
Figure 4: Scatterplot of precipitation levels against time.

> (plot-lines (rseq (- pi) pi 50) (sin (rseq (- pi) pi 50)))

#<Object: 3423466, prototype = SCATTERPLOT-PROTO>

>

The plot should look like Figure 5.

Scatterplots are of course particularly useful for examining the relationship between two numer-

ical observations taken on the same subject. Devore and Peck [11, Exercise 2.33] give data for HC

and CO emission recorded for 46 automobiles. The results can be placed in two variables, hc and

co, and these variable can then be plotted against one another with the plot-points function:

> (def hc (list .5 .46 .41 .44 .72 .83 .38 .60 .83 .34 .37 .87

.65 .48 .51 .47 .56 .51 .57 .36 .52 .58 .47 .65

.41 .39 .55 .64 .38 .50 .73 .57 .41 1.02 1.10 .43

.41 .41 .52 .70 .52 .51 .49 .61 .46 .55))

HC

> (def co (list 5.01 8.60 4.95 7.51 14.59 11.53 5.21 9.62 15.13

3.95 4.12 19.00 11.20 3.45 4.10 4.74 5.36 5.69

6.02 2.03 6.78 6.02 5.22 14.67 4.42 7.24 12.30

7.98 4.10 12.10 14.97 5.04 3.38 23.53 22.92 3.81

1.85 2.26 4.29 14.93 6.35 5.79 4.62 8.43 3.99 7.47))

CO

> (plot-points hc co)

#<Object: 3423466, prototype = SCATTERPLOT-PROTO>

>

The resulting plot is shown in Figure 6.

17

Figure 5: A plot of sin(x).

Figure 6: Plot of HC against CO.

18

Exercises

1. Draw a graph of the function f (x) = 2x+ x

2

between -2 and 3.

2. Devore and Peck [11, Exercise 4.2] give the age and CPK concentration, a measure of metabolic

activity, recorded for 18 cross country skiers during a relay race. These data are in the variables

age and cpk in the �le metabolism.lsp. Plot the data and describe any relationship you

observe between age and CPK concentration.

3.4 Plotting Functions

Plotting the sine function in the previous section was a bit cumbersome. As an alternative we can

use the function plot-function to plot a function of one argument over a speci�ed range. We can

plot the sine function using the expression

(plot-function (function sin) (- pi) pi)

The expression (function sin) is needed to extract the function associated with the symbol

sin. Just using sin will not work. The reason is that a symbol in Lisp can have both a value, perhaps

set using def, and a function de�nition at the same time.

7

This may seem a bit cumbersome at

�rst, but it has one great advantage: Typing an innocent expression like

(def list '(2 3 4))

will not destroy the list function.

Extracting a function de�nition from a symbol is done almost as often as quoting an expression,

so again a simple shorthand notation is available. The expression

#'sin

is equivalent to the expression (function sin). The short form #' is usually pronounced sharp-

quote. Using this abbreviation the expression for producing the sine plot can be written as

(plot-function #'sin (- pi) pi).

7

As an aside, a Lisp symbol can be thought of as a \thing" with four cells. These cells contain the symbol's print

name, its value, its function de�nition, and its property list. Lisp symbols are thus much more like physical entities

than variable identi�ers in FORTRAN or C.

19

4 More on Generating and Modifying Data

This section briey summarizes some techniques for generating random and systematic data.

4.1 Generating Random Data

XLISP-STAT has several functions for generating pseudo-random numbers. For example, the ex-

pression

(uniform-rand 50)

will generate a list of 50 independent uniform random variables. The functions normal-rand and

cauchy-rand work similarly. Other generating functions require additional arguments to specify

distribution parameters. Here is a list of the functions available for dealing with probability distri-

butions:

normal-cdf normal-quant normal-rand normal-dens

cauchy-cdf cauchy-quant cauchy-rand cauchy-dens

beta-cdf beta-quant beta-rand beta-dens

gamma-cdf gamma-quant gamma-rand gamma-dens

chisq-cdf chisq-quant chisq-rand chisq-dens

t-cdf t-quant t-rand t-dens

f-cdf f-quant f-rand f-dens

binomial-cdf binomial-quant binomial-rand binomial-pmf

poisson-cdf poisson-quant poisson-rand poisson-pmf

bivnorm-cdf

More information on the required arguments is given in the appendix in Section C.3. The discrete

quantile functions binomial-quant and poisson-quant return values of a left continuous inverse

of the cdf. The pmf's for these distributions are only de�ned for integer arguments. The quantile

functions and random variable generators for the beta, gamma, �

2

, t and F distributions are presently

calculated by inverting the cdf and may be a bit slow.

The state of the internal random number generator can be \randomly" reseeded, and the current

value of the generator state can be saved. The mechanism used is the standard Common Lisp

mechanism. The current random state is held in the variable *random-state*. The function make-

random-state can be used to set and save the state. It takes an optional argument. If the argument

is NIL or omitted make-random-state returns a copy of the current value of *random-state*. If

the argument is a state object a copy of it is returned. If the argument is t a new, \randomly"

initialized state object is produced and returned.

8

4.2 Generating Systematic Data

We have already used the functions iseq and rseq to generate equally spaced sequences of integers

and real numbers. The function repeat is useful for generating sequences with a particular pattern.

The general form of a call to repeat is

(repeat list pattern)

pattern must be either a single number or a list of numbers of the same length as list. If pattern

is a single number then repeat simply repeats list pattern times. For example

8

The generator used is Marsaglia's portable generator from the Core Math Libraries distributed by the National

Bureau of Standards. A state object is a vector containing the state information of the generator. \Random" reseeding

occurs o� the system clock.

20

> (repeat (list 1 2 3) 2)

(1 2 3 1 2 3)

If pattern is a list then each element of list is repeated the number of times indicated by the

corresponding element of pattern. For example

> (repeat (list 1 2 3) (list 3 2 1))

(1 1 1 2 2 3)

In Section 6.2 below I generate the variables density and variety by typing them in directly. Using

the repeat function we could have generated them like this:

(def density (repeat (repeat (list 1 2 3 4) (list 3 3 3 3)) 3))

(def variety (repeat (list 1 2 3) (list 12 12 12)))

4.3 Forming Subsets and Deleting Cases

The select function allows you to select a single element or a group of elements from a list or

vector. For example, if we de�ne x by

(def x (list 3 7 5 9 12 3 14 2))

then (select x i) will return the i-th element of x. Lisp, like the language C but in contrast to

FORTRAN, numbers elements of list and vectors starting at zero. Thus the indices for the elements

of x are 0, 1, 2, 3, 4, 5, 6, 7 . So

> (select x 0)

3

> (select x 2)

5

To get a group of elements at once we can use a list of indices instead of a single index:

> (select x (list 0 2))

(3 5)

If you want to select all elements of x except element 2 you can use the expression

(remove 2 (iseq 0 7))

as the second argument to the function select:

> (remove 2 (iseq 0 7))

(0 1 3 4 5 6 7)

> (select x (remove 2 (iseq 0 7)))

(3 7 9 12 3 14 2)

Another approach is to use the logical function /= (meaning not equal) to tell you which indices are

not equal to 2. The function which can then be used to return a list of all the indices for which the

elements of its argument are not NIL:

> (/= 2 (iseq 0 7))

(T T NIL T T T T T)

> (which (/= 2 (iseq 0 7)))

(0 1 3 4 5 6 7)

> (select x (which (/= 2 (iseq 0 7))))

(3 7 9 12 3 14 2)

21

This approach is a little more cumbersome for deleting a single element, but it is more general. The

expression (select x (which (< 3 x))), for example, returns all elements in x that are greater

than 3:

> (select x (which (< 3 x)))

(7 5 9 12 14)

4.4 Combining Several Lists

At times you may want to combine several short lists into a single longer list. This can be done

using the append function. For example, if you have three variables x, y and z constructed by the

expressions

(def x (list 1 2 3))

(def y (list 4))

(def z (list 5 6 7 8))

then the expression

(append x y z)

will return the list

(1 2 3 4 5 6 7 8).

4.5 Modifying Data

So far when I have asked you to type in a list of numbers I have been assuming that you will type

the list correctly. If you made an error you had to retype the entire def expression. Since you can

use cut{and{paste this is really not too serious. However it would be nice to be able to replace the

values in a list after you have typed it in. The setf special form is used for this. Suppose you would

like to change the 12 in the list x used in the Section 4.3 to 11. The expression

(setf (select x 4) 11)

will make this replacement:

> (setf (select x 4) 11)

11

> x

(3 7 5 9 11 3 14 2)

The general form of setf is

(setf form value)

where form is the expression you would use to select a single element or a group of elements from x

and value is the value you would like that element to have, or the list of the values for the elements

in the group. Thus the expression

(setf (select x (list 0 2)) (list 15 16))

changes the values of elements 0 and 2 to 15 and 16:

> (setf (select x (list 0 2)) (list 15 16))

(15 16)

> x

(15 7 16 9 11 3 14 2)

22

A note of caution is needed here. Lisp symbols are merely labels for di�erent items. When you

assign a name to an item with the def command you are not producing a new item. Thus

(def x (list 1 2 3 4))

(def y x)

means that x and y are two di�erent names for the same thing. As a result, if we change an element

of (the item referred to by) x with setf then we are also changing the element of (the item referred

to by) y, since both x and y refer to the same item. If you want to make a copy of x and store it in

y before you make changes to x then you must do so explicitly using, say, the copy-list function.

