
Packages in the `graphics' bundle

D. P. Carlisle

1994/010/14

Contents

1 Introduction 1

2 Driver support 1

3 Colour 1

3.1 Package Options : 2

3.2 De�ning Colours : 2

3.3 Using Colours : 3

3.4 Named Colours : 3

3.5 Page Colour : 4

3.6 Box Backgrounds : 4

3.7 Possible Problems : 4

4 The Graphics packages 5

4.1 Package Options : 5

4.2 Rotation : 6

4.3 Scaling : 6

4.4 Including Graphics Files : 7

4.5 Other commands in the graphics package : : : : : : : : : : : : : : 10

4.6 Global setting of keys : 11

4.7 Compatibility between graphics and graphicx : : : : : : : : : : : : 12

5 Remaining packages in the graphics bundle 12

5.1 Eps�g : 12

5.2 Trig : 12

5.3 Keyval : 12

5.4 Pstcol : 13

5.5 Lscape : 13

1 Introduction

This document serves as a user-manual for the packages color, graphics, and

graphicx. Further documentation may be obtained by processing the source

(dtx) �les of the individual packages.

1

2 Driver support

All these packages rely on features that are not in T

E

X itself. These features

must be supplied by the `driver' used to print the dvi �le. Unfortunately not

all drivers support the same features, and even the internal method of accessing

these extensions varies between drivers. Consequently all these packages take

options such as `dvips' to specify which driver is being used.

3 Colour

The colour support is built around the idea of a system of Colour Models. The

Colour models supported by a driver vary, but typically include

rgb Red Green Blue: A comma separated list of three numbers between 0

and 1, giving the components of the colour.

cmyk Cyan Magenta Yellow [K]Black: A comma separated list of four numbers

between 0 and 1, giving the components of the colour according to the

additive model used in most printers.

gray Grey scale: a single number between 0 and 1.

named Colours accessed by name, e.g. `JungleGreen'. Not all drivers support

this model. The names must either be `known' to the driver or added using

commands described in color.dtx. Some drivers support an extended

form of the named model in which an `intensity' of the colour may also be

speci�ed, so `JungleGreen, 0.5' would denote that colour at half strength.

Note that the namedmodel is really just given as an example of a colour model

that takes names rather than a numeric specication. Other options may be

provided locally that provide di�erent colour models, eg pantone (An industry

standard set of colours), x11 (Colour names from the UNIX window system),

etc. The standard distribution does not currently have such models, but the

namedmodel could be used as an example of how to de�ne a new colour model.

The names used in the named model are those suggested by Jim Hafner in

his colordvi and foiltex packages, and implemented originally in the color.pro

header �le for the dvips driver.

3.1 Package Options

Most of the options to the color package just specify a driver, e.g. dvips. You

should to set up a site default for these options, for the driver that you normally

use. Suppose that you wish for the color package to always default to use specials

for the PostScript driver, dvips. In that case create a �le color.cfg containing

the line:

\ExecuteOptions{dvips}

One special option that is of interest is monochrome. If this option is selected

the colour commands are all disabled so that they do not generate errors, but

2

do not generate colour either. This is useful if previewing with a previewer that

can not produce colour.

Three other package options control the use of the named model. The dvips

driver (by default) pre-de�nes 68 colour names. The dvips option normally

makes these names available in the named colour model. If you do not want

these names to be declared in this model (Saving T

E

X some memory) you may

give the nodvipsnames option. Conversely, if you are using another driver, you

may wish to add these names to the named model for that driver (especially if

you are processing a document originally produced on dvips). In this case you

could use the dvipsnames option. Lastly the usenames option makes all names

in the named model directly available, as described below.

3.2 De�ning Colours

The colours black, white, red, green, blue, cyan, magenta, yellow should be

prede�ned, but should you wish to mix your own colours use the \definecolor

command.

\definecolor{name}{model}{colour speci�cation}

This de�nes hnamei as a colour which can be used in later colour commands.

For example

\definecolor{light-blue}{rgb}{0.8,0.85,1}

\definecolor{mygrey}{gray}{0.75}

Now light-blue and mygrey may be used in addition to the prede�ned colours

above.

3.3 Using Colours

3.3.1 Using prede�ned colours

The syntax for colour changes is designed to mimic font changes. The basic

syntax is:

\color{name}

This is a declaration, like \bfseries, it changes the current colour to hnamei

until the end of the current group or environment.

An alternative command syntax is to use a command form that takes the text

to be coloured as an argument. This is similar to the font commands such as

\textbf:

\textcolor{name}{text}

So the above is essentially equivalent to {\color{name}text}.

