
The Java Virtual Machine
Specification

Next   

__

The Java Virtual Machine Specification   

__

Table of Contents   
1 - The Java Virtual Machine    

 About the Spec   
 Components of the Virtual Machine   
 The Java Instruction Set   
 Primitive Data Types   
 Registers   
 The Java Stack   
 Operand Stack   
 Garbage Collected Heap   
 Method Area   
 Constant Pool   
 Limitations   
 An Interpreter for the Java Instruction Set   
 Instruction Format   
 Conventions   

2 - The Virtual Machine Instruction Set    
 Pushing Constants onto the Stack   
 Loading Local Variables Onto the Stack   
 Storing Stack Values into Local Variables   
 Managing Arrays   
 Stack Instructions   
 Arithmetic Instructions   
 Logical Instructions   
 Conversion Operations   
 Control Transfer Instructions   
 Function Return   
 Table Jumping   
 Manipulating Object Fields   
 Method Invocation   
 Exception Handling   
 Miscellaneous Object Operations   
 Monitors   
 Debugging   

3 - Class File Format    
 Important Note   
 Overview   
 Format   
 Methods   
 Constant Pool   
 Signatures   

Appendix A - - An Optimization    
 Pushing Constants onto the Stack (_quick variants)   
 Managing Arrays (_quick variants)   
 Manipulating Object Fields (_quick variants)   
 Method Invocation (_quick variants)   
 Miscellaneous Object Operations (_quick variants)   
 Constant Pool Resolution   

__
Next   

   
This documentation was ported to MS Window's Help by Bill Bercik.
Bill may be reached at: bill@dippybird.com   

Stop by his web site and get the latest update to the Information Portafilter    for Java at:
http://www.dippybird.com/java.html

   

Generated with CERN WebMaker   

WebMaker welcome
CERN - European Laboratory for Particle Physics - PT Group   

   
Configurable converter of FrameMaker documents to the World-Wide Web    

__

The combination of WebMaker and FrameMaker enables you to publish simultaneously both the printed
and the WWW versions of a document. WebMaker converts FrameMaker documents and books to a
hypertext network of HTML files that may be viewed by World-Wide Web browsers such as Mosaic.   

WWW is a global hypertext information network conceived at CERN, the European Laboratory for Particle
Physics.   

WebMaker translates FrameMaker entities such as imported and native graphics, mathematics, tables,
figures, anchored frames, cross-references, character highlights, indices and footnotes. It generates
tables of contents automatically, and transforms into graphical images elements that are unknown to
HTML. The user has control over a number of conversion aspects:

·    the rules for the breakup of the Frame document into the component HTML files;   
·    a panel of hypertext links to facilitate navigation within the WWW documents web;   
·    the rules for the mapping of paragraph and character formats to HTML constructs;   
·    the specification of material for selective inclusion in the FrameMaker or WWW document.   

__
WebMaker is Copyright (C) 1994 CERN Geneva
__

email: webmaker@cern.ch
Tel: +41-22-767 9393
Fax: +41-22-767 9196
URL: http://www.cern.ch/WebMaker/

__

 WebMaker - CERN Programming Techniques Group - 12 October 94

Constant Pool - FootNote

FootNote   

 There are two differences between this format and the "standard" UTF format. First, the null byte (0x00)
is encoded as two bytes rather than as one byte, so that strings never have embedded nulls. Second,
only the one-byte, two-byte, and three-byte formats are used. We do not recognize the longer formats.   

vmspec.: The Java Virtual
Machine- Garbage Collected

Heap
Contents Prev Next Up   

__

The Java Virtual Machine   
__

Garbage Collected Heap   

__
 The Java heap is the runtime data area from which class instances (objects) are allocated. The Java
language is designed to be garbage collected -- it does not give the programmer the ability to deallocate
objects explicitly. Java does not presuppose any particular kind of garbage collection; various algorithms
may be used depending on system requirements.   

 Java objects are always referred to and operated on indirectly, through handles. Handles may be thought
of as pointers to areas allocated out of the garbage collected heap.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Method Area

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Method Area   

__
 The method area is analogous to the store for compiled code in conventional languages or the text
segment in a UNIX process. It stores method code (compiled Java code), symbol tables, etc.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Constant Pool

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Constant Pool   
__
 Associated with each class is a constant pool. The constant pool contains the names of all fields,
methods, and other such information that is used by any method in the class. At the end of the chapter
containing the class file format there is a table of the constant pool types and their associated values.   

    When the class is first read in from memory, the class structure has two fields related to the constant
pool. The nconstants field indicates the number of constants in this classes constant pool. The
constant_info.constants_offset field contains an integ er offset (in bytes) from the start of the class to the
data which describes the constants in the class.   

constant_pool[0] may be used by the implementation for whatever purposes it wishes.   

 constant_pool[1] ... constant_pool[nconstants - 1] are described by the sequence of bytes beginning at
the byte indicated by constant_info.constants_offset in the class object. Each sequence of bytes contains
a "type" field, followed by one or more type-dependent bytes, describing in more detail the specific field.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Limitations

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Limitations   

__
The Java virtual machine design imposes some limitations on Java implementations based on it.   

· 32-bit pointers and stacks limit the Java virtual machine's internal addressing to 4G   

· Signed 16-bit offsets (e.g. ifeq) for branch and jump instructions limit the size of an Java method to
32k   

· Unsigned 8-bit local variable indices limit the number of local variables per Java stack frame to 256   

· Signed 16-bit indices into the constant pool limit the number of constant pool entries per method to
32k   

For _quick instructions only [See Appendix A]:   

· Unsigned 8-bit offsets into objects (e.g. invokemethod_quick) limit the number of methods in a class
to 256   

· Unsigned 8-bit argument counts (e.g. invokemethod_quick) limits the size of a method call's
parameters to 256 32 bit words, where a long or double parameters occupy two words each.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- An Interpreter for the

Java Instruc
Contents Prev Next Up   

__

The Java Virtual Machine   
__

An Interpreter for the Java Instruction Set   
__
 The instruction set of the Java virtual machine can be implemented using conventional methods like
compiling to native code or interpretation. Initial Java implementations will include an interpreter for the
instruction set. The interpreter sees compiled Java code as a stream of bytes that it interprets as virtual
machine instructions.   

The inner loop of the interpreter is essentially:   

do {
fetch a byte
execute an action depending on the value of the byte
} while (there is more to do);

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Instruction Format

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Instruction Format   
 instruction name   
 The Visual Stack Representation   

__
Java virtual machine instructions are represented in this document by an entry of the form:   

instruction name   

A short description of the instruction

   

xbc ., value1, value2 xde ..., value3

 A longer description that explains the functions of the instruction and indicates any exceptions that might
be thrown during execution.   

The items in the syntax diagram are always 8 bits wide.   

The Visual Stack Representation   

 The effect of an instruction's execution on the operand stack is represented textually, with the stack
growing from left to right. Words on the operand stack are all 32 bits wide. Thus, for   

..., value1, value2 xde ..., value3

 value2 is on top of the stack with value1 just beneath it. Both are 32-bit quantities. As a result of the
execution of the instruction, value1 and value2 are popped from the stack and replaced by value3, which
has been calculated by the instruction. The remainder of the stack, represented by ellipsis, is unaffected
by the instruction's execution.   

 Long integers and double precision floats are always shown as taking up two words on the operand
stack, e.g.,   

... xde ..., value-word1, value-word2

 Implementors are free to decide the appropriate way to divide two-word long integers and double
precision floats into word1 and word2.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Conventions

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Conventions   

__
 Operations of the Java virtual machine most often take their operands from the stack and put their results
back on the stack. As a convention, the descriptions do not usually mention when the stack is the source
or destination of an operation, but will al ways mention when it is not. For instance, the iload instruction
has the short description "Load integer from local variable." Implicitly, the integer is loaded onto the stack.
The iadd instruction is described as "Integer add"; both its source and destination are the stack.   

 Instructions that do not affect the control flow of a computation may be assumed to always advance the
virtual machine pc to the opcode of the following instruction. Only instructions that do affect control flow
will explicitly mention the effect they have on pc.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec: The Virtual Machine
Instruction Set

Contents Prev Next Up   

__

2 The Virtual Machine Instruction Set   
__

 Pushing Constants onto the Stack   
 Loading Local Variables Onto the Stack   
 Storing Stack Values into Local Variables   
 Managing Arrays   
 Stack Instructions   
 Arithmetic Instructions   
 Logical Instructions   
 Conversion Operations   
 Control Transfer Instructions   
 Function Return   
 Table Jumping   
 Manipulating Object Fields   
 Method Invocation   
 Exception Handling   
 Miscellaneous Object Operations   
 Monitors   
 Debugging   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Pushing

Constants onto t
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Pushing Constants onto the Stack   

 bipush   
 sipush   
 ldc1   
 ldc2   
 ldc2w   
 aconst_null   
 iconst_m1   
 iconst_<;n>;   
 lconst_<;l>;   
 fconst_<;f>;   
 dconst_<;d>;   

__

bipush   

Push one-byte signed integer

   

... =>; ..., value

 byte1 is interpreted as a signed 8-bit value. This value is expanded to an integer and pushed onto the
operand stack.   

sipush   

Push two-byte signed integer

   

... =>; ..., item

 byte1 and byte2 are assembled into a signed 16-bit value. This value is expanded to an integer and
pushed onto the operand stack.   

ldc1   

Push item from constant pool

   

... =>; ..., item

 indexbyte1 is used as an unsigned 8-bit index into the constant pool of the current class. The item at that
index is resolved and pushed onto the stack.   

ldc2   

Push item from constant pool

   

... =>; ..., item

 indexbyte1 and indexbyte2 are used to construct an unsigned 16-bit index into the constant pool of the
current class. The item at that index is resolved and pushed onto the stack.   

ldc2w   

Push long or double from constant pool

   

... =>; ..., constant-word1, constant-word2

 indexbyte1 and indexbyte2 are used to construct an unsigned 16-bit index into the constant pool of the
current class. The two-word constant at that index is resolved and pushed onto the stack.   

aconst_null   

Push null object

   

... =>; ..., null

Push the null object onto the stack.   

iconst_m1   

Push integer constant -1

   

... =>; ..., -1

Push the integer -1 onto the stack.   

iconst_<;n>;   

Push integer constant

 <;n>;   

... =>; ..., <;n>;

Forms: iconst_0 = 3, iconst_1 = 4, iconst_2 = 5, iconst_3 = 6, iconst_4 = 7, iconst_5 = 8   

Push the integer <;n>; onto the stack.   

lconst_<;l>;   

Push long integer constant

   

... =>; ..., <;l>;-word1, <;l>;-word2

Forms: lconst_0 = 9, lconst_1 = 10   

Push the long integer <;l>; onto the stack.   

fconst_<;f>;   

Push single float

   

... =>; ..., <;f>;

Forms: fconst_0 = 11, fconst_1 = 12, fconst_2 = 13   

Push the single precision floating point number <;f>; onto the stack.   

dconst_<;d>;   

Push double float

   

... =>; ..., <;d>;-word1, <;d>;-word2

Forms: dconst_0 = 14, dconst_1 = 15   

Push the double precision floating point number <;d>; onto the stack.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Loading Local

Variables
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Loading Local Variables Onto the Stack   

 iload   
 iload_<;n>;   
 lload   
 lload_<;n>;   
 fload   
 fload_<;n>;   
 dload   
 dload_<;n>;   
 aload   
 aload_<;n>;   

__

iload   

Load integer from local variable

   

... =>; ..., value

 Local variable vindex in the current Java frame should contain an integer. The value of that variable is
pushed onto the operand stack.   

iload_<;n>;   

Load integer from local variable

   

... =>; ..., value

Forms: iload_0 = 27, iload_1 = 27, iload_2 = 28, iload_3 = 29   

 Local variable <;n>;in the current Java frame should contain an integer. The value of that variable is
pushed onto the operand stack.   

 This instruction is the same as iload with a vindex of <;n>;, except that the operand <;n>; is implicit.   

lload   

Load long integer from local variable

   

... =>; ..., value-word1, value-word2

 Local variables vindex and vindex+1 in the current Java frame should together contain a long integer.
The value of contained in those variables is pushed onto the operand stack.   

lload_<;n>;   

Load long integer from local variable

   

... =>; ..., value-word1, value-word2

Forms: lload_0 = 30, lload_1 = 31, lload_2 = 32, lload_3 = 33   

 Local variables <;n>; and <;n>;+1 in the current Java frame should together contain a long integer. The
value contained in those variables is pushed onto the operand stack.   

