
commands.

\drawdim dim

Set the units to dim. The argument dim can be any valid TEX dimension unit.
The units are used to interpret coordinate values. Examples of valid units: cm,
mm, in, pt, and bp.

40 TEXdraw

\end{texdraw}

End a TEXdraw drawing started with a \begin{texdraw} command. The
resulting TEXdraw drawing is placed in a box with height equal to the height
of the drawing and width equal to the width of the drawing. The depth of the
box is zero. This command is for use with LaTEX.

\esegment

End a drawing segment. The current position in effect before the corresponding
\bsegment command is restored. The scaling and line parameter values revert
to those in effect before the corresponding \bsegment was invoked.

\etexdraw

End a TEXdraw drawing started with a \btexdraw command. The resulting
TEXdraw drawing is placed in a box with height equal to the height of the
drawing and width equal to the width of the drawing. The depth of the box is
zero.

\everytexdraw { ... }

Specify TEXdraw commands to be executed at the beginning of every TEXdraw
drawing.

\fcir f:level r:radius

Draw a filled circle with center at the current position. The radius is specified
by radius. The circle is painted with the gray level specified by level. A gray
level of 1 corresponds to white, with decreasing values getting darker. The level
0 is full black. This command does not draw a line along the circumference.
The drawing size is increased if necessary to contain the circle.

\fellip f:level rx:x-radius ry:y-radius

Draw a filled ellipse with center at the current position. The radius in the x
direction is specified by x-radius. The radius in the y direction is specified by
y-radius. The ellipse is painted with the gray level specified by level. A gray
level of 1 corresponds to white, with decreasing values getting darker. The level
0 is full black. This command does not draw a line along the boundary of the
ellipse. The drawing size is increased if necessary to contain the ellipse.

\htext (x y){text}

\htext {text}

The first form of this command places the TEX text text horizontally with the
text reference point at the coordinate (x y). The new current position is (x

y). The second form of this command places the TEX text text horizontally
with the text reference point at the current position. The text reference point
is set with the \textref command.

\ifill f:level

Close the current path and paint the interior of the region with gray level level.
The line around the path is not drawn. Gray levels are real values from 0
(black) through intermediate values (grays) to 1 (white).

\larc r:radius sd:start-angle ed:end-angle

Draw a counterclockwise arc. The center of the arc is at the current position.
The radius is specified by radius. The start and end angles (in degrees) are

Appendix D: Alphabetic listing of commands 41

specified by start-angle and end-angle. This command does not affect the limits
(size) of the drawing.

\lcir r:radius

Draw a circle with center at the current position. The radius is specified by
radius. This command draws a line along the circumference of the circle. The
drawing size is increased if necessary to contain the circle.

\lellip rx:x-radius ry:y-radius

Draw an ellipse with center at the current position. The radius in the x direction
is specified by x-radius. The radius in the y direction is specified by y-radius.
The drawing size is increased if necessary to contain the ellipse.

\lfill f:level

Close the current path, draw the line around the path using the current grey
level for lines and paint the interior of the region with specified gray level level.
Gray levels are real values from 0 (black) through intermediate values (grays)
to 1 (white).

\linewd width

Set the line width to width units. Initially width is 0.01 inches (corresponding
to 3 pixels at 300 pixels to the inch).

\lpatt (pattern)

Set lines to have the pattern (pattern). A pattern is a sequence of on/off
lengths separated by blanks and enclosed in parentheses. The lengths alter-
nately specify the length of a dash and the length of a gap between dashes.
Each length is interpreted using the current scaling and drawing units. The
pattern is used cyclically. The empty pattern signifies a solid line. The initial
line pattern is a solid line, corresponding to the empty pattern \lpatt ().

\lvec (x y)

Draw a line from the current position to coordinate (x y). The new current
position is (x y).

\move (x y)

Move to coordinate (x y). The new current position is (x y).

\ravec (dx dy)

Draw a line with an arrowhead from the current position, dx units in the x
direction and y units in the y direction. The final position becomes the new
current position. The arrowhead is aligned with the line, with the tip at the
new current position.

\relsegscale value

Adjust the segment scale factor by multiplying by value. This has the effect
of multiplying the current overall scale factor by the same factor. The overall
scaling factor is the product of the unit scale factor and the segment scale factor.

