
Table Of Contents
DirectDraw

About DirectDraw
DirectDraw Overview
Architectural Overview
Using DirectDraw

DirectDraw Structures
Data Structure Summary
DDBLTBATCH
DDBLTFX
DDCAPS
DDCOLORKEY
DDMODEDESC
DDOVERLAYFX
DDPIXELFORMAT
DDRVAL
DDSCAPS
DDSURFACEDESC

DirectDraw Return Values
DD OK
DirectDraw Enumeration Callback Return Codes
DirectDraw Error Return Codes

DirectDraw APIs
APIs

DirectDraw Member Reference
Overview
DirectDraw Member Implementation
DirectDraw Members

DirectDrawSurface Member Reference
Overview
DIRECTDRAWSURFACE Member Implementation
Members

DirectDrawPalette Member Reference
Overview
DIRECTDRAWPALETTE Member Implementation
Members

DirectDrawClipper Member Reference
Overview
DIRECTDRAWCLIPPER Member Implementation

Members

About DirectDraw
The Windows 95 Game SDK enables the creation of world class computer games. DirectDraw is a
component of that SDK that allows direct manipulation of video display memory, hardware blters,
hardware overlays, and page flipping. DirectDraw provides this functionality while maintaining
compatibility with existing Windows 95 applications and device drivers.
The Windows Game Subsystem allows game authors an unprecedented level of access to the display
and audio hardware while insulating them from the specific details of that hardware. The Windows
Game Subsystem is built for speed. In keeping with these design goals, DirectDraw is not a high level
graphics API.
DirectDraw for the Microsoftâ Windowsä operating system is a software interface which provides direct
access to display devices while maintaining compatibility with Windows GDI. It works with Windows 95
and will work with Windows NT. DirectDraw provides a device-independent way for games and Windows
subsystem software such as 3-D graphics packages or digital video codecs to access display device-
dependent features.
DirectDraw works with a wide variety of display hardware, ranging from simple SVGAs to advanced
hardware implementations providing clipping, stretching, and non-RGB color format support. The
interface is designed so that applications can request the capabilities of the underlying hardware, then
use those capabilities as required.

DirectDraw provides access to the following display device-dependent benefits:
· Support for double-buffered and page flipping graphics

· Access to, and control of, the video card's blitter

· Support for 3D z buffers

· Hardware assisted overlays with z ordering

· Improved graphics quality through access to image-stretching hardware

· Simultaneous access to standard and enhanced display device memory areas

DirectDraw provides world-class game graphics on a Windows 95 class PC. DirectDraw's mission
is to provide device dependent access to video memory in a device independent way. The application
need only pay attention to some basic device dependencies that are remarkably standard across
hardware implementations, such as RGB and YUV color formats and the stride between raster lines.
The application need not worry about the specific calling procedures required to utilize the blitter or
manipulate palette registers. Essentially, DirectDraw is a memory manager for video memory. Using
DirectDraw, an application can manipulate video memory with ease, taking full advantage of the blitting
and color decompression capabilities of different types of video hardware without becoming dependent on
a particular piece of hardware.

DirectDraw Overview
DirectDraw provides display memory and display hardware management services. DirectDraw provides
the usual functionality associated with memory management: memory can be allocated, moved,
transformed, and freed. This memory represents visual images and is referred to as a surface. The
DirectDraw HAL also exposes unique display hardware functionality, including stretching, overlaying,
texture mapping, rotating and mirroring.

Architectural Overview
DirectDraw
DirectDraw HAL
DirectDraw Software Emulation
DirectDraw, DirectDrawSurface, DirectDrawPalette, and DirectDrawClipper

DirectDraw
DirectDraw is the Windows system component that performs the common functions required by both
hardware and software implementations of DirectDraw. DirectDraw is the only client of the DirectDraw
HAL. Applications must write to DirectDraw. DirectDraw returns two sets of capabilities, one for
hardware capabilities and one for software emulation capabilities. Using these, the application can easily
determine what DirectDraw is emulating and what functionality is provided in hardware and adjust itself
accordingly.
DirectDraw is implemented by the DDRAW DLL. This 32-bit DLL implements all of the common
functionality required by DirectDraw. It performs all of the necessary thunking between Win32 and the
16-bit portions of the HAL. It does complete parameter validation. It provides the memory manager for
offscreen video memory and performs all of the bookkeeping and semantic logic required for
DirectDraw. It is responsible for presenting the COM interface to the application, hooking hWnd's to
provide clip lists, and all other device-independent functionality.

DirectDraw HAL
The DirectDraw HAL is hardware dependent and contains only hardware-specific code. The HAL can be
implemented in 16 bits, 32 bits, or, on Windows '95, a combination of the two. The HAL is always 32-bit
on Windows NT. The HAL may be an integral part of the display driver or a separate DLL that
communicates with the display driver through a private interface defined by the driver's creator.
The DirectDraw HAL is implemented by the chip manufacturer, board producer, or OEM. The HAL
implements only the device dependent code and performs no emulation. If a function is not performed
by the hardware, the HAL should not report it as a hardware capability. The HAL should do no parameter
validation. The parameters will be validated by DirectDraw before the HAL is invoked.

DirectDraw Software Emulation
DirectDraw's Hardware Emulation Layer (HEL) presents itself to DirectDraw just like a HAL would. It has
capabilities that it reports to DirectDraw, just like a HAL would. By examining these capabilities during
application initialization, developers can adjust gaming parameters to provide optimum performance on a
variety of platforms. If a DirectDraw HAL is not present or a requested feature is not provided by the
hardware, DirectDraw will emulate that functionality.

DirectDraw, DirectDrawSurface, DirectDrawPalette, and
DirectDrawClipper
The DirectDraw object represents the display device. There can be one DirectDraw object for every
logical display device in operation. A game development environment, for instance, might have two
monitors, one running the game using DirectDraw and one running the development environment using
GDI. A DirectDrawSurface object represents a linear region of display memory that can be directly
accessed and manipulated. These addresses may point to visible frame buffer memory (primary
surface) or to non-visible buffers (offscreen or overlay surfaces). These non-visible buffers usually reside
in video memory, but can be created in system memory if required by the hardware design or if
DirectDraw is doing software emulation. An overlay is a surface that can be made visible without altering
the pixels it is obscuring. Overlays and sprites are synonymous. A texture map is a surface that can be
warped onto a 3D surface described by the 3D DDI.
DirectDrawPalettes represent a 16 or 256 color-indexed palette. Palettes are provided for textures,
offscreen surfaces, and overlay surfaces, all of which do not necessarily have the same palette as the
primary surface.
The DirectDraw object creates DirectDrawSurface, DirectDrawPalette, and DirectDrawClipper objects.
DirectDrawPalettes and DirectDrawClippers must be attached to the DirectDrawSurface objects they
affect. A DirectDrawSurface may refuse the request to attach a DirectDrawPalette to it. In practice, this
is the usual behavior, since most hardware does not support multiple palettes.

Using DirectDraw
Frame buffer access
Primary Surface resource sharing model
Changing modes and exclusive access
Losing surfaces
Cliplists
Color and Format Conversion
Specifying Color Keys
Colorkeying
Flipping Surfaces and GDI's 'frame rate'
Overlay Z Order
Palettes and Pixel Formats

Frame buffer access
DirectDrawSurface objects represent surface memory in the DirectDraw architecture. A
DirectDrawSurface allows an application to directly access this surface memory through the Lock
member. An application calls the Lock member with a RECT structure specifying the rectangle on the
surface that the application wants access to. If the application calls Lock with a NULL RECT, then the
application is assumed to be requesting exclusive access to the entire piece of surface memory. The
Lock member fills in a DDSURFACEDESC structure with the information needed by the application to
access the surface memory. This information includes the pitch (or stride) and the pixel format of the
surface if it is different from the pixel format of the primary surface. When an application is finished with
the surface memory, it can be made available with the Unlock member.
Experience has shown that developers run into several common problems when rendering directly into
DirectDrawSurfaces: 1) Never assume a constant display pitch. Always examine the pitch information
returned by the Lock member. This pitch may vary for a number of reasons, including the location of the
surface memory, the type of video card, or even the version of the DirectDraw driver being used. 2) Limit
activity between Lock and Unlock. The Lock member holds the WIN16 lock to safely access surface
memory, and GetDC implicitly calls Lock. The WIN16 lock serializes access to GDI and USER, shutting
down Windows between Lock/Unlock and GetDC/ReleaseDC pairs. 3) Copy aligned to video memory.
Window 95 uses a page fault handler, VFLATD.386, to implement a virtual flat frame buffer for display
cards with bank-switched memory. This module allows these display devices to present a linear frame
buffer to DirectDraw. Copying unaligned to video memory can cause the system to hang if the copy
happens to span memory banks.

Primary Surface resource sharing model
DirectDraw has a simple resource sharing model. Video memory is a scarce, shared resource. If the
mode is changed, all of the surfaces stored in video memory are lost. (See Losing surfaces, below.)
DirectDraw implicitly creates a GDIPrimarySurface when it is instantiated for a display device it is sharing
with GDI. GDI is granted shared access to the primary surface. DirectDraw will keep track of the
surface memory that GDI believes is the primary surface. The DirectDrawSurface that owns GDI's
primary surface can always be obtained using the GetGDISurface member of the DirectDraw object.
GDI is not allowed to cache fonts, brushes, and DDBs in the video memory managed by DirectDraw.
The HAL must reserve whatever video memory the DIBENG driver needs before describing the available
memory to DirectDraw's heap manager or the display device driver can allocate and free memory for its
cached data from DirectDraw's heap manager.

Changing modes and exclusive access
Display modes can be changed using the SetDisplayMode member of the DirectDraw object. Modes
can be changed by any application as long as all of the applications are sharing the display card. If an
application has obtained exclusive access to the display card, no other application can change the mode.
Exclusive mode in the context of DirectDraw does not mean that other applications can not allocate
DirectDrawSurfaces or use DirectDraw functionality. It certainly does not mean that other applications
cannot use GDI functionality. It does prevent applications other than the application which obtained
exclusive access from changing the display mode or changing the palette.

Losing surfaces
The surface memory associated with a DirectDrawSurface object may be freed. The DirectDrawSurface
objects representing these pieces of surface memory are not released. When a DirectDrawSurface
object loses its surface memory, many members will return DDERR_SURFACELOST and perform no
other function.
Surfaces can be lost because the mode of the display card was changed or because an application
received exclusive access to the display card and freed all of the surface memory currently allocated on
the video card. The Restore member is provided to recreate these lost surfaces and reconnect them to
their DirectDrawSurface objects.

