
13 Approximate Bayesian Computations

This section describes a set of tools for computing approximate posterior moments and marginal

densities in XLISP-STAT. The de�nitions needed are in the �le bayes.lsp on the distribution disk.

This �le is not loaded automatically at start up; you should load it now, using the Load item on

the File menu or the load command, to carry out the calculations in this section. The material in

this section is somewhat more advanced as it assumes you are familiar with the basic concepts of

Bayesian inference.

The functions described in this section can be used to compute �rst and second order approx-

imations to posterior moments and saddlepoint-like approximations to one dimensional marginal

posterior densities. The approximations, based primarily on the results in [18,19,20], assume the

posterior density is smooth and dominated by a single mode. The implementation is experimental

and may change in a number of ways in the near future.

Let's start with a simple example, a data set used to study the relation between survival time

(in weeks) of leukemia patients and white blood cell count recorded for the patients at their entry

into the study [9, Example U]. The data consists of two groups of patients classi�ed as AG positive

and AG negative. The data for the 17 AG positive patients, contained in the �le leukemia.lsp in

the Data folder on the distribution disk, can be entered as

(def wbc-pos (list 2300 750 4300 2600 6000 10500 10000 17000 5400 7000

9400 32000 35000 100000 100000 52000 100000))

(def times-pos (list 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65))

A high white blood cell count indicates a more serious stage of the disease and thus a lower chance

of survival.

A model often used for this data assumes the survival times are exponentially distributed with

a mean that is log linear in the logarithm of the white blood cell count. For convenience I will scale

the white blood cell counts by 10000. That is, the mean survival time for a patient with white blood

cell count log(WBC

i

) is

�

i

= �

0

expf��

1

x

i

g;

with x

i

= log(WBC

i

=10000). The log likelihood function is thus given by

n

X

i=1

�

1

x

i

� n log(�

0

)�

1

�

0

n

X

i=1

y

i

e

�

1

x

i

;

with y

i

representing the survival times. After computing the transformed WBC variable as

(def transformed-wbc-pos (- (log wbc-pos) (log 10000)))

the log likelihood can be computed using the function

(defun llik-pos (theta)

(let* ((x transformed-wbc-pos)

(y times-pos)

(theta0 (select theta 0))

(theta1 (select theta 1))

(t1x (* theta1 x)))

(- (sum t1x)

(* (length x) (log theta0))

(/ (sum (* y (exp t1x)))

theta0))))

61

I will look at this problem using a vague, improper prior distribution that is constant over the

range �

i

> 0; thus the log posterior density is equal to the log likelihood constructed above, up

to an additive constant. The �rst step is to construct a Bayes model object using the function

bayes-model. This function takes a function for computing the log posterior density and an initial

guess for the posterior mode, computes the posterior mode by an iterative method starting with the

initial guess, prints a short summary of the information in the posterior distribution, and returns

a model object. We can use the function llik-pos to compute the log posterior density, so all we

need is an initial estimate for the posterior mode. Since the model we are using assumes a linear

relationship between the logarithm of the mean survival time and the transformed WBC variable

a linear regression of the logarithms of the survival times on transformed-wbc-pos should provide

reasonable estimates. The linear regression gives

> (regression-model transformed-wbc-pos (log times-pos))

Least Squares Estimates:

Constant 3.54234 (0.302699)

Variable 0 -0.817801 (0.214047)

R Squared: 0.4932

Sigma hat: 1.23274

Number of cases: 17

Degrees of freedom: 15

so reasonable initial estimates of the mode are

^

�

0

= exp(3:5) and

^

�

1

= 0:8. Now we can use these

estimates in the bayes-model function:

> (def lk (bayes-model #'llik-pos (list (exp 3.5) .8)))

maximizing...

Iteration 0.

Criterion value = -90.8662

Iteration 1.

Criterion value = -85.4065

Iteration 2.

Criterion value = -84.0944

Iteration 3.

Criterion value = -83.8882

Iteration 4.

Criterion value = -83.8774

Iteration 5.

Criterion value = -83.8774

Iteration 6.

Criterion value = -83.8774

Reason for termination: gradient size is less than gradient tolerance.

First Order Approximations to Posterior Moments:

Parameter 0 56.8489 (13.9713)

Parameter 1 0.481829 (0.179694)

#<Object: 1565592, prototype = BAYES-MODEL-PROTO>

>

62

It is possible to suppress the summary information by supplying NIL as the value of the :print

keyword argument.

The summary printed by bayes-model gives �rst order approximations to the posterior means

and standard deviations of the parameters. That is, the means are approximated by the elements

of the posterior mode and the standard deviations by the square roots of the diagonal elements of

the inverse of the negative Hessian matrix of the log posterior at the mode. These approximations

can also be obtained from the model by sending it the :1stmoments message:

> (send lk :1stmoments)

((56.8489 0.481829) (13.9713 0.179694))

The result is a list of two lists, the means and the standard deviations. A slower but more accurate

second order approximation is available as well. It can be obtained using the message :moments:

> (send lk :moments)

((65.3085 0.485295) (17.158 0.186587))

Both these messages allow you to compute moments for individual parameters or groups of param-

eters by specifying an individual parameter index or a list of indices:

> (send lk :moments 0)

((65.3085) (17.158))

> (send lk :moments (list 0 1))

((65.3085 0.485295) (17.158 0.186587))

The �rst and second order approximations to the moments of �

0

are somewhat di�erent; in

particular the mean appears to be somewhat larger than the mode. This suggests that the posterior

distribution of this parameter is skewed to the right. We can con�rm this by looking at a plot of

the approximate marginal posterior density. The message :margin1 takes a parameter index, and

a sequence of points at which to evaluate the density and returns as its value a list of the supplied

sequence and the approximate density values at these points. This list can be given to plot-lines

to produce a plot of the marginal density:

> (plot-lines (send lk :margin1 0 (rseq 30 120 30)))

#<Object: 1623804, prototype = SCATTERPLOT-PROTO>

The result is shown in Figure 20 and does indeed show some skewness to the right.

In addition to examining individual parameters it is also possible to look at the posterior distribu-

tion of smooth functions of the parameters.

29

For example, you might want to ask what information

the data contains about the probability of a patient with WBC = 50000 surviving a year or more.

This probability is given by

1

�(x)

e

�52=�(x)

;

with

�(x) = �

0

e

��

1

x

and x = log(5), and can be computed by the function

(defun lk-sprob (theta)

(let* ((time 52.0)

(x (log 5))

(mu (* (select theta 0) (exp (- (* (select theta 1) x))))))

(exp (- (/ time mu)))))

29

The approximation methods assume these functions are twice continuously di�erentiable; thus they can not be

indicator functions.

63

2 0 1204 0 6 0 8 0 100

Figure 20: Plot of marginal posterior density for �

0

.

This function can be given to the :1stmoments, :moments and :margin1 methods to approximate

the posterior moments and marginal posterior density of this function. For the moments the results

are

> (send lk :1stmoments #'lk-sprob)

((0.137189) (0.0948248))

> (send lk :moments #'lk-sprob)

((0.184275) (0.111182))

with the di�erence again suggesting some positive skewness, and the marginal density produced by

the expression

(plot-lines (send lk :margin1 #'lk-sprob (rseq .01 .8 30)))

is shown in Figure 21. Based on this picture the data suggests that this survival probability is almost

certainly below 0.5, but it is di�cult to make a more precise statement than that.

The functions described in this section are based on the optimization code described in the

previous section. By default derivatives are computed numerically. If you can compute derivatives

yourself you can have your log posterior function return a list of the function value and the gradient

or a list of the function value, the gradient and the Hessian matrix.

Exercises

1. To be able to think about prior distributions for the two parameters in this problem we

need to try to understand what the parameters represent. The parameter �

0

is fairly easy to

understand: it is the mean survival time for patients with WBC = 10000. The parameter �

0

is a little more di�cult to think about. In represents the approximate percent di�erence in

mean survival time for patients withWBC di�ering by one percent. Because of the minus sign

64

0 0.80.2 0.4 0.6

Figure 21: Plot of marginal posterior density of the one year

survival probability of a patient with WBC = 50000.

in the mean relationship, and the expected inverse relation between WBC and mean survival

time, �

1

is expected to be positive.

Consider an informative prior distribution that assumes the two parameters a priori inde-

pendent, takes log(�

0

) to be normally distributed with mean log(52) and standard deviation

log(2), and �

1

to be exponentially distributed with mean � = 5. This prior is designed to

represent an opinion that mean survival time at WBC = 10000 should be around one year,

but that guess could easily be o� by a factor of two either way. The percentage change in the

mean for a one percent change in WBC should be on the order of one to ten or so. Examine

the posterior distribution for this prior and compare your results to the results for the vague

prior used above.

2. Construct and examine a posterior distribution for the parameters of the gamma model based

on the aircraft data of Section 12.

65

References

[1] Bates, D. M. and Watts, D. G., (1988), Nonlinear Regression Analysis and its Applications,

New York: Wiley.

[2] Becker, Richard A., and Chambers, John M., (1984), S: An Interactive Environment

for Data Analysis and Graphics, Belmont, Ca: Wadsworth.

[3] Becker, Richard A., Chambers, John M., and Wilks, Allan R., (1988), The New S

Language: A Programming Environment for Data Analysis and Graphics, Paci�c Grove, Ca:

Wadsworth.

[4] Becker, Richard A., and William S. Cleveland, (1987), \Brushing scatterplots," Tech-

nometrics, vol. 29, pp. 127-142.

[5] Betz, David, (1985) \An XLISP Tutorial," BYTE, pp 221.

[6] Betz, David, (1988), \XLISP: An experimental object-oriented programming language," Ref-

erence manual for XLISP Version 2.0.

[7] Chaloner, Kathryn, and Brant, Rollin, (1988) \A Bayesian approach to outlier detection

and residual analysis," Biometrika, vol. 75, pp. 651-660.

[8] Cleveland, W. S. and McGill, M. E., (1988) Dynamic Graphics for Statistics, Belmont,

Ca.: Wadsworth.

[9] Cox, D. R. and Snell, E. J., (1981) Applied Statistics: Principles and Examples, London:

Chapman and Hall.

[10] Dennis, J. E. and Schnabel, R. B., (1983), Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations, Englewood Cli�s, N.J.: Prentice-Hall.

[11] Devore, J. and Peck, R., (1986), Statistics, the Exploration and Analysis of Data, St. Paul,

Mn: West Publishing Co.

[12] McDonald, J. A., (1982), \Interactive Graphics for Data Analysis," unpublished Ph. D.

thesis, Department of Statistics, Stanford University.

[13] Oehlert, Gary W., (1987), \MacAnova User's Guide," Technical Report 493, School of

Statistics, University of Minnesota.