3

3.3.2 Using colour speci�cations directly

\color[hmodeli]{speci�cation}

\textcolor[hmodeli]{speci�cation}{text}

Normally one would predeclare all the colours used in a package, or in the doc-

ument preamble, but sometimes it is convenient to directly use a colour without

naming it �rst. To achieve this \color (and all the other colour commands)

take an optional argument specifying the model. If this is used then the manda-

tory argument takes a hcolour speci�cationi instead of a hnamei. For example:

\color[rgb]{1,0.2,0.3}

would directly select that colour.

This is particularly useful for accessing the named model:

\color[named]{BrickRed} selects the dvips colour BrickRed.

Rather than repeatedly use [named] you may use \definecolor to provide

convenient aliases:

\definecolor{myred}{named}{WildStrawberry} . . . \color{myred}. . .

Alternatively if you are happy to use the existing names from the namedmodel,

you may use the usenames package option, which e�ectively calls \definecolor

on every colour in the named model, thus allowing \color{WildStrawberry}

in addition to \color[named]{WildStrawbery}.

3.4 Named Colours

Using the named colour model has certain advantages over using other colour

models.

Firstly as the dvi �le contains a request for a colour by name, the actual mix

of primary colours used to obtain the requested colour can be tuned to the

characteristics of a particular printer. In the dvips driver the meanings of the

colour names are de�ned in the header �le color.pro. Users are encouraged to

produce di�erent versions of this �le for any printers they use. By this means

the same dvi �le should produce colours of similar appearance when printed on

printers with di�erent colour characteristics.

Secondly, apart from the so called `process colours' that are produced by mixing

primary colours during the print process, one may want to use `spot' or `custom'

colours. Here a particular colour name does not refer to a mix of primaries, but

to a particular ink. The parts of the document using this colour will be printed

separately using this named ink colour.

3.5 Page Colour

\pagecolor{name}

The background colour of the whole page can be set using \pagecolor. This

takes the same argument forms as \color but sets the background colour for

the current and all subsequent pages. it is a global declaration, so you need to

use \pagecolor{white} to `get back to normal'.

4

3.6 Box Backgrounds

Two commands similar to \fbox produce boxes with the backgrounds shaded

an appropriate colour.

\colorbox{name}{text}

\fcolorbox{name1}{name2}{text}

The former produces a box coloured with name like this . The latter is similar

but puts a frame of colour name1 around the box coloured name2.

These commands use the \fbox parameters \fboxrule and \fboxsep to deter-

mine the thickness of the rule, and the size of the shaded area.

3.7 Possible Problems

T

E

X was not designed with colour in mind, and producing colours requires a

lot of help from the driver program. Thus, depending on the driver, some or all

features of the color package may not be available.

Some drivers do not maintain a special `colour stack'. These drivers are likely to

get confused if you nest colour changes, or use colours in oating environments.

Some drivers do not maintain colours over a page break, so that if the page

breaks in the middle of a coloured paragraph, the last part of the text will

incorrectly be printed in black.

There is a di�erent type of problem that will occur for all drivers. Due to certain

technical di�culties

1

, it is possible that at points where the colour changes, the

spacing is a�ected. For this reason the monochrome option does not completely

disable the colour commands, it rede�nes them to write to the log �le. This

will have the same e�ects on spacing, so you can produce monochrome drafts

of your document, at least knowing that the �nal spacing is being shown.

4 The Graphics packages

There are two graphics packages:

graphics The `standard' graphics package.

graphicx The `extended' or `enhanced' graphics package.

The two di�er only in the format of optional arguments for the commands

de�ned. The command names, and the mandatory arguments are the same for

the two packages.

1

At least two causes: 1) The presence of a \special hwhatsiti prevents \addvspace `seeing'

space on the current vertical list, so causing it to incorrectly add extra vertical space. 2) A

hwhatsiti as the �rst item in a \vtop moves the reference point of the box.

5

4.1 Package Options

The graphics packages share the same `driver' options as the color package. As

for colour you should set up a site-default in a �le, graphics.cfg, containing

the line (for dvips):

\ExecuteOptions{dvips}

The graphics packages have some other options for controlling how many of the

features to enable:

draft suppress all the `special' features. In particular graphics �les are not

included (but they are still read for size info) just the �lename is printed

in a box of the correct size.

�nal The opposite of draft. Useful to over-ride a global draft option speci�ed

in the \documentclass command.

hiderotate Do not show rotated text (presumably because the previewer can

not rotate).

hidescale Do not show scaled text (presumably because the previewer can not

scale).

