

Java[™]-**Based Devices** from **Mitsubishi** Eric Nguyen

M32R/D 32-bit RISC Microprocessor with On-Chip DRAM

Eric Nguyen

DRAM Integration

- 128b internal bus at 66MHz for CPU-memory data transfer
- 16b external bus at 16MHz for power reduction
- 80 pin plastic QFP package
- Integration DRAM for main memory, page frame and data buffer

Small RISC CPU Core

- 52.4 MIPS @ 66MHz (DRAM ver.), 80 MIPS @ 100MHz (Logic ver.)
- CPU core size: Smaller than existing RISC MPUs
- Code size: Smaller than existing RISCs, nearly traditional CISC level
- Full synthesizable HDL description is available

DSP Function

- All 32x16b and 16x16b DSP instructions in 1 cycle
- 16b and 32b fixed-point arithmetic supported (rounding & saturation)
- For FIR and IIR filters in MODEM, data compression/decompression, etc.

On-Chip Memory Support

- Two caching modes: On-chip DRAM caching and Off-chip ROM caching
- Wait-cycle control for the on-chip DRAM
- Refresh control of the on-chip DRAM both for normal operation and sleep mode

M32R/D Features

- CPU core:
 - Small 32-bit RISC Architecture
- VAX MIPS:
 - 52.4 MIPS @ 66.6MHz (Dhrystone V2.1)
- Memory:
 - 2 Mbyte DRAM with 2 Kbyte Cache
- Peripheral Logic:
 - 32b x 16b DSP-like Multiply and Accumulator Memory Controller, etc.

M32R/D Features Continued

- External Bus:
 - 24-bit address, 16-bit data
- Clock:
 - 66.6MHz (internal) / 16.6MHz (external)
- Supply Voltage: - 3.3V
- Power:
 - 275mW (typ.) / 700mW (max.) / ≤ 2mW (stand-by)
- CPU Size:
 - -4.0mm² (2nd gen.)

M32R/D Features Continued

- Process Technology:
 - 0.4µm CMOS, 2 metal layers (2nd gen.)
- Package:
 - 80-pin plastic QFP
- Schedule:
 - Engineering Samples: Q2/96
 - Production: Q1/97
- Options:
 - DRAM size (512 Kbyte and 1 Mbyte)

Performance Advantage

- Cache Miss and Line Fill (at 66MHz)
- External DRAM
 - 14 cycles, 4-2-2-2 wait cycles [Standard DRAM]
 - 8 cycles, 4-0-0-0 wait cycles
 [Synchronous DRAM]
- Integrated DRAM
 - 5 cycles

Power Dissipation

• External DRAM:

 $PTotal = PCPU + PDRAM \times 2 + PBUS$

- $= 360 \text{mW} + 280 \text{mW} \ge 2$
 - + 80pF x 3.3V² x 66 MHz x 70 x 0.1

= 1322 mW

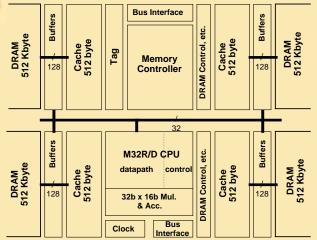
(PDRAM is doubled, because 2-16 x 1 Mbit DRAMs are required for a 32-bit data bus)

• Integrated DRAM:

PTotal = PCPU + PDRAM + PBUS = 360mW + 280mW + 80pF x 3.3V² x 16 MHz x 30 x 0.1 = 682mW

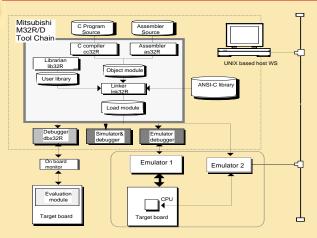
System Cost

- Number of Chips
 - External DRAM: CPU with Digital-ASIC, DRAM x 2, Analog-ASIC
 - Integrated DRAM: CPU with DRAM, Digital/ Analog-ASIC
- Package
 - External DRAM: 160 200 pin PQFP
 - Integrated DRAM: 80 pin PQFP
- MCU Die Size with Integrated DRAM
 - CPU 2x2 mm²: 16% overall die size increase relative to the DRAM



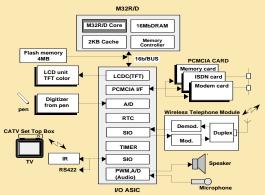
M32R/D CPU Core Features

Performance	Operating Frequency Average MIPS CPI Multiply and Accumulate 16 bit x 16 bit + 40 bit -> 40 bit 32 bit x 16 bit + 56 bit -> 56 bit	100MHz (Bus Clock 16.6MHz) 80 MIPS 1.25 1 cycle 1 cycle
Instructions	Instructions Registers	83 16 x 32 bits
Bus Interface	Address Space Data Bus Bus Cycle	4 Gbytes 32 bit 1 cycle (min)
Core	Supply Voltage Process Technology Verilog HDL description ready	3.3V 0.5μm, 3 metal layers For synthesis and P&R