[14] Press, Flannery, Teukolsky and Vetterling, (1988), Numerical Recipes in C, Cam-

bridge: Cambridge University Press.

[15] Steele, Guy L., (1984), Common Lisp: The Language, Bedford, MA: Digital Press.

[16] Stuetzle, W., (1987), \Plot windows," J. Amer. Statist. Assoc., vol. 82, pp. 466 - 475.

[17] Tierney, Luke, (1990) LISP-STAT: Statistical Computing and Dynamic Graphics in Lisp.

Forthcoming.

[18] Tierney, L. and J. B. Kadane, (1986), \Accurate approximations for posterior moments

and marginal densities," J. Amer. Statist. Assoc., vol. 81, pp. 82-86.

[19] Tierney, Luke, Robert E. Kass, and Joseph B. Kadane, (1989), \Fully exponential

Laplace approximations to expectations and variances of nonpositive functions," J. Amer.

Statist. Assoc., to appear.

66

[20] Tierney, L., Kass, R. E., and Kadane, J. B., (1989), \Approximate marginal densities for

nonlinear functions," Biometrika, to appear.

[21] Weisberg, Sanford, (1982), \MULTREG Users Manual," Technical Report 298, School of

Statistics, University of Minnesota.

[22] Winston, Patrick H. and Berthold K. P. Horn, (1988), LISP, 3rd Ed., New York: Addison-

Wesley.

67

A XLISP-STAT on UNIX Systems

This tutorial has dealt primarily with the Macintosh version of XLISP-STAT. XLISP-STAT is also

available on UNIX systems. If it has been installed in a directory in your search path you should be

able to start it up by typing

xlispstat

at the UNIX shell level. There are a few di�erences between the Macintosh and UNIX versions. On

UNIX systems:

� UNIX versions of XLISP-STAT are designed to run on a standard terminal and therefore do

not provide parenthesis matching or indentation support. If you use the GNU emacs editior

you can obtain both these features by running XLISP-STAT from within emacs. Otherwise,

for editing �les with vi you can use the -l ag to get some Lisp editing support.

� To quit from the program type

(exit)

On most systems you can also quit by typing a Control-D.

� You can interrupt a calculation that is taking too long or was started in error by typing a

Control-C.

� Data and example �les are stored in the Data and Examples subdirectories of the library tree.

The functions load-data and load-examples will look in these directories, so

(load-data "tutorial")

will load the data sets for the tutorial. Within XLISP-STAT the variable *default-path*

shows the root directory of the library; you can look there if you want to examine the example

�les.

� The require function can be used to load program modules not loaded at startup. To load

the nonlinear regression module, for example, use the expression

(require "nonlin")

On basic UNIX systems the only graphics available are the functions plot-points and plot-lines.

These functions assume you are using a Tektronix terminal or emulator.

A.1 XLISP-STAT Under the X11 Window System

Window based graphics are available in XLISP-STAT on a workstation running the X11 window

system. Graphics under X11 are fairly similar to Macintosh graphics as documented in this tutorial.

A few points to note:

� Plot menus are popped up using a menu button in the top right corner of a plot.

� In plot interaction you can use any of the mouse buttons. Normally clicking any button in

a plot unselects all selected points. To extend a selection, or have a rotating plot continue

rotating after the button is released, hold down the shift key as you press any mouse button.

68

� How plot windows are opened in response to a graphics command depends on the window

manager you are using. Under uwm, the default window manager on many systems, a little

corner will appear which you can use to choose the position of your plot window.

� Slider dialog items are the only items that assume a three button mouse. In the central part of

the slider the right button increases and the left button decreases the slider value. The middle

button drags the thumb indicator.

� Postscript images of plots can be saved by selecting the Save to File item on a plot menu.

The postscript �le can then be printed using a standard printing command.

A.1.1 More Advanced X11 Features

You can have XLISP-STAT use an alternate display for its graphics by setting the DISPLAY envi-

ronment variable before starting XLISP-STAT. At present this is the only way to set an alternate

display. You can specify alternate fonts and a few other options using the X11 resource management

facilities. Resources controlling appearance are

xlisp*menu*titles: on for a title on a menu, o� otherwise

xlisp*menu*font:

xlisp*dialog*font:

xlisp*graph*font:

There are also a few experimental options controlling performance. These are

xlisp*graph*fastlines: on to use 0 width lines

xlisp*graph*fastsymbols: on to use DrawPoints instead of bitmaps

xlisp*graph*motionsync: on to use XSync during mouse motion

By default all three options are are on. That seems to give the best performance on a Sun 3/50.

It may not be the best choice on other workstations. You can also use the function x11-options

to change these three options from within XLISP-STAT. The fastlines option will not take e�ect

immediately when changed this way but will a�ect the next plot created. The other two options do

take e�ect immediately.

A.2 XLISP-STAT Under the SunView Window System

Window based graphics are also available when XLISP-STAT is run on a Sun console running

suntools. Graphics under suntoolswork like graphics on the Macintosh with the following changes:

� To close or resize plots or dialogs use the frame menu or the standard suntools shortcuts

(e. g. to resize a plot window drag the frame with the middle mouse button while holding

down the control key).

� Plot menus are popped up by pressing the right mouse button in the interior of the plot. Check

marks do not appear on menu items so it may not always be clear what state an item is in.

� Clicking and dragging on the Macintosh corresponds to clicking and dragging with the left

mouse button. Shift-clicking or shift-dragging on the Macintosh (to extend a selection or

cause a rotating plot to continue spinning when the button is released) corresponds to using

the middle mouse button.

� Postscript images of plots can be saved by selecting the Save to File item on a plot menu.

69

A.3 Running UNIX Commands from XLISP-STAT

The system function can be used to run UNIX commands from within XLISP-STAT. This function

takes a shell command string as its argument and returns the shell exit code for the command. For

example, you can print the date using the UNIX date command:

> (system "date")

Wed Jul 19 11:06:53 CDT 1989

0

>

The return value is 0, indicating successful completion of the UNIX command.

A.4 Dynamic Loading and Foreign Function Calling

Some UNIX implementations of XLISP-STAT also provide a facility to allow you to use your own

C functions of FORTRAN subroutines from within XLISP-STAT. The facility, patterned after the

approach used in the New S language [3], consists of the function dyn-load for loading your code

into a running XLISP-STAT process and the functions call-cfun, call-fsub and call-lfun for

calling subroutines in the loaded code. The dyn-load function requires one argument, a string

containing the name of a �le to be linked and loaded. The �le will be linked with standard C

libraries before loading. If you need it to be linked with the standard FORTRAN libraries as well

you can give the keyword argument :fortran the value T. Finally, if you need to link other libraries

you can supply a string containing the library ags you would specify in a linking command as the

value of the keyword argument :libflags. For example, to include the library cmlib use the string

"-lcmlib".

30

The function call-cfun takes a string identifying the C function you want to call, followed by

additional arguments for your C function. The additional arguments must be integers, sequences

of integers, real numbers or sequences of real numbers. Pointers to int or double data containing

these values will be passed to your routine. After your routine returns the contents of the data

referred to by these pointers are copied into lists and call-cfun returns a list of these lists.

As an example, suppose the �le foo.c contains the following C function:

foo(n, x, sum)

int *n;

double *x, *sum;

{

int i;

for (i = 0, *sum = 0.0; i < *n; i++) {

*sum += x[i];

}

}

After compiling the �le to foo.o we can load it into XLISP-STAT using the expression

(dyn-load "foo.o")

We can then call the function foo using a list of real numbers as the second argument. The function

float can be used to coerce numbers to reals:

> (call-cfun "foo" 5 (float (iseq 1 5)) 0.0)

((5) (1 2 3 4 5) (15))

30

There may be slight di�erences in the implementation of dyn-load on di�erent systems. The help information for

this function should give information that is appropriate for your system.

70

The third argument to foo has been used to return the result.

The function call-fsub is used for calling FORTRAN subroutines that have been loaded dy-

namically. A FORTRAN subroutine analogous to the C function foo might be written as

subroutine foo(n, x, sum)

integer n

double precision x(n), sum

integer i

sum = 0.0

do 10 i = 1, n

sum = sum + x(i)

10 continue

return

end

After compiling and loading this routine it can be called using call-fsub:

> (call-fsub "foo" 5 (float (iseq 1 5)) 0.0)

((5) (1 2 3 4 5) (15))

Two C functions you may want to call from within your C functions are xscall alloc and

xscall fail. The function xscall alloc is like calloc, except it insures the allocated memory is

garbage collected after the call to call-cfun returns. The function xscall fail takes a character

string as its argument. It prints the string and signals an error.

The function call-lfun can be used to call C functions written using the internal XLISP con-

ventions for obtaining arguments and returning results. This allows you to accept any kinds of

arguments. Unfortunately, the source code is the only documentation for the internal calling con-

ventions.

A note of caution may be appropriate at this point. Dynamically loaded code contains only the

error checking you build into it. If a function is not called with the proper arguments it will most

likely cause XLISP-STAT to crash, losing any variables you have not saved.

At present the number of arguments you can pass to C functions or FORTRAN subroutines

using call-cfun or call-fsubr is limited to 15.

If dynloading is not available on your system you can still recompile XLISP-STAT with �les of

your own added to the source code. The functions call-cfun, call-fsubr and call-lfun can be

used to call your functions or subroutines in this case as well.

71

B Graphical Interface Tools

One of the characteristic features of the Macintosh user interface is the use of menus and dialogs

for interacting with the computer. XLISP-STAT allows you to construct your own menus and

dialogs using Lisp commands. This appendix gives a very brief introduction to constructing menus

and dialogs; further details will be given in [17]. A few of the explanations and examples in this

appendix use Lisp concepts that have not been covered in this tutorial.

B.1 Menus

As an illustration I will outline how to construct a menu for sending some simple messages to a

regression model. I will make the convention that there is a current regression model, the value of

the symbol *current-model*.

Menus are created by sending the :new message to the menu prototype, menu-proto. The

method for this message takes a single argument, the menu title. We can use this message to set up

our menu:

> (setf model-menu (send menu-proto :new "Model"))

#<Object: 4055334, prototype = MENU-PROTO>

Macintosh menus can be installed in and removed from the menu bar by sending them the :install

and :remove messages:

> (send model-menu :install)

NIL

> (send model-menu :remove)

NIL

On other systems menus are popped up; this can be accomplished by sending the :popup message to

a menu. This message requires two arguments, the x and y pixel coordinates of the left top corner

of the menu, measured from the left top corner of the screen.

