

An An
Overview Overview
of JDBC™of JDBC™

Graham HamiltonGraham Hamilton

Talk Outline

• Overview of JDBC and its design goals

• Key API classes

• Some examples

So What Is JDBC?
• JDBC is a Java™ API for executing SQL

statements

• It’s deliberately a “low level” API
– But it’s intended as a base for higher level APIs

– And for application builder tools

• It’s influenced by existing database APIs
– Notably the XOPEN SQL CLI

– And Microsoft’s ODBC

The JDBC Pieces

Java Application
JDBC API

JDBC Driver Manager
JDBC DriverAPI

ODBC
bridge

3rd Party
driver

XYZ
driver

Native
ODBC
code

3rd Party
server side

JDBC Pressures

JDBC

Easy
to use

Support
DB tools

DB
Independent

Efficient

Follow
“standards”

be widely
accepted

be
“good Java style”

Easy to
implement

Time to
market

Support all
DB features

What’s Good About ODBC:

• It is “adequate” for database access

• There is a lot of experience with it

• It is widely accepted

• It’s widely implemented:
– For virtually all databases

– On virtually all platforms

• People (now) know how to implement
it efficiently

What’s Bad About ODBC:

• It’s hard to learn:
– Simple & advanced features are mixed together

– It has complex options even for simple queries

– There is widespread use of “void *”

• It’s hard to map to Java:
– Copious use of pointers

– Frequent use of multiple results (via pointers)

JDBC Technical Goals

• Re-use key abstractions from ODBC
– To ease acceptance/implementation by DB vendors
– To ease learning by ISVs and application writers

• Provide a low-level SQL API
– But we will add higher level APIs in the future

• Provide simple interfaces for simple tasks
• Support the weird stuff in separate interfaces
• Provide a “natural” and “clean” Java API

– Test: JDBC applications should “read well”

Main JDBC Classes

• DriverManager

• Connection

• Statement

• PreparedStatement

• CallableStatement

• ResultSet

• ResultSetMetaData

• DatabaseMetaData

DriverManager

• The DriverManager tracks JDBC drivers
• JDBC drivers must register themselves
• DriverManager maps JDBC URLs to Drivers
• The DriverManager opens Connections

– Taking a URL as the target
– With a set of argument properties
– The DriverManager selects a suitable driver

Database URLs
• We need a way to open JDBC connections:

– For lots of different kinds of database drivers
– Where different databases need different syntax
– Without requiring human intervention!

• The answer seemed obvious: use URLs!
– it’s the internet’s flexible naming scheme
– you can bridge to other names (e.g. ODBC)

• Typical names use
jdbc:<subprotocol>:<stuff>

– e.g. jdbc:odbc:axx
– or jdbc:odbcnet://wombat:344/fred
– or jdbc:sybase://wombat:344/fred

Connection

• A Connection points at a given database
• A Connection provides Statement objects

• A Connection is a Transaction session.
– You can implicitly begin transactions

– And then commit or abort them

– Or you can be in “auto commit” mode

Key Classes

DriverManager

Connection Connection

StatementStatement Statement

ResultSet ResultSet

Statement and
PreparedStatement

• Statement allows simple SQL execution
– “executeQuery” can be used for SELECT

– “executeUpdate” can be used for other simple SQL

– “execute” covers the weird cases

• PreparedStatement adds support for IN params
– Through a collection of setXXX methods

– It can be used for compiled SQL statements

CallableStatement

• CallableStatement extends PreparedStatement
– For use with stored procedures

• It adds support for OUT parameters
• Unfortunately you have to register OUTs

– Using “registerOutParameter”
• Then retrieve the value after call execution

– Using one of the “getXXX” methods

ResultSet

• ResultSet provides results from a SELECT
• You can iterate over the rows using “next”
• Within a row you can retrieve result columns

– using a set of “getXXX” methods
– using either column names or column indexes

• For example:
ResultSet rs = ...
while (rs.next()) {

int a = rs.getInt(“a”);
Numeric b = rs.getNumeric(“b”);
String key = rs.getString(3);

}

Programming with
database metadata

• Humans are only one kind of user
– And they may even be a minority

• Tools also do dynamic database programming
– They talk to the database to learn the table layouts
– They talk to the driver to find the DB features
– Then they generate appropriate browsers/controls

• We support this with two classes:
– ResultSetMetaData
– DatabaseMetaData

• These are low-level APIs
– “For expert use only”

ResultSetMetadata

• ResultSetMetadata describe a ResultSet

• It lets you find the column count

• For each column it provides:
– the column name
– the column’s SQL type
– the column’s width
– etc.

• This allows generic handling of ResultSets

DatabaseMetaData
• DatabaseMetaData describes a DB connection
• It provides information about feature details:

– e.g. exact details of supported SQL

• It documents implementation limits:
– e.g. the maximum number of columns in a table

• It describes the database schema:
– the names and types of tables
– the names and types of table columns
– the names and types of stored procedures
– etc.

Implementing a Driver

• Drivers can be implemented as:
– Java bridges to native DB libraries

– Clients using pure Java talking to database listener

• Drivers must register themselves with
DriverManager
– Best done in class static initialization code

• Drivers must implement the standard JDBC
classes
– Connection, Statement, ResultSet, etc.

Security Model

• JDBC follows the standard applet security
model

• An applet can only connect back to
its server
– It can’t connect to random databases

• Drivers must conform to security model
– It’s mostly automatic for pure Java drivers
– Some checks are needed for native drivers

• Applications can connect to any server

A simple SELECT example

public void doSelect() throws SQLException {
// Open a database connection.
Connection con =

 DriverManager.getConnection("jdbc:odbc:wombat");

 // Create and execute a statement.
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(

 "SELECT a, b, key FROM Table1");

// Step through the result rows.
while (rs.next()) {

// get the values from the current row:
int a = rs.getInt(1);
Numeric b = rs.getNumeric(“b”);
String key = rs.getString(“key”);

 println(“a=” + a + “, b=” + b + “, key=” + key);
}

}

A simple UPDATE example

public void doUpdate() throws SQLException {

// Open a database connection.
Connection con =

 DriverManager.getConnection("jdbc:odbc:wombat");

 // Create a “prepared” statement.
PreparedStatement stmt = con.prepareStatement(

 "UPDATE Table1 SET a = ? WHERE key = ?");

// Now execute the statement with a couple of parameters
stmt.setInt(1, 34);
stmt.setString(2, "count");
int rows = stmt.executeUpdate();

System.out.println("Updated " + rows + " rows.");
}

The JDBC spec

• Its on-line in postscript and Acrobat.

• See our JDBC page at:
– http://splash.javasoft.com/jdbc/

• We put it out for public review in March.

• We will freeze it on June 8th.

