


An An 
Overview Overview 
of JDBC™of JDBC™

Graham HamiltonGraham Hamilton



Talk Outline

• Overview of JDBC and its design goals

• Key API classes

• Some examples



So What Is JDBC?
• JDBC is a Java™ API for executing SQL 

statements

• It’s deliberately a “low level” API
– But it’s intended as a base for higher level APIs 

– And for application builder tools

• It’s influenced by existing database APIs
– Notably the XOPEN SQL CLI

– And Microsoft’s ODBC
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What’s Good About ODBC:

• It is “adequate” for database access

• There is a lot of experience with it

• It is widely accepted

• It’s widely implemented:
– For virtually all databases

– On virtually all platforms

• People (now) know how to implement 
it efficiently



What’s Bad About ODBC:

• It’s hard to learn:
– Simple & advanced features are mixed together

– It has complex options even for simple queries

– There is widespread use of “void *”

• It’s hard to map to Java:
– Copious use of pointers

– Frequent use of multiple results (via pointers)



JDBC Technical Goals

• Re-use key abstractions from ODBC
– To ease acceptance/implementation by DB vendors
– To ease learning by ISVs and application writers

• Provide a low-level SQL API
– But we will add higher level APIs in the future

• Provide simple interfaces for simple tasks
• Support the weird stuff in separate interfaces
• Provide a “natural” and “clean” Java API

– Test: JDBC applications should “read well”



Main JDBC Classes

• DriverManager

• Connection

• Statement

• PreparedStatement 

• CallableStatement

• ResultSet

• ResultSetMetaData

• DatabaseMetaData



DriverManager

• The DriverManager tracks JDBC drivers
• JDBC drivers must register themselves
• DriverManager maps JDBC URLs to Drivers
• The DriverManager opens Connections

– Taking a URL as the target
– With a set of argument properties
– The DriverManager selects a suitable driver



Database URLs
• We need a way to open JDBC connections:

– For lots of different kinds of database drivers
– Where different databases need different syntax
– Without requiring human intervention!

• The answer seemed obvious: use URLs!
– it’s the internet’s flexible naming scheme
– you can bridge to other names (e.g. ODBC)

• Typical names use           
jdbc:<subprotocol>:<stuff>

– e.g.     jdbc:odbc:axx
– or        jdbc:odbcnet://wombat:344/fred
– or        jdbc:sybase://wombat:344/fred



Connection

• A Connection points at a given database
• A Connection provides Statement objects

• A Connection is a Transaction session.
– You can implicitly begin transactions

– And then commit or abort them

– Or you can be in “auto commit” mode



Key Classes

DriverManager

Connection Connection

StatementStatement Statement

ResultSet ResultSet



Statement and 
PreparedStatement

• Statement allows simple SQL execution 
– “executeQuery” can be used for SELECT

– “executeUpdate” can be used for other simple SQL

– “execute” covers the weird cases

• PreparedStatement adds support for IN params
– Through a collection of setXXX methods

– It can be used for compiled SQL statements



CallableStatement

• CallableStatement extends PreparedStatement
– For use with stored procedures

• It adds support for OUT parameters
• Unfortunately you have to register  OUTs

– Using “registerOutParameter”
• Then retrieve the value after call execution

– Using one of the “getXXX” methods



ResultSet

• ResultSet provides results from a SELECT
• You can iterate over the rows using “next”
• Within a row you can retrieve result columns

– using a set of “getXXX” methods
– using either column names or column indexes

• For example:
ResultSet rs = ...
while (rs.next()) {

int a = rs.getInt(“a”);
Numeric b = rs.getNumeric(“b”);
String key = rs.getString(3);

}



Programming with 
database metadata

• Humans are only one kind of user
– And they may even be a minority

• Tools also do dynamic database programming
– They talk to the database to learn the table layouts
– They talk to the driver to find the DB features
– Then they generate appropriate browsers/controls

• We support this with two classes:
– ResultSetMetaData
– DatabaseMetaData

• These are low-level APIs 
– “For expert  use only”



ResultSetMetadata

• ResultSetMetadata describe a ResultSet

• It lets you find the column count 

• For each column it provides:
– the column name
– the column’s SQL type
– the column’s width
– etc.

• This allows generic handling of ResultSets



DatabaseMetaData
• DatabaseMetaData describes a DB connection
• It provides information about feature details:

– e.g. exact details of supported SQL

• It documents implementation limits:
– e.g. the maximum number of columns in a table

• It describes the database schema:
– the names and types of tables
– the names and types of table columns
– the names and types of stored procedures
– etc.



Implementing a Driver

• Drivers can be implemented as:
– Java bridges to native DB libraries

– Clients using pure Java talking to database listener

• Drivers must register themselves with 
DriverManager
– Best done in class static initialization code

• Drivers must implement the standard JDBC 
classes
– Connection, Statement, ResultSet, etc.



Security Model

• JDBC follows the standard applet security 
model

• An applet can only connect back to 
its server
– It can’t connect to random databases

• Drivers must conform to security model
– It’s mostly automatic for pure Java drivers 
– Some checks are needed for native drivers

• Applications can connect to any server



A simple SELECT example

public void doSelect() throws SQLException {
// Open a database connection.
Connection con = 

    DriverManager.getConnection("jdbc:odbc:wombat");

  // Create and execute a statement.
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(

 "SELECT a, b, key FROM Table1");

// Step through the result rows.
while (rs.next()) {

// get the values from the current row:
int a = rs.getInt(1);
Numeric b = rs.getNumeric(“b”);
String key = rs.getString(“key”);

  println(“a=” + a + “, b=” + b + “, key=” + key);
}

}



A simple UPDATE example

public void doUpdate() throws SQLException {

// Open a database connection.
Connection con =      

    DriverManager.getConnection("jdbc:odbc:wombat");

  // Create a “prepared” statement.
PreparedStatement stmt = con.prepareStatement(

    "UPDATE Table1 SET a = ? WHERE key = ?");

// Now execute the statement with a couple of parameters
stmt.setInt(1, 34);
stmt.setString(2, "count");
int rows = stmt.executeUpdate();

System.out.println("Updated " + rows + " rows.");
}



The JDBC spec

• Its on-line in postscript and Acrobat.

• See our JDBC page at:
– http://splash.javasoft.com/jdbc/

• We put it out for public review in March.

• We will freeze it on June 8th.