Initially the menu has no items in it. Items are created using the menu-item-proto proto-

type. The initialization method requires one argument, the item's title, and takes several keyword

arguments, including

� :action { a function to be called when the item is selected

� :enabled { true by default

� :key { a character to serve as the keyboard equivalent

� :mark { nil (the default) or t to indicate a check mark.

Analogous messages are available for changing these values in existing menu items.

Suppose we would like to be able to use our menu to print a summary of the current model or

obtain a residual plot. We can construct two menu items:

> (setf summary (send menu-item-proto :new "Summary" :action

#'(lambda () (send *current-model* :display))))

#<Object: 4034406, prototype = MENU-ITEM-PROTO>

> (setf plot (send menu-item-proto :new "Plot Residuals" :action

#'(lambda () (send *current-model* :plot-residuals))))

#<Object: 3868686, prototype = MENU-ITEM-PROTO>

Suppose we have assigned the bikes2 model of Section 7 to *current-model*. You can force an

item's action to be invoked by sending it the :do-action message from the listener:

72

> (send summary :do-action)

Least Squares Estimates:

Constant -16.41924 (7.848271)

Variable 0 2.432667 (0.9719628)

Variable 1 -0.05339121 (0.02922567)

R Squared: 0.9477923

Sigma hat: 0.5120859

Number of cases: 10

Degrees of freedom: 7

NIL

Ordinarily you will not send this message this way: the system sends this message to the menu item

when you select the item from a menu.

To add these items to the menu use the :append-items message:

> (send model-menu :append-items summary plot)

NIL

You can also use the :append-items message to add items to a plot menu. The menu associated

with a plot can be obtained by sending the plot the :menu message with no arguments.

You can enable and disable a menu item with the :enabled message:

> (send summary :enabled)

T

> (send summary :enabled nil)

NIL

> (send summary :enabled t)

T

B.2 Dialogs

Dialogs are similar to menus in that they are based on a dialog prototype and dialog item prototypes.

There are, however many more variations. Fortunately most dialogs you need fall into one of several

categories and can be produced by custom dialog construction functions.

B.2.1 Modal Dialogs

Modal dialogs are designed to ask speci�c questions and wait until they receive a response. All

other interaction is disabled until the dialog is dismissed { they place the system in dialog mode. Six

functions are available for producing some standard modal dialogs:

� (message-dialog <string>) { presents a message with an OK button; returns nil when the

button is pressed.

� (ok-or-cancel-dialog <string>) { presents a message with an OK and a Cancel button;

returns t or NIL according to the button pressed.

� (choose-item-dialog <string> <string-list>) { presents a heading and a set of radio but-

tons for choosing one of the strings. Returns the index of the selected string on OK or nil on

Cancel. Example:

73

> (choose-item-dialog "Dependent variable:" '("X" "Y" "Z"))

1

� (choose-subset-dialog <string> <string-list>) { presents a heading and a set of check

boxes for indicating which items to select. Returns a list of the list of selected indices on OK

or nil on Cancel. Example:

> (choose-subset-dialog "Independent variables:" '("X" "Y" "Z"))

((0 2))

� (get-string-dialog <prompt> [:initial <expr>]) { presents a dialog with a prompt,

an editable text �eld, an OK and a Cancel button. The initial contents of the editable �eld

is empty or the princ formated version of <expr>. The result is a string or nil. Example:

> (get-string-dialog "New variable label:" :initial "X")

"Tensile Strength"

� (get-value-dialog <prompt> [:initial <expr>]) { like get-string-dialog, except

{ the initial value expression is converted to a string with print formatting

{ the result is interpreted as a lisp expression and is evaluated

{ the result is a list of the value, or nil

On the Macintosh there are two additional dialogs for dealing with �les:

� (open-file-dialog) { presents a standard Open File dialog and returns a �le name string

or nil. Resets the working folder on OK.

� (set-file-dialog prompt) { presents a standard Save File dialog. Returns a �le name

string or nil. Resets the working folder on OK.

B.2.2 Modeless Dialogs

Two functions for constructing custom modeless dialogs are available also. They are the functions

interval-slider-dialog and sequence-slider-dialog introduced above in Section 8.

74

C Selected Listing of XLISP-STAT Functions

C.1 Arithmetic and Logical Functions

(+ &rest numbers) [Function]

Returns the sum of its arguments. With no args, returns 0. Vectorized.

(- number &rest more-numbers) [Function]

Subtracts the second and all subsequent NUMBERs from the �rst. With one arg, negates it.

Vectorized.

(* &rest numbers) [Function]

Returns the product of its arguments. With no args, returns 1. Vectorized.

(/ number &rest more-numbers) [Function]

Divides the �rst NUMBER (element-wise) by each of the subsequent NUMBERS. With one arg,

returns its reciprocal. Vectorized.

(^ base-number power-number) [Function]

Returns BASE-NUMBER raised to the power POWER-NUMBER. Vectorized.

(** base-number power-number) [Function]

Returns BASE-NUMBER raised to the power POWER-NUMBER. Vectorized.

(< &rest numbers) [Function]

Returns T if NUMBERS are in strictly increasing order; NIL otherwise. Vectorized.

(<= &rest numbers) [Function]

Returns T if NUMBERS are in nondecreasing order; NIL otherwise. Vectorized.

(= &rest numbers) [Function]

Returns T if NUMBERS are all equal; NIL otherwise. Vectorized.

(/= &rest numbers) [Function]

Returns T if NUMBERS no two adjacent numbers are equal; NIL otherwise. Vectorized.

(>= &rest numbers) [Function]

Returns T if NUMBERS are in nonincreasing order; NIL otherwise. Vectorized.

(> &rest numbers) [Function]

Returns T if NUMBERS are in strictly decreasing order; NIL otherwise. Vectorized.

(abs number) [Function]

Returns the absolute value or modulus of NUMBER. Vectorized.

(acos number) [Function]

Returns the arc cosine of NUMBER. Vectorized.

(asin number) [Function]

Returns the arc sine of NUMBER. Vectorized.

(atan number) [Function]

Returns the arc tangent of NUMBER. Vectorized.

(ceiling number) [Function]

Returns the smallest integer(s) not less than or NUMBER. Vectorized.

75

(complex realpart &optional (imagpart 0)) [Function]

Returns a complex number with the given real and imaginary parts.

(conjugate number) [Function]

Returns the complex conjugate of NUMBER.

(cos radians) [Function]

Returns the cosine of RADIANS. Vectorized.

(exp x) [Function]

Calculates e raised to the power x, where e is the base of natural logarithms. Vectorized.

(expt base-number power-number) [Function]

Returns BASE-NUMBER raised to the power POWER-NUMBER. Vectorized.

(oat number) [Function]

Converts real number to a oating-point number. If NUMBER is already a oat, FLOAT simply

returns NUMBER. Vectorized.

(oor number) [Function]

Returns the largest integer(not larger than the NUMBER. Vectorized.

(imagpart number) [Function]

Extracts the imaginary part of NUMBER.

(log number) [Function]

Returns the natural logarithm(s) of NUMBER. Vectorized.

(log-gamma x) [Function]

Returns the log gamma function of X. Vectorized.

(max number &rest more-numbers) [Function]

Returns the greatest of its arguments. Vector reducing

(min number &rest more-numbers) [Function]

Returns the least of its arguments. Vector reducing

(phase number) [Function]

Returns the angle part of the polar representation of a complex number. For non-complex numbers,

this is 0.

(pmax &rest items) [Function]

Parallel maximum of ITEMS. Vectorized.

(pmin &rest items) [Function]

Parallel minimum of ITEMS. Vectorized.

(prod &rest number-data) [Function]

Returns the product of all the elements of its arguments. Returns 1 if there are no arguments.

Vector reducing.

(random number) [Function]

Generates a uniformly distributed pseudo-random number between zero (inclusive) and NUMBER

(exclusive). Vectorized.

(realpart number) [Function]

Extracts the real part of NUMBER.

76

(rem x y) [Function]

Returns the remainder of dividing x by y. Vectorized.

(round number) [Function]

Rounds NUMBER to nearest integer. Vectorized.

(sin radians) [Function]

Returns the sine of RADIANS. Vectorized.

(sqrt number) [Function]

Returns the square root of NUMBER. Vectorized.

(sum &rest number-data) [Function]

Returns the sum of all the elements of its arguments. Returns 0 if there are no arguments. Vector

reducing.

(tan radians) [Function]

Returns the tangent of RADIANS. Vectorized.

(truncate number) [Function]

Returns real NUMBER as an integer, rounded toward 0. Vectorized.

C.2 Constructing and Modifying Compound Data and Variables

(def var form) [Macro]

VAR is not evaluated and must be a symbol. Assigns the value of FORM to VAR and adds VAR to

the list *VARIABLES* of def'ed variables. Returns VAR. If VAR is already bound and the global

variable *ASK-ON-REDEFINE* is not nil then you are asked if you want to rede�ne the variable.

(if-else �rst x y) [Function]

Takes simple or compound data items FIRST, X and Y and returns result of elementswise selecting

from X if FIRST is not NIL and from Y otherwise.

(iseq n m) [Function]

Returns a list of consecutive integers from n to m. Examples:

(iseq 3 7) returns (3 4 5 6 7)

(iseq 3 -3) returns (3 2 1 0 -1 -2 -3)

(list &rest args) [Function]

Returns a list of its arguments

(repeat vals times) [Function]

Repeats VALS. If TIMES is a number and VALS is a non-null, non-array atom, a list of length

TIMES with all elements eq to VALS is returned. If VALS is a list and TIMES is a number then

VALS is appended TIMES times. If TIMES is a list of numbers then VALS must be a list of equal

length and the simpler version of repeat is mapped down the two lists. Examples:

(repeat 2 5) returns (2 2 2 2 2)

(repeat '(1 2) 3) returns (1 2 1 2 1 2)

(repeat '(4 5 6) '(1 2 3)) returns (4 5 5 6 6 6)

(repeat '((4) (5 6)) '(2 3)) returns (4 4 5 6 5 6 5 6)

(rseq a b num) [Function]

Returns a list of NUM equally spaced points starting at A and ending at B.

77

(select a &rest indices) [Function]

A can be a list or an array. If A is a list and INDICES is a single number then the appropriate

element of A is returned. If is a list and INDICES is a list of numbers then the sublist of the

corresponding elements is returned. If A in an array then the number of INDICES must match the

ARRAY-RANK of A. If each index is a number then the appropriate array element is returned.

Otherwise the INDICES must all be lists of numbers and the corresponding submatrix of A is

returned. SELECT can be used in setf.

(undef symbol) [Function]

If SYMBOL is a de�ned variable it is unbound and removed from the list of de�ned variables and

returns SYMBOL.

(vector &rest items) [Function]

Returns a vector with ITEMS as elements.