4.2 Rotation

graphics: \rotatebox{angle}{text}

graphicx: \rotatebox[hkey val listi]{angle}{text}

This puts text in a box, like \mbox, but rotates the box through angle degrees,

l

i

k

e

t

h

i

s

.

The standard version always rotates around the reference point of the box, but

the keyval version takes the following keys:

origin=hlabeli

x=hdimeni

y=hdimeni

units=hnumberi

So you may specify both x and y, which give the coordinate of the centre of

rotation relative to the reference point of the box, eg [x=2mm, y=5mm]. Alterna-

tively, for the most common points, one may use origin with a label containing

one or two of the following: lrctbB (B denotes the baseline, as for PSTricks).

For example, compare a default rotation of 180

�

. . . LikeThis . . . to the e�ects

gained by using the origin key:

[origin = c] rotates about the centre of the box,. . .

LikeThis

. . .

[origin = tr] rotates about the top right hand corner. . .

LikeThis

. . .

The units key allows a change from the default units of degrees anti-clockwise.

Give the number of units in one full anti-clockwise rotation. For example:

[units = -360] speci�es degrees clockwise.

[units= 6.283185] speci�es radians.

6

4.3 Scaling

4.3.1 Scaling by scale factor

\scalebox{h-scale}[hv-scalei]{text}

Again this is basically like \mbox but scales the text. If v-scale is not speci�ed

it defaults to h-scale. If it is speci�ed the text is distorted as the horizontal and

vertical stretches are di�erent,Like This.

\reflectbox{text}

An abbreviation for \scalebox{-1}[1]{text}.

4.3.2 Scaling to a requested size

\resizebox*{h-length}{v-length}{text}

Scale text so that the width is h-length. If ! is used as either length argument,

the other argument is used to determine a scale factor that is used in both

directions. Normally v-length refers to the height of the box, but in the star

form, it refers to the `height + depth'. As normal for L

A

T

E

X2

"

box length

arguments, \height, \width, \totalheight, \depth may be used to refer to

the original size of the box.

\resizebox{1in}{\height}{Some text}: Some text

\resizebox{1in}{!}{Some text}: Some text

4.4 Including Graphics Files

The functions for graphics inclusion try to give the same user syntax for includ-

ing any kind of graphics �le that can be understood by the driver. This relies

on the �le having an extension that identi�es the �le type. The `driver options'

will de�ne a collection of �le extensions that the driver can handle, although

this list may be extended using the declarations described below.

If the �le's extension is unknown to the driver, the system may try a default

�le type. The PostScript driver �les set this default to be eps (PostScript), but

this behaviour may be customised if other defaults are required.

graphics: \includegraphics*[hllx,llyi][hurx,uryi]{�le}

graphicx: \includegraphics*[hkey val listi]{�le}

Include a graphics �le.

If * is present, then the graphic is `clipped' to the size speci�ed. If * is omitted,

then any part of the graphic that is outside the speci�ed `bounding box' will

over-print the surrounding text.

If the optional arguments are omitted, then the size of the graphic will be

determined by reading an external �le as described below.

7

graphics version If [hurx,uryi] is present, then it should specify the coordi-

nates of the top right corner of the image, as a pair of T

E

X dimensions. If the

units are omitted they default to bp. So [1in,1in] and [72,72] are equiva-

lent. If only one optional argument appears, the lower left corner of the image

is assumed to be at [0,0]. Otherwise [hllx,llyi] may be used to specify the

coordinates of this point.

graphicx version Here the star form is just for compatibilitywith the standard

version. It just adds clip to the list of keys speci�ed. (Also, for increased

compatibility, if two optional arguments are used, the `standard' version of

\includegraphics is always used, even if the graphicx package is loaded.)

The allowed keys are listed below.

bb The argument should be four dimensions, separated by spaces. These denote

the `Bounding Box' of the printed region within the �le.

bbllx Lower left x coordinate

bblly Lower right y coordinate

bburx Upper right x coordinate

bbury Upper right y coordinate

natheight Natural height of �gure.

natwidth Natural width of �gure.

angle Rotation angle.

width Required width, a dimension (default units bp). The graphic is scaled

to this width.

height Required height. a dimension (default units bp). The graphic is scaled

to this height.

scale Scale factor.

clip Either `true' or `false' (or no value, which is equivalent to `true'). Clip the

graphic to the bounding box.

draft a boolean valued key, like `clip'. Locally switches to draft mode.

type Specify the graphics type.

ext Specify the �le extension.

read Specify the �le extension of the `read �le'.

command Specify any command to be applied to the �le.

8

For all the keys taking length values, the units can be omitted, in which case

bp (ie PostScript points) are assumed.

