
XLISP-STAT

A Statistical Environment Based on

the XLISP Language

(Version 2.0)

by

Luke Tierney

University of Minnesota

School of Statistics

Technical Report Number 528

July 1988



Contents

Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1 Starting and Finishing 6

2 Introduction to Basics 8

2.1 Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.2 The Listener and the Evaluator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

3 Elementary Statistical Operations 11

3.1 First Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3.2 Summary Statistics and Plots : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.3 Two Dimensional Plots : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3.4 Plotting Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

4 More on Generating and Modifying Data 20

4.1 Generating Random Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

4.2 Generating Systematic Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

4.3 Forming Subsets and Deleting Cases : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

4.4 Combining Several Lists : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

4.5 Modifying Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

5 Some Useful Shortcuts 24

5.1 Getting Help : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

5.2 Listing and Unde�ning Variables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

5.3 More on the XLISP-STAT Listener : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

5.4 Loading Files : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

5.5 Saving Your Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

5.6 The XLISP-STAT Editor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

5.7 Reading Data Files : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

5.8 User Initialization File : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

6 More Elaborate Plots 30

6.1 Spinning Plots : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

6.2 Scatterplot Matrices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

6.3 Interacting with Individual Plots : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

6.4 Linked Plots : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

6.5 Modifying a Scatter Plot : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

6.6 Dynamic Simulations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

7 Regression 42

8 De�ning Your Own Functions and Methods 47

8.1 De�ning Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

8.2 Anonymous Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

8.3 Some Dynamic Simulations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

8.4 De�ning Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

8.5 Plot Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

9 Matrices and Arrays 53

10 Nonlinear Regression 54

1



11 One Way ANOVA 57

12 Maximization and Maximum Likelihood Estimation 58

13 Approximate Bayesian Computations 61

A XLISP-STAT on UNIX Systems 68

A.1 XLISP-STAT Under the X11 Window System : : : : : : : : : : : : : : : : : : : : : : 68

A.1.1 More Advanced X11 Features : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

A.2 XLISP-STAT Under the SunView Window System : : : : : : : : : : : : : : : : : : : 69

A.3 Running UNIX Commands from XLISP-STAT : : : : : : : : : : : : : : : : : : : : : 70

A.4 Dynamic Loading and Foreign Function Calling : : : : : : : : : : : : : : : : : : : : : 70

B Graphical Interface Tools 72

B.1 Menus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

B.2 Dialogs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

B.2.1 Modal Dialogs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

B.2.2 Modeless Dialogs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

C Selected Listing of XLISP-STAT Functions 75

C.1 Arithmetic and Logical Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

C.2 Constructing and Modifying Compound Data and Variables : : : : : : : : : : : : : : 77

C.3 Basic Statistical Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

C.4 Plotting Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

C.5 Object Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

C.5.1 Regression Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

C.5.2 General Plot Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

C.5.3 Histogram Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

C.5.4 Name List Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

C.5.5 Scatterplot Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

C.5.6 Spin Plot Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

C.6 Some Useful Array and Linear Algebra Functions : : : : : : : : : : : : : : : : : : : : 89

C.7 System Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

C.8 Some Basic Lisp Functions, Macros and Special Forms : : : : : : : : : : : : : : : : : 93

2



Preface

XLISP-STAT is a statistical environment built on top of the XLISP programming language. This

document is intended to be a tutorial introduction to the basics of XLISP-STAT. It is written

primarily for the Apple Macintosh version, but most of the material applies to other versions as

well; some points where other versions di�er are outlined in an appendix. The �rst three sections

contain the information you will need to do elementary statistical calculations and plotting. The

fourth section introduces some additional methods for generating and modifying data. The �fth

section describes some additional features of the Macintosh user interface that may be helpful. The

remaining sections deal with more advanced topics, such as interactive plots, regression models, and

writing your own functions. All sections are organized around examples, and most contain some

suggested exercises for the reader.

This document is not intended to be a complete manual. However, documentation for many of

the commands that are available is given in the appendix. Brief help messages for these and other

commands are also available through the interactive help facility described in Section 5.1 below.

XLISP itself is a high-level programming language developed by David Betz and made available

for unrestricted, non-commercial use. It is a dialect of Lisp, most closely related to the Common

Lisp dialect. XLISP also contains some extensions to Lisp to support object-oriented programming.