This opcode is the same as lload with a vindex of <;n>;, except that the operand <;n>; is implicit.   

fload   

Load single float from local variable

   

... =>; ..., value

 Local variable vindex in the current Java frame should contain a single precision floating point number.
The value of that variable is pushed onto the operand stack.   

fload_<;n>;   

Load single float from local variable

   

... =>; ..., value

Forms: fload_0 = 34, fload_1 = 35, fload_2 = 36, fload_3 = 37   

 Local variable <;n>; in the current Java frame should contain a single precision floating point number.
The value of that variable is pushed onto the operand stack.   

This opcode is the same as fload with a vindex of <;n>;, except that the operand <;n>; is implicit.   

dload   

Load double float from local variable

   

... =>; ..., value-word1, value-word2

 Local variables vindex and vindex+1 in the current Java frame should together contain a double precision
float point number. The value contained in those variables is pushed onto the operand stack.   

dload_<;n>;   

Load double float from local variable

   

... =>; ..., value-word1, value-word2

Forms: dload_0 = 38, dload_1 = 39, dload_2 = 40, dload_3 = 41   

 Local variables <;n>; and <;n>;+1 in the current Java frame should together contain a double precision
floating point number. The value contained in those variables is pushed onto the operand stack.   

This opcode is the same as dload with a vindex of <;n>;, except that the operand <;n>; is implicit.   

aload   

Load local object variable

   

... =>; ..., value

 Local variable vindex in the current Java frame should contain a handle to an object or to an array. The
value of that variable is pushed onto the operand stack.   

aload_<;n>;   

Load object reference from local variable

   

... =>; ..., value

Forms: aload_0 = 42, aload_1 = 43, aload_2 = 44, aload_3 = 45   

 Local variable n in the current Java frame should contain a handle to an object or to an array. The value
of that variable is pushed onto the operand stack.   

This opcode is the same as aload with a vindex of <;n>;, except that the operand <;n>; is implicit.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec: The Java Virtual
Machine

Contents Prev Next Up   

__

1 The Java Virtual Machine   

__

 About the Spec   
 Components of the Virtual Machine   
 The Java Instruction Set   
 Primitive Data Types   
 Registers   
 The Java Stack   
 Operand Stack   
 Garbage Collected Heap   
 Method Area   
 Constant Pool   
 Limitations   
 An Interpreter for the Java Instruction Set   
 Instruction Format   
 Conventions   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Storing Stack

Values int
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Storing Stack Values into Local Variables   

 istore   
 istore_<;n>;   
 lstore   
 lstore_<;n>;   
 fstore   
 fstore_<;n>;   
 dstore   
 dstore_<;n>;   
 astore   
 astore_<;n>;   
 iinc   

__

istore   

Store integer into local variable

   

..., value =>; ...

value should be an integer. Local variable vindex in the current Java frame is set to value.   

istore_<;n>;   

Store integer into local variable

   

..., value =>; ...

Forms: istore_0 = 59, istore_1 = 60, istore_2 = 61, istore_3 = 62   

value should be an integer. Local variable <;n>; in the current Java frame is set to value.   

 This instruction is the same as istore with a vindex of <;n>;, except that the operand <;n>; is implicit.   

lstore   

Store long integer into local variable

   

..., value-word1, value-word2 =>; ...

 value should be a long integer. Local variables vindex and vindex+1 in the current Java frame are set to
value.   

lstore_<;n>;   

Store long integer into local variable

   

..., value-word1, value-word2 =>; ...

Forms: lstore_0 = 63, lstore_1 = 64, lstore_2 = 65, lstore_3 = 66   

 value should be a long integer. Local variables <;n>; and <;n>;+1 in the current Java frame are set to
value.   

 This instruction is the same as lstore with a vindex of <;n>;, except that the operand <;n>; is implicit.   

fstore   

Store single float into local variable

   

..., value =>; ...

 value should be a single precision floating point number. Local variable vindex in the current Java frame
is set to value.   

fstore_<;n>;   

Store single float into local variable   

..., value =>; ...

Possible Instructions:   

 fstore_0 = 67, fstore_1 = 68, fstore_2 = 69, fstore_3 = 70   

 value should be a single precision floating point number. Local variable <;n>; in the current Java frame is
set to value.   

 This instruction is the same as fstore with a vindex of <;n>;, except that the operand <;n>; is implicit.   

dstore   

Store double float into local variable

   

..., value-word1, value-word2 =>; ...

 value should be a double precision floating point number. Local variables vindex and vindex+1 in the
current Java frame are set to value.   

dstore_<;n>;   

Store double float into local variable   

..., value-word1, value-word2 =>; ...

Forms: dstore_0 = 71, dstore_1 = 72, dstore_2 = 73, dstore_3 = 74   

 value should be an double precision floating point number. Local variables <;n>; and <;n>;+1 in the
current Java frame are set to value.   

 This instruction is the same as dstore with a vindex of <;n>;, except that the operand <;n>; is implicit.   

astore   

Store object reference into local variable

   

..., value =>; ...

 value should be a handle to an array or to an object. Local variable vindex in the current Java frame is
set to value.   

astore_<;n>;   

Store object reference into local variable   

..., value =>; ...

Forms: astore_0 = 75, astore_1 = 76, astore_2 = 77, astore_3 = 78   

 value should be a handle to an array or to an object. Local variable <;n>; in the current Java frame is set
to value.   

 This instruction is the same as astore with a vindex of <;n>;, except that the operand <;n>; is implicit.   

iinc   

Increment local variable by constant

   

no change

 Local variable vindex in the current Java frame should contain an integer. Its value is incremented by the
value const, where const is treated as a signed 8-bit quantity.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Managing Arrays
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Managing Arrays   

 newarray   
 anewarray   
 multianewarray   
 arraylength   
 iaload   
 laload   
 faload   
 daload   
 aaload   
 baload   
 caload   
 saload   
 iastore   
 lastore   
 fastore   
 dastore   
 aastore   
 bastore   
 castore   
 sastore   

__

newarray   

Allocate new array

   

..., size =>; result

size should be an integer. It represents the number of elements in the new array.   

 atype is an internal code that indicates the type of array to allocate. Possible values for atype are as
follows:

 A new array of the indicated or computed atype, capable of holding size elements,
is allocated. Allocation of an array large enough to contain nelem items of atype is attempted. All elements
of the array are initialized to zero.   

 If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough memory to
allocate the array, an OutOfMemoryException is thrown.   

anewarray   

Allocate new array

 of objects   

..., size=>; result

size should be an integer. It represents the number of elements in the new array.   

 indexbyte1 and indexbyte2 are are used to construct an index into the constant pool of the current class.
The item at that index is resolved. The resulting entry should be a class.   

 A new array of the indicated class type and capable of holding size elements is allocated. Allocation of an
array large enough to contain size items of the given class type is attempted. All elements of the array are
initialized to zero.   

 If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough memory to
allocate the array, an OutOfMemoryException is thrown.   

anewarray is used to create a single dimension of an array of objects. For example, to create   

new Thread[7]

the following code is used:   

bipush 7
anewarray <;Class "java.lang.Thread">;

 anewarray can also be used to create the outermost dimension of a multi-dimensional array. For
example, the following array declaration:   

new int[6][]

is created with the following code:   

bipush 6
anewarray <;Class "[I">;

See CONSTANT_Class in the Class File Format chapter for information on array class names.   

multianewarray   

Allocate new multi-dimensional array

   

..., size1 size2...sizen =>; result

 Each size should be an integer. Each represents the number of elements in a dimension of the array.   

 indexbyte1 and indexbyte2 are are used to construct an index into the constant pool of the current class.
The item at that index is resolved. The resulting entry should be a class.   

dimensions has the following aspects:   

· It should be an integer xb3 1.   

· It represents the number of dimensions being created. It must be the number of dimensions of the
array class.   

· It represents the number of elements that are popped off the stack. All must be integers greater than
or equal to zero. These are used as the sizes of the dimension. For example, to create:   

 new int[6][3][]

the following code is used:   

 bipush 6
 bipush 3
 multianewarray <;Class "[[[I">; 2

 If any of the size arguments on the stack is less than zero, a NegativeArraySizeException is thrown. If
there is not enough memory to allocate the array, an OutOfMemoryException is thrown.   

Note: It is more efficient to use newarray or anewarray when creating a single dimension.   

See CONSTANT_Class in the Class File Format chapter for information on array class names.   

arraylength   

Get length of array   

..., handle =>; ..., length

 handle should be the handle of an array. The length of the array is determined and replaces handle on
the top of the stack.   

If the handle is null, a NullPointerException is thrown.   

iaload   

Load integer from array

   

..., array, index =>; ..., value

 array should be an array of integers. index should be an integer. The integer value at position number
index in array is retrieved and pushed onto the top of the stack.   

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.   

laload   

Load long integer from array

   

..., array, index =>; ..., value-word1, value-word2

 array should be an array of long integers. index should be an integer. The long integer value at position
number index in array is retrieved and pushed onto the top of the stack.   

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.   

faload   

Load single float from array

   

..., array, index =>; ..., value

 array should be an array of single precision floating point numbers. index should be an integer. The
single precision floating point number value at position number index in array is retrieved and pushed
onto the top of the stack.   

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.   

daload   

Load double float from array

   

..., array, index =>; ..., value-word1, value-word2

 array should be an array of double precision floating point numbers. index should be an integer. The
double precision floating point number value at position number index in array is retrieved and pushed
onto the top of the stack.   

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.   

aaload   

Load object reference from array

   

..., array, index =>; ..., value

 array should be an array of handles to objects or arrays. index should be an integer. The object or array
value at position number index in array is retrieved and pushed onto the top of the stack.   

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.   

baload   

Load signed byte from array

   

..., array, index =>; ..., value

 array should be an array of signed bytes. index should be an integer. The signed byte value at position
number index in array is retrieved, expanded to an integer, and pushed onto the top of the stack.   

If array is null a NullPointerException is thrown. If index is not within the bounds of array an

ArrayIndexOutOfBoundsException is thrown.   

caload   

Load character from array

   

..., array, index =>; ..., value

 array should be an array of characters. index should be an integer. The character value at position
number index in array is retrieved, expanded to an integer, and pushed onto the top of the stack.   

If array is null a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.   

saload   

Load short from array

   

..., array, index =>; ..., value

 array should be an array of (signed) short integers. index should be an integer. The short integer value at
position number index in array is retrieved, expanded to an integer, and pushed onto the top of the stack. 

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

iastore   

Store into integer array

   

..., array, index, value =>; ...

 array should be an array of integers, index should be an integer, and value an integer. The integer value
is stored at position index in array.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

lastore   

Store into long integer array

   

..., array, index, value-word1, value-word2 =>; ...

 array should be an array of long integers, index should be an integer, and value a long integer. The long
integer value is stored at position index in array.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

fastore   

Store into single float array

   

..., array, index, value =>; ...

 array should be an array of single precision floating point numbers, index should be an integer, and value
a single precision floating point number. The single float value is stored at position index in array.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

dastore   

Store into double float array

   

..., array, index, value-word1, value-word2 =>; ...

 array should be an array of double precision floating point numbers, index should be an integer, and
value a double precision floating point number. The double float value is stored at position index in array.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

aastore   

Store into object reference array

   

..., array, index, value =>; ...

 array should be an array of handles to objects or to arrays, index should be an integer, and value a
handle to an object or array. The handle value is stored at position index in array.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

 The actual type of value should be conformable with the actual type of the elements of the array. For
example, it is legal to store and instance of class Thread in an array of class Object, but not vice versa.
An IncompatibleTypeException is thrown if an attempt is made to store an incompatible object reference.   

bastore   

Store into signed byte array

   

..., array, index, value =>; ...

 array should be an array of signed bytes, index should be an integer, and value an integer. The integer
value is stored at position index in array. If value is too large to be a signed byte, it is truncated.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

castore   

Store into character array

   

..., array, index, value =>; ...

 array should be an array of characters, index should be an integer, and value an integer. The integer
value is stored at position index in array. If value is too large to be a character, it is truncated.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown.   

sastore   

Store into short array   

..., array, index, value =>; ...

 array should be an array of shorts , index should be an integer, and value an integer. The integer value is
stored at position index in array. If value is too large to be an short, it is truncated.   