The �rst seven keys specify the original size of the image. This size needs to

be speci�ed in the case that the �le can not be read by T

E

X, or it contains an

incorrect size `BoundingBox' speci�cation.

bbllx. . . \bbury are mainly for compatibility for older packages.

bbllx=a, bblly=b, bburx=c, bbury=d

is equivalent to

bb = a b c d.

natheight and natwidth are just shorthands for setting the lower left coordi-

nate to 0 0 and the upper right coordinate to the speci�ed width and height.

The next few keys specify any scaling or rotation to be applied to the image. To

get these e�ects using the standard package, the \includegraphics call must

be placed inside the argument of a \rotatebox or \scalebox command.

The keys are read left-to-right, so [angle=90, height=1in] means rotate by

90 degrees, and then scale to a height of 1in. [height=1in, angle=90] would

result in a �nal width of 1in.

T

E

X leaves the space speci�ed either in the �le, or in the optional arguments.

If any part of the image is actually outside this area, it will by default overprint

the surrounding text. If the star form is used, or clip speci�ed, any part of the

image outside this area will not be printed.

The last four keys suppress the parsing of the �lename. If they are used, the

main �le argument should not have the �le extension. They correspond to the

arguments of \DeclareGraphicsRule described below.

To see the e�ect that the various options have consider the �le a.ps. This �le

contains the bounding box speci�cation

%%BoundingBox:100 100 172 172

That is, the printed region consists of a one-inch square, 100pt in from the

bottom and left hand edges of the paper.

In all the following examples the input will be of the form

left---\fbox{\includegraphics{a}}---right

With di�erent options supplied to \includegraphics.

No optional argument.

left|A |right

9

graphics: \scalebox{0.5}{\includegraphics{a}}

graphicx: \includegraphics[scale=.5]{a}

left|A |right

graphics: \includegraphics[115,110][135,145]{a}}

graphicx: \includegraphics[bb= 115 110 135 145]{a}

left|A|right

graphics: \includegraphics*[115,110][135,145]{a}}

graphicx: \includegraphics[bb= 115 110 135 145,clip]{a}

left|A|right

graphics: \scalebox{0.5}{\includegraphics{a}} and draft option.

graphicx: \includegraphics[scale=.5, draft]{a}

left|

a.ps

|right

4.5 Other commands in the graphics package

\graphicspath{dir-list}

This optional declaration may be used to specify a list of directories in which to

search for graphics �les. The format is the same as for the L

A

T

E

X2

"

primitive

\input@path, a list of directories, each in a {} group (even if there is only one

in the list). For example:

\graphicspath{{eps/}{tiff/}}

would cause the system to look in the subdirectories eps and tiff of the current

directory. The default setting of this path is \input@path that is: graphics �les

will be found wherever T

E

X �les are found.

\DeclareGraphicsExtensions{ext-list}

This speci�es the behaviour of the system when no �le extension is speci�ed in New description

1994/12/01

the argument to \includegraphics. {ext-list} should be a comma separated

list of �le extensions. (White space is ignored between the entries.) A �le name

is produced by appending sep and one extension. If a �le is found, the system

acts as if that extension had been speci�ed. If not, the next extension in ext-list

is tried.

Note that if the extension is not speci�ed in the \includegraphics com-

mand, the graphics �le must exist at the time L

A

T

E

X is run, as the existence

10

of the �le is used to determine which extension from the list to choose. How-

ever if a �le extension is speci�ed, e.g. \includegraphics{a.ps} instead of

\includegraphics{a}, then the graphics �le need not exist at the time L

A

T

E

X

is used. (In particular it may be created on the y by the hcommandi speci�ed

in the \DeclareGraphicsRule command described below.) L

A

T

E

X does however

need to be able to determine the size of the image so this size must be speci�ed

in arguments, or the `read �le' must exist at the time L

A

T

E

X is used.

\DeclareGraphicsRule{ext}{type}{read-�le}{command}

Any number of these declarations can be made. They determine how the system

behaves when a �le with extension ext is speci�ed. (The extension may be

speci�ed explicitly or, if the argument to \includegraphics does not have

an extension, it may be a default extension from the ext-list speci�ed with

\DeclareGraphicsExtensions.)

ext the �le extension for which this rule applies. As a special case, ext may be

given as * to denote the default behaviour for all undeclared extensions (see the

example below).

type is the `type' of �le involved. All �les of the same type will be input with the

same internal command (which must be de�ned in a `driver �le'). For example

�les with extensions ps, eps, ps.gz may all be classed as type eps.

read-�le determines the extension of the �le that should be read to determine

size information. It may be the same as ext but it may be di�erent, for example

ps.gz �les are not readable easily by T

E

X, so you maywant to put the bounding

box information in a separate �le with extension ps.bb. If read-�le is empty,

{}, then the system will not try to locate an external �le for size info, and the

size must be speci�ed in the arguments of \includegraphics. If the driver �le

speci�es a procedure for reading size �les for type, that will be used, otherwise

the procedure for reading eps �les will be used. Thus the size of bitmap �les

may be speci�ed in a �le with a PostScript style %%BoundingBox line, if no other

speci�c format is available.