The expression

(def y (copy-list x))

will make a copy of x and set the value of y to that copy. Now x and y refer to di�erent items and

changes to x will not a�ect y.

23

5 Some Useful Shortcuts

This section describes some additional features of XLISP-STAT that you may �nd useful.

5.1 Getting Help

On line help is available for many of the functions in XLISP-STAT

9

. As an example, here is how

you would get help for the function median:

> (help 'median)

MEDIAN [function-doc]

Args: (x)

Returns the median of the elements of X.

NIL

>

Note the quote in front of median. help is itself a function, and its argument is the symbol repre-

senting the function median. To make sure help receives the symbol, not the value of the symbol,

you need to quote the symbol.

If you are not sure about the name of a function you may still be able to get some help. Suppose

you want to �nd out about functions related to the normal distribution. Most such functions will

have \norm" as part of their name. The expression

(help* 'norm)

will print the help information for all symbols whose names contain the string \norm":

> (help* 'norm)

--

Sorry, no help available on NORM

--

Sorry, no help available on NORM-2

--

Sorry, no help available on NORMAL

--

NORMAL-CDF [function-doc]

Args: (x)

Returns the value of the standard normal distribution function at X.

Vectorized.

--

NORMAL-DENS [function-doc]

Args: (x)

Returns the density at X of the standard normal distribution. Vectorized.

--

NORMAL-QUANT [function-doc]

Args (p)

Returns the P-th quantile of the standard normal distribution. Vectorized.

--

NORMAL-RAND [function-doc]

Args: (n)

Returns a list of N standard normal random numbers. Vectorized.

9

The on line help �le may not be available on a single disk version that includes a system �le. Alternatively, there

may be a small help �le available that does not contain documentation for all functions.

24

--

NIL

>

The symbols norm, norm-2 and normal do not have function de�nitions and thus there is no help

available for them. The term vectorized in a function's documentation means the function can be

applied to arguments that are lists or arrays; the result will be a list or array of the results of applying

the function to each element of its arguments.

10

A related term appearing in the documentation

of some functions is vector reducing. A function is vector reducing if it is applied recursively to its

arguments until a single number results. The functions sum, prod, max and min are vector reducing.

The �rst time a help function is used will take some time { the help �le is scanned and the

positions of all entries in the �le are recorded. Subsequent calls will be faster.

Let me briey explain the notation used in the information printed by help to describe the

arguments a function expects

11

. Most functions expect a �xed set of arguments, described in the

help message by a line like

Args: (x y z)

Some functions can take one or more optional arguments. The arguments for such a function might

be listed as

Args: (x &optional y (z t))

This means that x is required and y and z are optional. If the function is named f, it can be called

as (f x-val), (f x-val y-val) or (f x-val y-val z-val). The list (z t) means that if z is

not supplied its default value is T. No explicit default value is speci�ed for y; its default value is

therefore NIL. The arguments must be supplied in the order in which they are listed. Thus if you

want to give the argument z you must also give a value for y.

Another form of optional argument is the keyword argument. The histogram function for example

takes arguments

Args: (data &key (title "Histogram"))

The data argument is required, the title argument is an optional keyword argument. The default

title is "Histogram". If you want to create a histogram of the purchases data set used in Section

3.1 with title "Purchases" use the expression

(histogram purchases :title "Purchases")

Thus to give a value for a keyword argument you give the keyword

12

for the argument, a symbol

consisting of a colon followed by the argument name, and then the value for the argument. If a

function can take several keyword arguments then these may be speci�ed in any order, following the

required and optional arguments.

Finally, some functions can take an arbitrary number of arguments. This is denoted by a line

like

Args: (x &rest args)

The argument x is required, and zero or more additional arguments can be supplied.

In addition to providing information about functions help also gives information about data

types and certain variables. For example,

10

This process of applying a function elementwise to its arguments is called mapping.

11

The notation used corresponds to the speci�cation of the argument lists in Lisp function de�nitions. See Section

8 for more information on de�ning functions.

12

Note that the keyword :title has not been quoted. Keyword symbols, symbols starting with a colon, are somewhat

special. When a keyword symbol is created its value is set to itself. Thus a keyword symbol e�ectively evaluates to

itself and does not need to be quoted.

25

> (help 'complex)

COMPLEX [function-doc]

Args: (realpart &optional (imagpart 0))

Returns a complex number with the given real and imaginary parts.

COMPLEX [type-doc]

A complex number

NIL

>

shows the function and type documentation for complex, and

> (help 'pi)

PI [variable-doc]

The floating-point number that is approximately equal to the ratio of the

circumference of a circle to its diameter.

NIL

>

shows the variable documentation for pi

13

.

5.2 Listing and Unde�ning Variables

After you have been working for a while you may want to �nd out what variables you have de�ned

(using def). The function variables will produce a listing:

> (variables)

CO

HC

RURAL

URBAN

PRECIPITATION

PURCHASES

NIL

>

If you are working on a 1Mb Macintosh you may occasionally want to free up some space by

getting rid of some variables you no longer need. You can do this using the undef function:

> (undef 'co)

CO

> (variables)

HC

RURAL

URBAN

PRECIPITATION

PURCHASES

NIL

>

5.3 More on the XLISP-STAT Listener

Because of the large number of parentheses involved, Lisp expressions can be hard to read and

type correctly. To make it easier to type readable, correct expressions the listener window on the

Macintosh has the following features:

13

Actually pi represents a constant, produced with defconst. Its value can't be changed by simple assignment.

26

� Typing a closing parenthesis ashes the matching opening parenthesis.

� You can move the cursor with the arrow keys, the mouse or the backspace key to any position

in the current input expression, not just within the last line.

� If the current expression is more than one line long, hitting the tab key in any line but the

�rst indents the line to its appropriate position according to (more or less) standard rules for

Lisp code indentation.

� If the insertion point is at the end of the current expression hitting the enter key is equivalent

to hitting a return. If the insertion point is not at the end of the expression, hitting enter

moves the insertion point to the end of the expression.

These four features should make typing expressions correctly much easier. In particular, in translat-

ing mathematical formulas to Lisp it sometimes seems that you have to do things backwards. Using

these features you can build up your expression from the inside out

14

.

XLISP 2.0 provides a simple command history mechanism. The symbols -, *, **, ***, +, ++,

and +++ are used for this purpose. The top level reader binds these symbols as follows:

- the current input expression

+ the last expression read

++ the previous value of +

+++ the previous value of ++

* the result of the last evaluation

** the previous value of *

*** the previous value of **

The variables *, ** and *** are probably most useful. For example, if you construct a plot but

forget to assign the resulting plot object to a variable you can recover it using one of the history

variables:

> (histogram (normal-rand 50))

#<Object: 3701682, prototype = HISTOGRAM-PROTO>

> (def w *)

W

> w

#<Object: 3701682, prototype = HISTOGRAM-PROTO>

>

The symbol W now has the histogram object as its value and can be used to modify the plot, as

described in Section 6.5 below.

Like most interactive systems, XLISP needs a system for dynamically managing memory. The

system used by XLISP is to grab memory out of a �xed bin until the bin is exhausted. At that point

the system pauses to reclaim memory that is no longer being used. This process, called garbage

collection, will occasionally cause the system to freeze up for about a second. When the system

garbage collects the Macintosh cursor changes to a trash bag.

Occasionally a calculation will take too long, or it will appear to have gotten stuck in some kind

of loop. If you want to interrupt the calculation hold down the COMMAND key and the PERIOD.

This should return you to the listener. You must continue to hold down the key until the calculation

stops.

14

To support these features the listener checks the current expression each time you type a return to see if it has a

complete expression. If so, the expression is passed to the reader and the evaluator. If not, you can continue typing.

There are some heuristics involved here, and an expression with lots of quotes and comments may cause trouble, but

it seems to work. Rede�ning the read table in major ways may not work as you might expect since some knowledge

of standard Lisp syntax is built in to the listener.

27

5.4 Loading Files

The data for the examples and exercises in this tutorial have been stored on �les with names ending

in .lsp. On the XLISP-STAT distribution disk they can be found in the folder Data. Any variables

you save (see the next subsection for details) will also be saved on �les of this form. The data in

these �les can be read into XLISP-STAT with the load function. To load a �le named randu.lsp

type the expression

(load "randu.lsp")

or just

(load "randu")

If you give load a name that does not end in .lsp then load will add this su�x. Alternatively, you

can use the Load command in the File menu. After loading a �le using the File menu Load item

the system does not print a prompt. Instead it prints a message indicating that the load is done:

> ; loading "temp.lsp"

; finished loading "temp.lsp"

5.5 Saving Your Work

If you want to record a session with XLISP-STAT you can do so using the dribble function. The

expression

(dribble "myfile")

starts a recording. All expressions typed by you and all results typed by XLISP-STAT will be

entered into the �le named myfile. The expression

(dribble)

stops the recording. Note that (dribble "myfile") starts a new �le by the name myfile. If you

already have a �le by that name its contents will be lost. Thus you can't use dribble to toggle on

and o� recording to a single �le. You can also turn dribbling on and o� using the Dribble item on

the Command menu.

dribble only records text that is typed, not plots. However, you can use the standard Macintosh

shortcut COMMAND-SHIFT-3 to save a MacPaint image of the current screen. You can also choose

the Copy command from the Edit menu, or its command key shortcut COMMAND-C, while a plot

window is the active window to save the contents of the plot window to the clip board. You can

then open the scrap book from the apple menu and paste the plot into the scrap book.

