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Overview

• Security for the Java Platform

• Security Futures
– Digitally Signed Code

– Security API

• Secure Java Apps
– Understanding Java Security

– Example: Jeeves, a Java HTTP Server



Secure Java Platform

• Java as a complete platform
– for the Internet

– for your applications

• Key design principles
– Open

– Simple

– Complete



Openness

• Public Specifications

• Source Code Available

• Interoperability and Standards



Simplicity

• Clean design

• Ease of development for 
– custom security

• Security Manager

– complex security
• Key Management

• Digital Signatures

• Encryption



Completeness

• Built-in language 
security
– Safe language

– Extensive security 
information 
available

– Flexible security 
models

• Security API
– Comprehensive 

library for 
security-related 
functionality



Security Futures

• Digitally signed code

– Trust and partial trust

• Security API

– To write secure applications



Digital Signatures
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The Meaning of Signatures

“The cardholder aknowledges receipt of 
the goods and/or services in the 
amount of the Total shown hereon and 
agrees to perform the obligations set 
forth in the Cardholder’s agreement 
with the issuer.”



The Meaning of Trust

• What does trust mean?
– Complete freedom, supervised freedom

• How to decide trust? 
– Authorship, endorsement, rating etc. 

• Digital signatures express assertions
– Labeling systems refine assertions



The Simple Example

• “I fully trust software signed 
(published) by DoomSoft, Inc.”

• The code itself is signed by  
AcmeSoft, Inc.

• The code is allowed to do anything

• This is the shrink-wrap model of trust



Assertions

• “This code is published by DoomSoft, 
Inc. It comes with no guarantees.”

• “This code has been found to be free 
of viruses by UL.”

• “This code was rated five stars by 
PCWeek of 1/1/96.”

• “James thinks this code is good.”



Capabilities

• Can read all files in /opt/doomsoft

• Can connect to all IP addresses except 

128.152.*.*

• Can use my spare CPU cycles

• Can do anything



Policies

Policy = Assertions + Capabilities
• Code published by DoomSoft can read 

files in /opt/doomsoft/
• Code certified by UL can connect to 

all IP addresses except 128.152.*.*
• Code that James thinks is good can do 

anything



Nuts and Bolts

• Simple model at first, but...

• Signing Java Archives (JAR)
– Signatures of classes, images, sounds, 

etc.

• Support for
– Multiple Schemes (DSA, RSA,…)

– Multiple Signatures



Nuts and Bolts…

• javakey to handle signing and key 

management

• Based on Security API

– Key management 

– Signature code



Security API

An API for Network-Centric Security

• Uniform interface to security services
– Digital Signature
– Encryption
– Key Exchange
– Utilities (Hash, PRNG, Bignums, etc.)

• System support for critical functions 
(e.g. key management)



Security API Architecture

Java Virtual Machine

Java Class Libraries  java.security
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Security Package Providers

• Developers do not call into Security 
Packages directly

• Flexibility and pluggable security
– adding better implementations

– adding better algorithms

• Security Packages must be signed



Key Management

• System key management
– Secure storage

– Extensible key information

• Public and private keys
– Indexed by entity and algorithm

– Not handled by applications directly

• Session keys
– Can be persistent



Digital Signature

Signature dsa = new Signature(“dsa”);

// joe is an Entity object from keydb

dsa.initialize(joe);

byte[] sigBytes = dsa.sign(document);

 or
boolean valid = dsa.verify(document, 
sigBytes);

document and sigBytes are byte[].



Encryption

SymmetricCipher des = new 
SymmetricCipher(“DES”);

// say we generate a random session key

byte[] sessionKey = des.initialize(new 
CryptoRandom());

byte[] ciphertext = 
des.encrypt(document);

 or
byte[] cleartext = 
des.decrypt(document);

document, cyphertext and cleartext are 
byte[].



Export Issues

• Security Packages must be signed

• Policy for signing is public and open

• Exportable API

• Exportable applications



Release and Schedule

• Key management, digital signatures 
and encryption first

• Secure channels and key exchange to 
follow



For more information

http://www.javasoft.com/

security-api@javasoft.com
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Overview

• Sandbox model

• Sandbox implementation

• Writing a security manager

• Extending the sandbox



Sandbox model

Application policy defines sandbox borders

Application implements border checks



Sandbox model: HotJava

• Applets barred from client file system

• Applets can only phone home

• Applets cannot load libraries

• Applets cannot exec processes

• Applets cannot examine properties



Sandbox implementation

Virtual Machine

lang  io  net  util  awt  applet

java

classloader

applet

verifier

classloader

system security
security check



Sandbox implementation
• Security checks • AppletSecurity.java

SecurityManager s;
s = System.getSecurityManager();
if (s != null) {
  s.checkConnect(host, port);
}

s.checkRead(filename);

s.checkExec(command);

~50 ‘s ~15 ‘s



Sandbox implementation: 
language features

• Classes declare and implement types

• Strong typing

• Access modifiers 

• Memory management

• Misc: arrays, strings, no preprocessor, 
no #define private public, no goto



Sandbox implementation: 
classloader

• Classloader enforces namespaces

• Policy: applets can’t create classloader

• Classloader invokes verifier



Sandbox implementation:
verifier

• Invoked on downloaded classes 
• java -verify

• Verifier has 4 passes
– Classfile verification

– Type system verification

– Bytecode verification

– (runtime) Type and access checking



Sandbox implementation: fixes

• DNS name resolution

• Verifier  (/absolute/path)

• Classloader (exception, private)

• Hostile applets - working on hooks to 
monitor and kill wayward applets



Getting beyond penetrate & patch

• Model VM, language, policy

• Verify against specification

•  Security assessment
– External software integrity review

– Internet community’s scrutiny of source code

– Internal scrutiny 

• Security Compatibility Test Suite

• Implementor’s Guidelines



Writing a security manager

• Decide policy

• Minimize code for enforcing policy

• Insert checks

• Subclass java.lang.SecurityManager

• Publish policy and tests



Jeeves: Servlet Security

• Jeeves servlets

• Local servlets

• Network servlet sandbox

• Signed servlets and the tools that love them

– List of trusted signatures

– Allow/don’t allow unsigned servlets

– Allow/don’t allow signed servlets

– Parameterized attributes



Jeeves: Security Manager

• Servlet sandbox
– Identify origin of servlet  ==> Policy

– Network unsigned servlets

– Network signed servlets



Jeeves: unsigned servlets

• HTTP requests and responses

• Server’s file system

• Server properties files

• Server dynamic configuration

• Servlet dynamic management

• Inter-servlet communication



Jeeves: signed servlets

• Open Policy
– Treat signed servlets as file servlets

– Full access

• Configurable Policy
– Define short list of parameterized 

attributes

– Allow administrator to grant/deny servlet 
requests for additional capability



Jeeves: signed servlets

• Configurable Policy

attribute parameter  check

read(filename)          String         * Strings immutable
        * Access authorization

socket(host,port)         int, int         * DNS name resolution

any
                                                                        



Try this at home

• Verifier model

• Type system model

• Capabilities system

• Experimental application policies



Where we are today

• JDK 1.0.2 (May 96) - fixes 
classloader, DNS, verifier bugs 

• Jeeves alpha (summer 96) - signed 
servlets only, signed and unsigned in 
beta timeframe

• JDK 1.1 - signed applets, signed 
servlets