(which x) [Function]

X is an array or a list. Returns a list of the indices where X is not NIL.

C.3 Basic Statistical Functions

(bayes-model logpost mode &key scale data derivstep (verbose t) (quick t) (print t)) [Function]

LOGPOST computes the logposterior density. It should return the function, or a list of the function

value and gradient, or a list of the function value, gradient and Hessian. MODE is an initial guess

for the mode. SCALE and DERIVSTEP are used for numerical derivatives and scaling. VERBOSE

controls printing of iteration information during optimization, PRINT controls printing of summary

information. If QUICK is T the summary is based on �rst order approximations.

(beta-cdf x alpha beta) [Function]

Returns the value of the Beta(ALPHA, BETA) distribution function at X. Vectorized.

(beta-dens x alpha beta) [Function]

Returns the density at X of the Beta(ALPHA, BETA) distribution. Vectorized.

(beta-quant p alpha beta) [Function]

Returns the P-th quantile of the Beta(ALPHA, BETA) distribution. Vectorized.

(beta-rand n a b) [Function]

Returns a list of N beta(A, B) random variables. Vectorized.

(binomial-cdf x n p) [Function]

Returns value of the Binomial(N, P) distribution function at X. Vectorized.

(binomial-pmf k n p) [Function]

Returns value of the Binomial(N, P) pmf function at integer K. Vectorized.

(binomial-quant x n p) [Function]

Returns x-th quantile (left continuous inverse) of Binomial(N, P) cdf. Vectorized.

(binomial-rand k n p) [Function]

Returns list of K draws from the Binomial(N, P) distribution. Vectorized.

(bivnorm-cdf x y r) [Function]

Returns the value of the standard bivariate normal distribution function with correlation R at (X,

Y). Vectorized.

78

(cauchy-cdf x) [Function]

Returns the value of the standard Cauchy distribution function at X. Vectorized.

(cauchy-dens x) [Function]

Returns the density at X of the standard Cauchy distribution. Vectorized.

(cauchy-quant p) [Function]

Returns the P-th quantile(s) of the standard Cauchy distribution. Vectorized.

(cauchy-rand n) [Function]

Returns a list of N standard Cauchy random numbers. Vectorized.

(chisq-cdf x df) [Function]

Returns the value of the Chi-Square(DF) distribution function at X. Vectorized.

(chisq-dens x alpha) [Function]

Returns the density at X of the Chi-Square(DF) distribution. Vectorized.

(chisq-quant p df) [Function]

Returns the P-th quantile of the Chi-Square(DF) distribution. Vectorized.

(chisq-rand n df) [Function]

Returns a list of N Chi-Square(DF) random variables. Vectorized.

(covariance-matrix &rest args) [Function]

Returns the sample covariance matrix of the data columns in ARGS. ARGS may consist of lists,

vectors or matrices.

(di�erence x) [Function]

Returns di�erences for a sequence X.

(f-cdf x ndf ddf) [Function]

Returns the value of the F(NDF, DDF) distribution function at X. Vectorized.

(f-dens x ndf ddf) [Function]

Returns the density at X of the F(NDF, DDF) distribution. Vectorized.

(f-quant p ndf ddf) [Function]

Returns the P-th quantile of the F(NDF, DDF) distribution. Vectorized.

(f-rand n d) [Function]

Returns a list of N F(NDF, DDF) random variables. Vectorized.

(�vnum number-data) [Function]

Returns the �ve number summary (min, 1st quartile, medinan, 3rd quartile, max) of the elements

X.

(gamma-cdf x alpha) [Function]

Returns the value of the Gamma(alpha, 1) distribution function at X. Vectorized.

(gamma-dens x alpha) [Function]

Returns the density at X of the Gamma(ALPHA, 1) distribution. Vectorized.

(gamma-quant p alpha) [Function]

Returns the P-th quantile of the Gamma(ALPHA, 1) distribution. Vectorized.

(gamma-rand n a) [Function]

Returns a list of N Gamma(A, 1) random variables. Vectorized.

79

(interquartile-range number-data) [Function]

Returns the interquartile range of the elements of X.

(mean x) [Function]

Returns the mean of the elements x. Vector reducing.

(median x) [Function]

Returns the median of the elements of X.

(newtonmax f start &key scale derivstep (verbose 1) return-derivs) [Function]

Maximizes F starting from START using Newton's method with backtracking. If RETURN-

DERIVS is NIL returns location of maximum; otherwise returns list of location, unction value,

gradient and hessian at maximum. SCALE should be a list of the typical magnitudes of the param-

eters. DERIVSTEP is used in numerical derivatives and VERBOSE controls printing of iteration

information. COUNT-LIMIT limits the number of iterations

(nelmeadmax f start &key (size 1) (epsilon (sqrt machine-epsilon)) (count-limit 500) (verbose t)

alpha beta gamma delta) [Function]

Maximizes F using the Nelder-Mead simplex method. START can be a starting simplex - a list of

N+1 points, with N=dimension of problem, or a single point. If start is a single point you should

give the size of the initial simplex as SIZE, a sequence of length N. Default is all 1's. EPSILON is the

convergence tolerance. ALPHA-DELTA can be used to control the behavior of simplex algorithm.

(normal-cdf x) [Function]

Returns the value of the standard normal distribution function at X. Vectorized.

(normal-dens x) [Function]

Returns the density at X of the standard normal distribution. Vectorized.

(normal-quant p) [Function]

Returns the P-th quantile of the standard normal distribution. Vectorized.

(normal-rand n) [Function]

Returns a list of N standard normal random numbers. Vectorized.

(nreg-model mean-function y theta &key (epsilon 0.0001) (count-limit 20) (print t) parameter-names

response-name case-labels weights included (vetbose print)) [Function]

Fits nonlinear regression model with MEAN-FUNCTION and response Y using initial parameter

guess THETA. Returns model object.

(numgrad f x &optional scale derivstep) [Function]

Computes the numerical gradient of F at X.

(numhess f x &optional scale derivstep) [Function]

Computes the numerical Hessian matrix of F at X.

(oneway-model data &key (print t)) [Function]

DATA: list of compound-data Example:

(order x) [Function]

Returns a sequence of the indices of elements in the sequence of numbers or strings X in order.

(pmin &rest items) [Function]

Parallel minimum of ITEMS. Vectorized.

(pmax &rest items) [Function]

Parallel maximum of ITEMS. Vectorized.

80

(poisson-cdf x mu) [Function]

Returns value of the Poisson(MU) distribution function at X. Vectorized.

(poisson-pmf k mu) [Function]

Returns value of the Poisson(MU) pmf function at integer K. Vectorized.

(poisson-quant x mu) [Function]

Returns x-th quantile (left continuous inverse) of Poisson(MU) cdf. Vectorized.

(poisson-rand k mu) [Function]

Returns list of K draws from the Poisson(MU) distribution. Vectorized.

(quantile x p) [Function]

Returns the P-th quantile(s) of sequence X. P can be a number or a sequence.

(rank x) [Function]

Returns a sequence with the elements of the list or array of numbers or strings X replaced by their

ranks.

(read-data-columns �le cols) [Function]

Reads the data in FILE as COLS columns and returns a list of lists representing the columns.

(read-data-�le �le) [Function]

Returns a list of all lisp objects in FILE. FILE can be a string or a symbol, in which case the

symbol'f print name is used.

(regression-model x y &key (intercept t) (print t) weights included predictor-names response-name

case-labels) [Function]

X - list of independent variables or X matrix

Y - dependent variable

INTERCEPT - T to include (default), NIL for no intercept

PRINT - if not NIL print summary information

WEIGHTS - if supplied should be the same length as Y; error variances are

assumed to be inversely proportional to WEIGHTS

PREDICTOR-NAMES

RESPONSE-NAME

CASE-LABELS - sequences of strings or symbols

INCLUDED - if supplied should be the same length as Y, with elements nil

to skip a in computing estimates (but not in residual analysis)

Returns a regression model object. To examine the model further assign the result to a variable and

send it messages. Example (data are in �le absorbtion.lsp in the sample data directory/folder):

(def m (regression-model (list iron aluminum) absorbtion))

(send m :help)

(send m :plot-residuals)

(sort-data sequence) [Function]

Returns a sequence with the numbers or strings in the sequence X in order.

(standard-deviation x) [Function]

Returns the standard deviation of the elements x. Vector reducing.

(t-cdf x df) [Function]

Returns the value of the T(DF) distribution function at X. Vectorized.

(t-dens x alpha) [Function]

Returns the density at X of the T(DF) distribution. Vectorized.

81

(t-quant p df) [Function]

Returns the P-th quantile of the T(DF) distribution. Vectorized.

(t-rand n d) [Function]

Returns a list of N T(DF) random variables. Vectorized.

(uniform-rand n) [Function]

Returns a list of N uniform random variables from the range (0, 1). Vectorized.

C.4 Plotting Functions

(boxplot data &key (title "Box Plot")) [Function]

DATA is a sequence, a list of sequences or a matrix. Makes a boxplot of the sequence or a parallel

box plot of the sequences in the list or the columns of the matrix.

(boxplot-x x data &key (title "Box Plot")) [Function]

DATA is a list of sequences or a matrix. X is a sequence with as many elements as DATA has

elements or columns. Makes a parallel box plot of the sequences in the list or the columns of the

matrix vs X.

(close-all-plots) [Function]

Close all plot windos.

(histogram data &key (title "Histogram")) [Function]

Opens a window with a histogram of DATA. TITLE is the window title. The number of bins used

can be adjusted using the histogram menu. The histogram can be linked to other plots with the

link-views command. Returns a plot object.

(link-views &rest plots) [Function]

Links the argument plots: any change in hiliting or visibility of points in the current plot is

propagated to the other plots.

(name-list names &key (title "Name List")) [Function]

NAMES is a number or a list of character strings. Opens a window with a list of the supplied

character strings or entries numbered from 0 to NAMES - 1. This display can be linked to plots

with the link-views function. Returns a plot object.

(plot-function f xmin xmax &optional (num-points 50)) [Function]

Plots function F of one real variable over the range between xmin and xmax. The function is

evaluated at NUM-POINTS points.

(plot-lines x y &key (title "Line Plot") variable-labels type width color) [Function]

Opens a window with a connected line plot of X vs Y, where X and Y are compound number-data.

VARIABLE-LABELS, if supplied, should be lists of character strings. TITLE is the window title.

The plot can be linked to other plots with the link-views command. Returns a plot object.

(plot-points x y &key (title "Scatter Plot") variable-labels point-labels symbol color) [Function]

Opens a window with a scatter plot of X vs Y, where X and Y are compound number-data.

VARIABLE-LABELS and POINT-LABELS, if supplied, should be lists of character strings. TITLE

is the window title. The plot can be linked to other plots with the link-views command. Returns a

plot object.

