
Cryptography Cryptography
and Securityand Security

Benjamin RenaudBenjamin Renaud
Marianne MuellerMarianne Mueller

Overview

• Security for the Java Platform

• Security Futures
– Digitally Signed Code

– Security API

• Secure Java Apps
– Understanding Java Security

– Example: Jeeves, a Java HTTP Server

Secure Java Platform

• Java as a complete platform
– for the Internet

– for your applications

• Key design principles
– Open

– Simple

– Complete

Openness

• Public Specifications

• Source Code Available

• Interoperability and Standards

Simplicity

• Clean design

• Ease of development for
– custom security

• Security Manager

– complex security
• Key Management

• Digital Signatures

• Encryption

Completeness

• Built-in language
security
– Safe language

– Extensive security
information
available

– Flexible security
models

• Security API
– Comprehensive

library for
security-related
functionality

Security Futures

• Digitally signed code

– Trust and partial trust

• Security API

– To write secure applications

Digital Signatures

Public Key

Private Key

+

document document document document
document document document document
document document document document

document document document document
document document document document
document document document document
document document document document

document document document document
document document document document
document document document document

document document document document

document document document document
document document document document
document document document document

=

+ = OK?

document document document document
document document document document

document document document document
document document document document
document document document document
document document document document

document document document document
document document document document
document document document document

document document document document

document document document document
document document document document

The Meaning of Signatures

“The cardholder aknowledges receipt of
the goods and/or services in the
amount of the Total shown hereon and
agrees to perform the obligations set
forth in the Cardholder’s agreement
with the issuer.”

The Meaning of Trust

• What does trust mean?
– Complete freedom, supervised freedom

• How to decide trust?
– Authorship, endorsement, rating etc.

• Digital signatures express assertions
– Labeling systems refine assertions

The Simple Example

• “I fully trust software signed
(published) by DoomSoft, Inc.”

• The code itself is signed by
AcmeSoft, Inc.

• The code is allowed to do anything

• This is the shrink-wrap model of trust

Assertions

• “This code is published by DoomSoft,
Inc. It comes with no guarantees.”

• “This code has been found to be free
of viruses by UL.”

• “This code was rated five stars by
PCWeek of 1/1/96.”

• “James thinks this code is good.”

Capabilities

• Can read all files in /opt/doomsoft

• Can connect to all IP addresses except

128.152.*.*

• Can use my spare CPU cycles

• Can do anything

Policies

Policy = Assertions + Capabilities
• Code published by DoomSoft can read

files in /opt/doomsoft/
• Code certified by UL can connect to

all IP addresses except 128.152.*.*
• Code that James thinks is good can do

anything

Nuts and Bolts

• Simple model at first, but...

• Signing Java Archives (JAR)
– Signatures of classes, images, sounds,

etc.

• Support for
– Multiple Schemes (DSA, RSA,…)

– Multiple Signatures

Nuts and Bolts…

• javakey to handle signing and key

management

• Based on Security API

– Key management

– Signature code

Security API

An API for Network-Centric Security

• Uniform interface to security services
– Digital Signature
– Encryption
– Key Exchange
– Utilities (Hash, PRNG, Bignums, etc.)

• System support for critical functions
(e.g. key management)

Security API Architecture

Java Virtual Machine

Java Class Libraries java.security

su
n.

se
cu

ri
ty

fo
o.

se
cu

ri
ty

ba
r.

se
cu

ri
ty

Application
Developer

Security
Package
Providers

Security Package Providers

• Developers do not call into Security
Packages directly

• Flexibility and pluggable security
– adding better implementations

– adding better algorithms

• Security Packages must be signed

Key Management

• System key management
– Secure storage

– Extensible key information

• Public and private keys
– Indexed by entity and algorithm

– Not handled by applications directly

• Session keys
– Can be persistent

Digital Signature

Signature dsa = new Signature(“dsa”);

// joe is an Entity object from keydb

dsa.initialize(joe);

byte[] sigBytes = dsa.sign(document);

 or
boolean valid = dsa.verify(document,
sigBytes);

document and sigBytes are byte[].