These facilities have been modi�ed in XLISP-STAT to implement the screen menus, plots and

regression models. Several excellent books on Common Lisp are available. One example is Winston

and Horn [22]. A book on XLISP itself has recently been published. Unfortunately it is based on

XLISP 1.7, which di�ers signi�cantly from XLISP 2.0, the basis of XLISP-STAT 2.0.

XLISP-STAT was originally developed for the Apple Macintosh. It is now also available for

UNIX systems using the X11 window system, for Sun workstations under the SunView window

system, and, with only rudimentary graphics, for generic 4.[23]BSD UNIX systems. The Macintosh

version of XLISP-STAT was developed and compiled using the Lightspeed C compiler from Think

Technologies, Inc. The Macintosh user interface is based on Paul DuBois' TransSkel and TransEdit

libraries. Some of the linear algebra and probability functions are based on code given in Press,

Flannery, Teukolsky and Vetterling [14]. Regression computations are carried out using the sweep

algorithm as described in Weisberg [21].

This tutorial has borrowed several ideas from Gary Oehlert'sMacAnova User's Guide [13]. Many

of the on-line help entries have been adopted directly or with minor modi�cations from the Kyoto

Common Lisp System. Most of the examples used in this tutorial have been taken from Devore and

Peck [11]. Many of the functions added to XLISP-STAT were motivated by similar functions in the

S statistical environment [2,3].

The present version of XLISP-STAT, Version 2.0, seems to run fairly comfortably on a Mac II

or Mac Plus with 2MB of memory, but is a bit cramped with only 1MB. It will not run in less than

1Mb of memory. The program will occasionally bomb with an ID=28 if it gets into a recursion that

is too deep for the Macintosh stack to handle. On a 1MB Mac it may also bomb with an ID=15

if too much memory has been used for the segment loader to be able to bring in a required code

segment.

Development of XLISP-STAT was supported in part by grants of an Apple Macintosh Plus

computer and hard disk and a Macintosh II computer from the MinneMac Project at the University

of Minnesota, by a single quarter leave granted to the author by the University of Minnesota, by

grant DMS-8705646 from the National Science Foundation, and by a research contract with Bell

Communications Research.

Using this Tutorial

The best way to learn about a new computer program is usually to use it. You will get most out of

this tutorial if you read it at your computer and work through the examples yourself. To make this

3



easier the named data sets used in this tutorial have been stored on the �le tutorial.lsp in the

Data folder of the Macintosh distribution disk. To read in this �le select the Load item on the File

menu. This will bring up an Open File dialog window. Use this dialog to open the Data folder on

the distribution disk. Now select the �le tutorial.lsp and press the Open button. The �le will

be loaded and some variables will be de�ned for you.

1

Why XLISP-STAT Exists

There are three primary reasons behind my decision to produce the XLISP-STAT environment. The

�rst is to provide a vehicle for experimenting with dynamic graphics and for using dynamic graphics

in instruction. Second, I wanted to be able to experiment with an environment supporting functional

data, such as mean functions in nonlinear regression models and prior density and likelihood functions

in Bayesian analyses. Finally, I was interested in exploring the use of object-oriented programming

ideas for building and analyzing statistical models. I will discuss each of these points in a little more

detail in the following paragraphs.

The development of high resolution graphical computer displays has made it possible to consider

the use of dynamic graphics for understanding higher-dimensional structure. One of the earliest

examples is the real time rotation of a three dimensional point cloud on a screen { an e�ort to use

motion to recover a third dimension from a two dimensional display. Other techniques that have

been developed include brushing a scatterplot { highlighting points in one plot and seeing where

the corresponding points fall in other plots. A considerable amount of research has been done in

this area, see for example the discussion in Becker and Cleveland [4] and the papers reproduced

in Cleveland and McGill[8]. However most of the software developed to date has been developed

on specialized hardware, such as the TTY 5620 terminal or Lisp machines. As a result, very few

statisticians have had an opportunity to experiment with dynamic graphics �rst hand, and still fewer

have had access to an environment that would allow them to implement dynamic graphics ideas of

their own. Several commercial packages for microcomputers now contain some form of dynamic

graphics, but most do not allow users to customize their plots or develop functions for producing

specialized plots, such as dynamic residual plots. XLISP-STAT provides at least a partial solution

to these problems. It allows the user to modify a scatter plot with Lisp functions and provides

means for modifying the way in which a plot responds to mouse actions. It is also possible to add

functions written in C to the program. On the Macintosh this has to be done by adding to the

source code. On some unix systems it is also possible to compile and dynamically load code written

in C or FORTRAN.