Cliplists
Cliplists are managed by DirectDraw using the DirectDrawClipper object. A DirectDrawClipper can be
attached to any surface. A window handle can also be attached to a DirectDrawClipper, in which case
DirectDraw will update the DirectDrawClipper's clip list with the clip list for the window as it changes.
Although the clip list is visible from the DirectDraw HAL. The HAL need not be concerned about the clip
list for blitting, as DirectDraw will only call the HAL with rectangles that meet the cliplist requirements.
For instance, if the upper right rectangle of a surface was clipped and the application asked DirectDraw to
blit the surface onto the primary surface DirectDraw would tell the HAL to do two blits. The first blit would
be the upper left hand corner of the surface and the second would be the bottom half of the surface.
The HAL must consider the cliplist for overlays if the overlay hardware can support clipping and
destination color keying is not active. Most of today's hardware does not support occluded overlays
unless they are being destination color keyed. This can be reported to DirectDraw as a driver capability
in which case the overlay will be turned off if it becomes occluded. In this case the HAL does not have to
be concerned with clip lists, either.

Color and Format Conversion
The non-RGB surface formats are described by FOURCC codes. When the pixel format is requested, if
the surface is a non-RGB surface, the DDPF_FOURCC flag will be set and the dwFourCC field in the
DDPIXELFORMAT structure will be valid. If the FOURCC code represents a YUV format, the
DDPF_YUV flag will also be set and the dwYUVBitCount, dwYBits, dwUBits, dwVBits, and
dwYUVAlphaBits will be valid masks which can be used to extract information from the pixels.
If an RGB format is present, the DDPF_RGB flag will be set and the dwRGBBitCount, dwRBits, dwGBits,
dwBBits, and dwRGBAlphaBits will be valid masks which can be used to extract information from the
pixels. The DDPF_RGB flag may be set in conjunction with the DDPF_FOURCC flag if a non-standard
RGB format is being described.
There are two sets of FourCC codes exposed to the application. One list of FourCC codes represents
what the blitting hardware is capable of doing and the other represents what the overlay hardware is
capable of doing.

Specifying Color Keys
Color keys are specified in the pixel format of the surface. If the surface is in a palettized format, then
the color key is specified as an index or a range of indexes. If the surface's pixel format is specified by a
FourCC code that describes a YUV format, the YUV color key is specified by the three low order bytes in
each the dwColorSpaceLowValue and dwColorSpaceHighValue of the DDCOLORKEY structure. The
lowest order byte has the V data, the second lowest order byte has the U data, and the third highest order
byte has the Y data. The SetColorKey member has a "flags" parameter that specifies whether the color
key being set is to be used for overlay operations or blit operations, and whether it is a source or a
destination key. Some examples of valid color keys follow:
8-bit palletized mode

// palette entry 26 is the color key
dwColorSpaceLowValue = 26;
dwColorSpaceHighValue = 26;

24-bit true color mode
// color 255,128,128 is the color key
dwColorSpaceLowValue = RGBQUAD(255,128,128);
dwColorSpaceHighValue = RGBQUAD(255,128,128);

FourCC YUV mode
// any YUV color where Y is between 100 and 110 and U or V is between 50 and 55 is transparent
dwColorSpaceLowValue = YUVQUAD(100,50,50);
dwColorSpaceHighValue = YUVQUAD(110,55,55);

Colorkeying
Both source and destination color keying for blits and overlays are supported by DirectDraw. For both of
these types of color keying, a color key or a color range may be supplied.
Source color keying is used to specify a color, or color range, that will not be copied in the case of blitting,
or visible in the case of overlays, on the destination. Destination color keying is used to specify a color,
or color range, that will be replaced in the case of blitting, or covered up, in the case of overlays, on the
destination. The source color key specifies what can and can't be read from the source surface. The
destination color key specifies what can and can't be written onto, or covered up, on the destination
surface. If a destination surface has a color key, then only the pixels that match the color key will be
changed, or covered up, on the destination.
Some hardware will only support color ranges for YUV pixel data. This is because YUV data is usually
video, and due to quantization errors during conversion the transparent background is not a single color.
Content should be authored to a single transparent color whenever possible, regardless of pixel format.

Flipping Surfaces and GDI's 'frame rate'
DirectDraw has extended flipping surfaces to encompass more than page flipping and more than visible
surface flipping. Any surface can now be constructed as a flipping surface. This has many advantages
over the traditional, limited scope of page flipping.
When a Flip operation is requested in DirectDraw, the surface memory areas associated with the
DirectDrawSurface objects being flipped are switched. Surfaces attached to the DirectDrawSurface
objects being flipped are not affected. For example, in a double buffered situation, an application that
draws on the back buffer always uses the same DirectDrawSurface object. The surface memory
underneath the object is just switched with the front buffer when a Flip is requested.
If the front buffer is visible, either because it is the primary surface, or because it is an overlay that is
currently visible, subsequent calls to Lock or Blt that target the back buffer will fail with the error
DDERR_WASSTILLDRAWING until the next vertical refresh occurs. This behavior is necessary
because the front buffer's previous surface memory, which is no longer attached to the back buffer, is still
being drawn to the physical display by the hardware. This situation disappears during the next vertical
refresh because the hardware that updates the physical display re-reads the location of the display
memory on every refresh.
This physical requirement makes Flip on visible surfaces an asynchronous command. A good practice
to follow when building applications is to perform all of the non-visual elements of the game after the Flip
is called and then when the input, audio, gameplay and system memory drawing operations have been
completed, begin the drawing tasks that require access to the visible back buffers.
When an application wants to run in a window and still requires a flipping environment, the application will
attempt to create a flipping overlay surface. If the hardware does not support overlays, another
alternative is to create a primary surface that is page flipping, and whenever the surface that GDI is not
aware of is about to become the primary surface, blit the contents of the primary surface that GDI is
writing to onto the buffer that is about to become visible. This doesn't take any of the application's time
since the blits are performed asynchronously. It can, however, consume considerable blitter bandwidth
which is dependent on the resolution of the screen and how big the window that is really being page
flipped is. As long as the frame rate does not dip below 20 frames a second, GDI will appear to the user
to be operating correctly.
Before you instantiate a DirectDraw object, GDI is already using your video memory to display itself.
When you call DirectDraw to instantiate a Primary surface, the memory address of that surface will be the
same as GDI is currently using.
If you create a complex surface with a backbuffer, GDI will originally be pointing to the video memory for
the primary surface. Since GDI has no knowledge of DirectDraw, GDI will continue operating on this
surface, even if you have flipped it and it is now the non-visible back buffer.
Many games will start out by creating one large window that covers the entire screen. As long as your
game is active and has the focus, GDI will not attempt to write into its copy of the buffer since nothing it
controls needs redrawing.
For other scenarios, always remember that GDI only knows about one surface (the original one), and
never knows if it is currently the primary surface or a back buffer. If you don't need the GDI screen, then
use the above technique. If you do need GDI, you can try this technique:

· Create a Primary surface with 2 back buffers
· Blt the initial Primary Surface (the GDI one) to the middle back buffer
· Flip(NULL) to put GDI into last place and make your initial copy visible

From then on, copy from the GDI buffer to the middle buffer, draw what you want the user to see on that
buffer, then pPrimary->Flip(pMiddle), which will keep GDI safely on the bottom and oscillate between the
other two buffers.

Overlay Z Order
Overlay Z order is used to determine the order in which overlays clip each other, enabling a hardware
sprite system to be implemented under DirectDraw. Overlays are assumed to be on top of everything
else. Destination colorkeys are only affected by the bits on the primary surface, not by the overlays that
may be occluded by other overlays. Source color keys work on the overlay whether or not it has a z
order specified. Overlays that do not have a z order specified have unspecified behavior when they
overlay the same area on the primary surface. Finally, overlays without a z order specified are assumed
to have a z order of zero. The z order of overlays moves from zero, which is just on top of the primary
surface, to 4 billion, which is just underneath the glass on the monitor. An overlay with a z order of 2
would obscure an overlay with a z order of 1. Overlays are not allowed to have the same z order as
another overlay.

Palettes and Pixel Formats
DirectDraw enables the creation of multiple palettes, which can be attached to offscreen surfaces. When
this is done, the offscreen surfaces no longer share the palette of the primary surface. If an offscreen
surface with a pixel format different from the primary surface is created, it is assumed that the hardware
can use it. For instance, if a palettized offscreen surface is created when the primary surface is in 16-bit
color mode, then it is assumed that the blitter can convert palettized surfaces to true color during the blit
operation.
DirectDraw supports the creation of standard 8-bit palettized surfaces capable of displaying 256 colors
and two kinds of 4-bit palettized surfaces, each capable of displaying 16 colors. The first 4-bit palettized
surface is indexed into a true color palette table, the second is indexed into the primary surface indexed
palette table. This second type of palette provides 50% compression and a layer of indirection to the
sprites stored using it.
If these surfaces are to be created, the blitter must be able to do the palette replacement during the blit
operation. Blting from one palettized surface to another ignores the palette. Palette decoding is only
done to true color surfaces, or when the 4-bit palette is an index to an index in the 8-bit palette. In all
other cases, the indexed palette is the palette of the destination.
Raster operations for palettized surfaces are ignored. Changing the attached palette of a surface is a
very quick operation. All three of these palettized surfaces should be supported as textures on 3D
accelerated hardware.

Data Structure Summary
Most DirectDraw structures have a "dwSize" field which must be set to the structure's size before the
structure is used in a function call.

DDBLTBATCH This structure is used to pass blit operations to the BltBatch
member.

DDBLTFX This structure is used to pass raster ops, effects, and override
information to the DirectDrawSurface object member Blt. It is
also part of the DDBLTBATCH structure used with the BltBatch
member.

DDCAPS This structure represents the capabilities of the hardware
exposed through the DirectDraw object. It contains a
DDSCAPS structure which is used in this context to describe
what kinds of DirectDrawSurfaces can be created. It may not
be possible to simultaneously create all of the surfaces
described by these capabilities.

DDCOLORKEY This structure is used to describe a source or destination color
key or color space. A color key is specified if the low and high
range values are the same.

