

Trust, Proof, and Payment

Software Distribution in the Age of the Internet

Scott Schnell RSA Data Security, Inc.

Security and Java

- Current focus on boundaries and detecting "bad" applets at runtime
 - Distinguishing "trusted" from "untrusted"
 - Limiting applet activity
 - Severely limiting "untrusted" applet activity
- Current applet screening very coarse
 - Netscape local vs remote
 - Others inside/outside firewall, etc.
- Where is user judgment?

What Do the Players Want?

- Users want control in:
 - Trusting the author and integrity of the applet
 - Authenticating the "reseller" of the applet
 - Preventing fraudulent use of their credit cards
- Developers want:
 - Payment
 - Piracy prevention
- Electronic distributors and resellers want payment and info
- Visa and Mastercard want to prevent fraud

...all before the applet is loaded

- SSL
 - Secure piping
- Signed applets and signature-aware browsers
 - Integrity of application
 - Authenticity of developer
 - User decides which <u>developers</u> she trusts!
- Secure transactions (SET)
 - Authentication Cardholder, Merchant, and Acquirer
 - Protection of CC information
 - Indemnity for merchant and cardholder
 - Fraud Control for issuers
- Signed distribution
 - Trusted reporting of distribution chain back to developer

RSA Crypto Foundation

- RSA Digital Signature
 - Authenticates author and integrity of a document or application
- RSA Digital Envelope
 - Provides privacy for communication, transactions, and data between sender and recipient
- Both based on RSA Public Key Cryptography and Digital Certification of keys

Public Key Crypto Basics

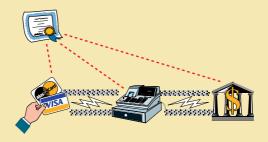
- Algorithm asymmetrical
 - Pair of keys for each entity
 - What the Public key locks, <u>only</u> the Private key unlocks, and vice versa
- Eliminates need to share secrets
- Allows positive identification of sender and recipient

Signing an Applet

 Author Signs a "fingerprint" of the Applet and binds it to the Applet

Verifying a Signature

- Recipient decrypts original fingerprint, and matches it with a new one
 - Verifies both integrity of applet and author's identity


Certificates

- You need to have trust in the "labeling" of public keys
- Certificates establish trust indirectly via trusted "Certificate Authorities" i.e., Verisign
- Uniform mechanism
- Many certificates for many purposes
- Facilitates secure, <u>ad hoc</u> commerce and communication

SET — the Secure Payment Card Transaction Standard

- "Preflights" the identity of all participants using certs and challenges
- Obscures Credit Card from merchant until <u>after</u>identities and approval are complete
- Deals only with value and method of transaction, not the order
 - Restrictions make it strong and exportable worldwide

What's Next

- Java standards for code signing using digital signatures
- Java browsers that check applet signatures and inform the user
- Certificate standard and infrastructure for signature verification
- SET finalization and deployment in browsers, merchant servers, and payment gateways

Contacting RSA

- http://www.rsa.com
- info@rsa.com
- RSA-labs@rsa.com

RSA Data Security, Inc. 100 Marine Parkway, Suite 500 Redwood City, CA 94065 415 / 595-8782 vox 415 / 595-1873 fax