If array is null, a NullPointerException is thrown. If index is not within the bounds of array an
ArrayIndexOutOfBoundsException is thrown.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Stack

Instructions
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Stack Instructions   

 nop   
 pop   
 pop2   
 dup   
 dup2   
 dup_x1   
 dup2_x1   
 dup_x2   
 dup2_x2   
 swap   

__

nop   

Do nothing.

   

no change

Do nothing.   

pop   

Pop top stack word

   

..., any =>; ...

Pop the top word from the stack.   

pop2   

Pop top two stack word

s   

..., any2, any1 =>; ...

Pop the top two words from the stack.   

dup   

Duplicate top stack word

   

..., any =>; ..., any, any

Duplicate the top word on the stack.   

dup2   

Duplicate top two stack word

s   

..., any2, any1 =>; ..., any2, any1, any2, any1

Duplicate the top two words on the stack.   

dup_x1   

Duplicate top stack word and put two down

   

..., any2, any1 =>; ..., any1, any2, any1

Duplicate the top word on the stack and insert the copy two words down in the stack.   

dup2_x1   

Duplicate top two stack words and put two down

   

..., any3, any2, any1 =>; ..., any2,, any1, any3, any2, any1

Duplicate the top two words on the stack and insert the copies two words down in the stack.   

dup_x2   

Duplicate top stack word and put three down.

   

..., any3, any2, any1 =>; ..., any1, any3, any2, any1

Duplicate the top word on the stack and insert the copy three words down in the stack.   

dup2_x2   

Duplicate top two stack words and put three down

   

..., any4, any3, any2, any1 =>; ..., any2, any1, any4, any3, any2, any1

Duplicate the top two words on the stack and insert the copies three words down in the stack.   

swap   

Swap top two stack words

   

..., any2, any1 =>; ..., any2, any1

Swap the top two elements on the stack.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Arithmetic

Instructions
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Arithmetic Instructions   

 iadd   
 ladd   
 fadd   
 dadd   
 isub   
 lsub   
 fsub   
 dsub   
 imul   
 lmul   
 fmul   
 dmul   
 idiv   
 ldiv   
 fdiv   
 ddiv   
 imod   
 lmod   
 fmod   
 dmod   
 ineg   
 lneg   
 fneg   
 dneg   

__

iadd   

Integer add

   

..., value1, value2 =>; ..., result

 value1 and value2 should be integers. The values are added and are replaced on the stack by their
integer sum.   

ladd   

Long integer add

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should be long integers. The values are added and are replaced on the stack by their
long integer sum.   

fadd   

Single float add

   

..., value1, value2 =>; ..., result

 value1 and value2 should be single precision floating point numbers. The values are added and are
replaced on the stack by their single precision floating point sum.   

dadd   

Double float add

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should be double precision floating point numbers. The values are added and are
replaced on the stack by their double precision floating point sum.   

isub   

Integer subtract

   

..., value1, value2 =>; ..., result

 value1 and value2 should be integers. value2 is subtracted from value1, and both values are replaced on
the stack by their integer difference.   

lsub   

Long integer subtract

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should be long integers. value2 is subtracted from value1, and both values are
replaced on the stack by their long integer difference.   

fsub   

Single float subtract

   

..., value1, value2 =>; ..., result

 value1 and value2 should be single precision floating point numbers. value2 is subtracted from value1,
and both values are replaced on the stack by their single precision floating point difference.   

dsub   

Double float subtract

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should be double precision floating point numbers. value2 is subtracted from value1,
and both values are replaced on the stack by their double precision floating point difference.   

imul   

Integer multiply

   

..., value1, value2 =>; ..., result

 value1 and value2 should be integers. Both values are replaced on the stack by their integer product.   

lmul   

Long integer multiply

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should be long integers. Both values are replaced on the stack by their long integer
product.   

fmul   

Single float multiply

   

..., value1, value2 =>; ..., result

 value1 and value2 should be single precision floating point numbers. Both values are replaced on the
stack by their single precision floating point product.   

dmul   

Double float multiply

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should be double precision floating point numbers. Both values are replaced on the
stack by their double precision floating point product.   

idiv   

Integer divide

   

..., value1, value2 =>; ..., result

 value1 and value2 should be integers. value1 is divided by value2, and both values are replaced on the
stack by their integer quotient.   

 The result is truncated to the nearest integer that is between it and 0. An attempt to divide by zero results
in a "/ by zero" ArithmeticException being thrown.   

ldiv   

Long integer divide

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-

word1, result-word2

 value1 and value2 should be long integers. value1 is divided by value2, and both values are replaced on
the stack by their long integer quotient.   

 The result is truncated to the nearest integer that is between it and 0. An attempt to divide by zero results
in a "/ by zero" ArithmeticException being thrown.   

fdiv   

Single float divide

   

..., value1, value2 =>; ..., result

 value1 and value2 should be single precision floating point numbers. value1 is divided by value2, and
both values are replaced on the stack by their single precision floating point quotient.   

Divide by zero results in the quotient being NaN.   

ddiv   

Double float divide

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should be double precision floating point numbers. value1 is divided by value2, and
both values are replaced on the stack by their double precision floating point quotient.   

Divide by zero results in the quotient being NaN.   

imod   

Integer mod

   

..., value1, value2 =>; ..., result

 value1 and value2 should both be integers. value1 is divided by value2, and both values are replaced on
the stack by their integer remainder.   

An attempt to divide by zero results in a "/ by zero" ArithmeticException being thrown.   

lmod   

Long integer mod

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should both be long integers. value1 is divided by value2, and both values are
replaced on the stack by their long integer remainder.   

An attempt to divide by zero results in a "/ by zero" ArithmeticException being thrown.   

fmod   

Single float mod

   

..., value1, value2 =>; ..., result

 value1 and value2 should both be single precision floating point numbers. value1 is divided by value2,
and the quotient is truncated to an integer, and then multiplied by value2. The product is subtracted from
value1.The result, as a single precision floa ting point number, replaces both values on the stack. That is,
result = value1 - ((int)(value1/value2)) * value2.   

An attempt to divide by zero results in NaN.   

dmod   

Double float mod

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should both be double precision floating point numbers. value1 is divided by value2,
and the quotient is truncated to an integer, and then multiplied by value2. The product is subtracted from
value1.The result, as a double precision floa ting point number, replaces both values on the stack. That is,
result = value1 - ((int)(value1/value2)) * value2.   

An attempt to divide by zero results in NaN.   

ineg   

Integer negate

   

..., value =>; ..., result

value should be an integer. It is replaced on the stack by its arithmetic negation.   

lneg   

Long integer

 negate   

..., value-word1, value-word2 =>; ..., result-word1, result-word2

value should be a long integer. It is replaced on the stack by its arithmetic negation.   

fneg   

Single float negate

   

..., value =>; ..., result

 value should be a single precision floating point number. It is replaced on the stack by its arithmetic
negation.   

dneg   

Double float negate

   

..., value-word1, value-word2 =>; ..., result-word1, result-word2

 value should be a double precision floating point number. It is replaced on the stack by its arithmetic
negation.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Logical

Instructions
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Logical Instructions   

 ishl   
 ishr   
 iushr   
 lshl   
 lshr   
 lushr   
 iand   
 land   
 ior   
 lor   
 ixor   
 lxor   

__

ishl   

Integer shift left

   

..., value1, value2 =>; ..., result

 value1 and value2 should be integers. value1 is shifted left by the amount indicated by the low five bits of
value2. The integer result replaces both values on the stack.   

ishr   

Integer arithmetic shift right

   

..., value1, value2 =>; ..., result

 value1 and value2 should be integers. value1 is shifted right arithmetically (with sign extension) by the
amount indicated by the low five bits of value2. The integer result replaces both values on the stack.   

iushr   

Integer logical shift right

   

..., value1, value2 =>; ..., result

 value1 and value2 should be integers. value1 is shifted right logically (with no sign extension) by the
amount indicated by the low five bits of value2. The integer result replaces both values on the stack.   

lshl   

Long integer shift left

   

..., value1-word1, value1-word2, value2 =>; ..., result-word1, result-word2

 value1 should be a long integer and value2 should be an integer. value1 is shifted left by the amount
indicated by the low six bits of value2. The long integer result replaces both values on the stack.   

lshr   

L

ong integer arithmetic shift right   

..., value1-word1, value1-word2, value2 =>; ..., result-word1, result-word2

 value1 should be a long integer and value2 should be an integer. value1 is shifted right arithmetically
(with sign extension) by the amount indicated by the low six bits of value2. The long integer result
replaces both values on the stack.   

lushr   

Long integer logical shift right

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 should be a long integer and value2 should be an integer. value1 is shifted right logically (with no
sign extension) by the amount indicated by the low six bits of value2. The long integer result replaces
both values on the stack.   

iand   

Integer boolean and

   

..., value1, value2 =>; ..., result

 value1 and value2 should both be integers. They are replaced on the stack by their bitwise conjunction
(AND).   

land   

Long integer boolean and

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should both be long integers. They are replaced on the stack by their bitwise
conjunction (AND).   

ior   

Integer boolean or

   

..., value1, value2 =>; ..., result

 value1 and value2 should both be integers. They are replaced on the stack by their bitwise disjunction
(OR).   

lor   

Long integer boolean or

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should both be long integers. They are replaced on the stack by their bitwise
disjunction (OR).   

ixor   

Integer boolean xor

   

..., value1, value2 =>; ..., result

 value1 and value2 should both be integers. They are replaced on the stack by their bitwise exclusive
disjunction (XOR).   

lxor   

Long integer boolean xor

   

..., value1-word1, value1-word2, value2-word1, value2-word2 =>; ..., result-
word1, result-word2

 value1 and value2 should both be long integers. They are replaced on the stack by their bitwise exclusive
disjunction (XOR).   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Conversion

Operations
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Conversion Operations   

 i2l   
 i2f   
 i2d   
 l2i   
 l2f   
 l2d   
 f2i   
 f2l   
 f2d   
 d2i   
 d2l   
 d2f   
 int2byte   
 int2char   
 int2short   

__

i2l   

Integer to long integer conversion

   

..., value =>; ..., result-word1, result-word2

 value should be an integer. It is converted to a long integer. The result replaces value on the stack.   

i2f   

Integer to single float

   

..., value =>; ..., result

 value should be an integer. It is converted to a single precision floating point number. The result replaces
value on the stack.   

i2d   

Integer to double float

   

..., value =>; ..., result-word1, result-word2

 value should be an integer. It is converted to a double precision floating point number. The result
replaces value on the stack.   

l2i   

Long integer to integer

   

..., value-word1, value-word2 =>; ..., result

 value should be a long integer. It is converted to a integer. The result replaces value on the stack.   

l2f   

Long integer to single float

   

..., value-word1, value-word2 =>; ..., result

 value should be a long integer. It is converted to a single precision floating point number. The result
replaces value on the stack.   

l2d   

Long integer to double float

   

..., value-word1, value-word2 =>; ..., result-word1, result-word2

 value should be a long integer. It is converted to a double precision floating point number. The result
replaces value on the stack.   

f2i   

Single float to integer

   

..., value =>; ..., result

 value should be a single precision floating point number. It is converted to an integer. The result replaces
value on the stack.   

f2l   

Single float to long integer

   

..., value =>; ..., result-word1, result-word2

 value should be a single precision floating point number. It is converted to a long integer. The result
replaces value on the stack.   

f2d   

Single float to double float

   

..., value =>; ..., result-word1, result-word2

 value should be a single precision floating point number. It is converted to a double precision floating
point number. The result replaces value on the stack.   

d2i   

Double float to integer

   

..., value-word1, value-word2 =>; ..., result

 value should be a double precision floating point number. It is converted to an integer. The result
replaces value on the stack.   

d2l   

Double float to long integer

   

..., value-word1, value-word2 =>; ..., result-word1, result-word2

 value should be a double precision floating point number. It is converted to a long integer. The result
replaces value on the stack.   

