
PasTEX3.1

AMIGAImplementation

Documentation

of

27. July 1995

by
Georg Heßmann
Bernd Raichle

Translation by Thomas Tavoly



Contents: 2

Contents:

1. Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. About TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Man and machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. TEX’s parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Particularities of the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1. Commandline options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3. Configuration file “tex.cnf” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1. Searchpaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2. Default language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.3. TEXArrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.4. CodePage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.5. An example configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4. TEX – ARexx interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.1. Calling the editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.2. ARexx scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Arrays in TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1. Difference between TEX–BigTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5. CodePage — What is its ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1. Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6. A testrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1. Installing a directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2. Compiling with “virtex” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3. Previewing with ShowDVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4. Printing with DVIprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7. Errors, problems and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.1. Questions and Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8. Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



1. Copyright 3

1. Copyright

As TEX itself does not originate from me, and the adjustments/changes in it are minimal,
this version is Public Domain. Anyone can copy this version and redistribute it.

Take note however, that single parts of the distributed programs (especially the drivers
ShowDVI and DVIprint) e.g. Macro-packages do have a Copyright!

2. About TEX

TEX was invented, in order to be able to create high quality printouts with the computer.
The goal was to be able to process books and texts of all kinds by the computer, in a way,
that they look pretty. This however, does not per se mean the resolution of the printer.
TEX typesets texts in a way that they are aesthetically pleasant.

This craftsmanship was only known by typesetters in the past. Normally you need a good
education and a sizeable proportion of experience, to fabricate good looking texts. E.g. a
text is pleasant to read, when not too many kinds of typefaces are used on a single page, as
otherwise the brain can not concentrate on the text properly. Exactly the same is the case
with empty lines, to structure a text. These are merely simple basic rules. Typesetters
know hundreds of them, and often, texts produced by professionals just look better than
others. Sometimes you do not even know why, but they simply look better. Typesetters
were additionally also able to correct mistakes of the author – what sometimes led to newly
introduced errors.

Now, as a private person with little time and without being equipped with this special
knowledge, you still want to print good looking texts, this program is supposed to relieve
you of many details. TEX is very friendly from this point of view and – unless you do not
want it to – takes most of the burden off of you. This way you can concentrate on the
contents.

2.1. Man and machine

“Computers are stupid”, I still hear being said by childrens voices. And as so often, they
are right. Computers are limited. You first have to tell them everything specificly, so
that they do what they should be doing. However, as they are not (yet -TT) capable of
understanding the human voice (let alone interpreting what you said), you must move to
the level of the machine and command the computer with the keyboard what it has to do.

In the age of Mice and GUIs, the keyboard is moving more and more towards oblivion,
when typing texts however, it is (fortunately) indispensable as yet. As you have to get the
texts into the computer through use of the keyboard anyway, it is also practical to build
the commands concerning which texts, how and where are to be placed on a page, into the
text.

TEXfunctions the same way. You write a text, as you would do with a typewriter. Every
time though, when you want to make something special – like for example printing a
word bold or italicized – you have to tell the computer. This happens through the use
of commands, that you build into the text right in front of it. How should a computer
otherwise understand that a particular word should be printed in a bold typeface?



2. About TEX 4

Though the computer knows how to handle the text, the characters on the screen or on
harddisk are again Chinese for the printer. So, the text must be processed in a way that
it will produce a good looking text from it. To this end you need the TEXprogram. The
conversion is separated into two stages. The first stage is done by the program virtex

(which means “virgin” TEX). It performs the conversions which are the same for every
printer. As a result, it delivers a file, which ends with the suffix .dvi. The second stage is
taken over by the printerdriver DVIprint, which completes the specific conversions for the
printers connected. It takes the file ending in .dvi and sends the result of its conversion
to the printer.

“Should this mean, that I have to compile (convert) every text twice first and even have
to print it, before I can see what it looks like?”

Yes and no. Yes, because both of the conversions are always necessary. Without them,
you cannot see, what became of the text-command-mix. No because, there is a possibility
to convert the texts in a way that you can view them on screen.