(probability-plot data &key (distribution-function (function normal-cdf)) (title "Probability Plot")

point-labels) [Function]

82

(quantile-plot data &key (quantile-function (function normal-quant)) (title "Quantile Plot") point-

labels) [Function]

(scatterplot-matrix data &key (title "Spinning Plot") variable-labels point-labels (scale t)) [Function]

DATA is a list of two or more compound number-data objects of equal length. Opens a window

with a brushable scatter plot matrix of the elements of DATA. VARIABLE-LABELS and POINT-

LABELS, if supplied, should be lists of character strings. TITLE is the window title. If scale is NIL

data are assumed to be between -1 and 1.The plot can be linked to other plots with the link-views

command. Returns a plot object.

(spin-function f xmin xmax ymin ymax &optional (num-points 6)) [Function]

Rotatable plot of function F of two real variables over the range between [xmin, xmax] x [ymin,

ymax]. The function is evaluated at NUM-POINTS points.

(spin-plot data &key (title "Spinning Plot") variable-labels point-labels (scale t)) [Function]

DATA is a list of three compound number-data objects of equal length. Opens a window with a ro-

tating plot of the three elements of DATA. VARIABLE-LABELS and POINT-LABELS, if supplied,

should be lists of character strings. TITLE is the window title. If scale is NIL data are assumed to

be between -1 and 1. The plot can be linked to other plots with the link-views command. Returns

a plot object.

(unlink-views &rest plots) [Function]

Removes links to its arguments. With no arguments removes all links.

C.5 Object Methods

C.5.1 Regression Methods

:basis [Object Method]

Returns the indices of the variables used in �tting the model.

:coef-estimates [Object Method]

Returns the OLS (ordinary least squares) estimates of the regression coe�cients. Entries beyond

the intercept correspond to entries in basis.

:coef-standard-errors [Object Method]

Returns estimated standard errors of coe�cients. Entries beyond the intercept correspond to entries

in basis.

:cooks-distances [Object Method]

Computes Cook's distances.

:df [Object Method]

Returns the number of degrees of freedom in the model.

:display [Object Method]

Prints the least squares regression summary. Variables not used in the �t are marked as aliased.

:�t-values [Object Method]

Returns the �tted values for the model.

:included &optional new-included [Object Method]

With no argument, NIL means a case is not used in calculating estimates, and non-nil means it

is used. NEW-INCLUDED is a sequence of length of y of nil and t to select cases. Estimates are

recomputed.

83

:intercept &optional new-intercept [Object Method]

With no argument returns T if the model includes an intercept term, nil if not. With an argument

NEW-INTERCEPT the model is changed to include or exclude an intercept, according to the value

of NEW-INTERCEPT.

:leverages [Object Method]

Returns the diagonal elements of the hat matrix.

:num-cases [Object Method]

Returns the number of cases in the model.

:num-coefs [Object Method]

Returns the number of coe�cients in the �t model (including the intercept if the model includes

one).

:num-included [Object Method]

Returns the number of cases used in the computations.

:plot-bayes-residuals &optional x-values [Object Method]

Opens a window with a plot of the standardized residuals and two standard error bars for the

posterior distribution of the actual deviations from the line. See Chaloner and Brant. If X-VALUES

are not supplied the �tted values are used. The plot can be linked to other plots with the link-views

function. Returns a plot object.

:plot-residuals &optional x-values [Object Method]

Opens a window with a plot of the residuals. If X-VALUES are not supplied the �tted values are

used. The plot can be linked to other plots with the link-views function. Returns a plot object.

:predictor-names &optional (names nil set) [Object Method]

With no argument returns the predictor names. NAMES sets the names.

:r-squared [Object Method]

Returns the sample squared multiple correlation coe�cient, R squared, for the regression.

:raw-residuals [Object Method]

Returns the raw residuals for a model.

:residuals [Object Method]

Returns the raw residuals for a model without weights. If the model includes weights the raw

residuals times the square roots of the weights are returned.

:sigma-hat [Object Method]

Returns the estimated standard deviation of the deviations about the regression line.

:studentized-residuals [Object Method]

Computes the internally studentized residuals for included cases and externally studentized residuals

for excluded cases.

:sum-of-squares [Object Method]

Returns the error sum of squares for the model.

:weights &optional new-w [Object Method]

With no argument returns the weight sequence as supplied to m; NIL means an unweighted model.

NEW-W sets the weights sequence to NEW-W and recomputes the estimates.

84

:x-matrix [Object Method]

Returns the X matrix for the model, including a column of 1's, if appropriate. Columns of X matrix

correspond to entries in basis.

:xtxinv [Object Method]

Returns (X

T

X)

�1

or (X

T

WX)

�1

.

C.5.2 General Plot Methods

:add-lines lines &key type (draw t) [Object Method]

Adds lines to plot. LINES is a list of sequences, the coordinates of the line starts. TYPE is normal

or dashed. If DRAW is true the new lines are added to the screen.

:add-points points &key point-labels (draw t) [Object Method]

Adds points to plot. POINTS is a list of sequences, POINT-LABELS a list of strings. If DRAW is

true the new points are added to the screen.

:adjust-to-data &key (draw t) [Object Method]

Sets ranges to the actual range of variables in the original coordinate system. If DRAW is true

sends :RESIZE and :REDRAW messages.

:all-points-showing-p [Object Method]

:all-points-unmasked-p [Object Method]

:any-points-selected-p [Object Method]

:apply-transformation a &key draw [Object Method]

Applies matrix A to current transformation. If draw is true the :REDRAW-CONTENT message is

sent.

:clear &key (draw t) [Object Method]

Clears the plot data. If DRAW is nil the plot is redrawn; otherwise its current screen image remains

unchanged.

:clear-lines &key (draw t) [Object Method]

Removes all lines from the plot. If DRAW is true the :REDRAW-CONTENT message is sent.

:clear-points &key (draw t) [Object Method]

Removes all points from the plot. If DRAW is true the :REDRAW-CONTENT message is sent.

:clear-strings &key (draw t) [Object Method]

Removes all strings from the plot. If DRAW is true the :REDRAW-CONTENT message is sent.

:content-variables &optional xvar yvar [Object Method]

Sets or retrieves the indices of the current content variables.

:do-mouse x y type extend option [Object Method]

Sends appropriate action message for mouse mode to plot.

:drag-grey-rect x y width height [Object Method]

Drags grey rectangle starting at (LIST (- X WIDTH) (- Y HEIGHT) WIDTH HEIGHT) while

mouse button is down. Returns the �nal rectangle. Should be called when the mouse is down.

85

:erase-selection [Object Method]

Sets selected points states to invisible and sends :ADJUST-SCREEN message.

:�xed-aspect &optional �xed [Object Method]

Sets or retrieves current size adjustment option (true or NIL).

:frame-location &optional left top [Object Method]

Moves window frame to (LEFT TOP) if supplied. Returns list of current left, top. Adjusts for the

menu bar.

:frame-size &optional width height [Object Method]

Sets window frame width and size to WIDTH and SIZE if supplied. Returns list of current WIDTH

and HEIGHT. Adjusts for the menu bar.

:idle-on &optional on [Object Method]

Sets or returns idling state. On means :do-idle method is sent each pass through the event loop.

:linked &optional on [Object Method]

Sets or retrieves plot's linking state.

:num-lines [Object Method]

Returns the number of line starts in the plot.

:num-points [Object Method]

Returns the number of points in the plot.

:num-strings [Object Method]

Returns the number of strings in the plot.

:num-variables [Object Method]

Returns the number of variables in the plot.

:point-coordinate var point &optional value [Object Method]

Sets or retrieves coordinate for variable VAR and point POINT in the original coordinate system.

Vectorized.

:point-hilited point &optional hilited [Object Method]

Sets or returns highlighting status (true or NIL) of POINT. Sends :ADJUST-SCREEN message if

states are set. Vectorized.

:point-label point &optional label [Object Method]

Sets or retrieves label of point POINT. Vectorized.

:point-selected point &optional selected [Object Method]

Sets or returns selection status (true or NIL) of POINT. Sends :ADJUST-SCREEN message if

states are set. Vectorized.

:point-showing point &optional selected [Object Method]

Sets or returns visibility status (true or NIL) of POINT. Sends :ADJUST-SCREEN message if

states are set. Vectorized.

:point-symbol point &optional symbol [Object Method]

Sets or retrieves symbol of point POINT. Vectorized.

:range index &optional low high [Object Method]

Sets or retrieves variable's original coordinate range. Vectorized.

86

:real-to-screen x y [Object Method]

Returns list of screen coordinates of point (X, Y), in the original coordinate system, based on

current content variables.

:redraw [Object Method]

Redraws entire plot.

:redraw-content [Object Method]

Redraws plot's content.

:rotate-2 var1 var2 angle &key (draw t) [Object Method]

Rotates int the plane of variables with indices VAR1 and VAR2 by ANGLE, in radians. sends the

:REDRAW-CONTENT message if DRWA is true.

:scale-to-range var low high &key (draw t) [Object Method]

Scales and shifts data to map visible range into speci�ed range. Sends :RESIZE and :REDRAW

messages if DRAW is true.

:scaled-range index &optional low high [Object Method]

Sets or retrieves variable's transformed coordinate range. Vectorized.

:screen-to-real x y [Object Method]

Returns list of real coordinates, in the original coordinate system, of screen point (X, Y), based on

current content variables.

:selection [Object Method]

Return indices of current selection.

:show-all-points [Object Method]

Sets all point states to normal and sends :ADJUST-SCREEN message

:showing-labels &optional showing [Object Method]

Sets or retrieves current labeling state (true or NIL).

:title &optional string [Object Method]

Sets or retrieves window title.

:transformation &optional a &key (draw t) [Object Method]

Sets or retrieves transformation. A should be a matrix or NIL. If draw is true the :REDRAW-

CONTENT message is sent.

:unselect-all-points &key (draw t) [Object Method]

Unselects all points. Sends :ADJUST-SCREEN message if DRAW is true.

:variable-label var &optional label [Object Method]

Sets or returns label for variable with index VAR. Vectorized.

:visible-range var [Object Method]

Returns list of min and max of variable VAR over visible, unmasked points, lines and strings.

Vectorized.

:while-button-down fcn &optional (motion-only t) [Object Method]

Calls fcn repeatedly while mouse button is down. FCN should take two arguments, the current x

and y coordinates of the mouse. Returns NIL. Should be called when button is already down.

87

:x-axis &optional showing labeled ticks [Object Method]

Sets or retrieves current acis label state. SHOWING and LABELED should be true or NIL; TICKS

should be a number. All three should be supplied for setting a new state. A list of the three

properties is returned.