An integrated environment for statistical calculations and graphics is essential for developing

an understanding of the uses of dynamic graphics in statistics and for developing new graphical

techniques. Such an environment must essentially be a programming language. Its basic data

types must include types that allow groups of numbers { data sets { to be manipulated as entire

objects. But in model-based analyses numerical data are only part of the information being used.

The remainder is the model itself. Sometimes a model is easily characterized by specifying a set

of numbers. A normal linear regression model with i:i:d: errors might be described by the number

of covariates, the coe�cients and the error variance. On the other hand, in many cases it is easier

to specify a model by specifying a function. To specify a normal nonlinear regression model, for

example, one might specify the mean function. If our language is to allow us to specify this function

within the language itself then the language must support a functional data type with full rights: It

has to be possible to de�ne functions that manipulate functions, return functions, apply functions

to arguments, etc.. The choice I faced was to de�ne a language from scratch or use an existing

language. Because of the complexity of issues involved in functional programming I decided to use

a dialect of a well understood functional language, Lisp. The syntax of Lisp is somewhat unfamiliar

1

On a UNIX system you can use the function load-data to load the tutorial data. After starting up XLISP-STAT

enter the expression (load-data "tutorial"), followed by a return.

4



to most users of statistical packages, but it is easy to learn and several good tutorials are available

in local book stores. I considered the possibility of using Lisp to write a top level interface with a

more \natural" syntax, but I did not see any way of doing this without complicating access to some

of the more powerful features of Lisp or running into some of the pitfalls of functional programming.

I therefore decided to retain the basic Lisp top level syntax. To make the manipulation of numerical

data sets easier I have rede�ned the arithmetic operators and basic numerical functions to work on

lists and arrays of data.

Having decided to use Lisp as the basis for my environment XLISP was a natural choice for

several reasons. It has been made available for unrestricted, non-commercial use by its author, David

Betz. It is small (for a Lisp system), its source code is available in C, and it is easily extensible.

Finally, it includes support for object-oriented programming. Object-oriented programming has

received considerable attention in recent years and is particularly natural for use in describing and

manipulating graphical objects. It may also be useful for the analysis of statistical data and models.

A collection of data and assumptions may be represented as an object. The model object can then be

examined and modi�ed by sending it messages. Many di�erent kinds of models will answer similar

questions, thus �tting naturally into an inheritance structure. XLISP-STAT's implementation of

linear and nonlinear regression models as objects, with nonlinear regression inheriting many of its

methods from linear regression, is a �rst, primitive attempt to exploit this programming technique

in statistical analysis.

Availability

Source code for XLISP-STAT for X11, Sun, 4.[23]BSD UNIX andMacintosh versions and executables

for the Macintosh are available free of charge for non-commercial use. You should, however, be

prepared to bear the cost of copying, for example by supplying a disk or tape and a stamped mailing

envelope. You can also obtain the source code and Macintosh executables by anonymous ftp over

the internet from umnstat.stat.umn.edu (128.101.51.1).

A version for the Mac II requiring the MC68881 coprocessor is available as well. This version

is compiled to access the coprocessor directly and will therefore not run on a machine without the

coprocessor. Numerical computations with this version are about 7 to 10 times faster on a Mac II

than without the direct coprocessor access.

Disclaimer

XLISP-STAT is an experimental program. It has not been extensively tested. The University of

Minnesota, the School of Statistics, the author of the statistical extensions and the author of XLISP

take no responsibility for losses or damages resulting directly or indirectly from the use of this

program.

XLISP-STAT is an evolving system. Over time new features will be introduced, and existing

features that do not work may be changed. Every e�ort will be made to keep XLISP-STAT consistent

with the information in this tutorial, but if this is not possible the help information should give

accurate information about the current use of a commend.

5



1 Starting and Finishing

You should have the program XLISP-STAT on a Macintosh disk. XLISP-STAT needs to have several

�les available for it to work properly. These �les are

2

:

init.lsp

common.lsp

help.lsp

objects.lsp

menus.lsp

statistics.lsp

dialogs.lsp

graphics.lsp

graphics2.lsp

regression.lsp

xlisp.help

Before starting XLISP-STAT you should make sure that these �les are in the same folder as the

XLISP-STAT application.