Variables you de�ne in XLISP-STAT only exist for the duration of the current session. If you

quit from XLISP-STAT, or the program crashes, your data will be lost. To preserve your data you

can use the savevar function. This function allows you to save one or more variables into a �le.

Again a new �le is created and any existing �le by the same name is destroyed. To save the variable

precipitation in a �le called precipitation.lsp type

(savevar 'precipitation "precipitation")

Do not add the .lsp su�x yourself; savevar will supply it. To save the two variables precipitation

and purchases in the �le examples.lsp type

15

.

(savevar '(purchases precipitation) "examples")

15

I have used a quoted list '(purchases precipitation) in this expression to pass the list of symbols to the savevar

function. A longer alternative would be the expression (list 'purchases 'precipitation).

28

The �les precipitation.lsp and examples.lsp now contain a set of expression that, when read in

with the load command, will recreate the variables precipitation and purchases. You can look

at these �les with an editor like MacWrite or the XLISP-STAT editor and you can prepare �les with

your own data by following these examples.

5.6 The XLISP-STAT Editor

The Macintosh version of XLISP-STAT includes a simple editor for preparing data �les and function

de�nitions. To edit an existing �le select the Open Edit item on the File menu; to start a new �le

select New Edit. Other commands on the File menu can be used to save your �le and to revert

back to the saved version. The editor can only handle text �les of less than 32K characters. As in the

listener window, hitting the tab key in any line but the �rst of a multiline expression will indent the

expression to a reasonable point. The editor also allows you to select a section of text representing

one or more Lisp expressions and have these evaluated. To do this select the expressions you want

to evaluate and then choose Eval Selection from the Edit menu. The returned values are not

available, so this is only useful for producing side e�ects, such as de�ning variables or functions.

5.7 Reading Data Files

The data �les we have used so far in this tutorial have been processed to contain XLISP-STAT

expressions. XLISP-STAT also provides two functions for reading raw data �les. The simpler of the

two is read-data-file. The expression

(read-data-file file)

where file is a string representing the name of the data �le, returns a list of all the items in the

�le. Items can be separated by any amount of white space, but not by commas or other punctuation

marks. Items can be any valid Lisp expressions. In particular they can be numbers, strings or

symbols. The list can then be manipulated into the appropriate form within XLISP-STAT.

The function read-data-columns is provided for reading data �les in which each row represents

a case and each column a variable. The expression

(read-data-columns file cols)

will return a list of cols lists, each representing a column of the �le. Note that this function

determines the column structure from the value of cols, not from the structure of the �le. The

entries of file can be as for read-data-file.

These two functions should be adequate for most purposes. If you have to read a �le that does

not �t into the form considered here you can use the raw �le handling functions of XLISP.

5.8 User Initialization File

After loading in all its program �les and before giving you your �rst prompt XLISP-STAT looks to

see if there is a �le named statinit.lsp in the startup folder. If there is one it will be loaded. You

can use this �le to load any data sets you would like to have available or to de�ne functions of your

own.

29

6 More Elaborate Plots

The plots described so far were designed for exploring the distribution of a single variable and the

relationship among two variables. This section describes some plots and techniques that are useful

for exploring the relationship among three or more variables. The techniques and plots described

in the �rst four subsections are simple, requiring only simple commands to the listener and mouse

actions. The �fth subsection introduces the concept of a plot object and the idea of sending messages

to an object from the listener window. These ideas are used to add lines and curves to scatter plots,

and the basic concepts of objects and messages will be used again in the next section on regression

models. The �nal subsection shows how Lisp iteration can be used to construct a dynamic simulation

{ a plot movie.

6.1 Spinning Plots

If we are interested in exploring the relationship among three variables then it is natural to imagine

constructing a three dimensional scatterplot of the data. Of course we can only see a two dimensional

projection of the plot on a computer screen { any depth that you might be able to perceive by looking

at a wire model of the data is lost. One approach to try to recover some of this depth perception is

to rotate the points around some axis. The spin-plot function allows you to construct a rotatable

three dimensional plot.

As an example let's look a some data collected to examine the relationship between a phosphate

absorption index and the amount of extractable iron and aluminum in a sediment (Devore and Peck

[11, page 509, Example 6]). The data can be entered with the expressions

(def iron (list 61 175 111 124 130 173 169 169 160 224 257 333 199))

(def aluminum (list 13 21 24 23 64 38 33 61 39 71 112 88 54))

(def absorption (list 4 18 14 18 26 26 21 30 28 36 65 62 40))

The expression

(spin-plot (list absorption iron aluminum))

produces the plot on the left in Figure 7. The argument to spin-plot is a list of three lists or

vectors, representing the x, y and z variables. The z axis is initially pointing out of the screen. You

can rotate the plot by pointing at one of the Pitch, Roll or Yaw squares and pressing the mouse

button. By rotating the plot you can see that the points seem to fall close to a plane. The plot on

the right of Figure 7 shows the data viewed along the plane. A linear model should describe this

data quite well.

As a second example, with the data de�ned by

(def strength (list 14.7 48.0 25.6 10.0 16.0 16.8 20.7 38.8

16.9 27.0 16.0 24.9 7.3 12.8))

(def depth (list 8.9 36.6 36.8 6.1 6.9 6.9 7.3 8.4 6.5 8.0 4.5 9.9 2.9 2.0))

(def water (list 31.5 27.0 25.9 39.1 39.2 38.3 33.9 33.8

27.9 33.1 26.3 37.8 34.6 36.4))

(Devore and Peck[11, Problem 12.18]) the expression

(spin-plot (list water depth strength)

:variable-labels (list "Water" "Depth" "Strength"))

produces a plot that can be rotated to produce the view in Figure 8. These data concern samples of

thawed permafrost soil. strength is the shear strength, and water is the percentage water content.

depth is the depth at which the sample was taken. The plot shows that a linear model will not �t

well. Devore and Peck [11] suggest �tting a model with quadratic terms to this data.

30

X

Y

Z

Pitch Roll Yaw

X

YZ

Pitch Roll Yaw

Figure 7: Two views of a rotatable plot of data on iron content, aluminum content and phosphate

absorption in sediment samples.

WaterDepth

Strength

Pitch Roll Yaw

Figure 8: Rotatable plot of measurements on permafrost sam-

ples.

31

The function spin-plot also accepts the additional keyword argument scale. If scale is T, the

default, then the data are centered at the midranges of the three variables, and all three variables

are scaled to �t the plot. If scale is NIL the data are assumed to be scaled between -1 and 1, and the

plot is rotated about the origin. Thus if you want to center your plot at the means of the variables

and scale all observations by the same amount you can use the expression

(spin-plot (list (/ (- water (mean water)) 20)

(/ (- depth (mean depth)) 20)

(/ (- strength (mean strength)) 20))

:scale nil)

Note that the scale keyword argument is given using the corresponding keyword symbol, the symbol

scale preceded by a colon.

Rotation speed can be changed using the plot menu or the keyboard equivalents COMMAND-F

for Faster and COMMAND-S for Slower.

Depth cuing and showing of the axes are controlled by items on the plot menu.

If you click the mouse in one of the Pitch, Roll or Yaw squares while holding down the shift key

the plot will start to rotate and continue to rotate after the mouse button has been released.

Exercises

1. An upstate New York business machine company used to include a random number generator

called RANDU in its software library. This generator was supposed to produce numbers that

behaved like i:i:d: uniform random variables. The data set randu in the �le randu.lsp in the

Data folder consists of a list of three lists of numbers. These lists are consecutive triples of

numbers produced by RANDU. Use spin-plot to see if you can spot any unusual features in

this sample.

6.2 Scatterplot Matrices

Another approach to graphing a set of variables is to look at a matrix of all possible pairwise

scatterplots of the variables. The scatterplot-matrix function will produce such a plot. The data

(def hardness (list 45 55 61 66 71 71 81 86 53 60 64 68 79 81 56

68 75 83 88 59 71 80 82 89 51 59 65 74 81 86))

(def tensile-strength (list 162 233 232 231 231 237 224 219 203 189

210 210 196 180 200 173 188 161 119 161

151 165 151 128 161 146 148 144 134 127))

(def abrasion-loss (list 372 206 175 154 136 112 55 45 221 166 164

113 82 32 228 196 128 97 64 249 219 186

155 114 341 340 284 267 215 148))

were produced in a study of the abrasion loss in rubber tires and the expression

(scatterplot-matrix (list hardness tensile-strength abrasion-loss)

:variable-labels

(list "Hardness" "Tensile Strength" "Abrasion Loss"))

produces the scatterplot matrix in Figure 9. The plot of abrasion-loss against tensile-strength

gives you an idea of the joint variation in these two variables. But hardness varies from point to

point as well. To get an understanding of the relationship among all three variables it would be nice

to be able to �x hardness at various levels and look at the way the plot of abrasion-loss against

tensile-strength changes as you change these levels. You can do this kind of exploration in the

scatterplot matrix by using the two highlighting techniques selecting and brushing.

32

Hardness

8 9

4 5

Tensile Strength

237

119

Abrasion Loss

372

3 2

Figure 9: Scatterplot matrix of abrasion loss data.

Selecting. Your plot is in the selecting mode when the cursor is an arrow. This is the default

setting. In this mode you can select a point by clicking the mouse on top of it. To select a

group of points drag a selection rectangle around the group. If the group does not �t in a

rectangle you can build up your selection by holding down the shift key as you click or drag.