d2f   

Double float to single float

   

..., value-word1, value-word2 =>; ..., result

 value should be a double precision floating point number. It is converted to a single precision floating
point number. The result replaces value on the stack.   

int2byte   

Integer to signed byte

   

..., value =>; ..., result-word1, result-word2

 value should be an integer. It is truncated to a signed 8-bit result, then sign extended to an integer. The
result replaces value on the stack.   

int2char   

Integer to char   

..., <;int>; =>; ..., <;result>;

 value should be an integer. It is truncated to an unsigned 16-bit result, then sign extended to an integer.
The result replaces value on the stack.   

int2short   

Integer to char   

..., <;int>; =>; ..., <;result>;

 value should be an integer. It is truncated to a signed 16-bit result, then sign extended to an integer. The
result replaces value on the stack.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Control Transfer

Instruc
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Control Transfer Instructions   

 ifeq   
 iflt   
 ifle   
 ifne   
 ifgt   
 ifge   
 if_icmpeq   
 if_icmpne   
 if_icmplt   
 if_icmpgt   
 if_icmple   
 if_icmpge   
 lcmp   
 fcmpl   
 fcmpg   
 dcmpl   
 dcmpg   
 if_acmpeq   
 if_acmpne   
 goto   
 jsr   
 ret   

__

ifeq   

Branch if equal

 to 0   

..., value =>; ...

 value should be an integer or a handle to an object or to an array. It is popped from the stack. If value is
equal to zero, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the ifeq.   

iflt   

Branch if less than

 0   

..., value =>; ...

 value should be an integer. It is popped from the stack. If value is less than zero, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the pc.
Otherwise execution proceeds at the instruction following the iflt.   

ifle   

Branch if less than or equal

 to 0   

..., value =>; ...

 value should be an integer. It is popped from the stack. If value is less than or equal to zero, branchbyte1
and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
pc. Otherwise execution proceeds at the instruction following the ifle.   

ifne   

Branch if not equal

 to 0   

..., value =>; ...

 value should be an integer or a handle to an object or to an array. It is popped from the stack. If value is
not equal to zero, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the ifne.   

ifgt   

Branch if greater than

 0   

..., value =>; ...

 value should be an integer. It is popped from the stack. If value is greater than zero, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the pc.
Otherwise execution proceeds at the instruction following the ifgt.   

ifge   

Branch if greater than or equal

 to 0   

..., value =>; ...

 value should be an integer. It is popped from the stack. If value is greater than or equal to zero,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the pc. Otherwise execution proceeds at the instruction following the ifge.   

if_icmpeq   

Branch if integers equal

   

..., value1, value2 =>; ...

 value1 and value2 should be integers. They are both popped from the stack. If value1 is equal to value2,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the pc. Otherwise execution proceeds at the instruction following the if_icmpeq.   

if_icmpne   

Branch if integers not equal

   

..., value1, value2 =>; ...

 value1 and value2 should be integers. They are both popped from the stack. If value1 is not equal to
value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at
that offset from the pc. Otherwise execution proceeds at the instruction following the if_icmpne.   

if_icmplt   

Branch if integer less than

   

..., value1, value2 =>; ...

 value1 and value2 should be integers. They are both popped from the stack. If value1 is less than
value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at
that offset from the pc. Otherwise execution proceeds at the instruction following the if_icmplt.   

if_icmpgt   

Branch if integer greater than

   

..., value1, value2 =>; ...

 value1 and value2 should be integers. They are both popped from the stack. If value1 is greater than
value2 (C's >;), branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_icmpgt.   

if_icmple   

Branch if integer less than or equal to

   

..., value1, value2 =>; ...

 value1 and value2 should be integers. They are both popped from the stack. If value1 is less than or
equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_icmple.   

if_icmpge   

Branch if integer greater than or equal to

   

..., value1, value2 =>; ...

 value1 and value2 should be integers. They are both popped from the stack. If value1 is greater than or
equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_icmpge.   

lcmp   

Long integer compare

   

..., value1-word1, value1-word2, value2-word1, value2-word1 =>; ..., result

 value1 and value2 should be long integers. They are both popped from the stack and compared. If
value1 is greater than value2, the integer value 1 is pushed onto the stack. If value1 is equal to value2,
the value 0 is pushed onto the stack. If value1 is less than value2, the value -1 is pushed onto the stack.   

fcmpl   

Single float compare (-1 on incomparable

)   

..., value1, value2 =>; ..., result

 value1 and value2 should be single precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1
is pushed onto the stack.   

If either value1 or value2 is NaN, the value -1 is pushed onto the stack.   

fcmpg   

Single float compare (1 on incomparable

)   

..., value1, value2 =>; ..., result

 value1 and value2 should be single precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1
is pushed onto the stack.   

If either value1 or value2 is NaN, the value 1 is pushed onto the stack.   

dcmpl   

Double float compare (-1 on incomparable

)   

..., value1-word1, value1-word2, value2-word1, value2-word1 =>; ..., result

 value1 and value2 should be double precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1
is pushed onto the stack.   

If either value1 or value2 is NaN, the value -1 is pushed onto the stack.   

dcmpg   

Double float compare (1 on incomparable

)   

..., value1-word1, value1-word2, value2-word1, value2-word1 =>; ..., result

 value1 and value2 should be double precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value -1
is pushed onto the stack.   

If either value1 or value2 is NaN, the value 1 is pushed onto the stack.   

if_acmpeq   

Branch if objects same

   

..., value1, value2 =>; ...

 value1 and value2 should be handles to objects or arrays. They are both popped from the stack. If value1
is equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following the
if_acmpeq.   

if_acmpne   

Branch if objects not same

   

..., value1, value2 =>; ...

 value1 and value2 should be handles to objects or arrays. They are both popped from the stack. If value1
is not equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset.
Execution proceeds at that offset from the pc. Otherwise execution proceeds at the instruction following
the if_acmpne.   

goto   

Branch

always   

no change

 branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the pc.   

jsr   

Jump subroutine

   

... =>; ..., return-address

 branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. The address of the instruction
immediately following the jsr is pushed onto the stack. Execution proceeds at the offset from the current
pc.   

The jsr instruction is used in the implementation of Java's finally keyword.   

ret   

Return from subroutine

   

no change

 Local variable vindex in the current Java frame should contain a return address. The contents of the local
variable are written into the pc.   

 Note that jsr pushes the address onto the stack, and ret gets it out of a local variable. This asymmetry is
intentional.   

The ret instruction is used in the implementation of Java's finally keyword.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Function Return
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Function Return   

 ireturn   
 lreturn   
 freturn   
 dreturn   
 areturn   
 return   

__

ireturn   

Return integer from function

   

..., value =>; [empty]

 value should be an integer. The value value is pushed onto the stack of the previous execution
environment. Any other values on the operand stack are discarded. The interpreter then returns control to
its caller.   

 [Note: this may be confusing to people expecting that the stack is like the C stack. However, the operand
stack should be seen as consisting of a number of discontiguous segments, each corresponding to a
method invocation. A return instruction empties the    Java operand stack segment corresponding to the
activity of the returning invocation, but does not affect the segment of any parent invocations.]]   

lreturn   

Return long integer from function

   

..., value-word1, value-word2 =>; [empty]

 value should be a long integer. The value value is pushed onto the stack of the previous execution
environment. Any other values on the operand stack are discarded. The interpreter then returns control to
its caller.   

freturn   

Return single float from function

   

..., value =>; [empty]

 value should be a single precision floating point number. The value value is pushed onto the stack of the
previous execution environment. Any other values on the operand stack are discarded. The interpreter
then returns control to its caller.   

dreturn   

Return double float from function

   

..., value-word1, value-word2 =>; [empty]

 value should be a double precision floating point number. The value value is pushed onto the stack of the
previous execution environment. Any other values on the operand stack are discarded. The interpreter
then returns control to its caller.   

areturn   

Return object reference from function

   

..., value =>; [empty]

 value should be a handle to an object or an array. The value value is pushed onto the stack of the
previous execution environment. Any other values on the operand stack are discarded. The interpreter
then returns control to its caller.   

return   

Return (void) from procedure

   

... =>; [empty]

All values on the operand stack are discarded. The interpreter then returns control to its caller.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Table Jumping

Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Table Jumping   

 tableswitch   
 lookupswitch   

__

tableswitch   

Access jump table by index and jump

   

..., index =>; ...

 tableswitch is a variable length instruction. Immediately after the tableswitch opcode, between zero and
three 0's are inserted as padding so that the next byte begins at an address that is a multiple of four. After
the padding follow a series of signed 4 -byte quantities: default-offset, low, high, and then high-low+1
further signed 4-byte offsets. The high-low+1 signed 4-byte offsets are treated as a 0-based jump table.   

 The index should be an integer. If index is less than low or index is greater than high, then default-offset

is added to the pc. Otherwise, low is subtracted from index, and the index-low'th element of the jump
table is extracted, and added to the pc.   

lookupswitch   

Access jump table by key match and jump

   

..., key =>; ...

 lookupswitch is a variable length instruction. Immediately after the lookupswitch opcode, between zero
and three 0's are inserted as padding so that the next byte begins at an address that is a multiple of four.   

 Immediately after the padding are a series of pairs of signed 4-byte quantities. The first pair is special.
The first item of that pair is the default offset, and the second item of that pair gives the number of pairs
that follow. Each subsequent pair consists of a match and an offset.   

 The key should be an integer. The integer key on the stack is compared against each of the matches. If it
is equal to one of them, the offset is added to the pc. If the key does not match any of the matches, the
default offset is added to the pc.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Manipulating

Object Fiel
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Manipulating Object Fields   

 putfield   
 getfield   
 putstatic   
 getstatic   

__

putfield   

Set field in object

   

..., handle, value =>; ...

 OR   

..., handle, value-word1, value-word2 =>; ...

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a class name and a field name. The item is resolved to a
field block pointer which has both the field width (in bytes) and the field offset (in bytes).   

 The field at that offset from the start of the instance pointed to by handle will be set to the value on the
top of the stack.   

This instruction handles both 32-bit and 64-bit wide fields.   

If handle is null, a NullPointerException exception is generated.   

If the specified field is a static field, a DynamicRefOfStaticField exception is generated.   

getfield   

Fetch field from object

   

..., handle =>; ..., value

 OR   

..., handle =>; ..., value-word1, value-word2

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a class name and a field name. The item is resolved to a
field block pointer which has both the field width (in bytes) and the field offset (in bytes).   

 handle should be a handle to an object. The value at offset into the object referenced by handle replaces
handle on the top of the stack.   

This instruction handles both 32-bit and 64-bit wide fields.   

If the specified field is a static field, a DynamicRefOfStaticField exception is generated.   

putstatic   

Set static field in class

   

..., value =>; ...

 OR   

..., value-word1, value-word2 =>; ...

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. That field will be set to have the
value on the top of the stack.   

This instruction works for both 32-bit and 64-bit wide fields.   

If the specified field is a dynamic field, a StaticRefOfDynamicFieldException is generated.   

getstatic   

Get static field from class

   

..., =>; ..., value

 OR   

..., =>; ..., value-word1, value-word2

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The value of that field will replace
handle on the stack.   

This instruction handles both 32-bit and 64-bit wide fields.   

If the specified field is a dynamic field, a StaticRefOfDynamicFieldException is generated.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- About the Spec

Contents Prev Next Up   

__

The Java Virtual Machine   
__

About the Spec   

 Format   
 Purpose and Vision   
 The Java Interchange Specification   
 Abstractions Left to the Implementor   

__

Format   

 This document describes the Java virtual machine and the instruction set. In this introduction, each
component of the machine is briefly described. This introduction includes a description of the format used
to present the opcode instructions. The next chapter is the instructions themselves.   

 Chapter 3 is the spec for the Java class file format, the binary file produced by the Java compiler. The file
will contain information about the class, its fields, its methods, and the virtual machine code required to
execute the methods.   

 Appendix A contains some instructions used internally on the WebRunner/Java project for compiler
optimization.   

Purpose and Vision   

 The Java virtual machine specification has a purpose that is both like and unlike equivalent documents
for other languages and abstract machines. It is intended to present an abstract, logical machine design
free from the distraction of inconsequential de tails of any implementation. It does not anticipate an
implementation technology, or an implementation host. At the same time it gives a reader sufficient
information to enable implementation of the abstract design in a range of technologies.   