Encryption

SymmetricCipher des = new
SymmetricCipher(“DES”);

// say we generate a random session key

byte[] sessionKey = des.initialize(new
CryptoRandom());

byte[] ciphertext =
des.encrypt(document);

 or
byte[] cleartext =
des.decrypt(document);

document, cyphertext and cleartext are
byte[].

Export Issues

• Security Packages must be signed

• Policy for signing is public and open

• Exportable API

• Exportable applications

Release and Schedule

• Key management, digital signatures
and encryption first

• Secure channels and key exchange to
follow

For more information

http://www.javasoft.com/

security-api@javasoft.com

Playing Playing
in thein the

SandboxSandbox
Marianne Mueller,Marianne Mueller,

JavaSoftJavaSoft

Overview

• Sandbox model

• Sandbox implementation

• Writing a security manager

• Extending the sandbox

Sandbox model

Application policy defines sandbox borders

Application implements border checks

Sandbox model: HotJava

• Applets barred from client file system

• Applets can only phone home

• Applets cannot load libraries

• Applets cannot exec processes

• Applets cannot examine properties

Sandbox implementation

Virtual Machine

lang io net util awt applet

java

classloader

applet

verifier

classloader

system security
security check

Sandbox implementation
• Security checks • AppletSecurity.java

SecurityManager s;
s = System.getSecurityManager();
if (s != null) {
 s.checkConnect(host, port);
}

s.checkRead(filename);

s.checkExec(command);

~50 ‘s ~15 ‘s

Sandbox implementation:
language features

• Classes declare and implement types

• Strong typing

• Access modifiers

• Memory management

• Misc: arrays, strings, no preprocessor,
no #define private public, no goto

Sandbox implementation:
classloader

• Classloader enforces namespaces

• Policy: applets can’t create classloader

• Classloader invokes verifier

Sandbox implementation:
verifier

• Invoked on downloaded classes
• java -verify

• Verifier has 4 passes
– Classfile verification

– Type system verification

– Bytecode verification

– (runtime) Type and access checking

Sandbox implementation: fixes

• DNS name resolution

• Verifier (/absolute/path)

• Classloader (exception, private)

• Hostile applets - working on hooks to
monitor and kill wayward applets

Getting beyond penetrate & patch

• Model VM, language, policy

• Verify against specification

• Security assessment
– External software integrity review

– Internet community’s scrutiny of source code

– Internal scrutiny

• Security Compatibility Test Suite

• Implementor’s Guidelines

Writing a security manager

• Decide policy

• Minimize code for enforcing policy

• Insert checks

• Subclass java.lang.SecurityManager

• Publish policy and tests

Jeeves: Servlet Security

• Jeeves servlets

• Local servlets

• Network servlet sandbox

• Signed servlets and the tools that love them

– List of trusted signatures

– Allow/don’t allow unsigned servlets

– Allow/don’t allow signed servlets

– Parameterized attributes

Jeeves: Security Manager

• Servlet sandbox
– Identify origin of servlet ==> Policy

– Network unsigned servlets

– Network signed servlets

Jeeves: unsigned servlets

• HTTP requests and responses

• Server’s file system

• Server properties files

• Server dynamic configuration

• Servlet dynamic management

• Inter-servlet communication

Jeeves: signed servlets

• Open Policy
– Treat signed servlets as file servlets

– Full access

• Configurable Policy
– Define short list of parameterized

attributes

– Allow administrator to grant/deny servlet
requests for additional capability

Jeeves: signed servlets

• Configurable Policy

attribute parameter check

read(filename) String * Strings immutable
 * Access authorization

socket(host,port) int, int * DNS name resolution

any

Try this at home

• Verifier model

• Type system model

• Capabilities system

• Experimental application policies

Where we are today

• JDK 1.0.2 (May 96) - fixes
classloader, DNS, verifier bugs

• Jeeves alpha (summer 96) - signed
servlets only, signed and unsigned in
beta timeframe

• JDK 1.1 - signed applets, signed
servlets