To start XLISP-STAT double click on its icon. The program will need a little time to start up

and read in the �les mentioned above. When XLISP-STAT is ready the text in its command window

will look something like this

3

:

XLISP version 2.0, Copyright (c) 1988, by David Betz

XLISP-STAT version 2.0 , Copyright (c) 1988, by Luke Tierney.

Several files will be loaded; this may take a few minutes.

; loading "init.lsp"

; loading "common.lsp"

; loading "help.lsp"

; loading "objects.lsp"

; loading "menus.lsp"

; loading "statistics.lsp"

; loading "dialogs.lsp"

; loading "graphics.lsp"

; loading "graphics2.lsp"

; loading "regression.lsp"

>

The �nal \>" in the window is the XLISP-STAT prompt. Any characters you type while the

command window is active will be added to the line after the �nal prompt. When you hit a return,

XLISP-STAT will try to interpret what you have typed and will print a response. For example, if

you type a 1 and hit return then XLISP-STAT will respond by simply printing a 1 on the following

line and then give you a new prompt:

> 1

1

>

2

The �le xlisp.help is optional. It may be replaced by a reduced �le xlisp.help.small or it may be omitted

entirely. If it is not present interactive help will not be available.

3

On a Macintosh with limited memory a dialog warning about memory restrictions may be appear at this point.

On a Mac II it takes about a minute to load these �les; on a Mac Plus or an SE it takes about 3.5 minutes.

6



If you type an expression like (+ 1 2), then XLISP-STAT will print the result of evaluating the

expression and give you a new prompt:

> (+ 1 2)

3

>

As you have probably guessed, this expression means that the numbers 1 and 2 are to be added

together. The next section will give more details on how XLISP-STAT expressions work. In this

tutorial I will always show interactions with the program as I have done here: The \>" prompt will

appear before lines you should type. XLISP-STAT will supply this prompt when it is ready; you

should not type it yourself. In later sections I will omit the new prompt following the result in order

to save space.

Now that you have seen how to start up XLISP-STAT it is a good idea to make sure you know

how to get out. As with many Macintosh programs the easiest way to get out is to choose the Quit

command from the File menu. You can also use the command key shortcut COMMAND-Q, or you

can type the expression

> (exit)

Any one of these methods should cause the program to exit and return you to the Finder.

7



2 Introduction to Basics

Before we can start to use XLISP-STAT for statistical work we need to learn a little about the kind

of data XLISP-STAT uses and about how the XLISP-STAT listener and evaluator work.

2.1 Data

XLISP-STAT works with two kinds of data: simple data and compound data. Simple data are

numbers

1 ; an integer

-3.14 ; a floating point number

#C(0 1) ; a complex number (the imaginary unit)

logical values

T ; true

nil ; false

strings (always enclosed in double quotes)

"This is a string 1 2 3 4"

and symbols (used for naming things; see the following section)

x

x12

12x

this-is-a-symbol

Compound data are lists

(this is a list with 7 elements)

(+ 1 2 3)

(sqrt 2)

or vectors

#(this is a vector with 7 elements)

#(1 2 3)

Higher dimensional arrays are another form of compound data; they will be discussed below in

Section 9.

All the examples given above can be typed directly into the command window as they are shown

here. The next subsection describes what XLISP-STAT will do with these expressions.

2.2 The Listener and the Evaluator

A session with XLISP-STAT basically consists of a conversation between you and the listener. The

listener is the window into which you type your commands. When it is ready to receive a command

it gives you a prompt. At the prompt you can type in an expression. You can use the mouse or

the backspace key to correct any mistakes you make while typing in your expression. When the

expression is complete and you type a return the listener passes the expression on to the evaluator.

The evaluator evaluates the expression and returns the result to the listener for printing.

4

The

evaluator is the heart of the system.

4

It is possible to make a �ner distinction. The reader takes a string of characters from the listener and converts it

into an expression. The evaluator evaluates the expression and the printer converts the result into another string of

characters for the listener to print. For simplicity I will use evaluator to describe the combination of these functions.

8



The basic rule to remember in trying to understand how the evaluator works is that everything

is evaluated. Numbers and strings evaluate to themselves:

> 1

1

> "Hello"

"Hello"

>

Lists are more complicated. Suppose you type the list (+ 1 2 3) at the listener. This list has four

elements: the symbol + followed by the numbers 1, 2 and 3. Here is what happens:

> (+ 1 2 3)

6

>

A list is evaluated as a function application. The �rst element is a symbol representing a function, in

this case the symbol + representing the addition function. The remaining elements are the arguments.