 However, the intent of the WebRunner/Java project is to create a language and application that will allow
the interchange over the Internet of "executable content," which will be embodied by compiled Java code.
The project specifically does not want Java to be a proprietary language, and does not want to be the sole
purveyor of Java language implementations. Rather, we hope to make documents like this one, and
source code for our implementation, freely available for people to use as they choose.   

 This vision for WebRunner can only be achieved if the executable content can be reliably shared
between different Java implementations. These intentions prohibit the definition of the Java virtual
machine from being fully abstract. Rather, relevant logica l elements of the design have to be made

sufficiently concrete to enable the interchange of compiled Java code. This does not collapse the Java
virtual machine specification to a description of an Java implementation; elements of the design that do
not pl ay a part in the interchange of executable content remain abstract. But it does force us to specify, in
addition to the abstract machine design, a concrete interchange format for compiled Java code.   

The Java Interchange Specification   

The Java interchange specification must contain the following components:   

· the instruction set syntax, including opcode and operand sizes and types, alignment and endian-
ness   

· the instruction set opcode values   

· the values of any identifiers (e.g. type identifiers) in instructions or in supporting structures   

· the layout of supporting structures that appear in compiled Java code (e.g. the constant pool)   

· the Java object format (the .class file format).   

 In this version of the Java virtual machine specification, many of these have not yet been described, and
are priorities for the next release of the document.   

Abstractions Left to the Implementor   

 Elements of the design unrelated to the interchange of compiled Java code remain abstract, including:   

· layout and management of the runtime data areas   

· garbage collection algorithms, strategies and constraints   

· the compiler, development environment, and runtime (apart from the need to generate and read
valid compiled Java code)   

· optimizations that can be performed once compiled Java code is received.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Method

Invocation
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Method Invocation   

 invokevirtual   
 invokenonvirtual   
 invokestatic   
 invokeinterface   

__
 There are four instructions that implement different flavors of method invocation. At first glance their
descriptions look very similar but they are all slightly different.   

invokevirtual   
 Searches for a non-static method through an object instance, taking into account the runtime type of
the object being referenced. It's behavior is similar to that of virtual methods in C++.   

invokenonvirtual   
 Searches for a non-static method beginning in a particular class. Behaves like non-virtual methods in
C++.   

invokestatic   
Searches for a static method in a particular class.   

invokeinterface   
 Begins searching with the most derived class of the object, like invokemethod, but it does not
presume to know which slot the method will be found in. It's behavior is similar to mutiply-inherited
virtual methods in C++.   

invokevirtual   

Invoke class method

   

..., object, [arg1, [arg2 ...]], ... =>; ...

 The operand stack is assumed to contain a handle to an object or to an array and some number of
arguments. indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current
class. The item at that index in the constant pool co ntains the complete method signature. A pointer to
the object's method table is retrieved from the object handle. The method signature is looked up in the the
method table. The method signature is guaranteed to exactly match one of the method signatures in the
table.   

 The result of the lookup is an index into the method table of the named class, where a pointer to the
method block for the matched method is found. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.   

 If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables use d by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment. Finally,
execution continues with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

invokenonvirtual   

Invoke non-virtual method

   

..., object, nargs, ... =>; ...

 The operand stack is assumed to contain a handle to an object and some number of arguments.
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index in the constant pool contains the comp lete method signature. A pointer to the object's
method table is retrieved from the object handle. The method signature is looked up in the the method
table. The method signature is guaranteed to exactly match one of the method signatures in the table.   

 The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.   

 If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables use d by the method is determined, and the execution

environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment. Finally,
execution continues with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

invokestatic   

Invoke a static method

   

..., , nargs, ... =>; ...

 The operand stack is assumed to contain some number of arguments. indexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the current class. The item at that index in the
constant pool contains the complete method signature and class. The method signature is looked up in
the the method table of the class indicated. The method signature is guaranteed to exactly match one of
the method signatures in the class's method table.   

 The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.   

 If the method is marked synchronized the monitor associated with the class is entered. The exact
behavior of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to the first argument on
the stack, making the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new frame.
The total number of local variables us ed by the method is determined, and the execution environment of
the new frame is pushed after leaving sufficient room for the locals. The base of the operand stack for this
method invocation is set to the first word after the execution environment. Finally, execution continues
with the first instruction of the matched method.   

If during the method invocation a stack overflow is detected, a StackOverflowException is thrown.   

invokeinterface   

Invoke interface method

   

..., object, [arg1, [arg2 ...]], ... =>; ...

 The operand stack is assumed to contain a handle to an object and nargs-1 arguments. indexbyte1 and
indexbyte2 are used to construct an index into the constant pool of the current class. The item at that
index in the constant pool contains the complete me thod signature. A pointer to the object's method table
is retrieved from the object handle. The method signature is looked up in the method table. The method
signature is guaranteed to exactly match one of the method signatures in the table.   

 The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) but unlike invokemethod and invokesuper, the number of available arguments (nargs)
is taken from the bytecode.   

 If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables use d by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment. Finally,
execution continues with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Exception

Handling
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Exception Handling   

 The virtual machine support for exceptions documented here is likely to change in the near future but
reflects the current Java implementation. The instructions here also assume that asynchronous
exceptions are not supported.   
 athrow   

__

The virtual machine support for exceptions documented here is likely to change
in the near future but reflects the current Java implementation. The instructions
here also assume that asynchronous exceptions are not supported.    

athrow   

Throw exception

   

..., handle =>; [undefined]

 handle should be a handle to an object. The handle should be of an exception object, which is thrown.
The current Java stack frame is searched for the most recent catch clause that handles this exception. A
catch clause can handle an exception if the obje ct in the constant pool at for that entry is a superclass of
the thrown object.) If a matching catch list entry is found, the pc is reset to the address indicated by the
catch-list pointer, and execution continues there.   

 If no appropriate catch clause is found in the current stack frame, that frame is popped and the exception
is rethrown. If one is found, it contains the location of the code for this exception. The pc is reset to that
location and execution continues. If no appropriate catch is found in the current stack frame, that frame is
popped and the exception is rethrown.   

If handle is null, then a NullPointerException is thrown instead.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Miscellaneous

Object Ope
Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Miscellaneous Object Operations   

 new   
 newfromname   
 checkcast   
 instanceof   
 verifystack   

__

new   

Create new object

   

... =>; ..., handle

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index should be a class name that can be resolved to a class pointer, class. A new instance of
that class is then created and a handle for it is pushed on the stack.   

newfromname   

Create new object

 from name   

..., handle =>; ..., new-handle

 handle should be a handle to a character array. The class whose name is the string represented by the
character array is determined. A new object of that class is created, and a handle new-handle for that
object replaces the character array handle on the top of the stack.   

 If the handle is null, a NullPointerException is thrown. If no such class can be found, a
NoClassDefFoundException is thrown.   

checkcast   

Make sure object is of given type

   

..., handle =>; ..., [handle|...]

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
string at that index of the constant pool is presumed to be a class name which can be resolved to a class
pointer, class. handle should be a handle to an object.   

 checkcast determines whether handle can be cast to an object of class class. A null handle can be cast
to any class. Otherwise handle must be an instance of class or one of its superclasses. If handle can be
cast to class execution proceeds at the next instruction, and the handle for handle remains on the stack.   

If handle cannot be cast to class, a ClassCastException is thrown.   

instanceof   

Determine if object is of given type   

..., handle =>; ..., result

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
string at that index of the constant pool is presumed to be a class name which can be resolved to a class
pointer, class. handle should be a handle to an object.   

 instanceof determines whether handle can be cast to an object of the class class. This instruction will

overwrite handle with 1 if handle is null or if it is an instance of class or one of its superclasses.
Otherwise, handle is overwritten by 0.   

verifystack   

Verify stack empty   

... =>; [empty stack]

 This instruction is only generated if the code was compiled using a debugging version of the compiler.
This instruction indicates that the compiler expects the operand stack to be empty at this point.   

 If the stack is not currently empty, it will be set to empty. In addition, if running a debugging version of the
interpreter, an error message is printed out warning that something is seriously wrong.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Monitors

Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Monitors   

 monitorenter   
 monitorexit   

__

monitorenter   

Enter monitored region of code   

..., handle =>; ...

handle should be a handle to an object.   

 The interpreter attempts to obtain exclusive access via a lock mechanism to handle. If another process
already has handle locked, than the current process waits until the handle is unlocked. If the current
process already has handle locked, then continue execution. If handle has no lock on it, then obtain an
exclusive lock.   

monitorexit   

Exit monitored region of code   

..., handle =>; ...

handle should be a handle to an object.   

 The lock on handle is released. If this is the last lock that this process has on that handle (one process is
allowed to have multiple locks on a single handle), then other processes that are waiting for handle to be
free are allowed to proceed.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Virtual Machine
Instruction Set- Debugging

Contents Prev Next Up   

__

The Virtual Machine Instruction Set   
__

Debugging   

 breakpoint   

__

breakpoint   

Call breakpoint handler   

 The breakpoint instruction is used to temporarily overwrite an instruction causing a break to the debugger
prior to the effect of the overwritten instruction. The original instruction's operands (if any) are not
overwritten, and the original instruction can be restored when the breakpoint instruction is removed.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec: Class File Format
Contents Prev Next Up   

__

3 Class File Format   
__

 Important Note   
 Overview   
 Format   
 Methods   
 Constant Pool   
 Signatures   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: Class File Format-
Important Note

Contents Prev Next Up   

__

Class File Format   
__

Important Note   

__
 This chapter documents the Java class file format. An important objective of Java as used in WebRunner
is that alternative implementations of Java can exist and interact by sharing class files. For this to be
possible, these Java implementations must pre cisely implement the design given here. Elements of the
design not covered by this document are not crucial to class file sharing and may be implemented as you
choose.   

 Please contact us directly with any questions about which design elements are essential to a modified or
original Java implementation, or for help validating an Java implementation.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: Class File Format-
Overview

Contents Prev Next Up   

__

Class File Format   
__

Overview   

__
 Class files are used to hold compiled versions of both Java classes and Java Interfaces. Compliant Java
interpreters must be capable of dealing with all class files that conform to the following specification.   

 An Java .class file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by
reading in two or four 8-bit bytes, respectively. The bytes are joined together in big-endian order.   

 The class file format is described in terms similar to a C structure. However, unlike a C structure,   

·    There is no "padding" or "alignment" between pieces of the structure.   

· Each field of the structure may be of variable size.   

· An array may be of variable size. In this case, some field prior to the array will give the array's
dimension.   

 We use the types u1, u2, and u4 to mean an unsigned one-, two-, or four-byte quantity, respectively.   

 Attributes are used at several different places in the class format. All attributes have the following format: 

GenericAttribute_info {

 u2 attribute_name;

 u4 attribute_length;

 u1 info[attribute_length];

}

 The attribute_name is a 16-bit index into the class's constant pool; the value of
constant_pool[attribute_name] will be a string giving the name of the attribute. The field attribute_length
gives the length of the subsequent information in bytes. This length does not include the four bytes of the
attribute_name and attribute_length.   

 In the following text, whenever we allow attributes, we give the name of the attributes that are currently
understood. In the future, more attributes will be added. Class file readers are expected to skip over and
ignore the information in any attributes that they do not understand.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: Class File Format-
Format

Contents Prev Next Up   

__

Class File Format   
__

Format   
 magic   
 version   
 constant_pool_count   
 constant_pool   
 access_flags   
 this_class   
 super_class   
 interfaces_count   
 interfaces   
 fields_count   
 fields   
 methods_count   
 methods   
 attributes_count   
 attributes   
 Source File Attribute   
 attribute_name_index   
 attribute_length   
 sourcefile_index   
 Fields   
 access_flags   
 name_index   
 signature_index   
 attributes_count   
 attributes   
 Constant Value Attribute   
 attribute_name_index   
 attribute_length   
 constantvalue_index   

__
The following pseudo-structure gives a top-level description of the format of a class file:   

ClassFile {

 u4 magic;

 u4 version;

 u2 constant_pool_count;

 cp_info constant_pool[constant_pool_count - 1];

 u2 access_flags;

 u2 this_class;

 u2 super_class;

 u2 interfaces_count;

 u2 interfaces[interfaces_count];

 u2 fields_count;

 field_info fields[fields_count];

 u2 methods_count;

 method_info methods[methods_count];

 u2 attributes_count;

 attribute_info attributes[attribute_count];

}

magic   

This field must have the value 0xCAFEBABE.   

version   

 This field contains the version number of the Java compiler that produced this class file. Different version
numbers indicate incompatible changes to either the format of the class file or to the bytecodes.   

