
Windows Java Tools
Java Developers Kit
__

Version 1.0

The Java(tm) Tools Reference Pages (Windows)

javac
The Java compiler that you use to compile Java language programs into bytecodes.

java
The Java interpreter that you use to run Java programs.

jdb
The Java language debugger that helps you find and fix bugs in Java programs.

javah
Creates C header files and C stub files from a Java class. These files provide the connective glue that
allow your Java and C code to interact.

javap
Disassembles compiled Java files and prints out a representation of the Java bytecodes.

javadoc
Generates API documentation in HTML format from Java source code.

appletviewer
Allows you to run applets without a World-Wide Web browser.

__

appletviewer - The Java Applet
Viewer

appletviewer - The Java Applet Viewer

The appletviewer command allows you to run applets outside of the context of a World-Wide Web
browser.

SYNOPSIS

appletviewer [options] urls ...

DESCRIPTION

The appletviewer command connects to the document(s) or resource(s) designated by urls and
displays each applet referenced by that document in its own window. Note: if the document(s)
referred to by urls does not reference any applets with the APPLET tag, appletviewer does nothing.

OPTIONS

-debug
Starts the applet viewer in the Java debugger - jdb - thus allowing you to debug the applets in the
document.

java - The Java Interpreter

java - The Java Interpreter

java interprets (executes) Java bytecodes.

SYNOPSIS

java [options] classname <;args>;
java_g [options] classname <;args>;

DESCRIPTION

The java command executes Java bytecodes created by the Java compiler - javac.

The classname argument is the name of the class to be executed. classname must be fully qualified by
including its package in the name, for example:

java java.lang.String

Note that any arguments that appear after classname on the command line are passed to the class's
main() method.

java expects the bytecodes for the class to be in a file called classname.class which is generated by
compiling the corresponding source file with javac . All Java bytecode files end with the filename
extension .class which the compiler automatically adds when the class is compiled. classname must
contain a main() method defined as follows:

class Aclass {
 public static void main(String argv[]){
 . . .
 }
}

java executes the main() method and then exits unless main() creates one or more threads. If any
threads are created by main() then java doesn't exit until the last thread exits.

When you define your own classes you need to specify their location. Use CLASSPATH to do this.
CLASSPATH consists of a semi-colon separated list of directories that specifies the path. For example:

.;C:\users\dac\classes

Note that the system always appends the location of the system classes onto the end of the class path
unless you use the -classpath option to specify a path.

Ordinarily, you compile source files with javac then run the program using java . However, java can be
used to compile and run programs when the -cs option is used. As each class is loaded its modification
date is compared to the modification date of the class source file. If the source has been modified more
recently, it is recompiled and the new bytecode file is loaded. java repeats this procedure until all the
classes are correctly compiled and loaded.

The interpreter can determine whether a class is legitimate through the mechanism of verification.
Verification ensures that the bytecodes being interpreted do not violate any language constraints.

java_g is a non-optimized version of java suitable for use with debuggers like jdb.

OPTIONS

-debug
Allows the Java debugger - jdb to attach itself to this java session. When -debug is specified on the
command line java displays a password which must be used when starting the debugging session.

-cs, -checksource
When a compiled class is loaded, this option causes the modification time of the class bytecode file to
be compared to that of the class source file. If the source has been modified more recently, it is
recompiled and the new bytecode file is loaded.

-classpath path
Specifies the path java uses to look up classes. Overrides the default or the CLASSPATH
environment variable if it is set. Directories are separated by colons. Thus the general format for path
is:

.;<;your_path>;

For example:

.;C:\users\dac\classes;C:\tools\java\classes

-mx x
Sets the maximum size of the memory allocation pool (the garbage collected heap) to x . The default
is 16 megabytes of memory. x must be >; 1000 bytes.

By default, x is measured in bytes. You can specify x in either kilobytes or megabytes by appending
the letter ";k"; for kilobytes or the letter ";m"; for megabytes.

-ms x
Sets the startup size of the memory allocation pool (the garbage collected heap) to x . The default is 1
megabyte of memory. x must be >; 1000 bytes.

By default, x is measured in bytes. You can specify x in either kilobytes or megabytes by appending
the letter ";k"; for kilobytes or the letter ";m"; for megabytes.

-noasyncgc
Turns off asynchronous garbage collection. When activated no garbage collection takes place unless
it is explicitly called or the program runs out of memory. Normally garbage collection runs as an
asynchronous thread in parallel with other threads.