:y-axis &optional showing labeled ticks [Object Method]

Sets or retrieves current acis label state. SHOWING and LABELED should be true or NIL; TICKS

should be a number. All three should be supplied for setting a new state. A list of the three

properties is returned.

C.5.3 Histogram Methods

:add-points points (draw t) [Object Method]

Adds points to plot. POINTS is a sequence or a list of sequences. If DRAW is true the new points

are added to the screen.

:num-bins &optional bins &key (draw t) [Object Method]

Sets or retrieves number of bins in the histogram. Sends :REDRAW-CONTENT message if DRAW

is true.

C.5.4 Name List Methods

:add-points points &key point-labels (draw t) [Object Method]

Adds points to plot. POINTS is a number or a list of sequences, POINT-LABELS a list of strings.

If DRAW is true the new points are added to the screen.

C.5.5 Scatterplot Methods

:abline a b [Object Method]

Adds the graph of the line A + B x to the plot.

:add-lines lines &key type (draw t) [Object Method]

Adds lines to plot. LINES is a list of sequences, the coordinates of the line starts. TYPE is normal

or dashed. If DRAW is true the new lines are added to the screen.

:add-points points &key point-labels (draw t) [Object Method]

Adds points to plot. POINTS is a list of sequences, POINT-LABELS a list of strings. If DRAW is

true the new points are added to the screen.

:add-strings locations strings [Object Method]

Adds strings to plot. LOCATIONS is a list of sequences, the coordinates of the strings. If DRAW

is true the new lines are added to the screen.

C.5.6 Spin Plot Methods

:abcplane a b c [Object Method]

Adds the graph of the plane A + B x + Cy to the plot.

:add-function [Object Method]

surface of function F over a NUM-POINTS by NUM-POINTS grid on the rectangle [xmin, xmax]

x [ymin, ymax]. Passes other keywords to :add-surface method.

:add-surface [Object Method]

a grid surface using sequences X, Y with values in the matrix Z. Z should be (length X) by (length

Y).

88

:angle &optional angle [Object Method]

Sets or retrieves current rotation angle, in radians.

:content-variables &optional xvar yvar [Object Method]

Sets or retrieves the indices of the current content variables.

:depth-cuing &optional cuing [Object Method]

Sets or retrieves depth cuing status (true or NIL).

:do-idle [Object Method]

Sends :ROTATE message.

:rotate [Object Method]

Rotates once in the current plane by the current angle.

:showing-axes &optional cuing [Object Method]

Sets or retrieves axis showing status (true or NIL).

C.6 Some Useful Array and Linear Algebra Functions

(%* a b) [Function]

Returns the matrix product of matrices a and b. If a is a vector it is treated as a row vector; if b

is a vector it is treated as a column vector.

(aref array &rest subscripts) [Function]

Returns the element of ARRAY speci�ed by SUBSCRIPTS.

(array-dimension array) [Function]

Returns a list whose elements are the dimensions of ARRAY

(array-dimensions array) [Function]

Returns a list whose elements are the dimensions of ARRAY

(array-in-bounds-p array &rest subscripts) [Function]

Returns T if SUBSCRIPTS are valid subscripts for ARRAY; NIL otherwise.

(array-rank array) [Function]

Returns the number of dimensions of ARRAY.

(array-row-major-index array &rest subscripts) [Function]

Returns the index into the data vector of ARRAY for the element of ARRAY speci�ed by SUB-

SCRIPTS.

(array-total-size array) [Function]

Returns the total number of elements of ARRAY.

(arrayp x) [Function]

Returns T if X is an array; NIL otherwise.

(bind-columns &rest args) [Function]

The ARGS can be matrices, vectors, or lists. Arguments are bound into a matrix along their

columns. Example: (bind-columns #2a((1 2)(3 4)) #(5 6)) returns #2a((1 2 5)(3 4 6))

(bind-rows &rest args) [Function]

The ARGS can be matrices, vectors, or lists. Arguments are bound into a matrix along their rows.

Example: (bind-rows #2a((1 2)(3 4)) #(5 6)) returns #2a((1 2)(3 4)(5 6))

89

(chol-decomp a) [Function]

Modi�ed Cholesky decomposition. A should be a square, symmetric matrix. Computes lower

triangular matrix L such that LL

T

= A +D where D is a diagonal matrix. If A is strictly positive

de�nite D will be zero. Otherwise D is as small as possible to make A + D numerically strictly

positive de�nite. Returns a list (L(maxD)).

(column-list m) [Function]

Returns a list of the columns of M as vectors

(copy-array array) [Function]

Returns a copy of ARRAY with elements eq to the elements of ARRAY.

(copy-list list) [Function]

Returns a new copy of LIST.

(copy-vector vector) [Function]

Returns a copy of VECTOR with elements eq to the elements of VECTOR

(count-elements number &rest more-numbers) [Function]

Returns the number of its arguments. Vector reducing

(cross-product x) [Function]

If X is a matrix returns (matmult (transpose X) X). If X is a vector returns (inner-product X X).

(determinant m) [Function]

Returns the determinant of the square matrix M.

(diagonal x) [Function]

If X is a matrix, returns the diagonal of X. If X is a sequence, returns a diagonal matrix of rank

(length X) with diagonal elements eq to the elements of X.

(identity-matrix n) [Function]

Returns the identity matrix of rank N.

(inner-product x y) [Function]

Returns inner product of sequences X and Y.

(inverse m) [Function]

Returns the inverse of the the square matrix M; signals an error if M is ill conditioned or singular

(lu-decomp a) [Function]

A is a square matrix of numbers (real or complex). Computes the LU decomposition of A and

returns a list of the form (LU IV D FLAG), where LU is a matrix with the L part in the lower

triangle, the U part in the upper triangle (the diagonal entries of L are taken to be 1), IV is a vector

describing the row permutation used, D is 1 if the number of permutations is odd, -1 if even, and

FLAG is T if A is numerically singular, NIL otherwise. Used bu LU-SOLVE.

(lu-solve lu b) [Function]

LU is the result of (LU-DECOMP A) for a square matrix A, B is a sequence. Returns the solution

to the equation Ax = B. Signals an error if A is singular.

(make-list size &key (initial-element nil)) [Function]

Creates and returns a list containing SIZE elements, each of which is initialized to INITIAL-

ELEMENT.

90

(make-sweep-matrix x y &optional weights) [Function]

X is a matrix, Y and WEIGHTS are sequences. Returns the sweep matrix for the (possibly weighted)

regression of Y on X.

(map-elements function data &rest more-data) [Function]

FUNCTION must take as many arguments as there are DATA arguments supplied. DATA argu-

ments must either all be sequences or all be arrays of the same shape. The result is of the same

type and shape as the �rst DATA argument, with elements the result of applying FUNCTION

elementwise to the DATA arguments

(matmult a b) [Function]

Returns the matrix product of matrices a and b. If a is a vector it is treated as a row vector; if b

is a vector it is treated as a column vector.

(matrix dim data) [Function]

returns a matrix of dimensions DIM initialized using sequence DATA in row major order.

(matrixp m) [Function]

Returns T if M is a matrix, NIL otherwise.

(outer-product x y &optional (fcn #'*)) [Function]

Returns the generalized outer product of x and y, using fcn. That is, the result is a matrix of

dimension ((length x) (length y)) and the (i j) element of the result is computed as (apply fcn (aref

x i) (aref y j)).

(permute-array a p) [Function]

Returns a copy of the array A permuted according to the permutation P.

(qr-decomp a) [Function]

A is a matrix of real numbers with at least as many rows as columns. Computes the QR factorization

of A and returns the result in a list of the form (Q R).

(rcondest a) [Function]

Returns an estimate of the reciprocal of the L1 condition number of an upper triangular matrix a.

(row-list m) [Function]

Returns a list of the rows of M as vectors

(solve a b) [Function]

Solves A x = B using LU decomposition and backsolving. B can be a sequence or a matrix.

(split-list list cols) [Function]

Returns a list of COLS lists of equal length of the elements of LIST. Example: (split-list '(1 2 3 4

5 6) 2) returns ((1 2 3) (4 5 6))

(sum &rest number-data) [Function]

Returns the sum of all the elements of its arguments. Returns 0 if there are no arguments. Vector

reducing.

(sv-decomp a) [Function]

A is a matrix of real numbers with at least as many rows as columns. Computes the singular value

decomposition of A and returns a list of the form (U W V FLAG) where U and V are matrices

whose columns are the left and right singular vectors of A and W is the sequence of singular values

of A. FLAG is T if the algorithm converged, NIL otherwise.

91

(sweep-operator a indices &optional tolerances) [Function]

A is a matrix, INDICES a sequence of the column indices to be swept. Returns a list of the swept

result and the list of the columns actually swept. (See MULTREG documentation.) If supplied,

TOLERANCES should be a list of real numbers the same length as INDICES. An index will only

be swept if its pivot element is larger than the corresponding element of TOLERANCES.

(transpose m) [Function]

Returns the transpose of the matrix M.

(vectorp m) [Function]

Returns T if M is a vector, NIL otherwise.

C.7 System Functions

(alloc number) [Function]

Changes number of nodes to allocate in each segment to NUMBER. Returns old number of nodes

to allocate.

(call-cfun cfun &rest args) [Function]

CFUN is a string naming a C function. The remaining arguments must be integers, sequences of

integers, reals or sequences of reals. CFUN is called with the remaining arguments and a list of the

lists of the values of the arguments after the call is returned. Arguments in the call will be pointers

to ints or pointers to doubles. Not available on all implementations.

(call-fsub fsub &rest args) [Function]

FSUB is a string naming a FORTRAN subroutine. The remaining arguments must be integers,

sequences of integers, reals or sequences of reals. FSUB is called with the remaining arguments and

a list of the lists of the values of the arguments after the call is returned. Arguments in the call will

be (arrays of) integers or double precision numbers. Not available on all implementations.

(call-lfun lfun &rest args) [Function]

LFUN is a C function written to conform to internal XLISP argument reading and value returning

conventions. Applies LFUN to ARGS and returns the result.

(debug) [Function]

Enable breaking on error on.

(dyn-load �le &key verbose libags fortran) [Function]

Links the object �le FILE with standard C libraries and loads into the running XLISP-STAT

process. If FORTRAN is not NIL also searches standard FORTRAN libraries. LIBFLAGS can be

a string used to specify additional libraries, for example

(exit) [Function]

Exits from XLISP.

(expand number) [Function]

Expand memory by adding NUMBER segments. Returns the number of segments.

(gc) [Function]

Forces garbage collection. Returns nil.

(help &optional symbol) [Function]

Prints the documentation associated with SYMBOL. With no argument, this function prints the

greeting message to beginners.