If you click without the shift key any existing selection will be unselected; when the shift key

is down selected points remain selected.

Brushing. You can enter the brushing mode by choosingMouse Mode... from the Scatmat

menu and selecting Brushing from the dialog box that is popped up. In this mode the cursor

will look like a paint brush and a dashed rectangle, the brush, will be attached to your cursor.

As you move the brush across the plot points in the brush will be highlighted. Points outside

of the brush will not be highlighted unless they are marked as selected. To select points in

the brushing mode (make their highlighting permanent) hold the mouse button down as you

move the brush.

In the plot in Figure 10 the points within the middle of the hardness range have been highlighted

using a long, thin brush (you can change the size of your brush using the Resize Brush command

on the Scatmat menu). In the plot of abrasion-loss against tensile-strength you can see that

the highlighted points seem to follow a curve. If you want to �t a model to this data this suggests

�tting a model that accounts for this curvature.

A scatterplot matrix is also useful for examining the relationship between a quantitative variable

and several categorical variables. In the data

(def yield (list 7.9 9.2 10.5 11.2 12.8 13.3 12.1 12.6 14.0 9.1 10.8 12.5

8.1 8.6 10.1 11.5 12.7 13.7 13.7 14.4 15.5 11.3 12.5 14.5

15.3 16.1 17.5 16.6 18.5 19.2 18.0 20.8 21 17.2 18.4 18.9))

(def density (list 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4

33

Hardness

8 9

4 5

Tensile Strength

237

119

Abrasion Loss

372

3 2

Figure 10: Scatterplot matrix with middle hardness values high-

lighted.

1 1 1 2 2 2 3 3 3 4 4 4))

(def variety (list 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

2 2 2 3 3 3 3 3 3 3 3 3 3 3 3))

(Devore and Peck [11, page 595, Example 14]) the yield of tomato plants is recorded for an experiment

run at four di�erent planting densities and using three di�erent varieties. In the plot in Figure

11 a long, thin brush has been used to highlight the points in the third variety. If there is no

interaction between the varieties and the density then the shape of the highlighted points should

move approximately in parallel as the brush is moved from one variety to another.

Like spin-plot, the function scatterplot-matrix also accepts the optional keyword argument

scale.

Exercises

1. Devore and Peck [11, Exercise 13.62] describe an experiment to determine the e�ect of oxygen

concentration on fermentation end products. Four oxygen concentrations and two types of

sugar were used. The data are

(def ethanol (list .59 .30 .25 .03 .44 .18 .13 .02 .22 .23 .07

.00 .12 .13 .00 .01))

(def oxygen (list 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4))

(def sugar (list 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2))

and are on �le the oxygen.lsp. Use a scatterplot matrix to examine these data.

2. Use scatterplot matrices to examine the data in the examples and exercises of Section 6.1

above.

34

Density

4

1

Variety

3

1

Yield

2 1

7.9

Figure 11: Scatterplot matrix for tomato yield data with points

from the third variety highlighted.

6.3 Interacting with Individual Plots

Rotating plots and scatterplot matrices are interactive plots. Simple scatter plots also allow some

interaction: If you select the Show Labels option in the plot menu a label will appear next to a

highlighted point. You can use either the selecting or the brushing mode to highlight points. The

default labels are of the form \0", \1", (In Lisp it is conventional to start numbering indices

with 0, rather than 1.) Most plotting functions allow you to supply a list of case labels using the

:point-labels keyword.

Another option, useful in viewing large data sets, is to remove a subset of the points from your

plot. This can be done by selecting the points you want to remove and then choosing Remove

Selection from the plot menu. The plot can then be rescaled using the Rescale Plot option.

Alternatively, the Focus on Selection menu item removes all unselected points from the plot.

When a set of points is selected in a plot you can change the symbol used to display the points

using the Selection Symbol item. On systems with color monitors you can set the color of selected

points with the Selection Color item.

You can save the indices of the selected points in a variable by choosing the Selection... item

in the plot menu. A dialog will ask you for a name for the selection. When no points are selected

you can use the Selection... menu item to specify the indices of the points to select. A dialog

will ask you for an expression for determining the selection to use. The expression can be any Lisp

expression that evaluates to a list of indices.

6.4 Linked Plots

When you brush or select in a scatterplot matrix you are looking at the interaction of a set of

separate scatterplots

16

. You can construct your own set of interacting plots by choosing the Link

16

According to Stuetzle [16] the idea to link several plots was �rst suggested by McDonald [12].

35

Figure 12: Scatterplot and histogram with points from one sugar group highlighted.

View option from the menus of the plots you want to link. For example, using the data from

Exercise 1 in Section 6.2 we can put ethanol and oxygen in a scatterplot and sugar in a histogram.

If we link these two plots then selecting one of the two sugar groups in the histogram highlights the

corresponding points in the scatterplot, as shown in Figure 12.

If you want to be able to select the points with particular labels you can use the name-list

function to generate a window with a list of names in it. This window can be linked with any plot,

and selecting a name in a name list will then highlight the corresponding points in the linked plots.

You can use the name-list function with a numerical argument; e. g.

(name-list 10)

will generate a list with the names \0" , . . . , \9", or you can give it a list of case labels of your own.

Exercise

Try to use linked scatter plots and histograms on the data in the examples and exercises of Sections

6.1 and 6.2.

6.5 Modifying a Scatter Plot

After producing a scatterplot of a data set we might like to add a line, a regression line for example,

to the plot. As an example, Devore and Peck [11, page 105, Example 2] describe a data set collected

to examine the e�ect of bicycle lanes on drivers and bicyclists. The variables given by

(def travel-space (list 12.8 12.9 12.9 13.6 14.5 14.6 15.1 17.5 19.5 20.8))

(def separation (list 5.5 6.2 6.3 7.0 7.8 8.3 7.1 10.0 10.8 11.0))

36

represent the distance between the cyclist and the roadway center line and the distance between the

cyclist and a passing car, respectively, recorded in ten cases. A regression line �t to these data, with

separation as the dependent variable, has a slope of 0.66 and an intercept of -2.18. Let's see how

to add this line to a scatterplot of the data.

We can use the expression

(plot-points travel-space separation)

to produce a scatterplot of these points. To be able to add a line to the plot, however, we must be

able to refer to it within XLISP-STAT. To accomplish this let's assign the result returned by the

plot-points function to a symbol

17

:

(def myplot (plot-points travel-space separation))

The result returned by plot-points is an XLISP-STAT object . To use an object you have to send it

messages. This is done using the send function, as in the expression

(send object message argument1 ...)

I will use the expression

(send myplot :abline -2.18 0.66)

to tell myplot to add the graph of a line a+ bx, with a = �2:18 and b = 0:66, to itself. The message

selector is :abline, the numbers -2.18 and 0.66 are the arguments. The message consists of the

selector and the arguments. Message selectors are always Lisp keywords; that is, they are symbols

that start with a colon. Before typing in this expression you might want to resize and rearrange

the listener window so you can see the plot and type commands at the same time. Once you have

resized the listener window you can easily switch between the small window and a full size window

by clicking in the zoom box at the right corner of the window title bar. The resulting plot is shown

in Figure 13

Scatter plot objects understand a number of other messages. One other message is the :help

message

18

:

> (send myplot :help)

> (send scatterplot-proto :help)

SCATTERPLOT-PROTO

Scatterplot.

Help is available on the following:

:ABLINE :ACTIVATE :ADD-FUNCTION :ADD-LINES :ADD-METHOD :ADD-MOUSE-MODE

:ADD-POINTS :ADD-SLOT :ADD-STRINGS :ADJUST-HILITE-STATE

:ADJUST-POINT-SCREEN-STATES :ADJUST-POINTS-IN-RECT :ADJUST-TO-DATA

:ALL-POINTS-SHOWING-P :ALL-POINTS-UNMASKED-P :ALLOCATE

:ANY-POINTS-SELECTED-P :APPLY-TRANSFORMATION :BACK-COLOR :BRUSH

:BUFFER-TO-SCREEN :CANVAS-HEIGHT :CANVAS-WIDTH :CLEAR :CLEAR-LINES

:CLEAR-MASKS :CLEAR-POINTS :CLEAR-STRINGS

17

The result returned by plot-points is printed something like #<Object: 2010278, prototype =

SCATTERPLOT-PROTO>. This is not the value returned by the function, just its printed representation . There are

several other data types that are printed this way; �le streams, as returned by the open function, are one example.

For the most part you can ignore these printed results. There is one unfortunate feature, however: the form #<...>

means that there is no printed form of this data type that the Lisp reader can understand. As a result, if you forget

to give your plot a name you can't cut and paste the result into a def expression { you have to redo the plot or use

the history mechanism.

18

To keep things simple I will use the term message to refer to a message corresponding to a message selector.

37

1 2 2 21 4 1 6 1 8 2 0

Figure 13: Scatterplot of bicycle data with �tted line.

The list of topics will be the same for all scatter plots but will be somewhat di�erent for rotating

plots, scatterplot matrices or histograms.

The :clear message, as its name suggests, clears the plot and allows you to build up a new plot

from scratch. Two other useful messages are :add-points and :add-lines. To �nd out how to use

them we can use the :help message with :add-points or :add-lines as arguments:

> (send myplot :help :add-points)

:ADD-POINTS

Method args: (points &key point-labels (draw t))

Adds points to plot. POINTS is a list of sequences, POINT-LABELS a list of

strings. If DRAW is true the new points are added to the screen.