To this end, the program with the name ShowDVI exists, which converts every file ending
in .dvi and displays it on the screen. The second stage is thus different. ShowDVI does so
to say not print out on paper, but to the screen. Without having to waste paper, you can
preview this way, whether something became of the text. If it is according to your taste,
you employ the DVIPrint program to print the document. Should changes be applied,
both stages just have to be followed through again.

Summary To create a document with TEX, you have to

– type a text and intersperse it with commands
– convert this with the virtex program into a file, that ends with the suffix .dvi

– display this with the ShowDVI program on the screen and decide whether you like
it

– if you don’t, start again
– if you do, print it on the printer with DVIprint

To some, this method may not seem entirely modern. I dare to pose however, that I am
considerably faster with this method than with a so called DTP program and that the
printouts are aesthetically more pleasant.

2.2. TEX’s parts

TEX consists – apart from the macrofiles – of two programs: initex and virtex.

With initex a format file (ending in ‘fmt’) is created. To this end, this program initializes
everything from the ground up, reads macros and separation tables and writes its memory
contents in a relatively compact format, the format file. This procedure is usually called
the “dumping” of a format.

virtex, a “virgin” version of initex, can now load this format file relatively fast, and can
begin with formatting a text. Because of the now superfluous initializing virtex needs
less memory than initex.



3. Particularities of the implementation 5

Now, what is this format file for?

TEX (more specificly plainTEX) and LaTEX themselves are no private programs, but only
macro packages dumped in a format file, which you can load with virtex. In a shell you
can define the following aliases to this end, e.g.

alias tex virtex &plain

alias latex virtex &lplain

2.3. Hardware requirements

TEX itself runs with at least 1 MB memory, just for creating of a format files with initex,
a half MB more does not hurt in any case.

For the Big version of TEX at least 1,5 MB should be available (for dumping accordingly
more).

Running TEX with only one, resp. with two disk-drives does function, but is close to
masochism. Recommended is in any case a hard-drive with ca. 5–10 MB room (according
to how many fonts, macro- and format-files you want to keep on the drive at the same
time).

3. Particularities of the implementation

The current implementation is based on the C-version of TEX from the Unix Web2C-
Package1 and has been extended with some other features.
– Configurability
– Selection of the searchpath with environment variables or in a configuration file
– Support of CodePages for mapping at different charactersets in Amiga and in TEX
– inkl. “Statistics”2

3.1. Commandline options

On the commandline, some other options can be given, apart from the file that is to be
compiled.

The syntax then looks like this:
initex [options] [&fmt[.fmt]] [file[.tex]]

bzw.
virtex [options] [&fmt[.fmt]] [file[.tex]]

Valid options are:
-cDir list3

With this you can indicate a list of directories, separated by comma, in which for
the configuration file tex.cnf is searched. A further possibility would be to set the
environment variable TEXCONFIG to dir list.

1 This version has thus not been translated manually to C and typed in.
2 TEX can be compiled also without the so called “Statistics”, at which you get a
version which runs at ca. 1% faster. Then, however, the \tracing..-commands are
not available anymore.



3. Particularities of the implementation 6

-b \batchmode

-n \nonstopmode

-s \scrollmode

-e \errorstopmode (Default)

Only one of these options at a time can be selected. With this the Interaction Mode

can be set according to the TEXcommands \batchmode, \nonstopmode, \scrollmode
resp. \errorstopmode.

-llanguage number

From Version 3.0 on, you can load separation tables for up to 256 languages at the
same time. Switching between these tables happens through the new TEXcounter
\language. If you have loaded in position 0 the English and in position 1 the German
separations, then you can switch to the German separation through -l1, without a
change in the file to be formatted. If you give a number > 255 or < 0, then this means
\language=0, has for the given number no table been loaded, then the separation is
switched off4.

-d Debugflag, with this some more or less explicit messages are additionally output.

The options must be given one at a time, separated by spaces. Valid is e.g. -s -e, invalid
on the other hand is -se.

3.2. Environment variables

To be able to work with TEX practically, apart from the program itself, you need some
additional files. Where these files should be searched for, can be indicated by environment
variables5 (or in the configuration file).