92

(help* string) [Function]

Prints the documentation associated with those symbols whose print names contain STRING as

substring. STRING may be a symbol, in which case the print-name of that symbol is used.

(load �lename &key (verbose t) (print nil)) [Function]

Loads the �le named by FILENAME into XLISP. Returns T if load succeeds, NIL if �le does not

exist.

(nodebug) [Function]

Disable breaking on error on.

(room) [Function]

Shows memory allocation statistics. Returns nil.

(save �le) [Function]

Saves current memory image in FILE.wks. Does not work right with allocated objects.

(variables) [Function]

Prints the names of all def'ed variables

C.8 Some Basic Lisp Functions, Macros and Special Forms

Except where noted these functions should have a signi�cant subset of their Common Lisp function-

ality as de�ned in Steele [15].

(and fformg*) [Macro]

Evaluates FORMs in order from left to right. If any FORM evaluates to NIL, returns immediately

with the value NIL. Else, returns the value of the last FORM.

(append &rest lists) [Function]

Constructs a new list by concatenating its arguments.

(apply function &rest args) [Function]

Conses all arguments but the last onto the last and applies FUNCTION to the resulting argument

list. Last argument must be a list.

(apropos string) [Function]

Prints symbols whose print-names contain STRING as substring. If STRING is a symbol its print

name is used.

(apropos-list string) [Function]

Returns, as a list, all symbols whose print-names contain STRING as substring. If STRING is a

symbol its print name is used.

(assoc item alist &key (test (function eql)) test-not) [Function]

Returns the �rst pair in ALIST whose car is equal (in the sense of TEST) to ITEM.

(atom x) [Function]

Returns T if X is not a cons; NIL otherwise.

(boundp symbol) [Function]

Returns T if the global variable named by SYMBOL has a value; NIL otherwise.

(car list) [Function]

Returns the car of LIST. Returns NIL if LIST is NIL.

93

(case keyform (key j (key*) form*) *) [Function]

Evaluates KEYFORM and tries to �nd the KEY that is EQL to the value of KEYFORM. If one is

found, then evaluates FORMs that follow the KEY and returns the value of the last FORM. If not,

simply returns NIL.

(cdr list) [Function]

Returns the cdr of LIST. Returns NIL if LIST is NIL.

(close stream) [Function]

Close �le stream STREAM.

(coerce x type) [Function]

Coerces X to an object of the type TYPE.

(cond (test form*) *) [Function]

Evaluates each TEST in order until one evaluates to a non-NIL value. Then evaluates the associated

FORMs in order and returns the value of the last FORM. If no forms follow the TEST, then returns

the value of the TEST. Returns NIL, if all TESTs evaluate to NIL.

(cons x y) [Function]

Returns a new cons (list node) whose car and cdr are X and Y, respectively.

(consp x) [Function]

Returns T if X is a cons; NIL otherwise.

(defmacro name defmacro-lambda-list [doc] fformg*) [Macro]

De�nes a macro as the global de�nition of the symbol NAME. The complete syntax of a lambda-list

is: (var* [&optional var*] [&rest var] [&aux var*]) The doc-string DOC, if supplied, is saved as a

FUNCTION doc and can be retrieved by (documentation 'NAME 'function).

(defun name lambda-list [doc] fformg*) [Macro]

De�nes a function as the global de�nition of the symbol NAME. The complete syntax of a lambda-

list is: (var* [&optional var*] [&rest var] [&aux var*]) The doc-string DOC, if supplied, is saved as

a FUNCTION doc and can be retrieved by (documentation 'NAME 'function).

(do (f(var [init [step]])g*) (endtest fresultg*) ftag j statementg*) [Macro]

Creates a NIL block, binds each VAR to the value of the corresponding INIT, and then executes

STATEMENTs repeatedly until ENDTEST is satis�ed. After each iteration, assigns to each VAR

the value of the corresponding STEP.When ENDTEST is satis�ed, evaluates RESULTs as a PROGN

and returns the value of the last RESULT (or NIL if no RESULTs are supplied). Performs variable

bindings and assignments all at once, just like LET does.

(do* (f(var [init [step]])g*) (endtest fresultg*) tag j statement*) [Macro]

Just like DO, but performs variable bindings and assignments in serial, just like LET* and SETQ

do.

(dolist (var listform [result]) ftag j statementg*) [Macro]

Executes STATEMENTs, with VAR bound to each member of the list value of LISTFORM. Then

returns the value of RESULT (which defaults to NIL).

(dotimes (var countform [result]) ftag j statementg*) [Macro]

Executes STATEMENTs, with VAR bound to each number between 0 (inclusive) and the value of

COUNTFORM (exclusive). Then returns the value of RESULT (which defaults to NIL).

94

(elt a &rest indices) [Function]

A can be a list or an array. If A is a list and INDICES is a single number then the appropriate

element of A is returned. If is a list and INDICES is a list of numbers then the sublist of the

corresponding elements is returned. If A in an array then the number of INDICES must match the

ARRAY-RANK of A. If each index is a number then the appropriate array element is returned.

Otherwise the INDICES must all be lists of numbers and the corresponding submatrix of A is

returned. ELT can be used in setf.

(eq x y) [Function]

Returns T if X and Y are the same identical object; NIL otherwise.

(eql x y) [Function]

Returns T if X and Y are EQ, or if they are numbers of the same type with the same value, or if

they are identical strings. Returns NIL otherwise.

(equal x y) [Function]

Returns T if X and Y are EQL or if they are of the same type and corresponding components are

EQUAL. Returns NIL otherwise. Arrays must be EQ to be EQUAL.

(equalp x y) [Function]

Returns T if (equal x y), or x, y are numbers and (= x y), or x and y are strings and (string-equal

x y).

(�rst x) [Function]

Equivalent to (CAR X).

(format destination control &rest args) [Function]

Very basic implementation of Common Lisp format function. Only A, S, D, F, E, G, and G can

take two.

(funcall function &rest arguments) [Function]

Applies FUNCTION to the ARGUMENTs

(function x) [Special Form]

or #'x If X is a lambda expression, creates and returns a lexical closure of X in the current lexical

environment. If X is a symbol that names a function, returns that function.

(getf place indicator &optional default) [Function]

Returns property value of INDICATOR in PLACE, or DEFAULT if not found.

(identity x) [Function]

Simply returns X.

(if test then [else]) [Macro]

If TEST evaluates to non-NIL, then evaluates THEN and returns the result. If not, evaluates ELSE

(which defaults to NIL) and returns the result.

(last list) [Function]

Returns the last cons in LIST

(length sequence) [Function]

Returns the length of SEQUENCE.

(let (var j (var [value]) *) form*) [Function]

Initializes VARs, binding them to the values of VALUEs (which defaults to NIL) all at once, then

evaluates FORMs as a PROGN.

95

(let* (var j (var [value]) *) form*) [Function]

Initializes VARs, binding them to the values of VALUEs (which defaults to NIL) from left to right,

then evaluates FORMs as a PROGN.

(listp x) [Function]

Returns T if X is either a cons or NIL; NIL otherwise.

(map result-type function sequence &rest more-sequences) [Function]

FUNCTION must take as many arguments as there are sequences provided. RESULT-TYPE must

be the either the symbol VECTOR or the symbol LIST. The result is a sequence of the speci�ed type

such that the i-th element of the result is the result of applying FUNCTION to the i-th elements of

the SEQUENCEs.

(mapc fun list &rest more-lists) [Function]

Applies FUN to successive cars of LISTs. Returns the �rst LIST.

(mapcar fun list &rest more-lists) [Function]

Applies FUN to successive cars of LISTs and returns the results as a list.

(mapl fun list &rest more-lists) [Function]

Applies FUN to successive cdrs of LISTs. Returns the �rst LIST.

(maplist fun list &rest more-lists) [Function]

Applies FUN to successive cdrs of LISTs and returns the results as a list.

(member item list &key (test (function eql)) test-not) [Function]

Returns the tail of LIST beginning with the �rst ITEM.

(not x) [Function]

Returns T if X is NIL; NIL otherwise.

(nth n list) [Function]

Returns the N-th element of LIST, where the car of LIST is the zero-th element.

(nthcdr n list) [Function]

Returns the result of performing the CDR operation N times on LIST.

(null x) [Function]

Returns T if X is NIL; NIL otherwise.

(numberp x) [Function]

Returns T if X is any kind of number; NIL otherwise.

(objectp x) [Function]

Returns T if X is an object, NIL otherwise.

(open fname &key (direction :input)) [Function]

Opens �le named by string or symbol FNAME. DIRECTION is :INPUT or :OUTPUT.

(or fformg*) [Macro]

Evaluates FORMs in order from left to right. If any FORM evaluates to non-NIL, quits and returns

that value. If the last FORM is reached, returns whatever value it returns.

(prin1 object &optional (stream *standard-output*)) [Function]

Prints OBJECT in the most readable representation. Returns OBJECT.

96

(princ object &optional (stream *standard-output*)) [Function]

Prints OBJECT without escape characters. Returns OBJECT.

(print object &optional (stream *standard-output*)) [Function]

Outputs a newline character, and then prints OBJECT in the most readable representation. Returns

OBJECT.

(prog (fvar j (var [init])g*) ftag j statementg*) [Macro]

Binds VARs in parallel, and then executes STATEMENTs.

(prog* (fvar j (var [init])g*) ftag j statementg*) [Macro]

Binds VARs sequentially, and then executes STATEMENTs.

(prog1 �rst fformg*) [Macro]

Evaluates FIRST and FORMs in order, and returns the value of FIRST.

(prog2 �rst second fformsg*) [Macro]

Evaluates FIRST, SECOND, and FORMs in order, and returns the value of SECOND.

(progn fformg*) [Macro]

Evaluates FORMs in order, and returns whatever the last FORM returns.

(progv symbols values fformg*) [Macro]

Evaluates FORMs in order, with SYMBOLS dynamically bound to VALUES, and returns whatever

the last FORM returns.

(provide name) [Function]

Adds NAME to the list of modules.

(quote x) [Special Form]

or 'x Returns X without evaluating it.

(read &optional (stream *standard-input*) (eof-error-p t) (eof-value nil) (recursivep nil)) [Function]

Reads and returns the next object from STREAM.

(reduce function sequence &key initial-value) [Function]

Combines all the elements of SEQUENCE using a binary operation FUNCTION. If INITIAL-

VALUE is supplied it is logically placed before SEQUENCE.

(remove item list &key (test (function eql)) test-not) [Function]

Returns a copy of LIST with ITEM removed.

(remove-if test list) [Function]

Returns a copy of LIST with elements satisfying TEST removed.