NIL

> (send myplot :help :add-lines)

:ADD-LINES

Method args: (lines &key type (draw t))

Adds lines to plot. LINES is a list of sequences, the coordinates of the line

starts. TYPE is normal or dashed. If DRAW is true the new lines are added to the

screen.

NIL

>

The plot produced above shows some curvature in the data. A regression of separation on

a linear and a quadratic term in travel-space produces estimates of -16.41924 for the constant,

2.432667 as the coe�cient of the linear term and -0.05339121 as the coe�cient of the quadratic term.

Let's use the :clear, :add-points and :add-lines messages to change myplot to show the data

along with the �tted quadratic model. First we use the expressions

(def x (rseq 12 22 50))

38

1 2 2 21 4 1 6 1 8 2 0

Figure 14: Scatterplot of bicycle data with �tted curve.

(def y (+ -16.41924 (* 2.432667 x) (* -0.05339121 (* x x))))

to de�ne x as a grid of 50 equally spaced points between 12 and 22 and y as the �tted response at

these x values. Then the expressions

(send myplot :clear)

(send myplot :add-points travel-space separation)

(send myplot :add-lines x y)

change myplot to look like Figure 14. Of course we could have used plot-points to get a new plot

and just modi�ed that plot with :add-lines, but the approach used here allowed us to try out all

three messages.

6.6 Dynamic Simulations

As another illustration of what you can do by modifying existing plots let's construct a dynamic

simulation { a movie { to examine the variation in the shape of histograms of samples from a

standard normal distribution. To start o�, use the expression

(def h (histogram (normal-rand 20)))

to construct a single histogram and save its plot object as h. The :clear message is available for

histograms as well. As you can see from its help message

> (send h :help :clear)

:CLEAR

Message args: (&key (draw t))

Clears the plot data. If DRAW is nil the plot is redrawn; otherwise its

39

current screen image remains unchanged.

NIL

>

the :clear message takes an optional keyword argument. If this argument is NIL then the plot will

not actually be redrawn until some other event causes it to be redrawn. This is useful for dynamic

simulations. Rearrange and resize your windows until you can see the histogram window even when

the listener window is the active window. Then type the expression

19

(dotimes (i 50)

(send h :clear :draw nil)

(send h :add-points (normal-rand 20)))

This should produce a sequence of 50 histograms, each based on a sample of size 20. By giving the

keyword argument draw with value NIL to the :clear message you have insured that each histogram

stays on the screen until the next one is ready to be drawn. Try the example again without this

argument and see what di�erence it makes.

Programmed dynamic simulations may provide another approach to viewing the relation among

several variables. As a simple example, suppose we want to examine the relation between the

variables abrasion-loss and hardness introduced in Section 6.2 above. Let's start with a histogram

of abrasion-loss produced by the expression

(def h (histogram abrasion-loss))

The messages :point-selected , :point-hilited and :point-showing are particularly useful for

dynamic simulations. Here is the help information for :point-selected in a histogram:

> (send h :help :point-selected)

:POINT-SELECTED

Method args: (point &optional selected)

Sets or returns selection status (true or NIL) of POINT. Sends

:ADJUST-POINT-SCREEN-STATES message if states are set. Vectorized.

NIL

>

Thus you can use this message to determine whether a point is currently selected and also to select

or unselect it. Again rearrange the windows so you can see the histogram while typing in the listener

window and type the expression

(dolist (i (order hardness))

(send h :point-selected i t)

(send h :point-selected i nil))

The expression (order hardness) produces the list of indices of the ordered values of hardness.

Thus the �rst element of the result is the index of the smallest element of hardness, the second

element is the index of the second smallest element of hardness, etc.. The loop moves through each

of these indices and selects and unselects the corresponding point.

The result on the screen is very similar to the result of brushing a hardness histogram linked to

an abrasion-loss histogram from left to right. The drawback of this approach is that it is harder

to write an expression than to use a mouse. On the other hand, when brushing with a mouse you

tend to focus your attention on the plot you are brushing, rather than on the other linked plots.

19

dotimes is one of several Lisp looping constructs. It is a special form with the syntax (dotimes (var count)

expr). The loop is repeated count times, with var bound to 0, 1, . . . , count - 1. Other looping constructs are

dolist, do and do*.

40

When you run a dynamic simulation you do not have to do anything while the simulation is running

and can therefore concentrate fully on the results.

An intermediate solution is possible: You can set up a dialog window with a scroll bar that will

run through the indices in the list (order hardness), selecting the corresponding point as it is

scrolled. An example in Section 8 will show you how to do this.

Like most Lisp systems XLISP-STAT is not ideally suited to real time simulations because of

the need for garbage collection, to reclaim dynamically allocated storage. This is the reason that

the simulations in this section will occasionally pause for a second or two. Nevertheless, in a simple

simulation like the last one each iteration may still be too fast for you to be able to pick up any

pattern. To slow things down you can add some extra busy work to each iteration. For example,

you could use

(dolist (i (order hardness))

(send h :point-selected i t)

(dotimes (i 100))

(send h :point-selected i nil))

in place of the previous expression.

41

7 Regression

Regression models have been implemented using XLISP-STAT's object and message sending facil-

ities. These were introduced above in Section 6.5. You might want to review that section briey

before reading on.

Let's �t a simple regression model to the bicycle data of Section 6.5. The dependent variable

is separation and the independent variable is travel-space. To form a regression model use the

regression-model function:

> (regression-model travel-space separation)

Least Squares Estimates:

Constant -2.182472 (1.056688)

Variable 0 0.6603419 (0.06747931)

R Squared: 0.922901

Sigma hat: 0.5821083

Number of cases: 10

Degrees of freedom: 8

#<Object: 1966006, prototype = REGRESSION-MODEL-PROTO>

>

The basic syntax for the regression-model function is

(regression-model x y)

For a simple regression x can be a single list or vector. For a multiple regression x can be a list of

lists or vectors or a matrix. The regression-model function also takes several optional keyword

arguments. The most important ones are :intercept, :print, and :weights. Both :intercept

and :print are T by default. To get a model without an intercept use the expression

(regression-model x y :intercept nil)

To form a weighted regression model use the expression

(regression-model x y :weights w)

where w is a list or vector of weights the same length as y. In a weighted model the variances of the

errors are assumed to be inversely proportional to the weights w.

The regression-model function prints a very simple summary of the �t model and returns a

model object as its result. To be able to examine the model further assign the returned model object

to a variable using an expression like

20

(def bikes (regression-model travel-space separation :print nil))

I have given the keyword argument :print nil to suppress the printing of the summary, since we

have already seen it. To �nd out what messages are available use the :help message:

20

Recall from Section 6.5 that #<Object: 1966006, prototype = REGRESSION-MODEL-PROTO> is the printed repre-

sentation of the model object returned by regression-model. Unfortunately you can't cut and paste it into the def,

but of course you can cut and paste the regression-model expression or use the history mechanism.

42

> (send bikes :help)

REGRESSION-MODEL-PROTO

Normal Linear Regression Model

Help is available on the following:

:ADD-METHOD :ADD-SLOT :BASIS :CASE-LABELS :COEF-ESTIMATES :COEF-STANDARD-ERRORS

:COMPUTE :COOKS-DISTANCES :DELETE-METHOD :DELETE-SLOT :DF :DISPLAY :DOC-TOPICS

:DOCUMENTATION :EXTERNALLY-STUDENTIZED-RESIDUALS :FIT-VALUES :GET-METHOD

:HAS-METHOD :HAS-SLOT :HELP :INCLUDED :INTERCEPT :INTERNAL-DOC :ISNEW

:LEVERAGES :METHOD-SELECTORS :NEW :NUM-CASES :NUM-COEFS :NUM-INCLUDED

:OWN-METHODS :OWN-SLOTS :PARENTS :PLOT-BAYES-RESIDUALS :PLOT-RESIDUALS

:PRECEDENCE-LIST :PREDICTOR-NAMES :PRINT :R-SQUARED :RAW-RESIDUALS

:RESIDUAL-SUM-OF-SQUARES :RESIDUALS :RESPONSE-NAME :RETYPE :SAVE :SHOW

:SIGMA-HAT :SLOT-NAMES :SLOT-VALUE :STUDENTIZED-RESIDUALS :SUM-OF-SQUARES

:SWEEP-MATRIX :TOTAL-SUM-OF-SQUARES :WEIGHTS :X :X-MATRIX :XTXINV :Y PROTO

NIL

>

Many of these messages are self explanatory, and many have already been used by the :display

message, which regression-model sends to the new model to print the summary. As examples let's

try the :coef-estimates and :coef-standard-errors messages

21

:

> (send bikes :coef-estimates)

(-2.182472 0.6603419)

> (send bikes :coef-standard-errors)

(1.056688 0.06747931)

>

The :plot-residuals message will produce a residual plot. To �nd out what residuals are

plotted against let's look at the help information:

> (send bikes :help :plot-residuals)

:PLOT-RESIDUALS

Message args: (&optional x-values)

Opens a window with a plot of the residuals. If X-VALUES are not supplied

the fitted values are used. The plot can be linked to other plots with the

link-views function. Returns a plot object.

NIL

>

Using the expressions

(plot-points travel-space separation)

(send bikes :plot-residuals travel-space)

we can construct two plots of the data as shown in Figure 15. By linking the plots we can use

the mouse to identify points in both plots simultaneously. A point that stands out is observation 6

(starting the count at 0, as usual).