The current Java version number is 45.   

constant_pool_count   

This field indicates the number of entries in the constant pool table.   

constant_pool   

 The constant pool is an array of values. These values are the various string constants, class names, field
names, and others that are referred to by the class structure or by the code.   

 constant_pool[0] is always unused. The values of constant_pool entries 1 through constant_pool_count-1
are described by the bytes that follow. These bytes are explained more fully in the section "The Constant
Pool."   

access_flags   

 This field is a set of sixteen flags used by classes, methods, and fields to describe various properties of
the field, method, or class. The flags are also used to show how they can be accessed by methods in
other classes. Below is a table of all the access flags. The flags that are used by classes are
ACC_PUBLIC, ACC_FINAL, and ACC_INTERFACE.

   

this_class   

 This value is an index into the constant pool. constant_pool[this_class] must be a class, and gives the
index of this class in the constant pool.   

super_class   

 This value is an index into the constant pool. If the value of super_class is non-zero, then
constant_pool[super_class] must be a class, and gives the index of this class's superclass in the constant
pool.   

 If the value of super_class is zero, then the class being defined must be Object, and it has no superclass.

interfaces_count   

This field gives the number of interfaces that this class implements.   

interfaces   

 Each value in the array is an index into the constant pool. If an array value is non-zero, then
constant_pool[interfaces[i]], for 0 <;= i <; interfaces_count, must be a class, and gives the index of an
interface that this class implements.   

fields_count   

 This value gives the number of instance variables, both static and dynamic, defined by this class. This
array only includes those variables that are defined explicitly by this class. It does not include those
instance variables that are accessible from this class but are inherited from super classes.   

fields   

 Each value is a more complete description of a field in the class. See the section "Fields" for more
information on the field_info structure.   

methods_count   

 This value gives the number of methods, both static and dynamic, defined by this class. This array only
includes those methods that are explicitly defined by this class. It does not include inherited methods.   

methods   

 Each value is a more complete description of a method in the class. See the section "Methods" for more
information on the method_info structure.   

attributes_count   

This value gives the number of additional attributes about this class.   

attributes   

 A class can have any number of optional attributes associated with it. Currently, the only class attribute
recognized is the "SourceFile" attribute, which gives the name of the source file from which this class file
was compiled.   

Source File Attribute   

The "SourceFile" attribute has the following format:   

SourceFile_attribute {

 u2 attribute_name_index;

 u2 attribute_length;

 u2 sourcefile_index;

}

attribute_name_index   

 constant_pool[attribute_name_index] is the string "SourceFile."   

attribute_length   

The length of a SourceFile_attribute must be 2.   

sourcefile_index   

 constant_pool[sourcefile_index] is a string giving the source file from which this class file was compiled.   

Fields   

 The information for each field immediately follows the field_count field in the class file. Each field is
described by a variable length field_info structure. The format of this structure is as follows:   

field_info {

 u2 access_flags;

 u2 name_index;

 u2 signature_index;

 u2 attributes_count;

 attribute_info attributes[attribute_count];

}

access_flags   

 This is a set of sixteen flags used by classes, methods, and fields to describe various properties and how
they many be accessed by methods in other classes. See the table "Access Flags" on page 53    which
gives the meaning of the bits in this field.   

 The possible fields that can be set for a field are ACC_PUBLIC, ACC_PRIVATE, ACC_PROTECTED,
ACC_STATIC, ACC_FINAL, ACC_THREADSAFE, and ACC_TRANSIENT.   

At most one of ACC_PUBLIC and ACC_PRIVATE can be set for any method.   

name_index   

constant_pool[name_index] is a string which is the name of the field.   

signature_index   

 constant_pool[signature_index] is a string which is the signature of the field. See the section "Signatures"
for more information on signatures.   

attributes_count   

This value gives the number of additional attributes about this field.   

attributes   

 A field can have any number of optional attributes associated with it. Currently, the only field attribute
recognized is the "ConstantValue" attribute, which indicates that this field is a static numeric constant, and
gives the constant value of that field.   

Any other attributes are skipped.   

Constant Value Attribute   

The "ConstantValue" attribute has the following format:   

ConstantValue_attribute {

 u2 attribute_name_index;

 u2 attribute_length;

 u2 constantvalue_index;

}

attribute_name_index   

 constant_pool[attribute_name_index] is the string "SourceFile."   

attribute_length   

The length of a SourceFile_attribute must be 2.   

constantvalue_index   

constant_pool[constantvalue_index]gives the constant value for this field.   

 The constant pool entry must be of a type appropriate to the field, as shown by the following table:

   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: Class File Format-
Methods

Contents Prev Next Up   

__

Class File Format   
__

Methods   

 access_flags   
 name_index   
 signature_index   
 attributes_count   
 attributes   
 Code Attribute   
 attribute_name_index   
 attribute_length   
 max_stack   
 max_locals   
 code_length   
 code   
 exception_table_length   
 exception_table   
 start_pc, end_pc   
 handler_pc   
 catch_type   
 attributes_count   
 attributes   
 Line Number Table Attribute   
 attribute_name_index   
 attribute_length   
 line_number_table_length   
 line_number_table   
 start_pc   
 line_number   
 Local Variable Table Attribute   
 attribute_name_index   
 attribute_length   
 local_variable_table_length   
 line_number_table   
 start_pc, length   
 name_index, signature_index   
 slot   

__
 The information for each method immediately follows the method_count field in the class file. Each
method is described by a variable length method_info structure. The structure has the following format:   

method_info {

 u2 access_flags;

 u2 name_index;

 u2 signature_index;

 u2 attributes_count;

 attribute_info attributes[attribute_count];

}

access_flags   

 This is a set of sixteen flags used by classes, methods, and fields to describe various properties and how
they many be accessed by methods in other classes. See the table "Access Flags" on page 53    which
gives the various bits in this field.   

 The possible fields that can be set for a method are ACC_PUBLIC, ACC_PRIVATE, ACC_PROTECTED,
ACC_STATIC, ACC_FINAL, ACC_SYNCHRONIZED, ACC_NATIVE, and ACC_ABSTRACT.   

At most one of ACC_PUBLIC and ACC_PRIVATE can be set for any method.   

name_index   

constant_pool[name_index] is a string giving the name of the method.   

signature_index   

 constant_pool[signature_index]is a string giving the signature of the field. See the section "Signatures"
for more information on signatures.   

attributes_count   

This value gives the number of additional attributes about this field.   

attributes   

 A field can have any number of optional attributes associated with it. Each attribute has a name, and
other additional information. Currently, the only field attribute recognized is the "Code" attribute, which
describes the virtual bytecode that can be executed to perform this method.   

Any other attributes are skipped.   

Code Attribute   

The "Code" attribute has the following format:   

Code_attribute {

 u2 attribute_name_index;

 u2 attribute_length;

 u1 max_stack;

 u1 max_locals;

 u2 code_length;

 u1 code[code_length];

 u2 exception_table_length;

 { u2 start_pc;

 u2 end_pc;

 u2 handler_pc;

 u2 catch_type;

 } exception_table[exception_table_length];

 u2 attributes_count;

 attribute_info attributes[attribute_count];

}

attribute_name_index   

 constant_pool[attribute_name_index] is the string "Code."   

attribute_length   

This field gives the total length of the "Code" attribute, excluding the initial four bytes.   

max_stack   

 Maximum number of entries on the operand stack that will be used during execution of this method. See
the other chapters in this spec for more information on the operand stack.   

max_locals   

 Number of local variable slots used by this method. See the other chapters in this spec for more
information on the local variables.   

code_length   

The number of bytes in the virtual machine code for this method.   

code   

 These are the actual bytes of the virtual machine code that implement the method. When read into
memory, the first byte of code must be aligned onto a multiple-of-four boundary. See the definitions of the
the opcodes "tableswitch" and "tablelookup" for more information on alignment requirements.   

exception_table_length   

The number of entries in the following exception table.   

exception_table   

Each entry in the exception table describes one exception handler in the code.   

start_pc, end_pc   

 The two fields start_pc and end_pc give the ranges in the code at which the exception handler is active.
The values of both fields are offsets from the start of the code. start_pc is inclusive. end_pc is exclusive.   

handler_pc   

 This field gives the starting address of the exception handler. The value of the field is an offset from the
start of the code.   

catch_type   

 If catch_type is non-zero, then constant_pool[catch_type] will be the class of exceptions that this
exception handler is designated to catch. This exception handler should only be called if the thrown
exception is an instance of the given class.   

If catch_type is zero, this exception handler should be called for all exceptions.   

attributes_count   

 This value gives the number of additional attributes about code. The "Code" attribute can itself have
attributes.   

attributes   

 A "Code" attribute can have any number of optional attributes associated with it. Each attribute has a
name, and other additional information. Currently, the only code attributes recognized are the
"LineNumberTable" and "LocalVariableTable," both of which contain debugging information.   

Any other attributes are skipped.   

Line Number Table Attribute   

 The Line Number Table is used by debuggers and the exception handler to determine which part of the
virtual machine code corresponds to a given location in the source. The LineNumberTable_attribute has
the following format:   

LineNumberTable_attribute {

 u2 attribute_name_index;

 u2 attribute_length;

 u2 line_number_table_length;

 { u2 start_pc;

 u2 line_number;

 } line_number_table[line_number_table_length];

}

attribute_name_index   

 constant_pool[attribute_name_index] will be the string "LineNumberTable."   

attribute_length   

 This field gives the total length of the LineNumberTable_attribute, excluding the initial four bytes.   

line_number_table_length   

This field gives the number of entries in the following line number table.   

line_number_table   

 Each entry in the line number table indicates that the line number in the source file changes at a given
point in the code.   

start_pc   

 This field indicates the place in the code at which the code for a new line in the source begins. source_pc
is an offset from the beginning of the code.   

line_number   

The line number that begins at the given location in the file.   

Local Variable Table Attribute   

 The Local Variable Table is used by debuggers to determine the value of a given local variable during the
dynamic execution of a method. The format of the LocalVariableTable_attribute is as follows:   

LocalVariableTable_attribute {

 u2 attribute_name_index;

 u2 attribute_length;

 u2 local_variable_table_length;

 { u2 start_pc;

 u2 length;

 u2 name_index;

 u2 signature_index;

 u2 slot;

 } local_variable_table[local_variable_table_length];

}

attribute_name_index   

 constant_pool[attribute_name_index] will be the string "LocalVariableTable."   

attribute_length   

 This field gives the total length of the LineNumberTable_attribute, excluding the initial four bytes.   

local_variable_table_length   

This field gives the number of entries in the following local variable table.   

line_number_table   

 Each entry in the line number table indicates a code range during which a local variable has a value. It
also indicates where on the stack the value of that variable can be found.   

start_pc, length   

 The given local variable will have a value at the code between start_pc and start_pc + length. The two
values are both offsets from the beginning of the code.   

name_index, signature_index   

    constant_pool[name_index]and constant_pool[signature_index] are strings giving the name and
signature of the local variable.   

slot   

The given variable will be the slotth local variable in the method's frame.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Components of the

Virtual Machine
Contents Prev Next Up   

__

The Java Virtual Machine   
__

Components of the Virtual Machine   

__
The Java virtual machine consists of:   

· An instruction set   

· A set of registers   

· A stack   

· A garbage-collected heap   

· A method area   

 All of these are logical, abstract components of the virtual machine. They do not presuppose any
particular implementation technology or organization, but their functionality must be supplied in some
fashion in every Java system based on this virtual mach ine. The Java virtual machine may be
implemented using any of the conventional techniques: e.g. bytecode interpretation, compilation to native
code, or silicon.   