(remove-if-not test list) [Function]

Returns a copy of LIST with elements not satisfying TEST removed.

(require name) [Function]

Loads module NAME, unless it has already been loaded. If PATH is supplied it is used as the

�le name; otherwise NAME is used. If �le NAME is not in the current directory *default-path* is

searched.

(rest x) [Function]

Equivalent to (CDR X).

97

(return [result]) [Macro]

Returns from the lexically surrounding PROG construct. The value of RESULT, which defaults to

NIL, is returned as the value of the PROG construct.

(reverse list) [Function]

Returns a new list containing the same elements as LIST but in reverse order.

(second x) [Function]

Equivalent to (CAR (CDR X)).

(set symbol value) [Function]

Assigns the value of VALUE to the dynamic variable named by SYMBOL (i. e. it changes the

global de�nition of SYMBOL), and returns the value assigned.

(setf fplace newvalueg*) [Macro]

Replaces the value in PLACE with the value of NEWVALUE, from left to right. Returns the value

of the last NEWVALUE. Each PLACE may be any one of the following: * A symbol that names

a variable. * A function call form whose �rst element is the name of the following functions: nth

aref subarray sublist select elt get symbol-value symbol-plist documentation slot-value c?r c??r c???r

c????r where '?' stands for either 'a' or 'd'.

(setq fvar formg*) [Macro]

VARs are not evaluated and must be symbols. Assigns the value of the �rst FORM to the �rst

VAR, then assigns the value of the second FORM to the second VAR, and so on. Returns the last

value assigned.

(string sym) [Function]

Returns print-name of SYM if SYM is a symbol, or SYM if SYM is a.

(stringp x) [Function]

Returns T if X is a string; NIL otherwise.

(sublis alist tree &key (test (function eql)) test-not) [Function]

Substitutes from ALIST for subtrees of TREE nondestructively.

(subst new old tree &key (test (function eql)) test-not) [Function]

Substitutes NEW for subtrees of TREE that match OLD.

(symbol-name symbol) [Function]

Returns the print name of the symbol SYMBOL.

(symbol-plist symbol) [Function]

Returns the property list of SYMBOL.

(symbol-value symbol) [Function]

Returns the current global value of the variable named by SYMBOL.

(symbolp x) [Function]

Returns T if X is a symbol; NIL otherwise.

(terpri &optional (stream *standard-output*)) [Function]

Outputs a newline character.

(time form) [Macro]

Form is evaluated and its result returned. In addition the time required for the evaluation is printed.

98

(type-of x) [Function]

Returns the type of X.

(unless test fformg*) [Macro]

If TEST evaluates to NIL evaluates FORMs as a PROGN. If not, returns NIL.

(unwind-protect protected-form fcleanup-formg*) [Macro]

Evaluates PROTECTED-FORM and returns whatever it returned. Guarantees that CLEANUP-

FORMs be always evaluated before exiting from the UNWIND-PROTECT form.

(when test fformg*) [Macro]

If TEST evaluates to non-NIL evaluates FORMs as a PROGN. If not, returns NIL.

99

Index

%* 89

* 75

** 75

+ 9, 12, 75

- 75

/ 75

/= 21, 75

< 75

<= 75

= 75

> 75

>= 75

abs 75

acos 75

alloc 92

and 93

append 22, 93

apply 93

apropos 93

apropos-list 93

aref 89

array-dimension 89

array-dimensions 89

array-in-bounds-p 89

array-rank 89

array-row-major-index 89

array-total-size 89

arrayp 89

arrays 53

asin 75

assoc 93

atan 75

atom 93

bayes-model 62, 78

Bayesian computing 61

Bayesian residual plot 45

beta-cdf 78

beta-dens 78

beta-quant 78

beta-rand 78

bind-columns 89

bind-rows 89

binomial-cdf 78

binomial-pmf 78

binomial-quant 78

binomial-rand 78

bivnorm-cdf 78

boundp 93

boxplot 13, 82

boxplot-x 82

brushing 32

call-cfun 92

call-fsub 92

call-lfun 92

car 93

case 94

cauchy-cdf 79

cauchy-dens 79

cauchy-quant 79

cauchy-rand 79

cdr 94

ceiling 75

chisq-cdf 79

chisq-dens 79

chisq-quant 79

chisq-rand 79

chol-decomp 90

clip board 28

close 94

close-all-plots 82

coerce 94

column-list 90

complex 76

compound data 8

cond 94

conjugate 76

cons 94

consp 94

Cook's distance 52

copy-array 90

copy-list 23, 90

copy-vector 90

cos 76

count-elements 90

covariance-matrix 79

cross-product 90

debug 92

def 11, 77

defmacro 94

defun 47, 94

determinant 90

diagonal 90

100

dialogs 73

di�erence 79

do 94

do* 94

dolist 40, 94

dotimes 40, 94

dribble 28

dyn-load 92

dynamic loading 70

dynamic simulation 39

elementwise arithmetic 12

elt 95

eq 95

eql 95

equal 95

equalp 95

exit 7, 92

exp 76

expand 92

expt 76

f-cdf 79

f-dens 79

f-quant 79

f-rand 79

�rst 95

�vnum 79

oat 76

oor 76

foreign function calls 70

format 95

funcall 95

gamma distribution 58

gamma-cdf 79

gamma-dens 79

gamma-quant 79

gamma-rand 79

Gauss-Newton algorithm 55

gc 92

getf 95

gradient 59

help 24, 92

help* 24, 93

Hessian matrix 59

histogram 13, 82

identity 95

identity-matrix 90

if 95

if-else 77

imagpart 76

index base 21

inner-product 90

intercept 42

interquartile-range 12, 80

interrupt 27, 68

inverse 90

iseq 77

last 95

length 95

let 47, 95

let* 50, 96

linking plots 35

link-views 82

list 8, 11, 77

listp 96

load 15, 28, 93

log 12, 76

log-gamma 76

lu-decomp 90

lu-solve 90

make-list 90

make-sweep-matrix 91

map 96

map-elements 91

mapc 96

mapcar 96

mapl 96

maplist 96

matmult 91

matrices 53

matrix 91

matrixp 91

max 76

maximization 58

Nelder-Mead simplex method 58

Newton's method 58

maximum likelihood estimation 58

mean 11, 80

median 11, 80, 96

menus 72

message 37

methods 51

de�ning 51

min 76

multiple regression 42, 44

name-list 36, 82

Nelder-Mead simplex method 59

101

nelmeadmax 59, 80

Newton's method 58

newtonmax 58, 80

nodebug 93

nonlinear regression 54

normal-cdf 80

normal-dens 80

normal-quant 80

normal-rand 80

not 96

nreg-model 54, 80

nth 96

nthcdr 96

null 96

numberp 96

numgrad 59, 80

numhess 59, 80

object 37

objectp 96

oneway-model 80

open 96

or 96

order 40, 80

outer-product 91

parallel boxplot 14

permute-array 91

phase 76

pi 16

plot messages

:abcplane 88

:abline 37, 88

:add-function 88

:add-lines 38, 85, 88

:add-points 38, 85, 88

:add-strings 88

:add-surface 88

:adjust-to-data 85

:all-points-showing-p 85

:all-points-unmasked-p 85

:angle 89

:any-points-selected-p 85

:apply-transformation 85

:clear 38, 85

:clear-lines 85

:clear-points 85

:clear-strings 85

:content-variables 85, 89

:cooks-distances 52

:depth-cuing 89

:do-idle 89

:do-mouse 85

:drag-grey-rect 85

:erase-selection 86

:�xed-aspect 86

:frame-location 86

:frame-size 86

:help 37

:idle-on 86

:linked 86

:num-bins 88

:num-cases 84

:num-lines 86

:num-points 86

:num-strings 86

:num-variables 86

:point-coordinate 86

:point-hilited 40, 86

:point-label 86

:point-selected 40, 86

:point-showing 40, 86

:point-symbol 86

:range 86

:real-to-screen 87

:redraw 87

:redraw-content 87

:rotate 89

:rotate-2 87

:scale-to-range 87

:scaled-range 87

:screen-to-real 87

:selection 87

:show-all-points 87

:showing-axes 89

:showing-labels 87

:title 87

:transformation 87

:unselect-all-points 87

:variable-label 87

:visible-range 87

:while-button-down 87

plot-function 19, 82

plot-lines 16, 82

plot-points 16, 82

pmax 76, 80

pmin 76, 80

poisson-cdf 81

poisson-pmf 81

poisson-quant 81

poisson-rand 81

posterior distributions 61

102

marginal densities 61

moments 61

prin1 96

princ 97

print 97

probability-plot 82

prod 76

prog 97

prog* 97

prog1 97

prog2 97

progn 97

progv 97

provide 97

qr-decomp 91

quantile 81

quantile-plot 83

quit 7

quote 9

random 76

rank 81

rcondest 91

read 97

read-data-columns 29, 81

read-data-�le 29, 81

reading data 29

realpart 76

reduce 97

regression 42

regression messages

:basis 83

:coef-estimates 43, 83

:coef-standard-errors 43, 83

:cooks-distances 52, 83

:df 83

:display 83

:�t-values 83

:included 83

:intercept 84

:leverages 84

:num-coefs 84

:num-included 84

:plot-bayes-residuals 45, 84

:plot-residuals 43, 84

:predictor-names 84

:r-squared 84

:raw-residuals 84

:residuals 84

:sigma-hat 84

:studentized-residuals 84

:sum-of-squares 84

:weights 84

:x-axis 88

:x-matrix 85

:xtxinv 85

:y-axis 88

regression-model 42 81

rem 77

remove 21, 97

remove-if 97

remove-if-not 97

repeat 20, 77

require 97

residual plot 43

residuals 43

rest 97

return 98

reverse 98

room 93

round 77

row-list 91

rseq 16 77

savevar 28

scatterplot-matrix 32, 83

second 98

select 78

selecting 32

set 98

setf 22, 98

setq 98

simple data 8

simple regression 42

sin 77

solve 91

sort-data 81

spin-function 83

spin-plot 30, 83

changing origin 30

split-list 91

sqrt 77

standard-deviation 12, 81

statinit.lsp 29

string 98

stringp 98

studentized residuals 44

sublis 98

subst 98

sum 77, 91

sv-decomp 91

103

sweep-operator 92

symbol value 11

symbol-name 98

symbol-plist 98

symbol-value 98

symbolp 98

t-cdf 81

t-dens 81

t-quant 82

t-rand 82

tan 77

terpri 98

time 98

transpose 92

truncate 77

type-of 99

undef 26, 78

uniform-rand 82

unless 99

unlink-views 83

unwind-protect 99

value 11

variables 26, 93

vector 78, 8

vectorp 92

when 99

which 21, 78

104