-ss x
Each Java thread has two stacks: one for Java code and one for C code. The -ss option sets the
maximum stack size that can be used by C code in a thread to x . Every thread that is spawned
during the execution of the program passed to java has x as its C stack size. The default units for x
are bytes. x must be >; 1000 bytes.

You can modify the meaning of x by appending either the letter ";k"; for kilobytes or the letter ";m"; for
megabytes. The default stack size is 128 kilobytes ("-ss 128k").

-oss x
Each Java thread has two stacks: one for Java code and one for C code. The -oss option sets the
maximum stack size that can be used by Java code in a thread to x . Every thread that is spawned
during the execution of the program passed to java has x as its Java stack size. The default units for
x are bytes. x must be >; 1000 bytes.

You can modify the meaning of x by appending either the letter ";k"; for kilobytes or the letter ";m"; for
megabytes. The default stack size is 400 kilobytes ("-oss 400k").

-t
Prints a trace of the instructions executed (java_g only).

-v, -verbose
Causes java to print a message to stdout each time a class file is loaded.

-verify
Runs the verifier on all code.

-verifyremote
Runs the verifier on all code that is loaded into the system via a classloader. verifyremote is the
default for the interpreter.

-noverify
Turns verification off.

-verbosegc
Causes the garbage collector to print out messages whenever it frees memory.

-DpropertyName=newValue
Redefines a property value. propertyName is the name of the property whose value you want to
change and newValue is the value to change it to. For example, this command line

java -Dawt.button.color=green ...

sets the value of the property awt.button.color to green. java accepts any number of -D options on
the command line.

ENVIRONMENT VARIABLES

CLASSPATH
Used to provide the system a path to user-defined classes. Directories are separated by semi-colons,
for example,

.;C:\users\dac\classes;C:\tools\java\classes

SEE ALSO

javac, jdb, javah, javap, javadoc

javac - The Java Compiler

javac - The Java Compiler

javac compiles Java programs.

SYNOPSIS

javac [options] filename.java ...
javac_g [options] filename.java ...

DESCRIPTION

The javac command compiles Java source code into Java bytecodes. You then use the Java
interpreter - the java command - to interprete the Java bytecodes.

Java source code must be contained in files whose filenames end with the .java extension. For every
class defined in the source files passed to javac , the compiler stores the resulting bytecodes in a file
named classname.class . The compiler places the resulting .class files in the same directory as the
corresponding .java file (unless you specify the -d option).

When you define your own classes you need to specify their location. Use CLASSPATH to do this.
CLASSPATH consists of a semi-colon separated list of directories that specifies the path. If the source
files passed to javac reference a class not defined in any of the other files passed to javac then javac
searches for the referenced class using the class path. For example:

.;C:\users\dac\classes

Note that the system always appends the location of the system classes onto the end of the class path
unless you use the -classpath option to specify a path.

javac_g is a non-optimized version of javac suitable for use with debuggers like jdb.

OPTIONS

-classpath path
Specifies the path javac uses to look up classes. Overrides the default or the CLASSPATH
environment variable if it is set. Directories are separated by semi-colons. Thus the general format for
path is:

.;<;your_path>;

For example:

.;C:\users\dac\classes;C:\tools\java\classes

-d directory
Specifies the root directory of the class hierarchy. Thus doing:

javac -d <;my_dir>; MyProgram.java

causes the .class files for the classes in the MyProgram.java source file to be saved in the directory
my_dir.

-g
Enables generation of debugging tables. Debugging tables contain information about line numbers
and local variables - information used by Java debugging tools. By default, only line numbers are
generated, unless optimization (-O) is turned on.

-nowarn
Turns off warnings. If used the compiler does not print out any warnings.

-O
Optimizes compiled code by inlining static, final and private methods. Note that your classes may get
larger in size.

-verbose
Causes the compiler and linker to print out messages about what source files are being compiled and
what class files are being loaded.

ENVIRONMENT VARIABLES

CLASSPATH
Used to provide the system a path to user-defined classes. Directories are separated by semi-colons,
for example,

.;C:\users\dac\classes;C:\tools\java\classes

SEE ALSO

java, jdb, javah, javap, javadoc

javadoc-The Java API
Documentation Generator

javadoc - The Java API Documentation
Generator

Generates API documentation from source files.

SYNOPSIS

javadoc [options] package | filename.java...

DESCRIPTION

javadoc parses the declarations and doc comments in Java source files and formats the public API
into a set of HTML pages. As an argument to javadoc you can pass in either a package name or a
list of Java source files.