DDMODEDESC This structure is returned to the EnumModes' enumeration
member to describe the mode that can be created including the
monitor frequency and monitor configuration flags.

DDOVERLAYFX This structure is used to pass override information to the
DIRECTDRAWSURFACE member UpdateOverlay.

DDPIXELFORMAT This structure describes the pixel format of a
DIRECTDRAWSURFACE object.

DDRVAL Return value used by DirectDraw members.

DDSCAPS This structure defines the capabilities of DirectDrawSurfaces. It
is part of the DDCAPS structure which is used to describe the
capabilities of the DirectDraw object.

DDSURFACEDESC The structure is passed to the DIRECTDRAW member
CreateSurface to describe the surface that should be created.
The relevant fields differ for each type of surface being created.

DDBLTBATCH
typedef struct _DDBLTBATCH{

LPRECT lprDest;
LPDIRECTDRAWSURFACE lpDDSSrc;
LPRECT lprSrc;
DWORD dwFlags;
LPDDBLTFX lpDDBltFx;

} DDBLTBATCH,FAR *LPDDBLTBATCH;

lprDest
Pointer to a RECT structure that defines the destination for the blit.

lpDDSSrc
Pointer to a DirectDrawSurface that will be the source of the blit.

lprSrc
Pointer to a RECT structure that defines the source rectangle of the blit.

dwFlags
DDBLT_ALPHADEST Use the alpha information in the pixel format or the alpha

channel surface attached to the destination surface as
the alpha channel for this blit.

DDBLT_ALPHADESTCONSTOVERRIDE Use the dwConstAlphaDest field in the DDBLTFX
structure as the alpha channel for the destination surface
for this blit.

DDBLT_ALPHADESTNEG The NEG suffix indicates that the destination surface
becomes more transparent as the alpha value increases.
(0 is opaque)

DDBLT_ALPHADESTSURFACEOVERRIDE Use the lpDDSAlphaDest field in the DDBLTFX structure
as the alpha channel for the destination for this blit.

DDBLT_ALPHAEDGEBLEND Use the dwAlphaEdgeBlend field in the DDBLTFX
structure as the alpha channel for the edges of the
image that border the color key colors.

DDBLT_ALPHASRC Use the alpha information in the pixel format or the alpha
channel surface attached to the source surface as the
alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE Use the dwConstAlphaSrc field in the DDBLTFX
structure as the alpha channel for the source for this blit.

DDBLT_ALPHASRCNEG The NEG suffix indicates that the source surface
becomes more transparent as the alpha value increases.
(0 is opaque)

DDBLT_ALPHASRCSURFACEOVERRIDE Use the lpDDSAlphaSrc field in the DDBLTFX structure
as the alpha channel for the source for this blit.

DDBLT_ASYNC Do this blit asynchronously through the FIFO in the order
received. If there is no room in the hardware FIFO fail
the call.

DDBLT_COLORFILL Uses the dwFillColor field in the DDBLTFX structure as
the RGB color to fill the destination rectangle on the
destination surface with.

DDBLT_DDFX Uses the dwDDFX field in the DDBLTFX structure to
specify the effects to use for the blit.

DDBLT_DDROPS Uses the dwDDROPS field in the DDBLTFX structure to
specify the ROPS that are not part of the Win32 API.

DDBLT_KEYDEST Use the color key associated with the destination
surface.

DDBLT_KEYDESTOVERRIDE Use the dckDestColorkey field in the DDBLTFX structure
as the color key for the destination surface.

DDBLT_KEYSRC Use the color key associated with the source surface.
DDBLT_KEYSRCOVERRIDE Use the dckSrcColorkey field in the DDBLTFX structure

as the color key for the source surface.
DDBLT_ROP Use the dwROP field in the DDBLTFX structure for the

raster operation for this blit. These ROPs are the same
as the ones defined in the Win32 API.

DDBLT_ROTATIONANGLE Use the dwRotationAngle field in the DDBLTFX structure
as the angle (specified in 1/100th of a degree) to rotate
the surface.

DDBLT_ZBUFFER Z-buffered blit using the z-buffers attached to the source
and destination surfaces and the dwZBufferOpCode field
in the DDBLTFX structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE Z-buffered blit using the dwConstDest Zfield and the
dwZBufferOpCode field in the DDBLTFX structure as the
z-buffer and z-buffer opcode respectively for the
destination.

DDBLT_ZBUFFERDESTOVERRIDE Z-buffered blit using the lpDDSDestZBuffer field and the
dwZBufferOpCode field in the DDBLTFX structure as the
z-buffer and z-buffer opcode respectively for the
destination.

DDBLT_ZBUFFERSRCCONSTOVERRIDE Z-buffered blit using the dwConstSrcZ field and the
dwZBufferOpCode field in the DDBLTFX structure as the
z-buffer and z-buffer opcode respectively for the source.

DDBLT_ZBUFFERSRCOVERRIDE Z-buffered blit using the lpDDSSrcZBuffer field and the
dwZBufferOpCode field in the DDBLTFX structure as the
z-buffer and z-buffer opcode respectively for the source.

lpDDBltFx
Pointer to a DDBLTFX structure specifying additional blit effects.

DDBLTFX
typedef struct _DDBLTFX{

DWORD dwSize;
DWORD dwDDFX;
DWORD dwROP;
DWORD dwDDROP;
DWORD dwRotationAngle;
DWORD dwZBufferOpCode;
DWORD dwZBufferLow;
DWORD dwZBufferHigh;
DWORD dwZBufferBaseDest;
DWORD dwZDestConstBitDepth;
union
{

DWORD dwZDestConst;
LPDIRECTDRAWSURFACE lpDDSZBufferDest;

};
DWORD dwZSrcConstBitDepth;
union
{

DWORD dwZSrcConst;
LPDIRECTDRAWSURFACE lpDDSZBufferSrc;

};
DWORD dwAlphaEdgeBlendBitDepth;
DWORD dwAlphaEdgeBlend;
DWORD dwReserved;
DWORD dwAlphaDestConstBitDepth;
union
{

DWORD wAlphaDestConst;
LPDIRECTDRAWSURFACE lpDDSAlphaDest;

};
DWORD dwAlphaSrcConstBitDepth;
union
{

DWORD dwAlphaSrcConst;
LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

};
union
{

WORD dwFillColor;
LPDIRECTDRAWSURFACE lpDDSPattern;

};
DDCOLORKEY dckDestColorkey;
DDCOLORKEY dckSrcColorkey;

} DDBLTFX,FAR* LPDDBLTFX;

dwSize
Size of the structure. Must be initialized before the structure is used.

dwDDFX FX operations.
DDBLTFX_ARITHSTRETCHY If stretching, use arithmetic stretching along the Y axis

for this blit.
DDBLTFX_MIRRORLEFTRIGHT Do this blit mirroring the surface left to right. Spin the

surface around its y-axis.
DDBLTFX_MIRRORUPDOWN Do this blit mirroring the surface up and down. Spin

the surface around its x-axis.
DDBLTFX_NOTEARING Schedule this blit to avoid tearing.
DDBLTFX_ROTATE180 Do this blit rotating the surface one hundred and

eighty degrees clockwise.
DDBLTFX_ROTATE270 Do this blit rotating the surface two hundred and

seventy degrees clockwise.
DDBLTFX_ROTATE90 Do this blit rotating the surface ninety degrees

clockwise.
DDBLTFX_ZBUFFERRANGE Do this z blit using dwZBufferLow and dwZBufferHigh

as range values specified to limit the bits copied from
the source surface.

DDBLTFX_ZBUFFERBASEDEST Do this z blit adding the dwZBufferBaseDest to each
of the sources z values before comparing it with the
desting z values.

dwROP
Win32 raster operations.

dwDDROP
DirectDraw raster operations.

dwRotationAngle
Rotation angle for the blit.

dwZBufferOpCode
ZBuffer compares.

dwZBufferLow
Low limit of Z buffer.

dwZBufferHigh
High limit of Z buffer.

dwZBufferBaseDest
Destination base value.

dwZDestConstBitDepth
Bit depth used to specify Z constant for destination.

dwZDestConst
Constant to use as Z buffer for destination.

lpDDSZBufferDest
Surface to use as Z buffer for destination.

dwZSrcConstBitDepth
Bit depth used to specify Z constant for source.

dwZSrcConst
Constant to use as Z buffer for source.

lpDDSZBufferSrc
Surface to use as Z buffer for source.

dwAlphaEdgeBlendBitDepth
Bit depth used to specify constant for alpha edge blend.

dwAlphaEdgeBlend
Alpha for edge blending.

dwReserved
Reserved for future use.

dwAlphaDestConstBitDepth
Bit depth used to specify alpha constant for destination.

dwAlphaDestConst
Constant to use as Alpha Channel.

lpDDSAlphaDest
Surface to use as Alpha Channel.

dwAlphaSrcConstBitDepth
Bit depth used to specify alpha constant for source

dwAlphaSrcConst
Constant to use as Alpha Channel

lpDDSAlphaSrc
Surface to use as Alpha Channel

dwFillColor
Fill color in RGB or Palettized

lpDDSPattern
Surface to use as pattern.

dckDestColorkey
DestColorkey override.

dckSrcColorkey
SrcColorkey override.

DDCAPS
typedef struct _DDCAPS{

DWORD dwSize;
DWORD dwCaps;
DWORD dwCaps2;
DWORD dwCKeyCaps;
DWORD dwFXCaps;
DWORD dwFXAlphaCaps;
DWORD dwPalCaps;
DWORD dwSVCaps;
DWORD dwAlphaBltConstBitDepths;
DWORD dwAlphaBltPixelBitDepths;
DWORD dwAlphaBltSurfaceBitDepths;
DWORD dwAlphaOverlayConstBitDepths;
DWORD dwAlphaOverlayPixelBitDepths;
DWORD dwAlphaOverlaySurfaceBitDepths;
DWORD dwZBufferBitDepths;
DWORD dwVidMemTotal;
DWORD dwVidMemFree;
DWORD dwMaxVisibleOverlays;
DWORD dwCurrVisibleOverlays;
DWORD dwNumFourCCCodes;
DWORD dwAlignBoundarySrc;
DWORD dwAlignSizeSrc;
DWORD dwAlignBoundaryDest;
DWORD dwAlignSizeDest;
DWORD dwAlignStrideAlign;
DWORD dwRops[DD_ROP_SPACE];
DDSCAPS ddsCaps;
DWORD dwMinOverlayStretch;
DWORD dwMaxOverlayStretch;
DWORD dwMinLiveVideoStretch;
DWORD dwMaxLiveVideoStretch;
DWORD dwMinHwCodecStretch;
DWORD dwMaxHwCodecStretch;
DWORD dwReserved1;
DWORD dwReserved2;
DWORD dwReserved3;

} DDCAPS,FAR* LPDDCAPS;

dwSize
Size of structure. Must be initialized before use.

dwCaps Driver-specific capabilities.
DDCAPS_3D Display hardware has 3D acceleration.
DDCAPS_ALIGNBOUNDARYDEST Indicates that DirectDraw will support only source

rectangles whose X axis is aligned on
DIRECTDRAWCAPS.dwAlignBoundaryDest
boundaries of the surface, respectively.