TEXINPUTS

Where should TEX look for the macro-, the style-files and the text to be formatted?
Here should not forget to include the current directory (to be indicated as ‘.’) in
the list. (Files ending in ‘tex’, ‘sty’)
(Default: “.,tex:macros”)6

TEXFORMATS

As mentioned before, to be able to format a text, you need a format file, in which
e.g. the LaTEXmacro package is contained. (Files ending in ‘fmt’)
(Default: “tex:formats”)

TEXFONTS

TEX additionally needs information about the fonts used, which can be found in the
‘TEX Font Metric’ files. (Files ending in ‘tfm’)
(Default: “.,tex:fonts”)

TEXPOOL

4 The style option german.sty (Version 2.3c) switches e.g. to position 1. Are no
separation patterns loaded for this, TEX will not separate anymore.

5 The standard ENV: variables are used
6 These default values are directly compiled into the TEXprogram, but can also be partly
changed through the config file.



3. Particularities of the implementation 7

initex first reads all strings used in TEX (e.g. error messages) from a “Poolfile”.
(File ‘tex.pool’)
(Default: “.,tex:”)

EDITOR

In case there is an error in the input for initex or virtex (and you are in the
interactive mode) you can start an editor with ‘e’ You can put the name of the
editor you want to be called in this variable. For %s the filename, and for %d the line
number of the error is substituted.
(Default: “ed %s -i”)

TEXREXX

This variable determines, whether the editor should be started as a system- command
or as an ARexx script. When the variable is not set, the editor is started as a system
command. Does the variable contain an arbitrary string the editor is not started
directly, but an ARexx script is called. Does TEXREXX now contain the string “edit”,
then, instead of waiting for the user to start the editor with the e command, it is
started right after the first error occurs.

REXXEDITOR

This variable indicates which ARexx script should be started, in case the ‘e’ command
is given and TEXREXX is set. Normally, this script is in rexx: and has the extension
.rexx.
(Default: “texedit %s %d”)

TEXCONFIG

Searchpath for the configuration file tex.cnf. Is also possible through the ‘-c’ option
when called. (File ‘tex.cnf’) This variable is also used by the drivers ShowDVI and
DVIprint. There, however, it can not be a list of paths, but only a single path.
(Default: “tex:config”)

3.3. Configuration file “tex.cnf”

The disadvantage of most implementations is the fixed size of the individual arrays in TEX.
If new macro packages are published, like e.g. the new Font Selection Scheme of LaTEX,
then you mostly reach one of the boundaries of the many arrays in TEX (in the above
mentioned one, this is the String Pool) and the user gets the tidy message: “you can ask
a wizard to enlarge me”.

With the configuration file tex.cnf the user himself can now become a TEX-Wizard. In
case the aforementioned message should appear, you simply change the size of the array
that is too small.

Four types of information is contained in the configuration file:
(1) Searchpaths
(2) Preselections
(3) CodePage information
(4) Size of TEXarrays

The information is indicated as a keyword-/value pair, where the keyword must begin at
the beginning of the line and be separated from the value with spaces or tabs.



3. Particularities of the implementation 8

Keywords not recognized are ignored without a warning, you can use this to include com-
ments in the file. Better is, however, the use of the percent sign ‘%’ as the beginning of the
comment. The rest of the line after the percent sign is ignored.

The configuration file is read to the end, but you can stop reading before that by including
a ‘#’ as the first character in a line. This is meaningful when e.g. a longer comment follows
after that.

3.3.1. Searchpaths

Instead of indicating searchpaths through the environment variables, these can also be
given here. As keywords are known: TEXINPUTS, TEXFORMATS, TEXFONTS and TEXPOOL.
These must be written in capitals.

Here, the value of the corresponding environment variable writes over the value in the
configuration file.

3.3.2. Default language

The line
language 197

sets the TEXcounter \language to the given value, here 197. This corresponds to ‘\lan-
guage=197 ’ on the beginning of the file to be formatted. Should you have given a value
on the command line through the -l option, then the value in the configuration file is
ignored.

3.3.3. TEXArrays

The original TEXsource has been written in the Pascal language without enhancements like
those contained in e.g. Turbo Pascal. Owing to this, ports to other systems and languages
could be done without major changes. The disadvantage: the size of all the arrays is given
static at the point of compilation.

