


JavaOS™ – JavaOS™ – 
Java™ on Java™ on 
the Bare the Bare 

MetalMetal

Peter MadanyPeter Madany



Outline

• Goals
• Hosted Java
• JavaOS 

– Technical overview
– Advantages
– Target systems
– Status

• Demo
• Future



Goals

• Enable new types of network devices
– Intelligent
– Dynamic
– Simple to install, administer, and use

• Run Java in systems with limited resources
– Java-enabled devices
– Cannot assume high-end hardware and software

• Limited Hardware:
– Limited Memory: RAM, ROM
– Optional items display and disks

• No host operating system
– Minimize memory requirements



How Features Are Delivered

• Today: the Java language is embedded 
in applications
– e.g. browsers

• Soon: embedded within operating systems
– e.g. in Solaris, Windows, Mac OS

• Both rely on a host OS

• Conclusion: today Java requires a host OS



Java on a Conventional OS

Java Run-Time
Platform Independent +

Platform Dependent 
libnetlibawt

Operating System (Windows 95, MacOS 7.5, Solaris 2.5)

Java Foundation Net and IOAWT
Classes ClassesClasses Java

‘C’

Java
API

HotJava

LEGEND:
JavaSoft Software

3rd Party Software

Hardware



Major Features

• Java Virtual Machine
– Byte-code interpreter

– Class loader

– Garbage collector

• Language and Utility Classes

• AWT Classes

• Net Classes

• IO Classes



Host OS Requirements

• Support for threads
– Context switching

• Memory Allocation
• Window system
• Network Protocols
• File Systems
• Device drivers

– Keyboard
– Mouse
– Display



Matching Java to a Host OS

• Map AWT to window system

• Map Net classes to native networking

• Map file-related IO classes to 
file system

• Port platform-dependent part of VM



Java Without a Host OS

• Provide just enough kernel features:
– To implement the Java VM

• Just enough Java™-based code for: 
– AWT, Net, and File IO

• Necessary device drivers
– Display and network

– Mouse and keyboard

• Still support the full Java Platform API



JavaOS™ Architecture

Java Foundation 

HotJava

Classes

Java
API

Java Virtual Machine

LEGEND:
Java

C and assembler

Hardware

Booting, traps, interrupts, threads

IP

Ethernet

Net and IO
classes

Java
windows

Java 
graphics

AWT
classes

TCP

UDP

NFS client

KBD Mouse



JavaOS™ Details: JavaKernel

• Bootstrap
– Memory allocation

– Device mapping

• Trap and interrupt handling

• Thread support
– Simple context switching

– Single address space



JavaOS Details: 
Virtual Machine

• The virtual machine implements “Java”
– Bytecode interpreter loop
– Java exception handling
– Memory management 
– Threads

• JavaOS mostly uses standard VM
– Tuned the malloc and Java™-compatible heaps
– Class garbage collection



JavaOS™ Details: ROMability

• Java™-based byte codes are modified 
when run
– Cannot be placed as is in ROM

• The ROMizer tool 
– Converts set of class files into ROMable, 

bootable Java™-based images

– Performs some optimizations on the image



JavaOS Details: Device Drivers

• All device drivers written in Java
– Use two small “C” support classes
– For “memory objects” and interrupt dispatch

• We have working device drivers for:
– Ethernet
– Keyboard, mouse, serial ports, and clock
– Several frame buffers, including VGA
– Audio

• Designing a Java™-compatible Device 
Driver Interface



JavaOS Details: Networking

• Written in the Java language

• We currently have working versions of:
– TCP, UDP, IP and ICMP
– ARP for address resolution
– DNS or NIS for hostname lookup and login
– DHCP or RARP for address discovery
– NFS client-side, including SunRPC/XDR
– SNMP agent for network management
– Socket support
– Network time



JavaOS Details: 
Windows & Graphics

• Uses the “Tiny AWT” widget library

• X-windows would be too heavy-weight

• Window system
– Small window system
– Written in the Java language
– Optimized for limited memory

• Graphics rendering package
– Mostly written in Java 
– Designed for AWT
– Lowest level uses native methods written in “C”
– Bitmapped fonts



JavaOS Details: Applet API

• Same code

• Same API



HotJava As “Desktop”

• HotJava 
– HTML browser
– Written in the Java language
– Supports multiple windows
– Can run multiple applets per window
– Dynamically extendable

• Could run other Java™-based programs
– Possibly customized versions of HotJava



JavaOS Is Not an OS

6. It doesn’t need a file system

5. It doesn’t need virtual memory

4. It doesn’t need separate address spaces

3. It doesn’t support more than one language

2. It doesn’t have its own set of system calls

1. ...