DDCAPS_ALIGNSIZEDEST Indicates that DirectDraw will support only source
rectangles whose X axis size in BYTEs are
DIRECTDRAWCAPS.dwAlignSizeDest multiples,
respectively.

DDCAPS_ALIGNBOUNDARYSRC Indicates that DirectDraw will support only source
rectangles whose X axis is aligned on

DIRECTDRAWCAPS.dwAlignBoundarySrc
boundaries of the surface, respectively.

DDCAPS_ALIGNSIZESRC Indicates that DirectDraw will support only source
rectangles whose X axis size in BYTEs are
DIRECTDRAWCAPS.dwAlignSizeSrc multiples,
respectively.

DDCAPS_ALIGNSTRIDE Indicates that DirectDraw will create video memory
surfaces that have a stride alignment equal to
DIRECTDRAWCAPS.dwAlignStrideAlign.

DDCAPS_BANKSWITCHED Display hardware is bank switched, and potentially
very slow at random access to VRAM.

DDCAPS_BLT Display hardware is capable of blit operations.
DDCAPS_BLTCOLORFILL Display hardware is capable of color fill with bltter.
DDCAPS_BLTQUEUE Display hardware is capable of asynchronous blit

operations.
DDCAPS_BLTFOURCC Display hardware is capable of color space

conversions during the blit operations.
DDCAPS_BLTSTRETCH Display hardware is capable of stretching during blit

operations.
DDCAPS_GDI Display hardware is shared with GDI.
DDCAPS_OVERLAY Display hardware can overlay.
DDCAPS_OVERLAYCANTCLIP Set if display hardware supports overlays but can not

clip them.
DDCAPS_OVERLAYFOURCC Indicates that overlay hardware is capable of color

space conversions during the overlay operation.
DDCAPS_OVERLAYSTRETCH Indicates that stretching can be done by the overlay

hardware.
DDCAPS_PALETTE Indicates that DirectDraw is capable of creating and

supporting DIRECTDRAWPALETTE objects for more
than the primary surface.

DDCAPS_PALETTECANVSYNC Indicates that DirectDraw is capable of updating the
palette in sync with the veritcal refresh.

DDCAPS_READSCANLINE Display hardware can return the current scan line.
DDCAPS_STEREOVIEW Display hardware has stereo vision capabilities.

DDSCAPS_PRIMARYSURFACELEFT can be
created.

DDCAPS_VBI Display hardware is capable of generating a vertical
blank interrupt.

DDCAPS_ZBLTS Supports the use of Z buffers with blit operations.
DDCAPS_ZOVERLAYS Supports the use of OverlayZOrder as a z value for

overlays to control their layering.
DDCAPS_COLORKEY Obsolete flag that represents colorkey capabilities in

either overlay hardware or blit hardware. Will be
replaced with DDCAPS_OVERLAYCOLORKEY and
DDCAPS_BLTCOLORKEY.

DDCAPS_ALPHA Display hardware supports alpha channel during blit
operations.

DDCAPS_COLORKEY_HWASSIST Colorkey is hardware assisted.
DDCAPS_NOHARDWARE No hardware support at all.

dwCaps2 More driver-specific capabilities.
DDCAPS2_CERTIFIED Display hardware is certified.

dwCKeyCaps Color key capabilities.
DDCKEYCAPS_DESTBLT Supports transparent blitting using a color key to

identify the replaceable bits of the destination surface
for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE Supports transparent blitting using a color space to
identify the replaceable bits of the destination surface
for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV Supports transparent blitting using a color space to
identify the replaceable bits of the destination surface
for YUV colors.

DDCKEYCAPS_DESTBLTYUV Supports transparent blitting using a color key to
identify the replaceable bits of the destination surface
for YUV colors.

DDCKEYCAPS_DESTOVERLAY Supports overlaying using colorkeying of the
replaceable bits of the surface being overlayed for

RGB colors.
DDCKEYCAPS_DESTOVERLAYCLRSPACE Supports a color space as the color key for the

destination for RGB colors.
DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV Supports a color space as the color key for the

destination for YUV colors.
DDCKEYCAPS_DESTOVERLAYONEACTIVE Supports only one active destination color key value

for visible overlay surfaces.
DDCKEYCAPS_DESTOVERLAYYUV Supports overlaying using colorkeying of the

replaceable bits of the surface being overlayed for
YUV colors.

DDCKEYCAPS_SRCBLT Supports transparent blitting using the color key for
the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE Supports transparent blitting using a color space for
the source with this surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV Supports transparent blitting using a color space for
the source with this surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV Supports transparent blitting using the color key for
the source with this surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY Supports overlays using the color key for the source
with this overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE Supports overlays using a color space as the source
color key for the overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV Supports overlays using a color space as the source
color key for the overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE Supports only one active source color key value for
visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV Supports overlays using the color key for the source
with this overlay surface for YUV colors.

dwFXCaps Driver-specific stretching and effects capabilities.
DDFXCAPS_BLTARITHSTRETCHY Uses arithmetic operations to stretch and shrink

surfaces during blit rather than pixel doubling
techniques. Along the Y axis.

DDFXCAPS_BLTARITHSTRETCHYN Uses arithmetic operations to stretch and shrink
surfaces during blit rather than pixel doubling
techniques. Along the Y axis. Only works for x1, x2,
etc.

DDFXCAPS_BLTMIRRORLEFTRIGHT Supports mirroring left to right in blit.
DDFXCAPS_BLTMIRRORUPDOWN Supports mirroring top to bottom in blit.
DDFXCAPS_BLTROTATION Supports arbitrary rotation.
DDFXCAPS_BLTROTATION90 Supports 90 degree rotations.
DDFXCAPS_BLTSHRINKX Supports arbitrary shrinking of a surface along the x

axis (horizontal direction). This flag is only valid for
blit operations.

DDFXCAPS_BLTSHRINKXN Supports integer shrinking (1x,2x,) of a surface along
the x axis (horizontal direction). This flag is only valid
for blit operations.

DDFXCAPS_BLTSHRINKY Supports arbitrary shrinking of a surface along the y
axis (horizontal direction). This flag is only valid for
blit operations.

DDFXCAPS_BLTSHRINKYN Supports integer shrinking (1x,2x,) of a surface along
the y axis (vertical direction). This flag is only valid
for blit operations.

DDFXCAPS_BLTSTRETCHX Supports arbitrary stretching of a surface along the x
axis (horizontal direction). This flag is only valid for
blit operations.

DDFXCAPS_BLTSTRETCHXN Supports integer stretching (1x,2x,) of a surface along
the x axis (horizontal direction). This flag is only valid
for blit operations.

DDFXCAPS_BLTSTRETCHY Supports arbitrary stretching of a surface along the y
axis (horizontal direction). This flag is only valid for
blit operations.

DDFXCAPS_BLTSTRETCHYN Supports integer stretching (1x,2x,) of a surface along
the y axis (vertical direction). This flag is only valid
for blit operations.

DDFXCAPS_OVERLAYARITHSTRETCHY Uses arithmetic operations to stretch and shrink
surfaces during overlay rather than pixel doubling
techniques. Along the Y axis.

DDFXCAPS_OVERLAYARITHSTRETCHYN Uses arithmetic operations to stretch and shrink
surfaces during overlay rather than pixel doubling
techniques. Along the Y axis. Only works for x1, x2,
etc.

DDFXCAPS_OVERLAYSHRINKX Supports arbitrary shrinking of a surface along the x
axis (horizontal direction). This flag is only valid for
DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKXN Supports integer shrinking (1x,2x,) of a surface along
the x axis (horizontal direction). This flag is only valid
for DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKY Supports arbitrary shrinking of a surface along the y
axis (vertical direction). This flag is only valid for
DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKYN Supports integer shrinking (1x,2x,) of a surface along
the y axis (vertical direction). This flag is only valid
for DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX Supports arbitrary stretching of a surface along the x
axis (horizontal direction). This flag is only valid for
DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHXN Supports integer stretching (1x,2x,) of a surface along
the x axis (horizontal direction). This flag is only valid
for DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHY Supports arbitrary stretching of a surface along the y
axis (vertical direction). This flag is only valid for
DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHYN Supports integer stretching (1x,2x,) of a surface along
the y axis (vertical direction). This flag is only valid
for DDSCAPS_OVERLAY surfaces. This flag only
indicates the capabilities of a surface. It does not
indicate that stretching is available.

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT Supports mirroring of overlays across the vertical axis.
DDFXCAPS_OVERLAYMIRRORUPDOWN Supports mirroring of overlays across the horizontal

axis.

dwFXAlphaCaps Driver specific alpha capabilities.
DDFXALPHACAPS_BLTALPHAEDGEBLEND Supports alpha blending around the edge of a

source color keyed surface. For Blt.
DDFXALPHACAPS_BLTALPHAPIXELS Supports alpha information in the pixel format.

The bit depth of alpha information in the pixel
format can be 1,2,4, or 8. The alpha value
becomes more opaque as the alpha value
increases. (0 is transparent.) For Blt.

DDFXALPHACAPS_BLTALPHAPIXELSNEG Supports alpha information in the pixel format.
The bit depth of alpha information in the pixel
format can be 1,2,4, or 8. The alpha value
becomes more transparent as the alpha value
increases. (0 is opaque.) This flag can only be
set if DDCAPS_ALPHA is set. For Blt.

DDFXALPHACAPS_BLTALPHASURFACES Supports alpha only surfaces. The bit depth of
an alpha only surface can be 1,2,4, or 8. The
alpha value becomes more opaque as the alpha
value increases. (0 is transparent.) For Blt.