Within doc comments, javadoc supports the use of special doc tags to augment the API documentation.
javadoc also supports standard HTML within doc comments. This is useful for code samples and for
formatting text.

The package specified on the command line must be in your CLASSPATH. Note that javadoc uses .java
files not .class files.

javadoc reformats and displays all public and protected declarations for,

· Classes and Interfaces
· Methods
· Variables

Doc Comments

Java source files can include doc comments. Doc comments begin with /** and indicate text to be
included automatically in generated documentation.

Standard HTML

You can embed standard html tags within a doc comment. However,don't use tags heading tags like
<;h1>; or <;hr>;. Because javadoc creates an entire structured document and these structural tags
interfere with the formatting of the generated document.

javadoc Tags

javadoc parses special tags that are recognized when they are embedded within an Java doc
comment. These doc tags enable you to autogenerate a complete, well-formatted API from your
source code. The tags start with an @.

Tags must start at the beginning of a line. Keep tags with the same name together within a doc comment.
For example, put all your @author tags together so javadoc can tell where the list ends.

Class Documentation Tags

@see classname
Adds a hyperlinked "See Also" entry to the class.

@see fully-qualified-classname
Adds a hyperlinked "See Also" entry to the class.

@see fully-qualified-classname#method-name
Adds a hyperlinked "See Also" entry to the method in the specified class.

@version version-text
Adds a "Version" entry.

@author your-name
Creates an "Author" entry. There can be multiple author tags.

An example of a class comment:

/**
 * A class representing a window on the screen.
 * For example:
 * <;pre>;
 * Window win = new Window(parent);
 * win.show();
 * <;/pre>;
 *
 * @see awt.BaseWindow
 * @see awt.Button
 * @version 1.2 12 Dec 1994
 * @author Sami Shaio
 */
class Window extends BaseWindow {
 ...
}

Variable Documentation Tags

In addition to HTML text, variable comments can contain only the @see tag (see above).

An example of a variable comment:

/**
 * The X-coordinate of the window
 * @see window#1
 */
int x = 1263732;

Method Documentation Tags

Can contain @see tags, as well as:
@param parameter-name description...

Adds a parameter to the "Parameters" section. The description may be continued on the next line.

@return description...
Adds a "Returns" section, which contains the description of the return value.

@exception fully-qualified-class-name description...
Adds a "Throws" entry, which contains the name of the exception that may be thrown by the method.
The exception is linked to its class documentation.

An example of a method comment:

/**
 * Return the character at the specified index. An index ranges
 * from <;tt>;0<;/tt>; to <;tt>;length() - 1<;/tt>;.
 * @param index The index of the desired character
 * @return The desired character
 * @exception StringIndexOutOfRangeException When the index
 * is not in the range <;tt>;0<;/tt>;>; to <;tt>;length()
- 1<;/tt>;.
 */
public char charAt(int index) {
 ...
}

OPTIONS

-classpath path
Specifies the path javadoc uses to look up the .java files. Overrides the default or the CLASSPATH
environment variable, if it is set. Directories are separated by semi-colons, for example:

.;C:\users\dac\classes;C:\tools\java\classes

-d directory
Specifies the directory where javadoc stores the generated HTML files. For example:

javadoc -d C:\usrs\dac\public_html\doc java.lang

-verbose
Causes the compiler and linker to print out messages about what source files are being compiled and
what object files are being loaded.

ENVIRONMENT VARIABLES

CLASSPATH
Used to provide the system a path to user-defined classes. Directories are separated by semi-colons,
for example,

.;C:\users\dac\classes;C:\tools\java\classes

SEE ALSO

javac, java, jdb, javah, javap ,

javah - C Header and Stub File
Generator

javah - C Header and Stub File Generator

javah produces C header files and C source files from a Java class. These files provide the
connective glue that allow your Java and C code to interact.

SYNOPSIS

javah [options] classname. . .
javah_g [options] classname. . .

DESCRIPTION

javah generates C header and source files that are needed to implement native methods. The
generated header and source files are used by C programs to reference an object's instance
variables from native source code. The .h file contains a struct definition whose layout parallels the
layout of the corresponding class. The fields in the struct correspond to instance variables in the
class.

The name of the header file and the structure declared within it are derived from the name of the class. If
the class passed to javah is inside a package, the package name is prepended to both the header file
name and the structure name. Underscores (_) are used as name delimiters.