This implementation allows to set the size of most of the arrays that TEX internally uses to
be set only at the time of starting the program. What sizes can be set and what meaning
these arrays have will be dealt with in a following section.

For values not contained in the configuration file default values are used, when setting
repeatedly, the last value is taken.

With the -d option you can display the values.

3.3.4. CodePage

The CodePage definition begins with the keyword codepage at the beginning of a line,
it is ended with two smaller than signs <<. In case several definitions are given in one
configuration file, then all are regarded as a single definition.

In chapter 5 this is explained thoroughly.

3.3.5. An example configuration file

This is a way the configuration file tex.cnf could look:

% tex.cnf Example of a configuration file for TeX



3. Particularities of the implementation 9

%

% firstly set all possible environment variables...

%

TEXINPUTS .,TeX:macros,Work:tex/macros,Work:tex/texts

TEXFORMATS .,TeX:formats,Work:tex/formats

TEXFONTS .,TeX:fonts

% only for IniTeX:

TEXPOOL .,TeX:,Work:tex/pool

%

% ... and now to re set some values

%

stringvacancies 10000

maxstrings 6000

triesize 16000

itriesize 19000 % triesize (for IniTeX only)

memmax 33000

memtop 33000

#

^-- Marks the end of TeX.cnf: ’#’ on the beginning of the line

Here an arbitrary number of comment lines can now follow.

3.4. TEX – ARexx interface

3.4.1. Calling the editor

As in normal Unix7-TEX you can also start an editor from PasTEX. Has TEX found an
error, then you can call an editor with the ‘e’ command.

As already mentioned in chapter 3.2, you can determine that the editor should not be
called by a system command but by an ARexx script by setting the variable TEXREXX. The
means of using a script has been chosen to guarantee a largest possible flexibility.

3.4.2. ARexx scripts

There are also a number of ARexx scripts available, which sort of emulate a “TEX-shell”.
These scripts are:
texedit.rexx

This script is called by TEX and displays the spot where the error occurred in the
TEX-Files in CygnusEd8 Professional 2.

start tex.rexx

This script is the central TEX-shell script. This should be started in a CLI with rx

start tex.
start tex.sd

As all ARexx scripts with the extension sd this is called from the previewer ShowDVI.
It searches for the port of the start tex.rexx script and prompts it to recompile

7 Unix is a registered Trademark of AT&T. . .
8 short CED; this is a commercial editor published by ASDG Inc.



4. Arrays in TEX 10

the file which is currently shown in the previewer.
start tex.ced

The equivalent for the start tex.sd script. Only that this one is called from CED.
quit tex.sd

With calling this script from the previewer, the script start tex.rexx closes its port
and ends itself.

quit tex.ced

Again, the equivalent for above. Only that this one is called from CED.
callmf.rexx

This script is only interesting in conjunction with Metafont. When the variable
CALLMF contains “callmf”, and the drivers cannot find a font, then this script is
called, so that this font can be generated. Up till now, however, this script is just a
test version!

cedtofront.sd

With this script you can bring the editor CED to the front from ShowDVI.
sdvitofront.ced

This script brings the previewer from editor to the front.

4. Arrays in TEX

In the configuration file the following parameters can be assigned:

memmax

memtop

memmax resp. memtop indicate the size of the most important arrays in TEXİn this
“main memory” e.g. the complete page is built and macro definitions are stored.
initex ignores the value of memmax and sets memmax = memtop. The value of memtop
should be chosen as large as possible when dumping with initex, this is stored in
the format file as well.
For virtex and initex must apply: memtop ≤ memmax ≤ 65534. Thus you can use
a bigger “main memory” for virtex than for initex.
Memory usage: 4 Bytes ∗ memmax resp. memtop

triesize

itriesize

trieopsize

All separation tables, that are read by initex, are stored very compact in a “Trie”.
initex, however, needs a lot of memory for this Trie, as it has to be completely built
first, before it can be compressed9. Because of the very large memory requirement
of the Trie in initex, membot must be set to a value < 65534 in case of little
memory. As the compressed Trie for virtex needs much less space, memmax can be
usually set to 65534, so that you have the largest possible ‘main memory’ available
for formatting. The size of the Trie is indicated by triesize (for virtex) resp.
itriesize (for initex). Both must be smaller than 65536. The number of “trie
operands” is trieopsize (≤ 32767).