 The memory areas of the Java virtual machine do not presuppose any particular locations in memory or
locations with respect to one another. The memory areas need not consist of contiguous memory.
However, the instruction set, registers, and memory areas a re required to represent values of certain
minimum logical widths (e.g. the Java stack is 32 bits wide). These requirements are discussed in the
following sections.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: Class File Format-
Constant Pool

Contents Prev Next Up   

__

Class File Format   
__

Constant Pool   
 Strings   
 tag   
 length   
 bytes   
 Classes and Interfaces   
 tag   
 name_index   
 Fields and Methods   
 tag   
 class_index   
 name_and_type_index   
 Abstract Fields and Methods   
 tag   
 name_index   
 signature_index   
 String Objects   
 tag   
 name_index   
 Numeric Constants   
 Four-Byte Constants   
 tag   
 bytes   
 Eight-Byte Constants   
 tag   
 high_bytes, low_bytes   

__
 Each item in the constant pool begins with a 1-byte tag:. The table below lists the valid tags and their
values.

   

 Each tag byte is then followed by one or more bytes giving more information about the specific constant. 

Strings   

CONSTANT_Asciz and CONSTANT_Unicode are used to represent constant string values.   

CONSTANT_Asciz_info {

 u1 tag;

 u2 length;

 u1 bytes[length];

}

CONSTANT_Unicode_info {

 u1 tag;

 u2 length;

 u2 bytes[length];

}

tag   

The tag will have the value CONSTANT_Asciz or CONSTANT_Unicode.   

length   

The number of bytes in the string. This length does not include the implicit null termination.   

bytes   

The actual bytes in the string. The null termination is not included.   

Classes and Interfaces   

CONSTANT_Class is used to represent a class or an interface.   

CONSTANT_Class_info {

 u1 tag;

 u2 name_index;

}

tag   

The tag will have the value CONSTANT_Class   

name_index   

constant_pool[name_index] is a string giving the name of the class.   

 Because arrays are objects, the opcodes anewarray and multianewarray can reference array "classes"
via CONSTANT_Class items in the constant pool. In this case, the name of the class is its signature. For
example, the class name for   

int[][]

is   

[[I

The class name for   

Thread[]

is   

"[Ljava.lang.Thread;"

Fields and Methods   

Fields, methods, and interface methods are represented by similar structures.   

CONSTANT_Fieldref_info {

 u1 tag;

 u2 class_index;

 u2 name_and_type_index;

}

CONSTANT_Methodref_info {

 u1 tag;

 u2 class_index;

 u2 name_and_type_index;

}

CONSTANT_InterfaceMethodref_info {

 u1 tag;

 u2 class_index;

 u2 name_and_type_index;

}

tag   

The tag will have the value CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref.   

class_index   

 constant_pool[class_index] will be an entry of type CONSTANT_Class giving the name of the class or
interface containing the field or method.   

For CONSTANT_Fieldref and CONSTANT_Methodref, the CONSTANT_Class item must be an actual
class. For CONSTANT_InterfaceMethodref, the item must be an interface which purports to implement
the given method.   

name_and_type_index   

 constant_pool[name_and_type_index] will be an entry of type CONSTANT_NameAndType. This constant
pool entry gives the name and signature of the field or method.   

Abstract Fields and Methods   

 CONSTANT_NameAndType is used to represent a field or method, detached from any particular class or
implementation.   

CONSTANT_NameAndType_info {

 u1 tag;

 u2 name_index;

 u2 signature_index;

}

tag   

The tag will have the value CONSTANT_NameAndType   

name_index   

constant_pool[name_index] is a string giving the name of the field or method.   

signature_index   

constant_pool[signature_index] is a string giving the signature of the field or method.   

String Objects   

CONSTANT_String is used to represent constant objects of the built-in type String.   

CONSTANT_String_info {

 u1 tag;

 u2 string_index;

}

tag   

The tag will have the value CONSTANT_String   

name_index   

 constant_pool[string_index] is a string giving the value to which the String object is initialized.   

 The string at constant_pool[string_index] is "encoded" so that strings containing only ASCIZ characters,
can be represented using only one byte per character, but characters of up to 16 bits can be represented.
The format we use is a modified UTF *1 format.   

All characters in the range 0x0001 to 0x007F are represented by a single byte:   

 +-+-+-+-+-+-+-+-+

 |0|7bits of data|

 +-+-+-+-+-+-+-+-+

 The null character (0x0000) and characters in the range 0x0080 to 0x03FF are represented by a pair of
two bytes:   

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 |1|1|0| 5 bits | |1|0| 6 bits |

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

Characters in the range 0x0400 to 0xFFFF are represented by three bytes:   

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 |1|1|1|0|4 bits | |1|0| 6 bits | |1|0| 6 bits |

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

Numeric Constants   

Four-Byte Constants   

CONSTANT_Integer and CONSTANT_Float represent four-byte constants.   

CONSTANT_Integer_info {

 u1 tag;

 u4 bytes;

}

CONSTANT_Float_info {

 u1 tag;

 u4 bytes;

}

tag   

The tag will have the value CONSTANT_Integer or CONSTANT_Float   

bytes   

 For integers, the four bytes are in the integer. For floats, the four bytes represent the standard IEEE
representation of the floating point number.   

Eight-Byte Constants   

CONSTANT_Long and CONSTANT_Double represent eight-byte constants.   

CONSTANT_Long_info {

 u1 tag;

 u4 high_bytes;

 u4 low_bytes;

}

CONSTANT_Double_info {

 u1 tag;

 u4 high_bytes;

 u4 low_bytes;

}

 All eight-byte constants take up two spots in the constant pool. If this is the nth item in the constant pool,
then the next item will be numbered n+2.   

tag   

The tag will have the value CONSANT_Long or CONSTANT_Double.   

high_bytes, low_bytes   

For CONSTANT_Long, the 64-bit value is (high_bytes <;<; 32) + low_bytes.   

 For CONSTANT_Double, the 64-bit value, high_bytes and low_bytes together represent the standard
IEEE representation of the double-precision floating point number.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: Class File Format-
Signatures

Contents Prev Next Up   

__

Class File Format   
__

Signatures   

__
A signature is a string representing the type of a method or field.   

 The field signature represents the value of an argument to a function or the value of a variable. It is a
series of bytes in the following grammar:   

<;field signature>; := <;field_type>;

<;field type>; := <;base_type>;|<;object_type>;|<;array_type>;

<;base_type>; := B|C|D|F|I|J|S|Z

<;object_type>; := L<;fullclassname>;;

<;array_type>; := [<;optional-size>;<;field_type>;

<;optional_size>; := [0-9]*

The meaning of the base types is as follows:   

 B signed byte
 C character
 D double precision floating point number
 F single precision floating point number
 I integer
 J long integer
 L<;fullclassname>;; an object of the given class
 S nsigned short

 Z boolean
 [<;length>;<;field sig>; array

 A return-type signature represents the return value from a method. It is a series of bytes in the following
grammar:   

<;return signature>; := <;field type>; | V

 The character V indicates that the method returns no value. Otherwise, the signature indicates the type
of the return value.   

An argument signature represents an argument passed to a method:   

<;argument signature>; := <;field type>;

A method signature represents the arguments that the method expects, and the value that it returns.   

<;method_signature>; := (<;arguments signature>;) <;return signature>;

<;arguments signature>; := <;argument signature>;*

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec: - An Optimization
Contents Prev Next Up   

__

Appendix A - An Optimization   

__
 The following set of pseudo-instructions suffixed by _quick are variants of Java virtual machine
instructions. They are used by the WebRunner/Java project to improve the execution of compiled code on
our bytecode interpreter. They are not part of the virt ual machine specification or instruction set, and are
invisible outside of an Java virtual machine implementation. However, inside a virtual machine
implementation they have proven to be an effective optimization.   

 A compiler from Java to the Java virtual machine instruction set emits only non-_quick instructions. If the
_quick pseudo-instructions are used, each instance of a non-_quick instruction with a _quick variant is
overwritten on execution by its _quick vari ant. Subsequent execution of that instruction instance will be of
the _quick variant.   

 In all cases, if an instruction has an alternative version with the suffix _quick, the instruction references
the constant pool. If the _quick optimization is used, each non_quick instruction with a _quick variant
performs the following:   

· Resolves the specified item in the constant pool   

· Signals an error if the item in the constant pool could not be resolved for some reason   

· Turns itself into the _quick version of the instruction. The instructions putstatic, getstatic, putfield,
and getfield each have two _quick versions.   

· Performs its intended operation   

 This is identical to the action of the instruction without the _quick optimization, except for the additional
step in which the instruction overwrites itself with its _quick variant.   

 The _quick variant of an instruction assumes that the item in the constant pool has already been
resolved, and that this resolution did not generate any errors. It simply performs the intended operation on
the resolved item.   

 Pushing Constants onto the Stack (_quick variants)   
 Managing Arrays (_quick variants)   
 Manipulating Object Fields (_quick variants)   
 Method Invocation (_quick variants)   
 Miscellaneous Object Operations (_quick variants)   
 Constant Pool Resolution   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: - An Optimization-
Pushing Constants onto the

Stack (_quick v
Contents Prev Next Up   

__

- An Optimization   

__

Pushing Constants onto the Stack (_quick
variants)   
 ldc1_quick   
 ldc2_quick   
 ldc2w_quick   

__

ldc1_quick   

Push item from constant pool onto stack

   

... =>; ..., item

 indexbyte1 is used as an unsigned 8-bit index into the constant pool of the current class. The item at that
index is pushed onto the stack.   

ldc2_quick   

Push item from constant pool onto stack

   

... =>; ..., item

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant at that index is resolved and the item at that index is pushed onto the stack.   

ldc2w_quick   

Push long integer or double float from constant pool onto stack

   

... =>;=>; ..., constant-word1, constant-word2

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant at that index is pushed onto the stack.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: - An Optimization-
Managing Arrays (_quick

variants)
Contents Prev Next Up   

__

- An Optimization   

__

Managing Arrays (_quick variants)   
 anewarray_quick   

__

anewarray_quick   

Allocate new array

 of objects   

..., size =>; result

size should be an integer. It represents the number of elements in the new array.   

 indexbyte1 and indexbyte2 are are used to construct an index into the constant pool of the current class.
The entry should be a class.   

 A new array of the indicated class type and capable of holding size elements is allocated. Allocation of an
array large enough to contain nelem items of the given class type is attempted. All elements of the array
are initialized to zero.   

 If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough memory to
allocate the array, an OutOfMemoryException is thrown.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: - An Optimization-
Manipulating Object Fields

(_quick variant
Contents Prev Next Up   

__

- An Optimization   

__

Manipulating Object Fields (_quick variants)   
 putfield_quick   
 putfield2_quick   
 getfield_quick   
 getfield2_quick   
 putstatic_quick   
 putstatic2_quick   
 getstatic_quick   
 getstatic2_quick   

__

putfield_quick   

Set field in object

   

..., handle, value =>; ...

 handle should be a handle to an object. value should be a value of a type appropriate for the specified
field. offset is the offset for the field in that object. value is written at offset into the object referenced by
handle. Both handle and value are popped from the stack.   

If handle is null, a NullPointerException exception is generated.   

putfield2_quick   

Set long integer or double float field in object

   

..., handle, value-word1, value-word2=>; ...

 handle should be a handle to an object. value should be a value of a type appropriate for the specified
field. offset is the offset for the field in that object. value is written at offset into the object referenced by
handle. Both handle and value are popped from the stack.   

If handle is null, a NullPointerException exception is generated.   

getfield_quick   

Fetch field from object

   

..., handle =>; ..., value

 handle should be a handle to an object. The value at offset into the object referenced by handle replaces
handle on the top of the stack.   

If handle is null, a NullPointerException exception is generated.   

getfield2_quick   

Fetch field from object

   

..., handle =>; ..., value-word1, value-word2

 handle should be a handle to an object. The value at offset into the object referenced by handle replaces
handle on the top of the stack.   

If handle is null, a NullPointerException exception is generated.   

putstatic_quick   

Set static field in class

   

..., value =>; ...

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. value should be the type appropriate
to that field. That field will be set to have the value value.   

putstatic2_quick   

Set static field in class

   

..., value-word1, value-word2 =>; ...