DDFXALPHACAPS_BLTALPHASURFACESNEG The depth of the alpha channel data can range
can be 1,2,4, or 8. The NEG suffix indicates that
this alpha channel becomes more transparent as

the alpha value increases. (0 is opaque.) This
flag can only be set if
DDFXCAPS_ALPHASURFACES is set. For Blt.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND Supports alpha blending around the edge of a
source color keyed surface. For Overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS Supports alpha information in the pixel format.
The bit depth of alpha information in the pixel
format can be 1,2,4, or 8. The alpha value
becomes more opaque as the alpha value
increases. (0 is transparent.) For Overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG Supports alpha information in the pixel format.
The bit depth of alpha information in the pixel
format can be 1,2,4, or 8. The alpha value
becomes more transparent as the alpha value
increases. (0 is opaque.) This flag can only be
set if DDFXCAPS_ALPHAPIXELS is set. For
Overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES Supports alpha only surfaces. The bit depth of
an alpha only surface can be 1,2,4, or 8. The
alpha value becomes more opaque as the alpha
value increases. (0 is transparent.) For
Overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG The depth of the alpha channel data can range
can be 1,2,4, or 8. The NEG suffix indicates that
this alpha channel becomes more transparent as
the alpha value increases. (0 is opaque.) This
flag can only be set if
DDFXCAPS_ALPHASURFACES is set. For
Overlays.

dwPalCaps Palette capabilities.
 DDPCAPS_4BIT Index is 4 bits. There are sixteen color entries in

the palette table.
DDPCAPS_8BITENTRIES Index is onto an 8 bit color index. This field is only

valid with the DDPCAPS_4BIT capability and the
target surface is in 8bpp. Each color entry is one
byte long and is an index into destination surface's
8bpp palette.

DDPCAPS_8BIT Index is 8 bits. There are 256 color entries in the
palette table.

DDPCAPS_ALLOW256 This palette can have all 256 entries defined.
DDPCAPS_INITIALIZE Indicates that this DIRECTDRAWPALETTE should

use the palette color array passed into the
lpDDColorArray parameter to initialize the
DIRECTDRAWPALETTE object.

DDPCAPS_PRIMARYSURFACE This palette is the one attached to the primary
surface. Changing this table has immediate effect
on the display unless DDPAL_VSYNC is specified
and supported.

DDPCAPS_PRIMARYSURFACELEFT This palette is the one attached to the primary
surface left. Changing this table has immediate
effect on the display unless DDPAL_VSYNC is
specified and supported.

DDPCAPS_VSYNC This palette can have modifications to it synced
with the monitors refresh rate.

dwSVCaps Stereo vision capabilities.
DDSVCAPS_ENIGMA The stereo view is accomplished via Enigma

encoding.
DDSVCAPS_FLICKER The stereo view is accomplished via high frequency

flickering.
DDSVCAPS_REDBLUE The stereo view is accomplished via red and blue

filters applied to the left and right eyes. All images
must adapt their color spaces for this process.

DDSVCAPS_SPLIT The stereo view is accomplished with split screen
technology.

dwAlphaBltConstBitDepths
DDBD_2,4,8

dwAlphaBltPixelBitDepths
DDBD_1,2,4,8

dwAlphaBltSurfaceBitDepths
DDBD_1,2,4,8

dwAlphaOverlayConstBitDepths
DDBD_2,4,8

dwAlphaOverlayPixelBitDepths
DDBD_1,2,4,8

dwAlphaOverlaySurfaceBitDepths
DDBD_1,2,4,8

dwZBufferBitDepths
DDBD_8,16,24,32

dwVidMemTotal
Total amount of video memory.

dwVidMemFree
Amount of free video memory.

dwMaxVisibleOverlays
Maximum number of visible overlays.

dwCurrVisibleOverlays
Current number of visible overlays.

dwNumFourCCCodes
Number of FOURCC codes.

dwAlignBoundarySrc
Source rectangle alignment.

dwAlignSizeSrc
Source rectangle byte size.

dwAlignBoundaryDest
Destination rectangle alignment.

dwAlignSizeDest
Destination rectangle byte size.

dwAlignStrideAlign
Stride alignment.

dwRops[DD_ROP_SPACE]
ROPS supported.

ddsCaps
DDSCAPS structure with general capabilities.

dwMinOverlayStretch
Minimum overlay stretch factor multiplied by 1000

dwMaxOverlayStretch
Maximum overlay stretch factor multiplied by 1000

dwMinLiveVideoStretch
Minimum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3

dwMaxLiveVideoStretch
Maximum live video stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3

dwMinHwCodecStretch
Minimum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3

dwMaxHwCodecStretch;
Maximum hardware codec stretch factor multiplied by 1000, eg 1000 == 1.0, 1300 == 1.3

dwReserved1,dwReserved2,dwReserved3
Reserved.

dw...BitDepths
DDBD_1 1 bit per pixel.
DDBD_2 2 bits per pixel.
DDBD_4 4 bits per pixel.
DDBD_8 8 bits per pixel.
DDBD_16 16 bits per pixel.
DDBD_24 24 bits per pixel.
DDBD_32 32 bits per pixel.

DDCOLORKEY
typedef struct _DDCOLORKEY{

DWORD dwColorSpaceLowValue;
DWORD dwColorSpaceHighValue;

} DDCOLORKEY,FAR* LPDDCOLORKEY;

dwColorSpaceLowValue
The low value of the color range that is to be used as the color key, inclusive.

dwColorSpaceHighValue
The high value of the color range that is to be used as the color key, inclusive.

DDMODEDESC
typedef struct {

DWORD dwSize;
DWORD dwFlags;
DWORD dwMonitorFrequency;
DDSURFACEDESC dsdSurfaceDesc;

} DDMODEDESC, FAR* LPDDMODEDESC;
dwSize

Size of the structure. Must be initialized before use.
dwFlags

Enumeration flags.
dwMonitorFrequency

Frequency of the monitor in this mode.
dsdSurfaceDesc

Surface description.

DDOVERLAYFX
typedef struct _DDOVERLAYFX{

DWORD dwSize;
DWORD dwAlphaEdgeBlendBitDepth;
DWORD dwAlphaEdgeBlend;
DWORD dwReserved;
DWORD dwAlphaDestConstBitDepth;
union
{

DWORD dwAlphaDestConst;
LPDIRECTDRAWSURFACE lpDDSAlphaDest;

};
DWORD dwAlphaSrcConstBitDepth;
{

DWORD dwAlphaSrcConst;
LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

};
DDCOLORKEY dckDestColorkey;
DDCOLORKEY dckSrcColorkey;
DWORD dwDDFX;
DWORD dwFlags;

} DDOVERLAYFX,FAR *LPDDOVERLAYFX;

dwSize
Size of structure. Must be initialized before use.

dwAlphaEdgeBlendBitDepth
Bit depth used to specify constant for alpha edge blend.

dwAlphaEdgeBlend
Constant to use as alpha for edge blend.

dwReserved
Reserved.

dwAlphaDestConstBitDepth
Bit depth used to specify alpha constant for destination

dwAlphaDestConst
Constant to use as alpha channel for destination.

lpDDSAlphaDest
Pointer to a surface to use as alpha channel for destination.

dwAlphaSrcConstBitDepth
Bit depth used to specify alpha constant for source.

dwAlphaSrcConst
Constant to use as alpha channel for source.

lpDDSAlphaSrc
Pointer to a surface to use as alpha channel for source.

dckDestColorkey
DestColorkey override.

dckSrcColorkey
DestColorkey override.

dwDDFX Overlay FX Flags
DDOVERFX_ARITHSTRETCHY If stretching, use arithmetic stretching along the Y axis

for this overlay.
DDOVERFX_MIRRORLEFTRIGHT Mirror the overlay across the vertical axis.
DDOVERFX_MIRRORUPDOWN Mirror the overlay across the horizontal axis.

dwFlags
Flags

DDPIXELFORMAT
typedef struct _DDPIXELFORMAT{

DWORD dwSize;
DWORD dwFlags;
DWORD dwFourCC;
union
{

DWORD dwRGBBitCount;
DWORD dwYUVBitCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;

};
union
{

DWORD dwRBitMask;
DWORD dwYBitMask;

};
union
{

DWORD dwGBitMask;
DWORD dwUBitMask;

};
union
{

DWORD dwBBitMask;
DWORD dwVBitMask;

};
union
{

DWORD dwRGBAlphaBitMask;
DWORD dwYUVAlphaBitMask;

};
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

dwSize
Size of the structure. Must be initialized prior to use.

dwFlags
DDPF_ALPHAPIXELS The surface has alpha channel information in the pixel

format.
DDPF_ALPHA The pixel format describes an alpha only surface.
DDPF_FOURCC The FourCC code is valid.
DDPF_PALETTEINDEXED4 The surface is 4-bit color indexed.
DDPF_PALETTEINDEXED4TO8 The surface is 4-bit color indexed to an 8-bit palette.
DDPF_PALETTEINDEXED8 The surface is 8-bit color indexed.
DDPF_RGB The RGB data in the pixel format structure is valid.
DDPF_COMPRESSED The surface will accept pixel data in the specified

format and compress it during the write.
DDPF_RGBTOYUV The surface will accept RGB data and translate it

during the write to YUV data. The format of the data
to be written will be contained in the pixel format
structure. The DDPF_RGB flag will be set.

DDPF_YUV The YUV data in the pixel format structure is valid.
DDPF_ZBUFFER The pixel format describes a z buffer only surface.

dwFourCC

FOURCC code.
dwRGBBitCount

RGB bits per pixel (DDBD_4,8,16,24,32)
dwYUVBitCount

YUV bits per pixel (DDBD_4,8,16,24,32)
dwZBufferBitDepth

Z buffer bit depth. (DDBD_8,16,24,32)
dwAlphaBitDepth

Alpha channel bit depth. (DDBD_1,2,4,8)
dwRBitMask

Mask for red bits.
dwYBitMask

Mask for Y bits.
dwGBitMask

Mask for green bits.
dwUBitMask

Mask for U bits.
dwBBitMask

Mask for blue bits.
dwVBitMask

Mask for V bits.
dwRGBAlphaBitMask

Mask for alpha channel.
dwYUVAlphaBitMask

Mask for alpha channel.