M32R/D Layout

M32R/D Development Tools



M32R/D Software Tools

- ANSI-C Cross Compiler
 - Mitsubishi (Q2/96)
 - GNU (Q4/96)
- Real Time OS
 - Mitsubishi ITRON (Q2/96)
- Evaluation Board
 - Mitsubishi (Q3/96)

- ICE
 - Mitsubishi (Q4/96)
 - 3rd party (Q1/97)
- Verilog-HDL Description
 - Mitsubishi (Q2/96)

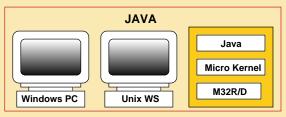
System Configuration Concept = M32R/D + I/O ASIC + ROM

Application Examples

- Personal Digital Assistant (PDA)
- Intelligent Data Pager
- Printer System Configuration based on M32R/D
- Telephony Internet Terminal
- CATV (Digital) Internet Terminal
- CATV (Analog) Internet Terminal
- Digital Camera
- Future Camera Application
- Set-top Box
- Multimedia Processing System

M32R/D Advantages

- DRAM Integration
- Small RISC CPU Core
- DSP Function
- On-Chip Memory Support


191751<u>-191</u>011 1913757/D

Yuichi Nakao

Java[™] for Embedded System: Java Advantages

- Portable, Multi-platform
 - Interpreted, Architecture Independent Byte Code

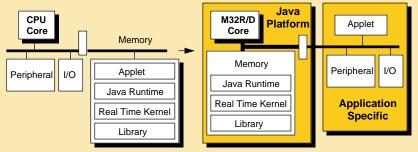
- Robust
 - No Direct Memory Access, Garbage Collection
- High Security
 - Limitation on Applet, Byte Code Verifier

Mitsubishi's Approach to Java

- For two years Mitsubishi has been implementing Java onto our MPU
- We have ported
 - Java[™] Runtime, HotJava[™], Core Library, Network Class Library, Display Class Library
- Demonstration at the Mitsubishi booth
- Our goal is to provide a portable and embedded Java system using the M32R/D RISC processor

M32R/D: Ideal Platform for Compact Data Processing

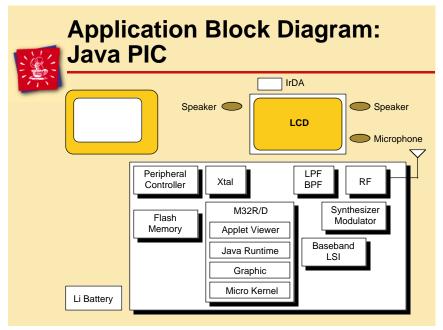
- High Performance Compact for RISC Core
 - 52.4 MIPS @ 66.7MHz
 - 2mm x 2mm
- On-Chip DRAM
 - High performance with wide bandwidth
 - 128-bit internal bus
 - Low power consumption
 - 275mW with 2 Mbyte DRAM on- chip
 - Small footprint for MPU-memory system

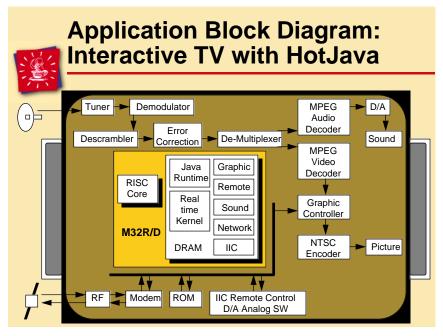


M32R/D Target Application

- Portable or handheld system with low power consumption
 - PDA, PIC
 - Data Pager, Wireless Smart Phone
- Communication or graphic controller with high performance and high bandwidth
 - Network Protocol Controller
 - Digital Still Camera
 - Navigation System with Graphic Display
 - TV/VCR Graphic User Interface
 - Video Games

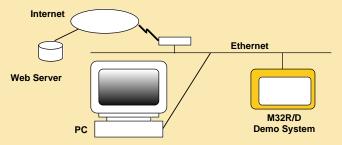
Java on M32R/D Application: Concept

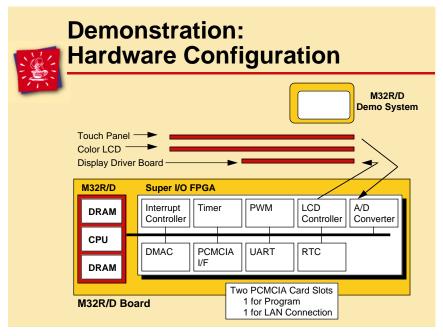

- Single chip Java engine for portable and embedded system
- Basic S/W in on-chip DRAM
 - Java Runtime + Real time kernel + library