Thus the list in the example above is interpreted to mean \Apply the function + to the numbers 1,

2 and 3".

Actually, the arguments to a function are always evaluated before the function is applied. In

the previous example the arguments are all numbers and thus evaluate to themselves. On the other

hand, consider

> (+ (* 2 3) 4)

10

>

The evaluator has to evaluate the �rst argument to the function + before it can apply the function.

Occasionally you may want to tell the evaluator not to evaluate something. For example, suppose

we wanted to get the evaluator to simply return the list (+ 1 2) back to us, instead of evaluating

it. To do this we need to quote our list:

> (quote (+ 1 2))

(+ 1 2)

>

quote is not a function. It does not obey the rules of function evaluation described above: Its

argument is not evaluated. quote is called a special form { special because it has special rules

for the treatment of its arguments. There are a few other special forms that we will need; I will

introduce them as they are needed. Together with the basic evaluation rules described here these

special forms make up the basics of the Lisp language. The special form quote is used so often that

a shorthand notation has been developed, a single quote before the expression you want to quote:

> '(+ 1 2) ; single quote shorthand

This is equivalent to (quote (+ 1 2)). Note that there is no matching quote following the expres-

sion.

By the way, the semicolon \;" is the Lisp comment character. Anything you type after a

semicolon up to the next time you hit a return is ignored by the evaluator.

Exercises

For each of the following expressions try to predict what the evaluator will return. Then type them

in, see what happens and try to explain any di�erences.

9



1. (+ 3 5 6)

2. (+ (- 1 2) 3)

3. '(+ 3 5 6)

4. '( + (- 1 2) 3)

5. (+ (- (* 2 3) (/ 6 2)) 7)

6. 'x

Remember, to quit from XLISP-STAT choose Quit from the File menu or type (exit).

10



3 Elementary Statistical Operations

This section introduces some of the basic graphical and numerical statistical operations that are

available in XLISP-STAT.

3.1 First Steps

Statistical data usually consists of groups of numbers. Devore and Peck [11, Exercise 2.11] describe

an experiment in which 22 consumers reported the number of times they had purchased a product

during the previous 48 week period. The results are given as a table:

0 2 5 0 3 1 8 0 3 1 1

9 2 4 0 2 9 3 0 1 9 8

To examine this data in XLISP-STAT we represent it as a list of numbers using the list function:

> (list 0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8)

(0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8)

>

Note that the numbers are separated by white space (spaces, tabs or even returns), not commas.

The mean function can be used to compute the average of a list of numbers. We can combine it

with the list function to �nd the average number of purchases for our sample:

> (mean (list 0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8))

3.227273

>

The median of these numbers can be computed as

> (median (list 0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8))

2

>

It is of course a nuisance to have to type in the list of 22 numbers every time we want to compute

a statistic for the sample. To avoid having to do this I will give this list a name using the def special

form

5

:

> (def purchases (list 0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8))

PURCHASES

>

Now the symbol purchases has a value associated with it: Its value is our list of 22 numbers. If

you give the symbol purchases to the evaluator then it will �nd the value of this symbol and return

that value:

> purchases

(0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8)

>

5

def acts like a special form, rather than a function, since its �rst argument is not evaluated (otherwise you would

have to quote the symbol). Technically def is a macro, not a special form, but I will not worry about this distinction

in this tutorial. def is closely related to the standard Lisp special forms setf and setq. The advantage of using def

is that it adds your variable name to a list of def'ed variables that you can retrieve using the function variables. If

you use setf or setq there is no easy way to �nd variables you have de�ned, as opposed to ones that are prede�ned.

def always a�ects top level symbol bindings, not local bindings. It can not be used in function de�nitions to change

local bindings.

11



We can now easily compute various numerical descriptive statistics for this data set:

> (mean purchases)

3.227273

> (median purchases)

2

> (standard-deviation purchases)

3.279544

> (interquartile-range purchases)

3.5

>

XLISP-STAT also supports elementwise arithmetic operations on lists of numbers. For example,

we can add 1 to each of the purchases:

> (+ 1 purchases)

(1 3 6 1 4 2 9 1 4 2 2 10 3 5 1 3 10 4 1 2 10 9)

>

and after adding 1 we can compute the natural logarithms of the results:

> (log (+ 1 purchases))

(0 1.098612 1.791759 0 1.386294 0.6931472 2.197225 0 1.386294 0.6931472

0.6931472 2.302585 1.098612 1.609438 0 1.098612 2.302585 1.386294 0

0.6931472 2.302585 2.197225)

>

Exercises

For each of the following expressions try to predict what the evaluator will return. Then type them

in, see what happens and try to explain any di�erences.