\relunitscale value

Adjust the unit scale factor by multiplying by value. This has the effect of
multiplying the overall scale factor by the same factor. The overall scaling
factor is the product of the unit scale factor and the segment scale factor.

42 TEXdraw

\rlvec (dx dy)

Draw a line from the current position, dx units in the x direction and dy units
in the y direction. The final position becomes the new current position.

\rmove (dx dy)

Move from the current position, dx units in the x direction and dy units in the
y direction. The final position becomes the new current position.

\rtext td:angle (x y){text}

\rtext td:angle {text}

The first form of this command places the TEX text text at an angle with the
text reference point at the coordinate (x y). The new current position is (x y).
The second form of this command places the TEX text text at an angle with
the text reference point at the current position. In both cases, the TEX text is
placed in a box and the box is rotated counterclockwise by angle degrees about
the text reference point. The text reference point is set with the \textref

command.

\savecurrpos (*px *py)

Save the current position as the absolute position referenced by (*px *py).

\savepos (x y)(*px *py)

Save the coordinate position (x y) as the absolute position referenced by (*px

*py). The coordinate (x y) is interpreted in the normal fashion as a coordinate
relative to the current segment, using the current scaling factors and drawing
unit.

\setgray level

Set the gray level of lines. Gray levels are real values from 0 (black) through
intermediate values (gray) to 1 (white). The initial gray level is 0 corresponding
to black.

\setsegscale scale

Set the segment scale factor. The argument scale is a real number which is
used to scale coordinate values. The overall scale factor is the product of the
unit scale factor and the segment scale factor.

\setunitscale scale

Set the unit scaling to scale. The argument scale is a real number which is used
to scale coordinate values. The overall scaling factor is the product of the unit
scale factor and the segment scale factor.

\texdrawbox { ... }

Create a TEXdraw box. The argument contains TEXdraw commands. This
macro returns a TEX box with height equal to the height of the drawing and
width equal to the width of the drawing. The depth of the box is zero.

\textref h:h-ref v:v-ref

Set the text reference point for subsequent text commands. The horizontal
reference point h-ref is one of L, C or R (left, center or right). The vertical
reference point v-ref is one of T, C or B (top, center or bottom). For rotated
text, the reference point is determined before rotation. The initial text reference
point corresponds to \textref h:L v:B.

Appendix D: Alphabetic listing of commands 43

\vtext (x y){text}

\vtext {text}

The first form of this command places the TEX text text vertically with the
text reference point at the coordinate (x y). The new current position is (x

y). The second form of this command places the TEX text text vertically with
the text reference point at the current position. In both cases, the TEX text is
placed in a box and the box is rotated counterclockwise by 90 degrees about
the text reference point. The text reference point is set with the \textref

command.

45

Command Index

\
\arc . 10
\arrowheadsize . 7
\arrowheadtype . 7
\avec . 6
\begin{texdraw} . 19
\bsegment . 15
\btexdraw . 4
\centertexdraw . 4
\clvec . 11
\cossin . 27
\currentpos . 27
\drawbb . 18
\drawdim . 5
\end{texdraw} . 19
\esegment . 15
\etexdraw . 4
\everytexdraw . 4
\fcir . 10
\fellip . 10
\getpos . 27
\htext . 8
\ifill . 12
\lcir . 10
\lellip . 10
\lfill . 12
\linewd . 6
\lvec . 6
\move . 6
\PSarc . 26
\PSarcn . 26
\PSclosepath . 25
\PSfill . 25
\PSlineto . 26
\PSmoveto . 26
\PSnewpath . 25
\PSsetlinecap . 25
\PSsetlinejoin . 25
\PSstroke . 25
\ravec . 6
\realadd . 27
\realdiv . 28
\realmult . 27
\relsegscale . 17

\relunitscale . 17
\rlvec . 6
\rmove . 6
\rtext . 8
\savecurrpos . 16
\savepos . 16
\setgray . 7
\setsegscale . 17
\setunitscale . 17
\textref . 8
\vectlen . 27
\vtext . 8
\writeps . 26

A
arc . 26
arcn . 26

C
closepath . 25

F
fill . 25

L
lineto . 26

M
moveto . 26

N
newpath . 25

S
setlinecap . 25
setlinejoin . 25
stroke . 25

47

Concept Index

A
accessing TEXdraw . 3, 19
angle of a vector . 27
arcs . 10, 26
arrowhead parameters . 6
arrows . 5

