
JavaOSTM Based
Network Computing

Masahiro Kuroda, Chief Engineer
Scott Hansen, Dep. General Mgr.

Paradigm Shift
and the New Wave

Mainframe

PC/WS

Mini/
Small Business
Computer

Price

Market

Network

Appliance

Mainframe

Mini/
Small Business
Computer PC/WS

Network

Cluster
LAN Internet

Market Trend

Network Trend

User
Pen PC

PDA

STB

Navi
InternetTV

Appliances
Mobile NC

Focus on new tide of network
computing based on Mitsubishi’s
technological advantages

Network Computing
Strategy

◆ Semiconductor (TFT, M32R/D, etc.)
◆ Consumer (TV, digital camera, etc.)
◆ Mobile computing (pen-based PC, etc.)
◆ Enterprise computing (high-end server)
◆ System integration
◆ Basic key technologies

Network Computing
Concept
Mobile information systems (anytime,
anywhere) using network computing
technology

1993 1996 19971995 2000

Internet

System Concept
•Seamless Office environment (Wireless LAN, PHS/PCS/CDPD, NC technology)
•Platform independent, intuitive user interface (Java technology)
•Internet/Intranet implementation of flexible systems

à smooth migration of legacy system (Agent technology)
•Communication and data transfer technology suitable to wireless connectivity

à (Proxy Server technology, etc)

Target Application Image
•“Anytime, Anywhere” Virtual Mobile Office
•Wide-area Information terminals/Servers System
•Internet/Public Network Information Providing Service
•

System Concept and
Target Application

Network Computing
Types

◆ Enterprise
◆ Mobile applications
◆ Home and consumer product

Office -- Enterprise

◆ MonAMI/NC
◆ JavaOS™ based network terminal
◆ NC management kit

◆ System integration for Enterprise
◆ Platform for VAR, SI

Mobile Applications

◆ MonAMI-II
◆ JavaOS based mobile terminal
◆ Wireless communication
◆ Mobile server

◆ Sales support
◆ Patient care applications
◆ In car/train information system

Home -- Home and
Consumer Product

◆ In TV
◆ Electronic news
◆ Virtual mall and home shopping

◆ In Telephone
◆ Personal cell phone
◆ SmartPhone

Why JavaOS ?

◆ Can support any emerging chips
◆ Intel, PowerPC, M32R/D, PicoJava

◆ Run Java™ with limited resources
◆ Execute new applications

efficiently on old CPUs

What Features
Are Added

◆ System initialize
◆ Any boot server -- DHCP/BOOTP
◆ Local boot and remote boot

◆ Communication
◆ Wireless LAN
◆ Wireless WAN -- CDPD,PCS,PHS,etc

◆ Management
◆ NC management kit -- configuration,

User/App manage

Java Enterprise
Network Terminal

◆ MonAMI/NC -- Compact
lunch box
◆ At the COMDEX/Fall ’96 exhibition
◆ Boot from Unix

◆ MonAMI/ES -- All-in-One TFT
◆ At the JavaOne ’97
◆ Boot from WindowsNT

Java Mobile
Network Terminal

◆ MonAMI -- Experimental
◆ At the JavaOne ’96
◆ At the COMDEX/Fall ’96 with

wireless functions CDPD/LAN
◆ MonAMI-II -- Prototype

◆ At the JavaOne ’97

JavaOS Internals

Hardware

Bootloader, Traps, Interrupt handler, Threads

Java VM

AWT
Classes

JavaOS
Window

JavaOS
Graphics

Foundation
Classes

Ether-
net

IP

TCP
UDP

NFS client

Keyboard Mouse/Pen

Java API

Net/IO Classes

SLIP

HotJava

C Java & C Java

Java Thread
Implementation Example

Hardware

Output buffer

Circular read buffer

IP packet queue

SerialNetwork
Driver Thread

Native driver

packet queue
in SLIPpacket class

receiverIntr()doOutput()

SerialLineNetworkDriver. outputArray()

SerialLineNetworkDriver.processInput()

SLIP.run()

IP Class

SLIP Class Thread

The more written in Java,
the more portable

Java Driver or C Driver

◆ Depends on the interrupt handling
◆ Currently, trade off between

performance and portability

Speaker Change

Approach to JavaTM

for Embedded Systems
Mamoru Sakamoto

Approach to Java
for Embedded Systems

◆ Java advantage
◆ Java cost

◆ Memory / CPU usage
◆ Java for embedded systems
◆ JVM-M32R/D demo
◆ JVM-M32R/D
◆ Conclusion

Java Advantage

◆ Application development
◆ Distributed application
◆ Secure and robust environment to

run external code
◆ OO language, MultiThreaded, rich

APIs, portable bytecode, interpreted,
secure, robust, RMI

JVM Cost

◆ Stacks for threads
◆ Class information
◆ Images
◆ Object heap
◆ Java bytecodes
◆ C codes/static data

Memory usage

JVM Cost

◆ Bytecode interpretation
◆ Dynamic checking

◆ Null pointer
◆ Array index

CPU usage

Memory Cost

◆ C stack and Java stack
◆ Unpredictable stack size
◆ Typically 14-20 threads

Stack for threads

Class information

Memory Cost

◆ Class hierarchies
◆ Non private methods and variables
◆ Constant pools
◆ Strings
◆ Required for dynamic linking

Images

Memory Cost

◆ AWT always holds images
decompressed

Object heap

Memory Cost

◆ Unpredictable max size
◆ Overhead for GC support
◆ Overhead by non precise GC

Java bytecodes
C code, C static data

Memory Cost

◆ AWT
◆ Java core
◆ Network
◆ RTOS
◆ C libraries

RTOS + Java

Approach to
Embedded Systems

◆ RTOS
◆ Native device drivers
◆ Communication between Java

threads and native threads

Static Java

Approach to
Embedded Systems

◆ Disable dynamic class loading
◆ Statically link application and

library classes
◆ Strip unnecessary information
◆ Convert bytecodes into native

codes

Others

Approach to
Embedded Systems

◆ Provide ways to estimate stack size
◆ Single threaded Java
◆ Alternative GUI packages other

than AWT
◆ Static object memory management

JVM/M32R

JVM-M32R/D Demo

◆ RTOS (ITRON)
◆ no AWT
◆ JPEG decompression on the fly

M32R/D

JVM-M32R/D

◆ 32b RISC core
◆ eRAM (on-chip DRAM)

◆ 128b internal bus
◆ 32b x 16b DSP-like multiply

and accumulator

Implementation

JVM-M32R/D

◆ eRAM
◆ C codes
◆ C/Java stacks

◆ External DRAM
◆ Class information
◆ Bytecodes
◆ Object heaps, etc.

Conclusion

◆ JVM memory cost
◆ Stacks, class information, images,

object heaps, Java bytecodes,
C codes/data

◆ Approach to embedded systems
◆ RTOS
◆ Static Java