9 This is the main difference between initex and virtex



4. Arrays in TEX 11

Memory usage: (i)triesize trieopsize

initex 15 Bytes 10 Bytes
virtex 5 Bytes 3 Bytes

fontmax

fontmemsize

fontmax gives the maximum number of fonts loaded (must be ≤ 255). The font
information from the tfm files is loaded into an array of size fontmemsize. Where
fontmemsize can be any size.
Memory usage: 79 Bytes ∗ fontmax + 4 Bytes ∗ fontmemsize

maxstrings

poolsize

stringvacancies

In an array called “String Pool” all strings are stored, which also includes all
TEXmacros and -primitives, like e.g. \relax. The size of this array is determined by
poosize, the number of strings by maxstrings. stringvacancies indicates, how
much space in the String Pool after loading of a format file must at least be present
for user defined strings. All three parameters can be chosen to be of infinite size.
Memory usage: 1 Byte ∗ poolsize + 4 Byte ∗ maxstrings

bufssize

maxinopen

Every line entered (from a file or from the keyboard) is stored in an array of the
size bufsize. bufsize must be smaller than 65536. maxinopen gives the number of
simultaniously open files (must be smaller than 128).
Memory usage: 1 Byte ∗ bufsize + 8 Byte ∗ maxinopen

maxprintline

errorline

halferrorline

maxprintline gives the maximum length of the log output to the screen resp. to the
log file (usually = 79, must be ≥ 60). errorline gives the maximum length of the
context information in case of an error (must be ≥ 45), halferrorline is the length
of the first line of this context (30 ≤ halferrorline ≤ errorline− 15).
Memory usage: 1 Byte ∗ errorline

savesize

stacksize

dvibufsize

For saving values within groups (local assignments, \aftergroup) space of size save-
size is used. stacksize gives the number of “Input-Sources” (file, macros, token-
lists, . . .). The buffer for writing of the dvi file is dvibufsize Bytes10.
Memory usage: 2 Bytes ∗ savesize + 10 Bytes ∗ stacksize + 1 Byte ∗ dvibufsize

What values should be assigned to the individual parameters? For that you simply seek

10 dvibufsize must be divisible by 8!



4. Arrays in TEX 12

the help of the log file, which has been created while dumping a format file11.

When dumping TEX (German plain.fmt) you get the following log file:

This is a PD-Version of Pas-TeX (made Jan 26 1991 [br]/[hes])

This is TeX, C Version 3.1 (INITEX) 28 JAN 1991 02:51

**plain \input amiga \input /doc/nice \dump

(plain.tex Preloading the plain format: codes, registers,

... [lines deleted] ...

Beginning to dump on file plain.fmt

(format=plain 91.1.28)

2121 strings of total length 28932

7874 memory locations dumped; current usage is 118&7748

1063 multiletter control sequences

\font\nullfont=nullfont

\font\footfont=cmr10

... [lines deleted] ...

16011 words of font info for 54 preloaded fonts

0 hyphenation exceptions

Hyphenation trie of length 9980&11780 has 281 ops out of 500

281 for language 0

No pages of output.

From this you recognize the lower bounds for some important parameters: maxstrings >

2121, poolsize > 28932, memmax > 7874, fontmax > 54, fontmemsize > 16011. The
actual values used should be chosen larger: memmax should, when possible, be set to 65534,
the other parameters to at least 10% larger values.

The Trie with the separation tables can, after it has been compressed, no longer become
larger. Because of this you can set triesize to a value ≥ 9980 and triopsize to ≥ 281.
(For dumping of this format, for initex, the parameter trieopsize must be set > 11780.)

All other parameters should be left unchanged and only after the error message TeX ca-

pacity exceeded occurs should you enlarge the particular parameter.

4.1. Difference between TEX–BigTEX

Now, what is this ominous BigTEX, that has been mentioned before in the manual?