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. That field should either be a long
integer or a double precision floating point number. value should be the type appropriate to that field. That
field will be set to have the value value.   

getstatic_quick   

Get static field from class

   

..., =>; ..., value

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The value of that field will replace
handle on the stack.   

getstatic2_quick   

Get static field from class

   

..., =>; ..., value-word1, value-word2

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The field should be a long integer or
a double precision floating point number. The value of that field will replace handle on the stack   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: - An Optimization-
Method Invocation (_quick

variants)
Contents Prev Next Up   

__

- An Optimization   

__

Method Invocation (_quick variants)   
 invokevirtual_quick   
 invokevirtualobject_quick   
 invokenonvirtual_quick   
 invokestatic_quick   
 invokeinterface_quick   

__

invokevirtual_quick   

Invoke class method

   

..., handle, [arg1, [arg2 ...]] =>; ...

 The operand stack is assumed to contain a handle to an object and nargs arguments. The method block
at offset in the object's method table is retrieved. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.   

 If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables use d by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment. Finally,
execution continues with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

invokevirtualobject_quick   

Invoke class method

   

..., handle, [arg1, [arg2 ...]] =>; ...

 The operand stack is assumed to contain a handle to an object or to an array and nargs arguments. The
method block at offset in the object's method table is retrieved. The method block indicates the type of
method (native, synchronized, etc.) and the number of arguments (nargs) expected on the operand stack. 

 If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables use d by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment. Finally,
execution continues with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

invokenonvirtual_quick   

Invoke superclass method

   

..., handle, [arg1, [arg2 ...]] =>; ...

 The operand stack is assumed to contain a handle to an object and some number of arguments.
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index in the constant pool contains a method    slot index and a pointer to a class. The method
block at the method slot index in the indicated class is retrieved. The method block indicates the type of
method (native, synchronized, etc.) and the number of arguments (nargs) expected on the operand stack. 

 If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables use d by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment. Finally,
execution continues with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

invokestatic_quick   

Invoke a static method

   

..., [arg1, [arg2 ...]] =>; ...

 The operand stack is assumed to contain some number of arguments. indexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the current class. The item at that index in the
constant pool contains a method slot index and a pointer to a class. The method block at the method slot
index in the indicated class is retrieved. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.   

 If the method is marked synchronized the monitor associated with the method's class is entered. The
exact behavior of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to the first argument on
the stack, making the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new frame.
The total number of local variables us ed by the method is determined, and the execution environment of
the new frame is pushed after leaving sufficient room for the locals. The base of the operand stack for this
method invocation is set to the first word after the execution environment. Finally, execution continues
with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

invokeinterface_quick   

Invoke interface method

   

..., handle, [arg1, [arg2 ...]] =>; ...

 The operand stack is assumed to contain a handle to an object and nargs-1 arguments. idbyte1 and
idbyte2 are used to construct an index into the constant pool of the current class. The item at that index in
the constant pool contains the complete method signature. A pointer to the object's method table is
retrieved from the object handle.   

 The method signature is searched for in the object's method table. As a short-cut, the method signature
at slot guess is searched first. If that fails, a complete search of the method table is performed. The
method signature is guaranteed to exactly match one of the method signatures in the table.   

 The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) but unlike invokemethod and invokesuper, the number of available arguments (nargs)
is taken from the bytecode.   

 If the method is marked synchronized the monitor associated with handle is entered. The exact behavior
of monitors and their interactions with threads is a runtime issue.   

 The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables use d by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment. Finally,
execution continues with the first instruction of the matched method.   

 If the object handle on the operand stack is null, a NullPointerException is thrown. If during the method
invocation a stack overflow is detected, a StackOverflowException is thrown.   

guess is the last guess. Each time through, guess is set to the method offset that was used.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: - An Optimization-
Miscellaneous Object Operations

(_quick va
Contents Prev Next Up   

__

- An Optimization   

__

Miscellaneous Object Operations (_quick
variants)   
 new_quick   
 checkcast_quick   
 instanceof_quick   

__

new_quick   

Create new object

   

... =>; ..., handle

 indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index should be a class. A new instance of that class is then created and a handle for it
pushed on the stack.   

checkcast_quick   

Make sure object is of given type

   

..., handle =>; ..., handle

 handle should be a handle to an object. indexbyte1 and indexbyte2 are used to construct an index into
the constant pool of the current class. The object at that index of the constant pool should have already
been resolved.   

 checkcast then determines whether handle can be cast to an object of class class. A null handle can be
cast to any class, and otherwise the superclasses of handle are searched for class. If class is determined
to be a superclass of handle, or if handle is    null, object can be cast to class and execution proceeds at
the next instruction, and the handle for handle remains on the stack.   

If handle cannot be cast to class, a ClassCastException is thrown.   

instanceof_quick   

Determine if object is of given type   

..., handle =>; ..., result

 handle should be a handle to an object. indexbyte1 and indexbyte2 are used to construct an index into
the constant pool of the current class. The item of class class at that index of the constant pool is
assumed to have already been resolved.   

 instanceof determines whether handle can be cast to an object of the class class. A null handle can be
cast to any class, and otherwise the superclasses of handle are searched for class. If class is determined
to be a superclass of handle, or if handle is null, handle is overwritten by 1. Otherwise, handle is
overwritten by 0.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: - An Optimization-
Constant Pool Resolution

Contents Prev Up   

__

- An Optimization   

__

Constant Pool Resolution   

__
 When the class is read in, an array constant_pool[] of size nconstants is created and assigned to a field
in the class. constant_pool[0] is set to point to a malloc-ed array which indicates which fields in the
constant_pool have already been resolved. con stant_pool[1] through constant_pool[nconstants - 1] are
set to point at the "type" field that corresponds to this constant item.   

 When an instruction is executed that references the constant pool, an index is generated, and
constant_pool[0] is checked to see if the index has already been resolved. If so, the value of
constant_pool[index] is returned. If not, the value of constant_po ol[index] is resolved to be the actual
pointer or data, and overwrites whatever value was already in constant_pool[index].   

__
Contents Prev Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- The Java Instruction

Set
Contents Prev Next Up   

__

The Java Virtual Machine   
__

The Java Instruction Set   
__
 The Java instruction set is the assembly-language equivalent of an Java application. Java applications
are compiled down to the Java instruction set just like C applications are compiled down to the instruction
set of a microprocessor. An instruction of t he Java instruction set consists of an opcode specifying the
operation to be performed, and zero or more operands supplying parameters or data that will be used by
the operation. Many instructions have no operands and consist only of an opcode.   

 The opcodes of the Java instruction set are always one byte long, while operands may be of various
sizes.   

 When operands are more than one byte long they are stored in "big-endian" order -- high order byte first.
For example, a 16-bit parameter is stored as two bytes whose value is:   

first_byte * 256 + second_byte

 Operands that are larger than 8 bits are typically constructed from byte-sized quantities at runtime -- the
instruction stream is only byte-aligned and alignment of larger quantities is not guaranteed. (An exception
to this rule are the tableswitch and lo okupswitch instructions.) These decisions keep the virtual machine
code for a compiled Java program compact and reflect a conscious bias in favor of compactness possibly
at some cost in performance.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Primitive Data Types

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Primitive Data Types   

__
 The instruction set of the Java virtual machine interprets data in the virtual machine's runtime data areas
as belonging to a small number of primitive types. Primitive numeric types include integer, long, single
and double precision floating point, byte and short. All numeric data types are signed. Unsigned short
exists for use as (Unicode) chars only. In addition, the object type is used to represent Java objects in
computations. Finally, a small number of operations (e.g. the dup instructions) operate on runtime data
areas as raw values of a given width without regard to type.   

 Primitive data types are managed by the compiler, not the compiled Java program or the Java runtime. In
particular, primitive data are not necessarily tagged or otherwise discernible at runtime. The Java
instruction set distinguishes operations on differe nt primitive data types with different opcodes. For
instance, iadd, ladd, fadd and dadd instructions all add two numbers, but operate on integers, longs,
single floats and double floats, respectively.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Registers

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Registers   

__
 The registers of the Java virtual machine maintain machine state during its operation. They are directly
analogous to the registers of a microprocessor. The Java virtual machine's registers include:   

· pc -- the Java program counter   

· optop -- a pointer to the top of the Java operand stack   

· frame -- a pointer to the execution environment of the currently executing method   

· vars -- a pointer to the 0th local variable of the currently executing method   

 The Java virtual machine defines each of its registers to be 32 bits wide. Some Java implementations
may not use all of these registers: e.g. a compiler from Java source to native code does not maintain pc.   

 The Java virtual machine is stack-based, so it does not define or use registers for passing or receiving
parameters. This is again a conscious decision in favor of instruction set simplicity and compactness, and
efficient implementation on host processors without many registers (e.g. Intel 486).   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- The Java Stack

Contents Prev Next Up   

__

The Java Virtual Machine   
__

The Java Stack   

 Local Variables   
 Execution Environment   
 Exceptions   

__
 The Java virtual machine is a stack-based machine, and the Java stack is used to supply parameters for
operations, receive return values, pass parameters to methods, etc. An Java stack frame is Java's
equivalent to the stack frame of a conventional progra mming language. It implements the state
associated with a single method invocation. Frames for nested method calls are stacked on the method
invocation stack.   

 Each Java stack frame consists of three components, although at any given time one or more of the
components may be empty:   

· the local variables   

· the execution environment   

· the operand stack   

 The size of the local variables and the execution environment are fixed on method call, while the operand
stack varies as the method is being executed. Each of these components is discussed below.   

Local Variables   

 Each Java stack frame has a set of local variables. They are addressed as indices from the vars register,
so are effectively an array. Local variables are all 32 bits wide.   

 Long integers and double precision floats are considered to take up two local variables but are
addressed by the index of the first local variable (e.g. a local variable with index n containing a double
precision float actually occupies storage at indices    n and n+1). 64-bit values in local variables are not
guaranteed to be 64-bit aligned. Implementors are free to decide the appropriate way to divide long
integers and double precision floats into the two registers.   

 Instructions are provided to load the value of local variables values onto the operand stack and store

values from the operand stack into local variables.   

Execution Environment   

 The execution environment is the component of the stack frame used to maintain the operations of the
Java stack itself. It contains pointers to the previous frame as well as pointers to its own local variables
and operand stack base and top. Additional per-invocation information (e.g. for debugging) belongs in the
execution environment.   

Exceptions   

 Each Java method has a list of catch clauses associated with it. Each catch clause describes the
instruction range for which it is active, the type of exception that it is to handle and has a chunk of code to
handle it. When an exception is tossed, the ca tch list for the current method is searched for a match. An
exception matches a catch clause if the instruction that caused the exception is in the appropriate
instruction range, and the thrown exception is a subtype of the type of exception that the catch clause
handles.   

 If a matcing catch clause is found, the system branches to the handler. If no handler is found, the current
stack frame is popped and the exception is raised again.   

 The order of the catch clauses in the list is important. The interpreter branches to the first matching catch
clause.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

vmspec.: The Java Virtual
Machine- Operand Stack

Contents Prev Next Up   

__

The Java Virtual Machine   
__

Operand Stack   

__
 The operand stack is a 32 bit wide FIFO stack used to store arguments and return values of many of the
virtual machine instructions. For example, the iadd instruction adds two integers together. It expects that
the integers to be added are the top two wor ds on the operand stack, pushed there by previous
instructions. Both integers are popped from the stack, added, and their sum pushed back onto the
operand stack. Subcomputations may be nested on the operand stack, and result in a single operand that
can be used by the nesting computation.   

 Long integers and double-precision floating point numbers, while logically a single virtual machine
operand, take two physical entries on the operand stack. Each primitive data type has specialized
instructions that know how to operate on operands of that    type. Operands must be operated on by
operators appropriate to their type. It is illegal, for example, to push two integers and treat them as a long. 

 In most circumstances the top of the operand stack and the top of the Java stack are the same thing. As
a result, we can simply refer to pushing or popping from the "stack"; the context and data of the operation
make clear what we mean.   

__
Contents Prev Next Up   

Generated with CERN WebMaker   

URL Not Available

http://www.cern.ch/

URL Not Available

http://www.cern.ch/CERN/Divisions/ECP/PT/Welcome.html

URL Not Available

http://www.cern.ch/WebMaker/