DDRVAL
typedef long DDRVAL;

DDRVAL
DirectDraw return value

DDSCAPS
typedef struct _DDSCAPS{

DWORD dwCaps;
} DDSCAPS, FAR* LPDDSCAPS;

dwCaps
DDSCAPS_3D Indicates that this surface is a front buffer, back buffer, or texture

map that is being used in conjunction with a 3DDDI or Direct3D
HAL.

DDSCAPS_ALPHA Indicates that this surface contains alpha information. The pixel
format must be interrogated to determine whether this surface
contains only alpha information or alpha information interlaced
with pixel color data (e.g. RGBA or YUVA).

DDSCAPS_BACKBUFFER Indicates that this surface is a backbuffer. It is generally set by
CreateSurface when the DDSCAPS_FLIP capability bit is set.
It indicates that this surface is THE back buffer of a surface
flipping structure. DirectDraw supports N surfaces in a surface
flipping structure. Only the surface that immediately precedes
the DDSCAPS_FRONTBUFFER has this capability bit set. The
other surfaces are identified as back buffers by the presence of
the DDSCAPS_FLIP capability, their attachment order, and the
absence of the DDSCAPS_FRONTBUFFER and
DDSCAPS_BACKBUFFER capabilities. The bit is sent to
CreateSurface when a standalone back buffer is being created.
This surface could be attached to a front buffer and/or back
buffers to form a flipping surface structure after the
CreateSurface call. See AddAttachedSurface for a detailed
description of the behaviors in this case.

DDSCAPS_COMPLEX Indicates a complex surface structure is being described. A
complex surface structure results in the creation of more than
one surface. The additional surfaces are attached to the root
surface. The complex structure can only be destroyed by
destroying the root.

DDSCAPS_FLIP Indicates that this surface is a part of a surface flipping structure.
When it is passed to CreateSurface the
DDSCAPS_FRONTBUFFER and DDSCAP_BACKBUFFER bits
are not set. They are set by CreateSurface on the
resulting creations. The dwBackBufferCount field in the
DDSURFACEDESC structure must be set to at least 1 in order
for the CreateSurface call to succeed. The
DDSCAPS_COMPLEX capability must always be set when
creating multiple surfaces through CreateSurface.

DDSCAPS_FRONTBUFFER Indicates that this surface is THE front buffer of a surface
flipping structure. It is generally set by CreateSurface when the
DDSCAPS_FLIP capability bit is set. If this capability is sent to
CreateSurface then a standalone front buffer is created. This
surface will not have the DDSCAPS_FLIP capability. It can be
attached to other back buffers to form a flipping structure. See
AddAttachedSurface for a detailed description of the behaviors
in this case.

DDSCAPS_HWCODEC Indicates surface should be able to have a stream
decompressed to it by the hardware.

DDSCAPS_LIVEVIDEO Indicates surface should be able to receive live video.
DDSCAPS_MODEX Surface is a 320x200 or 320x240 ModeX surface.
DDSCAPS_OFFSCREENPLAIN Indicates that this surface is any offscreen surface that is not an

overlay, texture, zbuffer, front buffer, back buffer, or alpha
surface. It is used to identify plain vanilla surfaces.

DDSCAPS_OWNDC Indicates surface will have a DC associated long term.
DDSCAPS_OVERLAY Indicates that this surface is an overlay. It may or may not be

directly visible depending on whether or not it is currently being
overlayed onto the primary surface. DDSCAPS_VISIBLE can
be used to determine whether or not it is being overlayed at the

moment.
DDSCAPS_PALETTE Indicates that unique DirectDrawPalette objects can be created

and attached to this surface.
DDSCAPS_PRIMARYSURFACE Indicates that this surface is the primary surface. The primary

surface represents what the user is seeing at the moment.
DDSCAPS_PRIMARYSURFACELEFT Indicates that this surface is the primary surface for the left eye.

The primary surface for the left eye represents what the user is
seeing at the moment with the user's left eye. When this
surface is created the DDSCAPS_PRIMARYSURFACE
represents what the user is seeing with the user's right eye.

DDSCAPS_SYSTEMMEMORY Indicates that this surface memory was allocated in system
memory.

DDSCAPS_TEXTUREMAP Indicates that this surface can be used as a 3D texture. It does
not indicate whether or not the surface is being used for that
purpose.

DDSCAPS_VIDEOMEMORY Indicates that this surface exists in video memory.
DDSCAPS_VISIBLE Indicates that changes made to this surface are immediately

visible. It is always set for the primary surface and is set for
overlays while they are being overlayed and texture maps while
they are being textured.

DDSCAPS_WRITEONLY READ ONLY. Indicates that only writes are permitted to the surface. Read
accesses from the surface may or may not generate a protection
fault, but the results of a read from this surface will not be
meaningful.

DDSCAPS_ZBUFFER Indicates that this surface is the z buffer. The z buffer does not
contain displayable information. Instead, it contains bit depth
information that is used to determine which pixels are visible and
which are obscured.

DDSURFACEDESC
Structure

typedef struct _DDSURFACEDESC{
DWORD dwSize;
DWORD dwFlags;
DWORD dwHeight;
DWORD dwWidth;
LONG lPitch;
DWORD dwBackBufferCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;
LPVOID lpSurface;
DDCOLORKEY ddckCKDestOverlay;
DDCOLORKEY ddckCKDestBlt;
DDCOLORKEY ddckCKSrcOverlay;
DDCOLORKEY ddckCKSrcBlt;
DDPIXELFORMAT ddpfPixelFormat;
DDSCAPS ddsCaps;

} DDSURFACEDESC, FAR* LPDDSURFACEDESC;

dwSize
Size of the structure. Must be initialized prior to use.

dwFlags
DDSD_DDSCAPS ddsCaps field is valid.
DDSD_HEIGHT dwHeight field is valid.
DDSD_WIDTH dwWidth field is valid.
DDSD_PITCH lPitch is valid.
DDSD_BACKBUFFERCOUNT dwBackBufferCount is valid.

DDSD_ZBUFFERBITDEPTH dwZBufferBitDepth is valid.
DDSD_ALPHABITDEPTH dwAlphaBitDepth is valid.
DDSD_LPSURFACE lpSurface is valid.
DDSD_PIXELFORMAT ddpfPixelFormat is valid.
DDSD_CKDESTOVERLAY ddckCKDestOverlay is valid.
DDSD_CKDESTBLT ddckCKDestBlt is valid.
DDSD_CKSRCOVERLAY ddckCKSrcOverlay is valid.
DDSD_CKSRCBLT ddckCKSrcBlt is valid.
DDSD_ALL All input fields are valid.

dwHeight
Height of surface.

dwWidth;
Width of input surface.

lPitch
Distance to start of next line (return value only).

dwBackBufferCount
Number of back buffers.

dwZBufferBitDepth
Depth of Z buffer.

dwAlphaBitDepth
Depth of alpha buffer.

lpSurface
Pointer to the associated surface memory.

ddckCKDestOverlay
Color key for destination overlay use.

ddckCKDestBlt
Color key for destination blit use.

ddckCKSrcOverlay
Color key for source overlay use.

ddckCKSrcBlt
Color key for source blit use.

ddpfPixelFormat
Pixel format description of the surface.

ddsCaps
DirectDraw surface capabilities.

DD OK
The OK message indicates success and is returned when any DirectDraw related member has performed
the action requested of it.

DD_OK
Status OK, request completed successfully.

DirectDraw Enumeration Callback Return Codes
EnumCallback returns are used to control the flow of DirectDraw and DirectDrawSurface enumerations.
They can only be returned by the enumeration members.

DDENUMRET_CANCEL
Stop the enumeration.

DDENUMRET_OK
Continue the enumeration.

DirectDraw Error Return Codes
Errors are represented by negative values and cannot be combined. This table lists the failures that can
be returned by all DirectDraw, DirectDrawSurface, DirectDrawPalette, and DirectDrawClipper members.
See the individual member descriptions for a list of the error codes each one is capable of returning.

DDERR_ALREADYINITIALIZED
This object is already initialized.

DDERR_BLTFASTCANTCLIP
Return if a clipper object is attached to the source surface passed into a BltFast call.

DDERR_CANNOTATTACHSURFACE
This surface can not be attached to the requested surface.

DDERR_CANNOTDETACHSURFACE
This surface can not be detached from the requested surface.

DDERR_CANTCREATEDC
Windows can not create any more DCs

DDERR_CANTDUPLICATE
Can't duplicate primary & 3D surfaces, or surfaces that are implicitly created.

DDERR_CLIPPERISUSINGHWND
An attempt was made to set a cliplist for a clipper object that is already monitoring an
hwnd.

DDERR_COLORKEYNOTSET
No src color key specified for this operation.

DDERR_CURRENTLYNOTAVAIL
Support is currently not available.

DDERR_DIRECTDRAWALREADYCREATED
A DirectDraw object representing this driver has already been created for this process.

DDERR_EXCEPTION
An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET
An attempt was made to set the cooperative level when it was already set to exclusive.

DDERR_GENERIC
Generic failure.

DDERR_HEIGHTALIGN
Height of rectangle provided is not a multiple of reqd alignment.

DDERR_HWNDALREADYSET
The CooperativeLevel HWND has already been set. It can not be reset while the process
has surfaces or palettes created.

DDERR_HWNDSUBCLASSED
HWND used by DirectDraw CooperativeLevel has been subclassed, this prevents
DirectDraw from restoring state.

DDERR_IMPLICITLYCREATED
This surface can not be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY
Unable to match primary surface creation request with existing primary surface.

DDERR_INVALIDCAPS
One or more of the caps bits passed to the callback are incorrect.

DDERR_INVALIDCLIPLIST
DirectDraw does not support the provided cliplist.

DDERR_INVALIDDIRECTDRAWGUID
The GUID passed to DirectDrawCreate is not a valid DirectDraw driver identifier.

DDERR_INVALIDMODE
DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT

DirectDraw received a pointer that was an invalid DIRECTDRAW object.
DDERR_INVALIDPARAMS

One or more of the parameters passed to the function are incorrect.
DDERR_INVALIDPIXELFORMAT

The pixel format was invalid as specified.
DDERR_INVALIDPOSITION

Returned when the position of the overlay on the destination is no longer legal for that
destination.

DDERR_INVALIDRECT
Rectangle provided was invalid.

DDERR_LOCKEDSURFACES
Operation could not be carried out because one or more surfaces are locked.

DDERR_NO3D
There is no 3D present.