By default javah creates a header file for each class listed on the command line and puts the files in the
current directory. Use the -stubs option to create source files. Use the -o option to concatenate the
results for all listed classes into a single file.

javah_g is a non-optimized version of javah suitable for use with debuggers like jdb.

OPTIONS

-o outputfile
Concatenates the resulting header or source files for all the classes listed on the command line into
outputfile.

-d directory
Sets the directory where javah saves the header files or the stub files.

-td directory
Sets the directory where javah stores temporary files. By default, javah stores temporary files in the

directory specified by the %TEMP% environment variable. If %TEMP% is unspecified, then javah
checks for a %TMP% environment variable. And finally, if %TMP% is unspecified, javah creates the
directory C:\tmp and stores the files there.

-stubs
Causes javah to generate C declarations from the Java object file.

-verbose
Causes javah to print a message to stdout concerning the status of the generated files.

-classpath path
Specifies the path javah uses to look up classes. Overrides the default or the CLASSPATH
environment variable if it is set. Directories are separated by semi-colons. Thus the general format for
path is:

.;<;your_path>;

For example:

.;C:\users\dac\classes;C:\tools\java\classes

ENVIRONMENT VARIABLES

CLASSPATH
Used to provide the system a path to user-defined classes. Directories are separated by semi-colons,
for example,

.;C:\users\dac\classes;C:\tools\java\classes

SEE ALSO

javac, java, jdb, javap, javadoc

javap - The Java Class File
Disassembler

javap - The Java Class File Disassembler

Disassembles class files.

SYNOPSIS

javap [options] class. . .

DESCRIPTION

The javap command disassembles a class file. Its output depends on the options used. If no options
are used, javap prints out the public fields and methods of the classes passed to it. javap prints its
output to stdout. For example, compile the following class declaration:

class C {
 static int a = 1;
 static int b = 2;
 static {
 System.out.println(a);
 }
 static {
 a++;
 b = 7;
 System.out.println(a);
 System.out.println(b);
 }
 static {
 System.out.println(b);
 }
 public static void main(String args[]) {
 C c = new C();
 }
}

When the resulting class C is passed to javap using no options the following output results:

Compiled from C:\users\dac\C.java

private class C extends java\lang\Object {
 static int a;
 static int b;
 public static void main(java\lang\String []);
 public C();
 static void ();
}

OPTIONS

-l
Prints out line and local variable tables.

-p
Prints out the private and protected methods and fields of the class in addition to the public ones.

-c
Prints out disassembled code, i.e., the instructions that comprise the Java bytecodes, for each of the
methods in the class. For example, passing class C to javap using the -c flag results in the following
output:

Compiled from C:\users\dac\C.java
private class C extends java\lang\Object {
 static int a;
 static int b;
 public static void main(java\lang\String []);
 public C();
 static void ();

Method void main(java\lang\String [])
 0 new #4
 3 invokenonvirtual #9 ()V>
 6 return

Method C()
 0 aload_0 0
 1 invokenonvirtual #10 ()V>
 4 return

Method void ()
 0 iconst_1
 1 putstatic #7
 4 getstatic #6
 7 getstatic #7
 10 invokevirtual #8
 13 getstatic #7
 16 iconst_1
 17 iadd
 18 putstatic #7

 21 bipush 7
 23 putstatic #5
 26 getstatic #6
 29 getstatic #7
 32 invokevirtual #8
 35 getstatic #6
 38 getstatic #5
 41 invokevirtual #8
 44 iconst_2
 45 putstatic #5
 48 getstatic #6
 51 getstatic #5
 54 invokevirtual #8
 57 return

}

-classpath path
Specifies the path javap uses to look up classes. Overrides the default or the CLASSPATH
environment variable if it is set. Directories are separated by semi-colons. Thus the general format for
path is:

.;<;your_path>;

For example:

.;C:\users\dac\classes;C:\tools\java\classes

ENVIRONMENT VARIABLES

CLASSPATH
Used to provide the system a path to user-defined classes. Directories are separated by semi-colons,
for example,

.;C:\users\dac\classes;C:\tools\java\classes

SEE ALSO

javac, java, jdb, javah, javadoc ,

jdb - The Java Debugger

jdb - The Java Debugger

jdb helps you find and fix bugs in Java language programs.

SYNOPSIS

jdb [options]

DESCRIPTION

The Java Debugger, jdb , is a dbx-like command-line debugger for Java classes. It uses the Java
Debugger API to provide inspection and debugging of a local or remote Java interpreter.