As a special case * may be used to denote the same extension as the graphic

�le. This is mainly of use in conjunction with using * as the extension, as in

that case the particular graphic extension is not known. For example

\DeclareGraphicsRule{*}{eps}{*}{}

This would declare a default rule, such that all unknown extensions would be

treated as EPS �les, and the graphic �le would be read for a BoundingBox

comment.

command is usually empty, but if non empty it is used in place of the �lename

in the \special. Within this argument, #1 may be used to denote the �lename.

Thus using the dvips driver, one may use

\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}{`zcat #1}

the �nal argument causes dvips to use the zcat command to unzip the �le before

inserting it into the PostScript output.

11

4.6 Global setting of keys

Most of the keyval keys used in the graphicx package may also be set using the

command \setkeys provided by the keyval package.

For instance, suppose you wanted all the �les to be included in the current doc-

ument to be scaled to 75% of the width of the lines of text, then one could issue

the following command:

\setkeys{Gin}{width=0.75\textwidth}

Here `Gin' is the name used for the keyval keys associated with `Graphics in-

clusion'. All following \includegraphics commands (within the same group

or environment) will act as if [width=0.75\textwidth] had been speci�ed, in

addition to any other key settings actually given in the optional argument.

Similarly to make all \rotatebox arguments take an argument in radians, one

just needs to specify:

\setkeys{Grot}{units=6.28318}

4.7 Compatibility between graphics and graphicx

For a document author, there are not really any problems of compatibility be-

tween the two packages. You just choose the interface that you personally prefer,

and then use the appropriate package.

For a package or class writer the situation is slightly di�erent. Suppose that

you are writing a letter class that needs to print a company logo as part of the

letterhead.

As the author of the class you may want to give the users the possibility of using

either interface in their letters (should they need to include any further graphics

into the letter body). In this case the class should load the graphics package (not

graphicx, as this would commit any users of the class to the keyval interface).

The logo should be included with \includegraphics either with no optional

argument (if the correct size information is in the �le) or both optional arguments

otherwise. Do not use the one optional argument form, as the meaning of this

argument would change (and generate errors) if the user were to load graphicx

as well as your class.

5 Remaining packages in the graphics bundle

5.1 Eps�g

This is a small package essentially a `wrapper' around the graphicx package,

de�ning a command \psfig which has the syntax

\psfig{file=xxx,...} rather than \includegraphics[...]{xxx}.

It also has a few more commands to make it slightly more compatible with the

old L

A

T

E

X 2.09 style of the same name.

12

5.2 Trig

The trig package is not intended to be used directly in documents. It calculates

sine, cosine and tangent trigonometric functions. This are used to calculate the

space taken up by a rotated box. This package is also used by the fontinst

program which converts PostScript �les to a form usable by T

E

X.

As well as being used as a L

A

T

E

X package, the macros may be extracted with the

docstrip options plain,package. In this case the L

A

T

E

X package declarations are

omitted from the �le, and the macros may be directly used as part of another

macro �le (they work with any format based on plain T

E

X.)

5.3 Keyval

The keyval package is intended to be used by other packages. It provides a

generic way of setting `keys' as used by the graphicx package, and splitting up

the comma separated lists of hkeyi = hvaluei pairs.

Like, the trig package, these macros may be extracted and used as part of another

macro �le, based on plain T

E

X, as well as the standard use as a L

A

T

E

X package.

5.4 Pstcol

PSTricks, by Timothy Van Zandt is an immensely powerful package that enables

a very full featured interface between PostScript and T

E

X. Unfortunately the

colour support in PSTricks is slightly incompatible with the colour mechanism

de�ned in the color package. The pstcol package is a (hopefully temporary)

package that modi�es a very small number of internal PSTricks functions, to

remove this incompatibility. If pstricks is loaded via this package, you may use

any colours de�ned by color package commands within pstricks commands, and

vice versa.

5.5 Lscape

The lscape package requires and takes the same options as the graphics pack-

age. It de�nes a landscape environment within which page bodies are rotated

through 90 degrees. The page head and foot are not a�ected, they appear in

the standard (portrait) position.

13