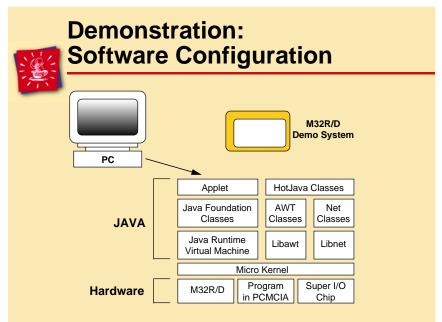


Java on M32R/D Application: Target Applications

- Portable Internet Browser
 - PIC
 - PDA
 - Wireless Phone
- Java Data Pager
- Video Games, Navigation System, VCR/TV with HotJava







Demonstration

- Executing PDA Applet Demonstration
- Browsing Web through Ethernet
- Downloading and Executing Simple Applet from PC

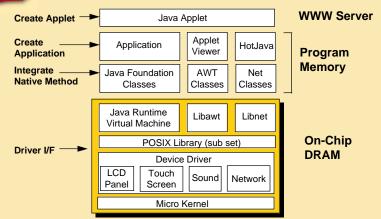
Software

- Java and M32R/D: an ideal platform for portable and embedded applications
- Potential Applications
 - Portable Internet Browser
 - Java Data Pager
 - Video Games, Navigation System, VCR/TV with Internet Access
- Demonstration at Mitsubishi Booth

M32R/D: Jeivei^{rm} in Silicon

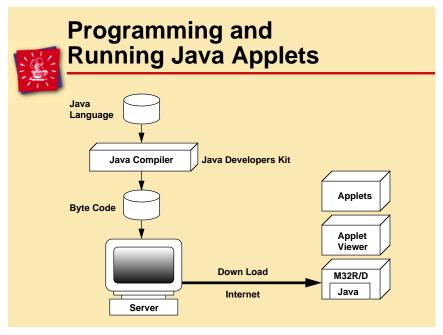
> Mamoru Sakamoto

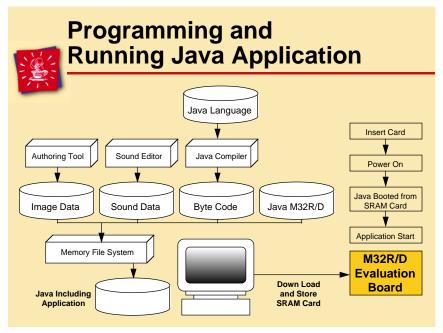
Requirements for Embedded Java


- Vendor Requirements
 - Maintainability –
 - Reusability
 - Internet Product
- Customer Requirements
 - Easy Operation-
 - Serviceability
 - Customization
 - Low Cost —

Embedded Java

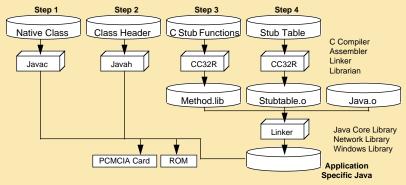
Embedded Java System Structure


Java Implementation

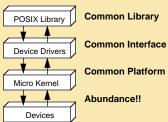

- Java Application Development
 - Applet: Download from WWW Server
 - Application: Embedded in Java

Access Capability

File	Memory	Network
No	No	Restricted to Host
Yes	Yes	No Restriction


- Customize Java Class File to Various Applications
 - Native Method
- Apply Java to Embedded Products
 - Run Java on Micro Kernel

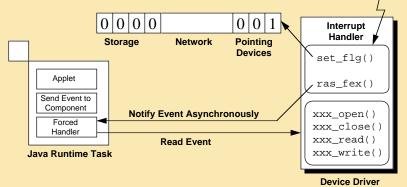
Programming Native Method


- Adapt Java Class to Application Requirement
 - PDA, STB, Navigation, TV, PCS

黨

Incorporating Device Driver in Java

- Multimedia Application Products
 - To Develop Various Drivers for STB, PDA, Navigation, TV
 - Common Platform
 - To Respond Quickly to Demand from Devices
 - Asynchronous I/O Multi Task Feature
 - To Achieve Low Cost
 - Small Memory Size



Notify Event from Driver to Java

• Event Flag: To Designate Device Type

• Forced Handler: To Notify Event to Java

Interrupt

Future Plan

- Reduce Memory Size for Consumer Electronics
 - Resident Class File in Card, ROM
- Improve Performance
 - Performance Evaluation with Conventional Benchmark
 - Porting Just-in-Time Compiler
 - Realize Multi Thread with Micro Kernel Task Facility