DDERR_NOALPHAHW
Operation could not be carried out because there is no alpha accleration hardware
present or available.

DDERR_NOANTITEARHW
Operation could not be carried out because there is no hardware support for
synchronizing blits to avoid tearing.

DDERR_NOBLTHW
No blitter hardware present.

DDERR_NOBLTQUEUEHW
Operation could not be carried out because there is no hardware support for
asynchronous blitting.

DDERR_NOCLIPLIST
No cliplist available.

DDERR_NOCLIPPERATTACHED
No clipper object attached to surface object.

DDERR_NOCOLORCONVHW
Operation could not be carried out because there is no color conversion hardware
present or available.

DDERR_NOCOLORKEY
Surface doesn't currently have a color key

DDERR_NOCOLORKEYHW
Operation could not be carried out because there is no hardware support of the
destination color key.

DDERR_NOCOOPERATIVELEVELSET
Create function called without DirectDraw object method SetCooperativeLevel being
called.

DDERR_NODC
No DC was ever created for this surface.

DDERR_NODDROPSHW
No DirectDraw ROP hardware.

DDERR_NODIRECTDRAWHW
A hardware-only DirectDraw object creation was attempted but the driver did not support
any hardware.

DDERR_NOEMULATION
Software emulation not available.

DDERR_NOEXCLUSIVEMODE
Operation requires the application to have exclusive mode but the application does not
have exclusive mode.

DDERR_NOFLIPHW
Flipping visible surfaces is not supported.

DDERR_NOGDI
There is no GDI present.

DDERR_NOHWND
Clipper notification requires an HWND or no HWND has previously been set as the
CooperativeLevel HWND.

DDERR_NOMIRRORHW
Operation could not be carried out because there is no hardware present or available.

DDERR_NOOVERLAYDEST
Returned when GetOverlayPosition is called on an overlay that UpdateOverlay has never
been called on to establish a destination.

DDERR_NOOVERLAYHW
Operation could not be carried out because there is no overlay hardware present or
available.

DDERR_NOPALETTEATTACHED
No palette object attached to this surface.

DDERR_NOPALETTEHW
No hardware support for 16 or 256 color palettes.

DDERR_NORASTEROPHW
Operation could not be carried out because there is no appropriate raster op hardware
present or available.

DDERR_NOROTATIONHW
Operation could not be carried out because there is no rotation hardware present or
available.

DDERR_NOSTRETCHHW
Operation could not be carried out because there is no hardware support for stretching.

DDERR_NOT4BITCOLOR
DirectDrawSurface is not in 4 bit color palette and the requested operation requires 4 bit
color palette.

DDERR_NOT4BITCOLORINDEX
DirectDrawSurface is not in 4 bit color index palette and the requested operation requires
4 bit color index palette.

DDERR_NOT8BITCOLOR
DirectDrawSurface is not in 8 bit color mode and the requested operation requires 8 bit
color.

DDERR_NOTAOVERLAYSURFACE
Returned when an overlay member is called for a non-overlay surface.

DDERR_NOTEXTUREHW
Operation could not be carried out because there is no texture mapping hardware present
or available.

DDERR_NOTFLIPPABLE
An attempt has been made to flip a surface that is not flippable.

DDERR_NOTFOUND
Requested item was not found.

DDERR_NOTLOCKED
Surface was not locked. An attempt to unlock a surface that was not locked at all, or by
this process, has been attempted.

DDERR_NOTPALETTIZED
The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW
Operation could not be carried out because there is no hardware support for vertical
blank synchronized operations.

DDERR_NOZBUFFERHW
Operation could not be carried out because there is no hardware support for zbuffer
blitting.

DDERR_NOZOVERLAYHW
Overlay surfaces could not be z layered based on their BltOrder because the hardware
does not support z layering of overlays.

DDERR_OUTOFCAPS
The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY
DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY
DirectDraw does not have enough memory to perform the operation.

DDERR_OVERLAYCANTCLIP
The hardware does not support clipped overlays.

DDERR_OVERLAYCOLORKEYONLYONEACTIVE
Can only have ony color key active at one time for overlays.

DDERR_OVERLAYNOTVISIBLE
Returned when GetOverlayPosition is called on a hidden overlay.

DDERR_PALETTEBUSY
Access to this palette is being refused because the palette is already locked by another
thread.

DDERR_PRIMARYSURFACEALREADYEXISTS
This process already has created a primary surface.

DDERR_REGIONTOOSMALL
Region passed to Clipper::GetClipList is too small.

DDERR_SURFACEALREADYATTACHED
This surface is already attached to the surface it is being attached to.

DDERR_SURFACEALREADYDEPENDENT
This surface is already a dependency of the surface it is being made a dependency of.

DDERR_SURFACEBUSY
Access to this surface is being refused because the surface is already locked by another
thread.

DDERR_SURFACEISOBSCURED
Access to surface refused because the surface is obscured.

DDERR_SURFACELOST
Access to this surface is being refused because the surface memory is gone. The
DirectDrawSurface object representing this surface should have Restore called on it.

DDERR_SURFACENOTATTACHED
The requested surface is not attached.

DDERR_TOOBIGHEIGHT
Height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE
Size requested by DirectDraw is too large -- the individual height and width are OK.

DDERR_TOOBIGWIDTH
Width requested by DirectDraw is too large.

DDERR_UNSUPPORTED
Action not supported.

DDERR_UNSUPPORTEDFORMAT
FOURCC format requested is unsupported by DirectDraw.

DDERR_UNSUPPORTEDMASK
Bitmask in the pixel format requested is unsupported by DirectDraw.

DDERR_VERTICALBLANKINPROGRESS
Vertical blank is in progress.

DDERR_WASSTILLDRAWING
Informs DirectDraw that the previous Blt which is transfering information to or from this
Surface is incomplete.

DDERR_WRONGMODE

This surface can not be restored because it was created in a different mode.
DDERR_XALIGN

Rectangle provided was not horizontally aligned on required boundary.

APIs
The DirectDraw APIs are used to initiate control of the video memory through the DirectDraw interface.
There are only two. The first one, DirectDrawCreate, is used to instantiate a DirectDraw object that
represents a specific piece of display hardware. The second one, DirectDrawEnumerate, is used to
obtain a list of all the DirectDraw objects installed on the system. This is the mechanism DirectDraw
uses to support multiple pieces of display hardware. To support multiple display devices the application
need only select a specific DirectDraw object and instantiate it.

See:
DirectDrawCreate
DirectDrawEnumerate

DirectDrawCreate
Create an instance of a DirectDraw object. It attempts to initialize a DirectDraw object and sets a
pointer to it if it was successful. Calling the DirectDraw member GetCaps immediately after initialization
is advised to determine to what extent this object is hardware accelerated.

HRESULT DirectDrawCreate(
GUID FAR * lpGUID,
LPDIRECTDRAW FAR *lplpDD,
IUnknown FAR *pUnkOuter)

Parameters
lpGUID

Points to the GUID representing the driver that should be created. NULL is always the
active display driver.

lplpDD
Points to a pointer to be initialized with a valid DirectDraw pointer if the call succeeds.

pUnkOuter
This parameter is provided for future compability with COM aggregation features. Presently,
however, DirectDrawCreate will return an error if it is anything but NULL.

Return Values
DD_OK
DDERR_INVALIDPARAMS DDERR_INVALIDDIRECTDRAWGUID
DDERR_GENERIC DDERR_OUTOFMEMORY
DDERR_NODIRECTDRAWHW DDERR_DIRECTDRAWALREADYCREATED

DirectDrawEnumerate
Enumerate the DirectDraw objects installed on the system. The NULL GUID entry is always used to
identify the primary display device that is shared with GDI.

HRESULT DirectDrawEnumerate(
LPDDENUMCALLBACK lpCallback,
LPVOID lpContext)

Parameters
lpCallback

Points to a callback function that will be called with a description of each DirectDraw enabled
HAL (Hardware Abstraction Layer) installed in the system.
 lpCallback(

GUID FAR * lpGUID,
LPSTR lpDriverDescription,
LPSTR lpDriverName,
LPVOID lpContext)

lpGUID
Pointer to the unique identifier of the DirectDraw object.

lpDriverDescription
Pointer to a string containing the driver description.

lpDriverName
Pointer to a string containing the driver name.

lpContext
Pointer to a caller-defined context.

Return Value
DDENUMRET_OK Continue the enumeration
DDENUMRET_CANCEL Stop the enumeration

lpContext
Points to a caller-defined context that will be passed to the enumeration callback each time it
is called.

Return Values
DD_OK DDERR_INVALIDPARAMS

Overview
The DirectDraw object represents the display hardware. The object is hardware-accelerated if the
display device for which it was instantiated has hardware acceleration. The three objects which can be
created by a DirectDraw object are the DirectDrawSurface, DirectDrawPalette, and DirectDrawClipper
objects. For a detailed discussion of these objects see Chapter 1: Overview, Chapter 6:
DirectDrawSurface Member Reference, Chapter 7: DirectDrawPalette Member Reference, and Chapter 8:
DirectDrawClipper Member Reference.
It is possible to have more than one DirectDraw object instantiated at one time. The simplest example of
this would be two monitors. Windows'95 does not support dual monitors natively. However, it is
possible to write a DirectDraw HAL for each of the display devices. The display device that Windows'95
and GDI are aware of is the default one which will be used when the default DirectDraw object is
instantiated. The display device that Windows'95 and GDI do not know about will be addressed by
another, independent DirectDraw object that must be created using its identifying GUID. This GUID can
be obtained through the DirectDraw API DirectDrawEnumerate.
The DirectDraw object manages all of the objects it creates. It controls the default palette if the primary
surface is in 8bpp mode, the default color key values, and the hardware's display mode. It knows what
resources have been allocated and what resources remain to be allocated.
Changing the display mode is an important piece of DirectDraw's functionality. The display mode
resolution can be changed at any time unless another application has obtained exclusive access to
DirectDraw. The pixel depth of the display mode can only be changed if the application requesting the
change has obtained exclusive access to the DirectDraw object. All DirectDrawSurface objects lose their
surface memory and become inoperative when the mode is changed. These surfaces' memory must be
reallocated using the Restore member.

DirectDraw Member Implementation
The members AddRef, QueryInterface, and Release are from the standard COM interface IUnknown
which all COM interfaces inherit. These three members allow additional interfaces to be added to the
DirectDraw object without affecting the functionality of the original interface.