This is practically identical with normal TEX, only some of the elements of internal arrays
have been enlarged. Consequently, only some arrays can be made bigger, if this is possible
in “small” TEX.

These arrays are:

11 Because of this, these log files should not be deleted.



5. CodePage — What is its ? 13

Array TEX BigTEX
memmax/memtop 65532 524284
maxstrings 65536 arbitrary

bufsize 65536 arbitrary

Of course, you have to pay a price for this achieved flexibility. The memory usage increases
considerably. Not only because larger arrays can be allocated now, but also because the
individual array elements now use more memory. In case of memmax this is about 1.5 times
more bytes.

But what do you need such large arrays for?

Really only for a few special cases. The one probably occurring most is the macro package
pictex. This creates pictures from only characters. You can imagine that a whole lot
of individual characters are gathered like this, until a picture is ready. To be able to
work reasonably with this macro package, you need BigTEX. However, to be able to work
acceptably with BigTEX, you need at least 3MB of main memory.

5. CodePage—What is its ?

TEX uses a coding for the individual characters that is standardized for all implementations,
ASCII. This has been fixed for only characters from 0x20 (Space) till 0x7f (Delete) and
some others like ^^@ (NUL), ^^M (CR), ^^J (LF), ^^L (FF) and ^^I (Tab) though. (As
you see, only 7 bit characters and some control characters.)

In case also for special characters like e.g. umlauts a set for the 8 bit characters (characters
≥ 128) exists, in any case a translation of the coding of the Amiga will become necessary
to the one used in TEX(̇A very awkward sentence to translate, I hope I got it right -TT)
Now, you can “hardcode” this into the implementation or you leave the user the freedom
to be able to determine this in a Codepage, so that changes will become quite easy.

The codepage is machine dependant, i.e. if you transfer TEXfiles between two computers
with a different character set, you must also change the Codepage. Only the coding that
is used internally by TEX is the same on all machines12.

5.1. Operation

TEX uses two array internally, xord[] and xchr[] for transformation on input resp. on
output. When reading, every character s is replaced by the character t:=xord[s], when
writing, the character t is subsequently again replaced by s:=xchr[t]. Eventually, the
character of the computer is represented in TEX by the character t.

12 You can take advantage of this by making TEXfiles machine independant: You simply
use the notation ^^xx (xx is a hex number in lower case), xx is thereby not(!) the
coding of the character in the character set of the computer, but rather the one used
by TEX˙



5. CodePage — What is its ? 14

Special characters (i.e. control characters and 8 bit characters) are normally represented by
^^xx, (xx is thereby the characters position in the TEXcharacter set in hex notation), this
has the advantage that this character can be again read correctly machine independant.
For the user though it is making more sense to present displayable special characters as
such, that is why TEX uses a further array, in which the display mode is recorded13.

In the Codepage definition you now have the possibility, to change the default content of
this array.

5.2. Syntax

The Codepage definitions are given in the configuration file tex.cnf, there you can also
give the definition in several parts. Every part is prepended with codepage on the start
of the line, subsequently a command per line follows. The definition is terminated by <<.

Following commands are allowed:
(1) x = y

The character x is transformed to y when reading, y is written as x, and not in the
notation ^^yy anymore.
Example: ("a would be the Amiga character (a letter!) for a-umlaut, ^^80 would
be TEXcode for the a-umlaut)
After

"a=^^80

every "a is transformed to 128 immediately, apart from that TEX no longer outputs
^^80 for character 128, but "a.
(xord[x]=y; xchr[y]=x; printable(y)=true;)

(2) x > y

The character x is transformed to y when reading. Here, y can be chosen from the
complete range ^^00-^^ff.
Example:

After

"a>a

"a is read as a.
(xord[x]=y;)

(3) < y

The character y is no longer output in the notation ^^yy, but as one character y.
Thereby at the output a possible transformation occurs, in case a command x = y

has been given in the Codepage definition.
(printable(y)=true;)

Default: all characters < 32 or > 126 are output in the ^^y notation.
(printable(y)=false; for y in [0. . .32, 126. . .255])

(4) <| y

Negation of (3). y is after that output as ^^yy.
Example:

13 This further array is equivalent to the first 256 strings of the String Pool.



6. A testrun 15

After

"a=^^80

the character 128 is output as a character "a. If this does not occur, you should
give after that:

<|^^80

(printable(y)=false;)

The individual commands are interpreted line by line, the order in which the commands
are executed is important.