21

Ordinarily the entries in the lists returned by these messages correspond simply to the intercept, if one is included

in the model, followed by the independent variables as they were supplied to regression-model. However, if degeneracy

is detected during computations some variables will not be used in the �t; they will be marked as aliased in the printed

summary. The indices of the variables used can be obtained by the :basis message; the entries in the list returned by

:coef-estimates correspond to the intercept, if appropriate, followed by the coe�cients of the elements in the basis.

The messages :x-matrix and :xtxinv are similar in that they use only the variables in the basis.

43

6

1 2 2 21 4 1 6 1 8 2 0

6

1 2 2 21 4 1 6 1 8 2 0

Figure 15: Linked raw data and residual plots for the bicycles example.

The plots both suggest that there is some curvature in the data; this curvature is particularly

pronounced in the residual plot if you ignore observation 6 for the moment. To allow for this

curvature we might try to �t a model with a quadratic term in travel-space:

> (def bikes2 (regression-model (list travel-space (^ travel-space 2))

separation))

Least Squares Estimates:

Constant -16.41924 (7.848271)

Variable 0 2.432667 (0.9719628)

Variable 1 -0.05339121 (0.02922567)

R Squared: 0.9477923

Sigma hat: 0.5120859

Number of cases: 10

Degrees of freedom: 7

BIKES2

>

I have used the exponentiation function \^" to compute the square of travel-space. Since I am

now forming a multiple regression model the �rst argument to regression-model is a list of the x

variables.

You can proceed in many directions from this point. If you want to calculate Cook's distances

for the observations you can �rst compute internally studentized residuals as

(def studres (/ (send bikes2 :residuals)

(* (send bikes2 :sigma-hat)

(sqrt (- 1 (send bikes2 :leverages))))))

44

6

4 1 26 8 1 0

Figure 16: Bayes residual plot for bicycle data.

Then Cook's distances are obtained as

22

> (* (^ studres 2)

(/ (send bikes2 :leverages) (- 1 (send bikes2 :leverages)) 3))

(0.166673 0.00918596 0.03026801 0.01109897 0.009584418 0.1206654 0.581929

0.0460179 0.006404474 0.09400811)

The seventh entry { observation 6, counting from zero { clearly stands out.

Another approach to examining residuals for possible outliers is to use the Bayesian residual

plot proposed by Chaloner and Brant [7], which can be obtained using the message :plot-bayes-

residuals. The expression (send bikes2 :plot-bayes-residuals) produces the plot in Figure

16. The bars represent mean �2SD of the posterior distribution of the actual realized errors, based

on an improper uniform prior distribution on the regression coe�cients. The y axis is in units of

�̂. Thus this plot suggests the probability that point 6 is three or more standard deviations from

the mean is about 3%; the probability that it is at least two standard deviations from the mean is

around 50%.

Several other methods are available for residual and case analysis. These include :studentized-

residuals and :cooks-distances, which we could have used above instead of calculating these

quantities from their de�nitions. Another useful message is :included, which can be used to change

the cases to be used in estimating a model. Further details on these messages are available in their

help information.

Exercises

1. Using the variables absorption, iron and aluminum introduced in Section 6.1 above construct

and examine a model with absorption as the dependent variable.

22

The / function is used here with three arguments. The �rst argument is divided by the second, and the result is

then divided by the third. Thus the result of the expression (/ 6 3 2) is 1.

45

2. Using the variables abrasion-loss, tensile-strength and hardness introduced in Section

6.2 above construct and examine a model with abrasion-loss as the dependent variable.

46

8 De�ning Your Own Functions and Methods

This section gives a brief introduction to programming XLISP-STAT. The most basic programming

operation is to de�ne a new function. Closely related is the idea of de�ning a new method for an

object.

23

8.1 De�ning Functions

You can use the XLISP language to de�ne functions of your own. Many of the functions you have

been using so far are written in this language. The special form used for de�ning functions is called

defun. The simplest form of the defun syntax is

(defun fun args expression)

where fun is the symbol you want to use as the function name, args is the list of the symbols you

want to use as arguments, and expression is the body of the function. Suppose for example that

you want to de�ne a function to delete a case from a list. This function should take as its arguments

the list and the index of the case you want to delete. The body of the function can be based on

either of the two approaches described in Section 4.3 above. Here is one approach:

(defun delete-case (x i)

(select x (remove i (iseq 0 (- (length x) 1)))))

I have used the function length in this de�nition to determine the length of the argument x. Note

that none of the arguments to defun are quoted: defun is a special form that does not evaluate its

arguments.

Unless the functions you de�ne are very simple you will probably want to de�ne them in a �le

and load the �le into XLISP-STAT with the load command. You can put the functions in the

statinit.lsp �le or include in statinit.lsp a load command that will load another �le. The

version of XLISP-STAT for the Macintosh includes a simple editor that can be used from within

XLISP-STAT. The editor is described briey in Section 5.6 above.

You can also write functions that send messages to objects. Here is a function that takes two

regression models, assumed to be nested, and computes the F statistic for comparing these models:

(defun f-statistic (m1 m2)

"Args: (m1 m2)

Computes the F statistic for testing model m1 within model m2."

(let ((send ss1 (m1 :sum-of-squares))

(send df1 (m1 :df))

(send ss2 (m2 :sum-of-squares))

(send df2 (m2 :df)))

(/ (/ (- ss1 ss2) (- df1 df2)) (/ ss2 df2))))

This de�nition uses the Lisp let construct to establish some local variable bindings. The variables

ss1, df1, ss2 and df2 are de�ned in terms of the two model arguments m1 and m2, and are then used

to compute the F statistic. The string following the argument list is a documentation string. When

a documentation string is present in a defun expression defun will install it so the help function

will be able to retrieve it.

23

The discussion in this section only scratches the surface of what you can do with functions in the XLISP language.

To see more examples you can look at the �les that are loaded when XLISP-STAT starts up. For more information

on options of function de�nition, macros, etc. see the XLISP documentation and the books on Lisp mentioned in the

references.

47

8.2 Anonymous Functions

Suppose you would like to plot the function f(x) = 2x+ x

2

over the range �2 � x � 3. We can do

this by �rst de�ning a function f and then using plot-function:

(defun f (x) (+ (* 2 x) (^ x 2)))

(plot-function #'f -2 3)

This is not too hard, but it nevertheless involves one unnecessary step: naming the function f. You

probably won't need this function again; it is a throw-away function de�ned only to allow you to

give it to plot-function as an argument. It would be nice if you could just give plot-function

an expression that constructs the function you want. Here is such an expression:

(function (lambda (x) (+ (* 2 x) (^ x 2))))

There are two steps involved. The �rst is to specify the de�nition of your function. This is done

using a lambda expression, in this case

(lambda (x) (+ (* 2 x) (^ x 2)))

A lambda expression is a list starting with the symbol lambda, followed by the list of arguments and

the expressions making up the body of the function. The lambda expression is only a de�nition, it

is not yet a function, a piece of code that can be applied to arguments. The special form function

takes the lambda list and constructs such a function. The result can be saved in a variable or it can

be passed on to another function as an argument. For our plotting problem you can use the single

expression

(plot-function (function (lambda (x) (+ (* 2 x) (^ x 2)))) -2 3)

or, using the #' short form,

(plot-function #'(lambda (x) (+ (* 2 x) (^ x 2))) -2 3)

Since the function used in these expressions is never named it is sometimes called an anonymous

function.

You can also construct a rotating plot of a function of two variables using the function spin-

function. As an example, the expression

(spin-function #'(lambda (x y) (+ (^ x 2) (^ y 2))) -1 1 -1 1)

constructs a plot of the function f (x; y) = x

2

+ y

2

over the range �1 � x � 1;�1 � y � 1 using a

6� 6 grid. The number of grid points can be changed using the :num-points keyword. The result

is shown in Figure 17. Again it convenient to use a lambda expression to specify the function to be

plotted.

There are a number of other situations in which you might want to pass a function on as an

argument without �rst going through the trouble of thinking up a name for the function and de�ning

it using defun. A few additional examples are given in the next subsection.

8.3 Some Dynamic Simulations

In Section 6.6 we used a loop to control a dynamic simulation in which points in a histogram of one

variable were selected and deselected in the order of a second variable. Let's look at how to run the

same simulation using a slider to control the simulation.

A slider is a modeless dialog box containing a scroll bar and a value display �eld. As the scroll

bar is moved the displayed value is changed and an action is taken. The action is de�ned by an

action function given to the scroll bar, a function that is called with one value, the current slider

48

Pitch Roll Yaw

Figure 17: Rotatable plot of f (x; y) = x

2

+ y

2

.

value, each time the value is changed by the user. There are two kinds of sliders, sequence sliders

and interval sliders. Sequence sliders take a sequence (a list or a vector) and scroll up and down the

sequence. The displayed value is either the current sequence element or the corresponding element

of a display sequence. An interval slider dialog takes an interval, divides it into a grid and scrolls

through the grid. By default a grid of around 30 points is used; the exact number and the interval

end points are adjusted to give nice printed values. The current interval point is displayed in the

display �eld.