Starting a jdb Session

Like dbx, there are two ways jdb can be used for debugging. The most frequently used way is to
have jdb start the Java interpreter with the class to be debugged. This is done by substituting the
command jdb for java in the command line. For example, to start HotJava under jdb, you use the
following:

C:\> jdb browser.hotjava

or

C:\> jdb -classpath %INSTALL_DIR%\classes -ms4m browser.hotjava

When started this way, jdb invokes a second Java interpreter with any specified parameters, loads the
specified class, and stops before executing that class's first instruction.

The second way to use jdb is by attaching it to a Java interpreter that is already running. For security
reasons, Java interpreters can only be debugged if they have been started with the -debug option. When
started with the -debug option, the Java interpreter prints out a password for jdb's use.

To attach jdb to a running Java interpreter (once the session password is known), invoke it as follows:

C:\> jdb -host <;hostname>; -password <;password>;

Basic jdb Commands

The following is a list of the basic jdb commands. The Java debugger supports other commands which
you can list using jdb's help command.

NOTE: To browse local (stack) variables, the class must have been compiled with the -g option.
help, or ?

The most important jdb command, help displays the list of recognized commands with a brief
description.

print
Browses Java objects. The print command calls the object's toString() method, so it will be
formatted differently depending on its class.

Classes are specified by either their object ID or by name. If a class is already loaded, a substring can
be used, such as Thread for java.lang.Thread. If a class isn't loaded, its full name must be
specified, and the class will be loaded as a side effect. This is needed to set breakpoints in
referenced classes before an applet runs.

print supports Java expressions, such as print MyClass.clsVar. Method invocation will not be
supported in the 1.0 release, however, as the compiler needs to be enhanced first.

dump
Dumps an object's instance variables. Objects are specified by their object ID (a hexadecimal
integer).

Classes are specified by either their object ID or by name. If a class is already loaded, a substring can
be used, such as Thread for java.lang.Thread. If a class isn't loaded, its full name must be
specified, and the class will be loaded as a side effect. This is needed to set breakpoints in
referenced classes before an applet runs.

The dump command supports Java expressions such as dump 0x12345678.myCache[3].foo.
Method invocation will not be supported in the 1.0 release, however, as the compiler needs to be
enhanced first.

threads
Lists the current threads. This lists all threads in the default threadgroup, which is normally the first
non-system group. (The threadgroups command lists all threadgroups.) Threads are referenced by
their object ID, or if they are in the default thread group, with the form t@<;index>;, such as t@3.

where
Dumps the stack of either a specified thread, or the current thread (which is set with the thread
command). If that thread is suspended (either because it's at a breakpoint or via the suspend
command), local (stack) and instance variables can be browsed with the print and dump
commands. The up and down commands select which stack frame is current.

Breakpoints

Breakpoints are set in jdb in classes, such as " stop at MyClass:45". The source file line number
must be specified, or the name of the method (the breakpoint will then be set at the first instruction of
that method). The clear command removes breakpoints using a similar syntax, while the cont
command continues execution.

Single-stepping is not currently implemented, but is hoped to be available for version 1.0.

Exceptions

When an exception occurs for which there isn't a catch statement anywhere up a Java program's
stack, the Java runtime normally dumps an exception trace and exits. When running under jdb,
however, that exception is treated as a non-recoverable breakpoint, and jdb stops at the offending
instruction. If that class was compiled with the -g option, instance and local variables can be printed to
determine the cause of the exception.

Specific exceptions may be optionally debugged with the catch command, for example: "catch
FileNotFoundException" or "catch mypackage.BigTroubleException. The Java debugging facility
keeps a list of these exceptions, and when one is thrown, it is treated as if a breakpoint was set on the
instruction which caused the exception. The ignore command removes exception classes from this list.

NOTE: The ignore command does not cause the Java interpreter to ignore specific exceptions, only the
debugger.

OPTIONS

When you use jdb in place of the Java interpreter on the command line jdb accepts the same
options as the java command.

When you use jdb to attach to a running Java interpreter session, jdb accepts these options:
-host <;hostname>;

Sets the name of the host machine on which the interpreter session to attach to is running.
-password <;password>;

"Logs in" to the active interpreter session. This is the password printed by the Java interpreter prints
out when invoked with the -debug option.

ENVIRONMENT VARIABLES

CLASSPATH
Used to provide the system a path to user-defined classes. Directories are separated by semi-colons,
for example,

.;C:\users\dac\classes;C:\tools\java\classes

SEE ALSO

javac, java, javah, javap javadoc