General note:

If you give characters in TEX in ^^ notation, then these are not mapped anymore, i.e. with
^^ notation the character code must be in TEX and not in the currently used machine’s
code.

Only directly given characters are mapped. Mapping takes place when reading in in-

put line(), apart from that when writing with print char() and at the transformation
of filenames.

5.3. Limitations

The codepage definition is only useful in initex, as the arrays in the format file are stored
as well. I.e., if you use several codepages, then for every one of them a new format file
must be created. (This limitation should be gone in a later release.)

In the first line that virtex reads no translation is taking place yet, as at this point in
time, the format file has not yet been read.

6. A testrun

In this chapter I exercise a test run with you, so that you see how texts can be compiled
with TEX and how easy that is. I have grouped this chapter in four sections:

1. Installing a directory
2. Compiling with virtex

3. Previewing with ShowDVI

4. Printing with DVIprint

6.1. Installing a directory

Go to the directory in which you want to install a further subdirectory. I have a directory
TeX:documents in which all subsequent subdirectories are located. You should also create
such a directory and then type:

cd TeX:documents

makedir testdir

cd testdir



6. A testrun 16

Now it is time to type in a text with an editor. This one should end with the postfix .tex,
otherwise virtex will not find it:

ed testfile.tex

An example for a short but famous text:

\hrule

\vskip 1in

\centerline{\bf A SHORT STORY}

\vskip 6pt

\centerline{\sl by A. U. Thor}

\vskip .5cm

Once upon a time, in a distant

galaxy called \"O\"o\c c,

there lived a computer

named R.~J. Drofnats.

Mr.~Drofnats---or ‘‘R. J.,’’ as

he preferred to be called---

was happiest when he was at work

typesetting beautiful documents.

\vskip 1in

\hrule

\vfill\eject

\bye

When you have typed in and saved this text, you can start with the compilation.

6.2. Compiling with “virtex”

Before you can translate the text, you should make sure, that all programs and data are
present in the right directories and that the environment variables are set correctly. At least
the variable TEXFORMATS should be set and as an entry contain the name of the directory
TeX:formats In this directory, a file with the name plain.fmt should be present. If you
rather want to use the German version of TEX (the macro package is called plaing.fmt),
then you must substitute the plain by plaing in the next call.

The call for virtex looks like this:

virtex &plain testfile

After the input you should get the following output on the screen:

This is a PD-Version of Pas-TeX (made Jan 22 1991 [br]/[hes])

This is TeX, C Version 3.1

(testfile.tex [1] )

Output written on testfile.dvi (1 page, 672 bytes).

Transcript written on testfile.log.



6. A testrun 17

virtex has created an output file with the name testfile.dvi and a protocol file with
the name testfile.log.

6.3. Previewing with ShowDVI

The contents of this file can now be displayed by you with a so-called Previewer. With
this previewer you can look at what the printout will look like in advance. The program
for this purpose is called ShowDVI and is located on one of the PreviewDisks.

Please note that you need more for viewing the document in testfile.dvi as what you
get on the distribution disks TeXDisk1 and TeXDisk2. For this end, you need the disks
PreviewDisks 1, 2 and 3, which you can order from us. It is important that the font
libraries are located in the directory TeX:fontlib or that you have copied the needed
fonts14 to a place that is known to the previewer.

The call looks like this:

ShowDVI testfile

After that a new screen in interlace mode should appear and display the result. You can
leave ShowDVI by pressing CTRL-C.

6.4. Printing with DVIprint

The printing takes place in exactly the same way as previewing the document with ShowDVI.
Please take note again, that you here also need more for printing than what there is to
find on both disks TeXDisk1 and TeXDisk2.

As printers of different manufacturers sometimes distinctly differ, you must tell the printer
driver, what printer is connected. It can drive 9 pins, 24 pins (NEC-P6 compatible) and
HP printers. You can tell it what printer is connected with the -d option.