1. (mean (list 1 2 3))

2. (+ (list 1 2 3) 4)

3. (* (list 1 2 3) (list 4 5 6))

4. (+ (list 1 2 3) (list 4 5))

3.2 Summary Statistics and Plots

Devore and Peck [11, page 54, Table 10] give precipitation levels recorded during the month of March

in the Minneapolis - St. Paul area over a 30 year period. Let's enter these data into XLISP-STAT

with the name precipitation:

> (def precipitation

(list .77 1.74 .81 1.20 1.95 1.20 .47 1.43 3.37 2.20 3.30

3.09 1.51 2.10 .52 1.62 1.31 .32 .59 .81 2.81 1.87

1.18 1.35 4.75 2.48 .96 1.89 .90 2.05))

PRECIPITATION

>

12



Figure 1: Histogram of precipitation levels.

In typing this expression I have hit the return and tab keys a few times in order to make the typed

expression easier to read. The tab key indents the next line to a reasonable point to make the

expression more readable.

The histogram and boxplot functions can be used to obtain graphical representations of this

data set:

> (histogram precipitation)

#<Object: 3564170, prototype = HISTOGRAM-PROTO>

> (boxplot precipitation)

#<Object: 3423466, prototype = SCATTERPLOT-PROTO>

>

Each of these commands should cause a window with the appropriate graph to appear on your

screen. The windows should look something like Figures 1 and 2.

Note that as each graph appears it becomes the active window. To get XLISP-STAT to accept

further commands you have to click on the XLISP-STAT listener window. You will have to click on

the listener window between the two commands shown here.

The two functions return results that are printed something like this:

#<Object: 3564170, prototype = HISTOGRAM-PROTO>

These result will be used later to identify the window containing the plot. For the moment you can

ignore them.

When you have several plot windows open you might want to close the listener window so you

can rearrange the plots more easily. You can do this by clicking in the listener window's close

box. You can later re-open the listener window by selecting the Show XLISP-STAT item on the

Command menu.

Here are some numerical summaries:

> (mean precipitation)

1.685

> (median precipitation)

1.47

> (standard-deviation precipitation)

1.0157

> (interquartile-range precipitation)

1.145

>

13



Figure 2: Boxplot of precipitation levels.

The distribution of this data set is somewhat skewed to the right. Notice the separation between

the mean and the median. You might want to try a few simple transformations to see if you can

symmetrize the data. Square root and log transformations can be computed using the expressions

(sqrt precipitation)

and

(log precipitation).

You should look at plots of the data to see if these transformations do indeed lead to a more

symmetric shape. The means and medians of the transformed data are

> (mean (sqrt precipitation))

1.243006

> (median (sqrt precipitation))

1.212323

> (mean (log precipitation))

0.3405517

> (median (log precipitation))

0.384892

>

The boxplot function can also be used to produce parallel boxplots of two or more samples. It

will do so if it is given a list of lists as its argument instead of a single list. As an example, let's use

this function to compare serum total cholesterol values for samples of rural and urban Guatemalans

(Devore and Peck [11, page 19, Example 3]):

14



Figure 3: Parallel box plots of cholesterol levels for urban and

rural guatemalans.

> (def urban (list 184 196 217 284 184 236 189 206 179 170 205 190

204 330 217 242 222 242 249 241))

URBAN

> (def rural (list 166 146 144 204 158 143 158 180 223 194 194 175

171 155 143 145 131 181 148 144 220 129))

RURAL

>

The parallel boxplot is obtained by

> (boxplot (list urban rural))

#<Object: 3423466, prototype = SCATTERPLOT-PROTO>

>

and is shown in Figure 3; the urban group is on the left.

Exercises

The following exercises involve examples and problems from Devore and Peck [11]. The data sets are

in �les in the folder Data on the XLISP-STAT distribution disk and can be read in using the Load

item in the File menu or using the load function (see Section 5.4 below). To use the Load item

on the File menu select this item from the menu. This will bring up an Open File dialog window.

Use this dialog to open the Data folder on the distribution disk. Now select one of the .lsp �les

(car-prices.lsp for the �rst exercise) and press the Open button. The �le will be loaded and

15