For our example let's use a sequence slider to scroll through the elements of the hardness list in

order and select the corresponding element of abrasion-loss. The expression

(def h (histogram abrasion-loss))

sets up a histogram and saves its plot object in the variable h. The function sequence-slider-

dialog takes a list or vector and opens a sequence slider to scroll through its argument. To do

something useful with this dialog we need to give it an action function as the value of the keyword

argument :action. The function should take one argument, the current value of the sequence

controlled by the slider. The expression

(sequence-slider-dialog (order hardness) :action

#'(lambda (i)

(send h :unselect-all-points)

(send h :point-selected i t)))

sets up a slider for moving the selected point in the abrasion-loss histogram along the order of

the hardness variable. The histogram and scroll bar are shown in Figure 18. The action function is

called every time the slider is moved. It is called with the current element of the sequence (order

hardness), the index of the point to select. It clears all current selections and then selects the point

speci�ed in the call from the slider. The body of the function is almost identical to the body of the

49

Figure 18: Slider-controlled animation of a histogram.

dotimes loop used in Section 6.6. The slider is thus an interactive, graphically controlled version of

this loop.

As another example, suppose we would like to examine the e�ect of changing the exponent in a

Box-Cox power transformation

h(x) =

8

>

<

>

:

x

�

� 1

�

if � 6= 0

log(x) otherwise

on a probability plot. As a �rst step we might de�ne a function to compute the power transformation

and normalize the result to fall between zero and one:

(defun bc (x p)

(let* ((bcx (if (< (abs p) .0001) (log x) (/ (^ x p) p)))

(min (min bcx))

(max (max bcx)))

(/ (- bcx min) (- max min))))

This de�nition uses the let* form to establish some local variable bindings. The let* form is like

the let form used above except that let* de�nes its variables sequentially, allowing a variable to

be de�ned in terms of other variables already de�ned in the let* expression; let on the other hand

creates its assignments in parallel. In this case the variables min and max are de�ned in terms of the

variable bcx.

Next we need a set of positive numbers to transform. Let's use a sample of thirty observations

from a �

2

4

distribution and order the observations:

(def x (sort-data (chisq-rand 30 4)))

The normal quantiles of the expected uniform order statistics are given by

(def r (normal-quant (/ (iseq 1 30) 31)))

50

and a probability plot of the untransformed data is constructed using

(def myplot (plot-points r (bc x 1)))

Since the power used is 1 the function bc just rescales the data.

There are several ways to set up a slider dialog to control the power parameter. The simplest

approach is to use the function interval-slider-dialog:

(interval-slider-dialog (list -1 2)

:points 20

:action #'(lambda (p)

(send myplot :clear nil)

(send myplot :add-points r (bc x p))))

interval-slider-dialog takes a list of two numbers, the lower and upper bounds of an interval.

The action function is called with the current position in the interval.

This approach works �ne on a Mac II but may be a bit slow on a Mac Plus or a Mac SE. An

alternative is to pre-compute the transformations for a list of powers and then use the pre-computed

values in the display. For example, using the powers de�ned in

(def powers (rseq -1 2 16))

we can compute the transformed data for each power and save the result as the variable xlist:

(def xlist (mapcar #'(lambda (p) (bc x p)) powers))

The function mapcar is one of several mapping functions available in Lisp. The �rst argument to

mapcar is a function. The second argument is a list. mapcar takes the function, applies it to each

element of the list and returns the list of the results

24

. Now we can use a sequence slider to move

up and down the transformed values in xlist:

(sequence-slider-dialog xlist

:display powers

:action #'(lambda (x)

(send myplot :clear nil)

(send myplot :add-points r x)))

Note that we are scrolling through a list of lists and the element passed to the action function is

thus the list of current transformed values. We would not want to see these values in the display

�eld on the slider, so I have used the keyword argument :display to specify an alternative display

sequence, the powers used in the transformation.

8.4 De�ning Methods

When a message is sent to an object the object system will use the object and the method selector

to �nd the appropriate piece of code to execute. Di�erent objects may thus respond di�erently to

the same message. A linear regression model and a nonlinear regression model might both respond

to a :coef-estimates message but they will execute di�erent code to compute their responses.

The code used by an object to respond to a message is called a method. Objects are organized

in a hierarchy in which objects inherit from other objects. If an object does not have a method of

its own for responding to a message it will use a method inherited from one of its ancestors. The

24

mapcar can be given several lists after the function. The function must take as many arguments as there are lists.

mapcar will apply the function using the �rst element of each list, then using the second element, and so on, until one

of the lists is exhausted, and return a list of the results.

51

send function will move up the precedence list of an object's ancestors until a method for a message

is found.

Most of the objects encountered so far inherit directly from prototype objects. Scatterplots inherit

from scatterplot-proto, histograms from histogram-proto, regression models from regression-

model-proto. Prototypes are just like any other objects. They are essentially typical versions of a

certain kind of object that de�ne default behavior. Almost all methods are owned by prototypes.

But any object can own a method, and in the process of debugging a new method it is often better

to attach the method to a separate object constructed for that purpose instead of the prototype.

To add a method to an object you can use the defmeth macro. As an example, in Section 7

we calculated Cook's distances for a regression model. If you �nd that you are doing this very

frequently then you might want to de�ne a :cooks-distances method. The general form of a

method de�nition is:

(defmeth object :new-method arg-list body)

object is the object that is to own the new method. In the case of regression models this can be either

a speci�c regression model or the prototype that all regression models inherit from, regression-

model-proto. The argument :new-method is the message selector for your method; in our case

this would be :cooks-distances. The argument arg-list is the list of argument names for your

method, and body is one or more expressions making up the body of the method. When the method

is used each of these expressions will be evaluated, in the order in which they appear.

Here is an expression that will install the :cooks-distances method:

(defmeth regression-model-proto :cooks-distances ()

"Message args: ()

Returns Cooks distances for the model."

(let* ((leverages (send self :leverages))

(studres (/ (send self :residuals)

(* (send self :sigma-hat) (sqrt (- 1 leverages)))))

(num-coefs (send self :num-coefs)))

(* (^ studres 2) (/ leverages (- 1 leverages) num-coefs)))))

The variable self refers to the object that is receiving the message. This de�nition is close to the

de�nition of this method supplied in the �le regression.lsp.

8.5 Plot Methods

All plot activities are accomplished by sending messages to plot objects. For example, every time a

plot needs to be redrawn the system sends the plot the :redraw message. By de�ning a new method

for this message you can change the way a plot is drawn. Similarly, when the mouse is moved or

clicked in a plot the plot is sent the :do-mouse message. Menu items also send messages to their

plots when they are selected. If you are interested in modifying plot behavior you may be able to get

started by looking at the methods de�ned in the graphics �les loaded on start up. Further details

will be given in [17].

52

9 Matrices and Arrays

XLISP-STAT includes support for multidimensional arrays patterned after the Common Lisp stan-

dard described in detail in Steele [15]. The functions supported are listed in Section C.6 of the

appendix.

In addition to the standard Common Lisp array functions XLISP-STAT also includes a number

of linear algebra functions such as inverse, solve, transpose, chol-decomp, lu-decomp and sv-

decomp. These functions are listed in the appendix as well.

An array is printed using the standard Common Lisp format. For example, a 2 by 3 matrix with

rows (1 2 3) and (4 5 6) is printed as

#2A((1 2 3)(4 5 6))

The pre�x #2A indicates that this is a two-dimensional array. This form is not particularly readable,

but it has the advantage that it can be pasted into expressions and will be read as an array by

the XLISP reader.

25

For matrices you can use the function print-matrix to get a slightly more

readable representation:

> (print-matrix '#2a((1 2 3)(4 5 6)))

#2a(

(1 2 3)

(4 5 6)

)

NIL

>

The select function can be used to extract elements or subarrays from an array. If A is a two

dimensional array then the expression

(select a 0 1)

will return element 1 of row 0 of A. The expression

(select a (list 0 1) (list 0 1))

returns the upper left hand corner of A.

25

You should quote an array if you type it in using this form, as the value of an array is not de�ned.

53

10 Nonlinear Regression

XLISP-STAT allows the construction of nonlinear, normal regression models. The present imple-

mentation is experimental. The de�nitions needed for nonlinear regression are in the �le nonlin.lsp

on the distribution disk. This �le is not loaded automatically at start up; you should load it now,

using the Load item on the File menu or the load command, to carry out the calculations in this

section.

As an example, Bates and Watts [1, A1.3] describe an experiment on the relation between the

velocity of an enzymatic reaction, y, and the substrate concentration, x. The data for an experiment

in which the enzyme was treated with Puromycin are given by

(def x1 (list 0.02 0.02 0.06 0.06 .11 .11 .22 .22 .56 .56 1.1 1.1))

(def y1 (list 76 47 97 107 123 139 159 152 191 201 207 200))

The Michaelis-Menten function

�(x) =

�

1

x

�

2

+ x

often provides a good model for the dependence of velocity on substrate concentration. Assuming

the Michaelis-Menten function as the mean velocity at a given concentration level the function f1

de�ned by

(defun f1 (b) (/ (* (select b 0) x1) (+ (select b 1) x1)))

computes the list of mean response values at the points in x1 for a parameter list b. Using these

de�nitions, which are contained in the �le puromycin.lsp in the Data folder of the distribution disk,

we can construct a nonlinear regression model using the nreg-model function.