B
Bezier curves . 11

C
circles . 10
command syntax . 4
coordinate parsing . 27
coordinate specification . 5
coordinate, symbolic . 16
coordinates . 4
cosine of a vector direction . 27
current position . 5, 18, 27
current position in PostScript 25
curves . 11

D
dashed lines . 6
direction of a line . 27
distribution . 2
dotted lines . 6
drawing segments . 15

E
ellipses . 10
Encapsulated PostScript File 23
errors arising from TEXdraw 21
example, arrow curve . 28
example, block diagram . 31
example, circle and ellipse . 35
example, graph . 34

F
fill operations, interaction with

drawing segments . 15
filled circles . 10
filling regions . 12, 25

G
graphics placement . 23
gray levels for lines . 6

H
history of TEXdraw . 1

I
implementation . 21
initial current position . 18
invoking TEXdraw . 3, 19

L
LaTEX forms for TEXdraw commands 19
length of a vector . 27
line cap . 25
line join . 25
line width . 6
lines . 5, 25
listing of commands . 39

M
moves . 5, 25

P
painting regions . 12
paths . 12, 15, 25
placement of graphics and text 23
position specification . 5
positions, saving . 16
PostScript commands . 25
predecessors to TEXdraw . 1
problems arising from TEXdraw 21

R
relative positioning . 6
relative scaling . 17
resolution . 22
rotated text . 8

S
saving positions . 16
scaling . 22
scaling coordinates . 17
segment scale . 17
segments . 15
sine of a vector direction . 27
size of the drawing . 18
stroking lines . 15, 25
symbolic coordinate . 16
syntax of commands . 4

48 TEXdraw

T
text commands . 8
text placement . 23

U
unit scale . 17

V
vectors . 5
vertical text . 8

W
width of lines . 6

i

Table of Contents

1 Introduction . 1
1.1 History . 1
1.2 Distribution information . 2

2 Using the TEXdraw Commands 3
2.1 Accessing TEXdraw . 3
2.2 Command syntax . 4
2.3 TEXdraw coordinates . 4
2.4 Coordinate specification . 5
2.5 Line vectors . 5
2.6 TEX text . 8
2.7 Circles, ellipses and arcs . 10
2.8 Bezier curves . 11
2.9 Fill commands . 12

3 Drawing Segments and Scaling 15
3.1 Drawing segments . 15
3.2 Drawing paths . 15
3.3 Saving positions . 16
3.4 Scaling coordinates . 17
3.5 Drawing size . 18
3.6 Initial current position . 18

4 Using TEXdraw with LaTEX 19
4.1 Alternate command forms for LaTEX . 19

5 More Details . 21
5.1 Problems arising from TEXdraw . 21
5.2 Extending TEXdraw . 21

5.2.1 Scaling . 22
5.2.2 Resolution . 22
5.2.3 Text placement . 22
5.2.4 The output PostScript file . 23

5.3 How TEXdraw merges graphics and text . 23

Appendix A PostScript Commands 25

Appendix B TEXdraw Toolbox 27
B.1 Coordinate parsing . 27
B.2 Real arithmetic . 27
B.3 Arrow curve . 28

ii

Appendix C Examples . 31
C.1 Block diagram of a lattice filter . 31
C.2 Filter response graph . 34
C.3 Geometric construction . 35

Appendix D Alphabetic listing of commands . . 39

Command Index . 45

Concept Index . 47

	1 Introduction
	History
	Distribution information

	2 Using the TeXdraw Commands
	Accessing TeXdraw
	Command syntax
	TeXdraw coordinates
	Coordinate specification
	Line vectors
	TeX text
	Circles, ellipses and arcs
	Bezier curves
	Fill commands

	3 Drawing Segments and Scaling
	Drawing segments
	Drawing paths
	Saving positions
	Scaling coordinates
	Drawing size
	Initial current position

	4 Using TeXdraw with LaTeX
	Alternate command forms for LaTeX

	5 More Details
	Problems arising from TeXdraw
	Extending TeXdraw
	Scaling
	Resolution
	Text placement
	The output PostScript file

	How TeXdraw merges graphics and text

	A PostScript Commands
	B TeXdraw Toolbox
	Coordinate parsing
	Real arithmetic
	Arrow curve

	C Examples
	Block diagram of a lattice filter
	Filter response graph
	Geometric construction

	D Alphabetic listing of commands
	Command Index
	Concept Index