Following calls are for example possible:

For a 9 pins printer:

DVIprint -d 5 testfile

For a 24 pins printer:

DVIprint -d 1 testfile

For a HP printer:

DVIprint -d 3 testfile

After that, you should hold a really nice printout in your hands.

14 Which these are is explained in the ShowDVI manual



7. Errors, problems and solutions 18

7. Errors, problems and solutions

Of course, something always can go wrong. And usually something does go wrong. As you
are not a robot, you make mistakes just as much as I do. Programs react to something
like this usually quite unsubtly and terminate their work.

TEX reacts to errors with extensive error messages, that are at first very confusing. To
explain these here would be too laborious. Please look up the appropriate pages in a book;
The books described in the next chapter contain enough information for servicing errors.

Important for the search for errors is, that you must make sure that you have made or
set all important assigns, paths and environment variables. Please check in case of an
error everything very carefully. Really inspecting everything on your machine, and not
only briefly making a mental note, makes the difference, whether you really have done
something or not. A call of dir or assign is often very instructive.

Who has apparently unconquerable problems, can always turn to Georg Heßmann. How-
ever, for this, following rules must be respected:

Send us a letter (do not phone, that usually gets you nowhere), in which you clearly explain
the problem. Print out a listing of the text, which causes the error to occur, give us a
printout of your harddisk directory, make a printout of all settings of the environment
variables. If possible, send us a disk with the text, which causes the errors to occur.

And very important: Without a sufficiently stamped envelope, addresses to you, we cannot
send you an answer, and will not do it either. This is not malice, but financially neces-
sary. We are students with very low earnings and can only distribute this software for
manufacturing costs if we do not suffer a loss at it.

Here the addresses:

Home address:

Georg Heßmann
Oberer Markt 7
8712 Volkach
Germany

Study address:

Georg Heßmann
Ingling 17
4784 Schardenberg
Austria

E-Mail:

hessmann@unipas.fmi.uni-passau.de

7.1. Questions and Answers

Here is an attempt at answering some questions in advance.



8. Literature 19

Question: Does this TEX know virtual fonts?
Answer: No, TEX itself has no knowledge of virtual fonts. It only reads the information

for the font from the tfm-file (TEX Font Metric) belonging to the font, this exists
for “normal”, as well as for virtual fonts.

Question: I cannot find tex?!?
Answer: tex is virtex with a format (e.g. plainTEX or LaTEX) to be loaded.

Question: What is a preloaded format?
Answer: On some operating systems, you can stop virtex after it has loaded the format

file and create a so-called core file. From this core file, and the executable file
virtex you can create a further executable file, in which the format file has
already been loaded. The advantage, a mostly faster loading of virtex and
formatfile, is offset by the disadvantage of the space requirements of the new
executable file, which is a great deal larger as that of virtex only.

Question: I get the following error message, when loading the format file (Fatal format

file error; I’m stymied).
Answer: All other filetypes (tfm, dvi, pk, . . .) are fully exchangeable between different

implementations – on different computers as well – The format file takes a
special position in that, as it should be loadable at the greatest speed possible,
and represents an image of the internal TEXarrays. Therefore it cannot be
exchanged that easily. Workaround: you create a new format file with initex.

8. Literature

Without a book, you’ll suffer. Even when you partly get TEX very cheaply, you will not get
around buying a book, that introduces you to TEXṪEX is so powerful as a programming
language, knows more commands than any DTP program, grumbles in various ways and
now and then produces things that do not make sense. Only a book can help here.

As there is also quite good German literature, I would like to introduce two books that
are worth buying.

Einführung in TEX, Norbert Schwarz, Addison Wesley, 1988, ISBN 3-925118-97-7

LaTEX – Eine Einführung, Helmut Kopka, Addison Wesley, 1988, ISBN 3-89319-136-4

If feel your English is adequate (another smiley -TT) there is only one choice: The TEX
book by the inventor himself.

The TEXbook, Donald E. Knuth, Addison Wesley, Reading, 1988.

Thank’s to Thomas Tavoly for translating the docs!
Georg Heßmann, 30. July 1991.