First we need initial estimates for the two model parameters. Examining the expression for the

Michaelis-Menten model shows that as x increases the function approaches an asymptote, �

1

. The

second parameter, �

2

, can be interpreted as the value of x at which the function has reached half

its asymptotic value. Using these interpretations for the parameters and a plot constructed by the

expression

(plot-points x1 y1)

shown in Figure 19 we can read o� reasonable initial estimates of 200 for �

1

and 0.1 for �

2

. The

nreg-model function takes the mean function, the response vector and an initial estimate of the

parameters, computes more accurate estimates using an iterative algorithm starting from the initial

guess, and prints a summary of the results. It returns a nonlinear regression model object:

26

> (def puromycin (nreg-model #'f1 y1 (list 200 .1)))

Residual sum of squares: 7964.19

Residual sum of squares: 1593.16

Residual sum of squares: 1201.03

Residual sum of squares: 1195.51

Residual sum of squares: 1195.45

Residual sum of squares: 1195.45

Residual sum of squares: 1195.45

Residual sum of squares: 1195.45

Least Squares Estimates:

26

Recall that the expression #'f1 is short for (function f1) and is used for obtaining the function de�nition

associated with the symbol f1.

54

0 1.50.5 1

Figure 19: Plot of reaction velocity against substrate concen-

tration for Puromycin experiment.

Parameter 0 212.684 (6.94715)

Parameter 1 0.0641213 (0.00828094)

R Squared: 0.961261

Sigma hat: 10.9337

Number of cases: 12

Degrees of freedom: 10

PUROMYCIN

>

The function nreg-model also takes several keyword arguments, including :epsilon to specify

a convergence criterion and :count-limit, a limit on the number of iterations. By default these

values are .0001 and 20, respectively. The algorithm for �tting the model is a simple Gauss-Newton

algorithm with backtracking; derivatives are computed numerically.

To see how you can analyze the model further you can send puromycin the :help message.

The result is very similar to the help information for a linear regression model. The reason is

simple: nonlinear regression models have been implemented as objects, with the nonlinear regression

model prototype nreg-model-proto inheriting from the linear regression model prototype. The

internal data, the method for computing estimates, and the method of computing �tted values

have been modi�ed for nonlinear models, but the other methods remain unchanged. Once the

model has been �t the Jacobian of the mean function at the estimated parameter values is used

as the X matrix. In terms of this de�nition most of the methods for linear regression, such as

the methods :coef-standard-errors and :leverages, still make sense, at least as �rst order

asymptotic approximations.

In addition to the messages for linear regression models a nonlinear regression model can respond

55

to the messages

:COUNT-LIMIT

:EPSILON

:MEAN-FUNCTION

:NEW-INITIAL-GUESS

:PARAMETER-NAMES

:THETA-HAT

:VERBOSE

Exercises

1. Examine the residuals of the puromycin model.

2. The �le puromycin.lsp also contains data x2 and y2 and mean function f2 for an experiment

run without the Puromycin treatment. Fit a model to this data and compare the results to

the experiment with Puromycin.

56

11 One Way ANOVA

XLISP-STAT allows the construction of normal one way analysis of variance models. The de�nitions

needed are in the �le oneway.lsp on the distribution disk. This �le is not loaded automatically at

start up; you should load it now, using the Load item on the File menu or the load command, to

carry out the calculations in this section.

As an example, suppose we would like to model the data on cholesterol levels in rural and urban

Guatemalans, examined in Section 3.2, as a one way ANOVA model. The boxplots we obtained in

Section 3.2 showed that the samples were skewed and the center and spread of the urban sample

were larger than the center and spread of the rural sample. To compensate for these facts I will use

a normal ANOVA model for the logarithms of the data:

> (def cholesterol (oneway-model (list (log urban) (log rural))))

Least Squares Estimates:

Group 0 5.377172 (0.03624821)

Group 1 5.099592 (0.03456131)

R Squared: 0.4343646

Sigma hat: 0.1621069

Number of cases: 42

Degrees of freedom: 40

Group Mean Square: 0.8071994 (1)

Error MeanSquare: 0.02627865 (40)

CHOLESTEROL

>

The function oneway-model requires one argument, a list of the lists or vectors representing the

samples for the di�erent groups. The model cholesterol can respond to all regression messages as

well as a few new ones. The new ones are

:BOXPLOTS

:ERROR-MEAN-SQUARE

:ERROR-DF

:GROUP-DF

:GROUP-MEAN-SQUARE

:GROUP-NAMES

:GROUP-SUM-OF-SQUARES

:GROUPED-DATA

:STANDARD-DEVIATIONS

57

12 Maximization and Maximum Likelihood Estimation

XLISP-STAT includes two functions for maximizing functions of several variables. The de�nitions

needed are in the �le maximize.lsp on the distribution disk. This �le is not loaded automatically at

start up; you should load it now, using the Load item on the File menu or the load command, to

carry out the calculations in this section. The material in this section is somewhat more advanced

as it assumes you are familiar with the basic concepts of maximum likelihood estimation.

Two functions are available for maximization. The �rst is newtonmax, which takes a function

and a list or vector representing an initial guess for the location of the maximum and attempts to

�nd the maximum using an algorithm based on Newton's method with backtracking. The algorithm

is based on the unconstrained minimization system described in Dennis and Schnabel [10].

As an example, Cox and Snell [9, Example T] describe data collected on times (in operating

hours) between failures of air conditioning units on several aircraft. The data for one of the aircraft

can be entered as

(def x (90 10 60 186 61 49 14 24 56 20 79 84 44 59 29 118 25 156 310 76

26 44 23 62 130 208 70 101 208))

A simple model for these data might be to assume the times between failures are independent random

variables with a common gamma distribution. The density of the gamma distribution can be written

as

(�=�)(�x=�)

��1

e

��x=�

�(�)

where � is the mean time between failures and � is the gamma shape parameter. The log likelihood

for the sample is thus given by

n[log(�)� log(�)� log(�(�))] +

n

X

i=1

(� � 1) log(�x

i

=�)�

n

X

i=1

�x

i

=�:

We can de�ne a Lisp function to evaluate this log likelihood by

(defun gllik (theta)

(let* ((mu (select theta 0))

(beta (select theta 1))

(n (length x))

(bym (* x (/ beta mu))))

(+ (* n (- (log beta) (log mu) (log-gamma beta)))

(sum (* (- beta 1) (log bym)))

(sum (- bym)))))

This de�nition uses the function log-gamma to evaluate log(�(�)). The data and function de�nition

are contained in the �le aircraft.lsp in the Data folder of the distribution disk.

Closed form maximum likelihood estimates are not available for the shape parameter of this

distribution, but we can use newtonmax to compute estimates numerically.

27

We need an initial

guess to use as a starting value in the maximization. To get initial estimates we can compute the

mean and standard deviation of x

> (mean x)

83.5172

> (standard-deviation x)

70.8059

27

The maximizing value for � is always the sample mean. We could take advantage of this fact and reduce the

problem to a one dimensional maximization problem, but it is simpler to just maximize over both parameters.

58

and use method of moments estimates �̂ = 83:52 and

^

� = (�̂=�̂)

2

, calculated as

> (^ (/ (mean x) (standard-deviation x)) 2)

1.39128

Using these starting values we can now maximize the log likelihood function:

> (newtonmax #'gllik (list 83.5 1.4))

maximizing...

Iteration 0.

Criterion value = -155.603

Iteration 1.

Criterion value = -155.354

Iteration 2.

Criterion value = -155.347

Iteration 3.

Criterion value = -155.347

Reason for termination: gradient size is less than gradient tolerance.

(83.5173 1.67099)

Some status information is printed as the optimization proceeds. You can turn this o� by supplying

the keyword argument :verbose with value NIL.

You might want to check that the gradient of the function is indeed close to zero. If you do

not have a closed form expression for the gradient you can use numgrad to calculate a numerical

approximation. For our example,

> (numgrad #'gllik (list 83.5173 1.67099))

(-4.07269e-07 -1.25755e-05)

The elements of the gradient are indeed quite close to zero. You can also compute the second deriva-

tive, or Hessian, matrix using numhess. Approximate standard errors of the maximum likelihood

estimates are given by the square roots of the diagonal entries of the inverse of the negative Hessian

matrix at the maximum:

> (sqrt (diagonal (inverse (- (numhess #'gllik (list 83.5173 1.67099))))))

(11.9976 0.402648)

Instead of calculating the maximum using newtonmax and then calculating the derivatives sepa-

rately you can have newtonmax return a list of the location of the maximum, the optimal function

value, the gradient and the Hessian by supplying the keyword argument :return-derivs as T.

28

Newton's method assumes a function is twice continuously di�erentiable. If your function is not

smooth or you are having trouble with newtonmax for some other reason you might try a second max-

imization function, nelmeadmax. nelmeadmax takes a function and an initial guess and attempts to

�nd the maximum using the Nelder-Mead simplex method as described in Press, Flannery, Teukol-

sky and Vetterling [14]. The initial guess can consist of a simplex, a list of n + 1 points for an

n-dimensional problem, or it can be a single point, represented by a list or vector of n numbers. If

you specify a single point you should also use the keyword argument :size to specify as a list or

vector of length n the size in each dimension of the initial simplex. This should represent the size

of an initial range in which the algorithm is to start its search for a maximum. We can use this

method in our gamma example:

28

The function newtonmax ordinarily uses numerical derivatives in its computations. Occasionally this may not be

accurate enough or may take too long. If you have an expression for computing the gradient or the Hessian then you

can use these by having your function return a list of the function value and the gradient, or a list of the function

value, the gradient and the Hessian matrix, instead of just returning the function value.

59