JavaOS Is Not an OS

1. Marketing tells people it is NOT an OS



JavaOS Is an OS

9. You can boot it
8. You can log in to it
7. It safely runs several applets at a time
6. It drives devices
5. It networks
4. It does windows
3. It has an API – the Java Applet API
2. Tons of applets are being written for it



JavaOS Is an OS

1. Marketing tells people it is an OS



JavaOS Performance: Speed

• System built without using a JIT compiler

• Network performance
– Current TCP/IP throughput is 500K Bps

– Little tuning

– No native methods written in C



JavaOS Performance: Speed 

• Pendragon CaffeineMark

CategoryCategory

SeiveSeive

LoopLoop

GraphicsGraphics

ImageImage

CaffeineMarkCaffeineMark

Netscape/SolarisNetscape/Solaris

3131

2727

8989

5757

5151

HotJava/SolarisHotJava/Solaris

3333

2727

102102

9696

6464

HotJava/JavaOSHotJava/JavaOS

3333

2929

122122

265265

112112



JavaOS Performance: Memory

• 4MB ROM
– Code for JavaOS includes:

• Kernel code and drivers, Java VM and classes, 
• JavaOS windows, graphics, and networking

– Code for HotJava

– Fonts of various types, sizes, and styles 

• 4MB RAM
– Assuming ROM can be executed in place
– 2.5MB for JavaOS + Hotjava
– 1.5MB for pages, applets, and images



JavaOS Advantages

• Eliminates host OS overhead
– Smaller size
– No extraneous features
– Faster startup

• ROMable
• Written in the Java language

– Safe language
– Portable
– Dynamically extendable

• Cost of ownership
– Ease of installation
– Ease of administration



JavaOS for 
Intranet Computers

• Exploit enterprise network infrastructure
– Ethernet at each desktop
– Higher speed backbone networks
– Level of system administration depends on 

choice of protocols like DHCP or RARP 
• Supports Java™-based application 

environment
– MIS applications easier to develop, 

deploy, maintain
• OEMs build JavaOS Intranet Computers



JavaOS for 
Internet Computers

• Use current or future home networking
– High-speed modem
– ISDN 
– Cable modem

• Requires an Internet Service Provider 
(ISP) to make it behave like an appliance

• Supports Java™-based application 
environment
– Suitable for surfing the Web

• OEMs build JavaOS Internet Computers



JavaOS for Network Devices
• Tailoring Java to fit the device

– No subsetting of:
• Java VM and language and utility classes

– Include or exclude based on hardware features:
• AWT, Net, and file-related IO classes

– Tune system for soft real time
• VM and garbage collection

• JavaOS Development Environment
• Embedded JavaOS memory requirements:

– 128K RAM, 512K ROM
– Retains ability to download new Java code



JavaOS Status

• Currently runs on two platforms
– SPARC

– X86

• Being ported to other platforms

• Available in October 1996



JavaOS Demo

• Demo hardware
– Prototype “network portal”

• Demo software
– No host OS

– Alpha JavaOS

– Pre-beta HotJava

• Demo applets



JavaOS Future

• New Java API’s

• Device Driver Interface

• Window system enhancements
– Scalable fonts



Summary

• Features

• Performance

• Advantages

• Target systems

• Status



Deep Dive: JavaKernel

• MMU usage
– Modified only at boot-time 

– Used to make memory ranges contiguous

• JavaOS runs in supervisor mode only

• Java™-compatible interrupt handlers 
were a little tricky
– Low-level code uses interrupts-as-threads


