

JavaJava™™
CompatibilityCompatibility

Carla SchroerCarla Schroer
Quality AssuranceQuality Assurance

Manager,Manager,
JavaSoftJavaSoft

Overview

• What is compatibility and why is
it important?

• Testing requirements for compatibility

• Addressing the testing requirements

• Summary

What Is Java™ Compatibility?

• Implementations meet the specifications

• A measure of compliance with the
specification, not performance robustness
or other quality issues

Components for Compatability

1. Compilers must conform to the Java™
Language specification

2. Virtual Machine (VM)
implementations must conform to the
Virtual Machine Specification

3. Application Programming Interface
(API) support must conform to the
API documentation

Why Is Java
Compatibility Important?

• To JavaSoft – maintain control of
the language

• To developers – it means you write it
once and it runs everywhere including
across platforms and across products

• To users – can get applications from
anywhere and they run on your machine

What Does the Java-
Compatible Logo Mean?

• The product has passed
the appropriate test suites

• All licensees of the Java
technology are required
to pass the test suites

• The test suites are tied to
a specific version of Java

Who Gets the Logo?

• Today–only licensees of Java-based
technology can get the logo, for example:
– Netscape’s Navigator 2.0
– Symantec’s Cafe
– SunSoft’s Java Workshop

• Future–allow ports and “clean room”
implementations to get the logo through
a certification process

• Lack of certification process is due to
concerns about security, malicious intent
and completeness of the test suites

Java in Operating Systems

• The Java language will be available
directly in many operating systems

• All these implementations must pass
the JavaSoft compatibility test suites

–Apple MAC OS
–HP HP-UX
–IBM OS/2, win3.1, MVS, AIX
–Microsoft Windows 95, Windows NT
–Novell Netware 4.0
–SCO UnixWare
–SGI IRIX
–SunSoft Solaris
–Tandem Non-stop Kernel

Three Main
Components to Test

1. Compilers must conform to the Java
Language specification

2. Virtual Machine implementations must
conform to the Virtual Machine Specification

3. API support must conform to the API
documentation
– Base API is java.lang, java.net, java.io, java.util,

java.applet, java.awt packages
– Additional APIs being developed

Security testing is important for all components

Security Test Examples

• In the compiler
– Can’t cast pointers
– Can’t do pointer arithmetic

• In the virtual machine
– Verifier attacks must fail
– Can’t overrun arrays

• In an Applet environment
– Can’t read or write files
– Can’t make illegal socket connections

Reference Implementation

CompilerCompilerCompiler CompilerCompilerCompiler

Virtual
Machine
Virtual Virtual

MachineMachine
Virtual

Machine
Virtual Virtual

MachineMachine

JavaSoft
Implementation

(Reference)

Implementation
under test

.java file .java file

.class file .class file

Test results Test results

Assembled
class files

Assembled Assembled
class filesclass files

Examples

• Web browsers VM, Applet API,
 Applet Security

• Developer tools Compiler, VM,
 Base Java API

• Java in Operating VM,Base Java API
Systems

Examples

• Things not tested for conformance today:
– Debuggers

– Java compliant source code generators

– Compilers for other languages

Other Testing Constraints

• System under test may not have:
– File system

– Window system

• Tests must be implementation
independent

Addressing the
Testing Requirements

• Testing Tools

• Compilers

• Virtual Machines

• Base APIs

Testing Tools (Internally
Called “Java Test Kit”)

• A set of tools written in Java to manage the
testing process
– Compile test programs
– Execute test programs
– Browse results
– Generate reports
– Perform code coverage analysis

• Tests, tools and reports are organized
around HTML pages, following the browser
model

• Used by JavaSoft and licensees of Java-
based technology

Example: Harness Application

Example: Harness Summary

Example: Harness Report

Code Coverage Report

Compilers

• Most well understood component

• Lots of language testing
experience available

• Easy to automate

• Over 1000 tests written – both
positive and negative cases

• More tests being developed

Virtual Machines

• Can use all positive language tests

• Need class files not possible with
the compiler
– Built assembler for the Java language to

build test cases
– Test all byte codes
– Check that all unused byte codes

remain unused
– Over 400 hand assembled test cases
– Corrupt class file test cases

• More tests being developed

Base APIs

• Test all public and protected methods on all Java-
compatible classes in java.lang, java.net, java.io, java.util

• 56 tests (1 test per class)
• AWT classes are hard to automate

– Existing capture-playback technology is not cross
platform enough

– Ongoing debate about native “look and feel” vs. Java
“look and feel”

– Today it is native, so can’t detect cross platform behavior
differences in an automated way

– Currently use interactive tests to cover AWT classes
• As additional APIs are developed, conformance tests are

also developed

Futures

• More tests

• More test tools

• More tests and tools made available

Summary

• Java compatibility ensures that
implementations of Java technology
meet the specifications

• “Write once, run anywhere”

• Tests and test tools are well underway