DirectDraw Members
AddRef
Compact
CreateClipper
CreatePalette
CreateSurface
DuplicateSurface
EnumDisplayModes
EnumSurfaces
FlipToGDISurface
GetCaps
GetDisplayMode
GetFourCCCodes
GetGDISurface
GetMonitorFrequency
GetScanLine
GetVerticalBlankStatus
Initialize
QueryInterface
Release
RestoreDisplayMode
SetCooperativeLevel
SetDisplayMode
WaitForVerticalBlank

AddRef
Increase the reference count of the DirectDraw object. This member is part of the IUnknown interface
inherited by DirectDraw. When the DirectDraw object is initially created, its reference count is set to
one. Each time a new application binds to the DirectDraw object, or a previously bound application
binds to a different COM interface of the DirectDraw object, the reference count is increased by one.
The DirectDraw object deallocates itself when its reference count goes to zero. The Release member is
used to notify the DirectDraw object that an application is no longer bound to the DirectDraw object.

DWORD AddRef(
LPDIRECTDRAW lpDD)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
Return Values

SUCCESS Reference count of the object.
FAILURE Zero

See Also
Initialize, QueryInterface, Release

Compact
At present this member is only a stub -- it has not yet been implemented.

This member moves all of the pieces of surface memory on the video card to a contiguous block to make
the largest chunk of free memory available. This call will fail if any operations are in progress.

The application calling this function must have set its cooperative level to exclusive.

HRESULT Compact(
LPDIRECTDRAW lpDD)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACEBUSY
DDERR_NOEXCLUSIVEMODE

CreateClipper
Create a DirectDrawClipper object. The DirectDrawClipper can be attached to a DirectDrawSurface if
desired, and used during Blt, BltBatch, and UpdateOverlay operations.

HRESULT CreateClipper(
LPDIRECTDRAW lpDD,
DWORD dwFlags,
LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
IUnknown FAR *pUnkOuter)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
dwFlags

Not currently used. Zero is the only valid value.
lplpDDClipper

Points to a pointer which will be filled in with the address of the new DirectDrawClipper
object if the CreateClipper member is successful.

pUnkOuter
This parameter is provided for future compability with COM aggregation features. Presently,
however, CreateClipper will return an error if it is anything but NULL.

Return Values
DDERR_INVALIDOBJECT DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY DDERR_NOCOOPERATIVELEVELSET

See Also
GetClipper, SetClipper

CreatePalette
Create a DIRECTDRAWPALETTE object for this DirectDraw object.

HRESULT CreatePalette(
LPDIRECTDRAW lpDD,
DWORD dwFlags,
LPPALETTEENTRY lpColorTable,
LPDIRECTDRAWPALETTE FAR* lplpDDPalette,
IUnknown FAR *pUnkOuter)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
dwFlags

DDPCAPS_4BIT
Index is 4 bits. There are sixteen color entries in the palette table.

DDPCAPS_8BITENTRIES
Index is onto an 8 bit color index. This field is only valid with the DDPCAPS_4BITINDEX
capability and the target surface is in 8bpp. Each color entry is one byte long and is an
index into destination surface's 8bpp palette.

DDPCAPS_8BIT
Index is 8 bits. There are 256 color entries in the palette table.

DDPCAPS_ALLOW256
This palette can have all 256 entries defined.

DDPCAPS_INITIALIZE
Indicates that this DIRECTDRAWPALETTE should use the palette color array passed
into the lpDDColorArray parameter to initialize the DIRECTDRAWPALETTE object.

lpColorTable
Points to an array of 16 or 256 PALETTEENTRY structures that should be used to initialize
this DIRECTDRAWPALETTE object.

lplpDDPalette
Points to a pointer which will be filled in with the address of the new DIRECTDRAWPALETTE
object if the CreatePalette member is successful.

pUnkOuter
This parameter is provided for future compability with COM aggregation features. Presently,
however, CreatePalette will return an error if it is anything but NULL.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_NOCOOPERATIVELEVELSET
DDERR_NOEXCLUSIVEMODE DDERR_UNSUPPORTED
DDERR_OUTOFMEMORY DDERR_OUTOFCAPS

CreateSurface
Create a DirectDrawSurface object for this DirectDraw object. The DirectDrawSurface object
represents a Surface (pixel memory), which usually resides in video card memory but may exist in
system memory if video memory is exhausted or if explicitly requested. The member will fail if the
hardware cannot provide support for the capabilities requested or has previously allocated those
resources to another DirectDrawSurface object.
CreateSurface usually creates one DirectDrawSurface object. If the DDSCAPS_FLIP flag, in the
dwCaps field of the DDCAPS structure, which is included in the DDSURFACEDESC structure, is set,
however, CreateSurface will create several DirectDrawSurface objects which are referred to collectively
as a Complex Structure. The additional surfaces created are also referred to as "implicit" surfaces.
Note DirectDraw does not permit the creation of surfaces that are wider than the primary surface.

HRESULT CreateSurface(
LPDIRECTDRAW lpDD,
LPDDSURFACEDESC lpDDSurfaceDesc,
LPDIRECTDRAWSURFACE FAR *lplpDDSurface,
IUnknown FAR *pUnkOuter)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpSurfaceDesc

Points to the DDSURFACEDESC structure which describes the requested Surface.
lplpDDSurface

Points to a pointer to be initialized with a valid DirectDrawSurface pointer if the call succeeds.
pUnkOuter

This parameter is provided for future compability with COM aggregation features. Presently,
however, CreateSurface will return an error if it is anything but NULL.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_OUTOFVIDEOMEMORY
DDERR_NODIRECTDRAWHW DDERR_NOCOOPERATIVELEVELSET
DDERR_INVALIDCAPS DDERR_INVALIDPIXELFORMAT
DDERR_NOALPHAHW DDERR_NOFLIPHW
DDERR_NOZBUFFERHW DDERR_NOEXCLUSIVEMODE
DDERR_OUTOFMEMORY DDERR_PRIMARYSURFACEALREADYEXISTS
DDERR_NOEMULATION DDERR_INCOMPATIBLEPRIMARY

Comments

Here are examples of legal surface creation scenarios:
Scenario 1:
The Primary Surface is the surface currently visible to the user. When you create a primary surface, you
are actually creating a DirectDrawSurface object to access an already existing surface which is being
used by GDI. Consequently, while all other types of surfaces require dwHeight and dwWidth, a primary
surface must not have them specified, even if you know they are the same dimensions as the existing
surface.
The fields of the DDSURFACEDESC structure, ddsd below, relevent to the creation of the Primary
Surface are filled in.

DDSURFACEDESC ddsd;
ddsd.dwSize = sizeof(ddsd);
//Tell DDRAW which fields are valid

ddsd.dwFlags = DDSD_DDSCAPS;
//Ask for a primary surface
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

Scenario 2:
Create a simple offscreen surface, of the type that might be used to cache bitmaps which will later be
composed with the bltter. A height and width are required for all surfaces except primary surfaces. The
fields in the DDSURFACEDESC structure, ddsd below, relevent to the creation of a simple offscreen
surface are filled in.

DDSURFACEDESC ddsd;
ddsd.dwSize = sizeof(ddsd);
//Tell DDRAW which fields are valid
ddsd.dwFlags = DDSD_DDSCAPS | DDSD_HEIGHT | DDSD_WIDTH;
//Ask for a simple offscreen surface, sized 100 by 100 pixels
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
dwHeight = 100;
dwWidth = 100;

DirectDraw will create this surface in video memory unless it will not fit, in which case the surface will be
created in system memory. If the surface must be created in one or the other, use the flags
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY in dwCaps. In this case, an error will be
returned if the surface cannot be created in the specified location.
DirectDraw also allows for the creation of Complex Surfaces. A complex surface is actually a set of
surfaces created with a single call to the CreateSurface member. If the DDSCAPS_COMPLEX flag is
set in the CreateSurface call, one or more "implicit" surfaces will be created by DirectDraw in addition to
the surface explicitly specified. Complex Surfaces are managed as a single surface -- a single call to
Release will release all surfaces in the structure, and a single call to Restore will restore them all.
Scenario 3:
Perhaps the most useful complex surface is one composed of a Primary Surface and one or more back
buffers that form a surface flipping environment. The fields in the DDSURFACEDESC structure, ddsd
below, relevent to Complex Surface creation are filled in to describe a flipping surface that has one back
buffer.

DDSURFACEDESC ddsd;
ddsd.dwSize = sizeof(ddsd);
//Tell DDRAW which fields are valid
ddsd.dwFlags = DDSD_DDSCAPS | DDSD_BACKBUFFERCOUNT;
//Ask for a primary surface with a single back buffer
ddsd.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP | DDSCAPS_PRIMARYSURFACE;
ddsd.dwBackBufferCount = 1;

The previous statements construct a double-buffered flipping environment -- a single call to the Flip
member will exchange the surface memory of the primary surface and the back buffer. If a
BackBufferCount of "2" had been specified, two back buffers would have been created, and each call to
Flip would have rotated the surfaces in a circular pattern, providing a triple buffered flipping environment.

DuplicateSurface
Duplicate a DirectDrawSurface. This member creates a new DirectDrawSurface object which points to
the same surface memory as an existing DirectDrawSurface object. This duplicate can be used just like
the original. The surface memory will be released when the last object referencing it is released. The
primary surface, 3D surfaces, or implicitly created surfaces cannot be duplicated.

HRESULT DuplicateSurface(
LPDIRECTDRAW lpDD,
LPDIRECTDRAWSURFACE lpDDSurface,
LPLPDIRECTDRAWSURFACE lplpDupDDSurface)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpDDSurface

Points to the DirectDrawSurface structure that should be duplicated.
lplpDupDDSurface

Points to the DirectDrawSurface pointer which should point to the duplicate
DirectDrawSurface structure that has just been created.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACELOST
DDERR_OUTOFMEMORY DDERR_CANTDUPLICATE

EnumDisplayModes
Enumerate all of the display modes the hardware exposes through the DirectDraw object that are
compatible with a provided surface description. If NULL is passed for the surface description, all
exposed modes will be enumerated.

HRESULT EnumDisplayModes(
LPDIRECTDRAW lpDD,
DWORD dwFlags,
LPDDSURFACEDESC lpDDSurfaceDesc,
LPVOID lpContext,
LPDDENUMMODESCALLBACK lpEnumCallback)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
dwFlags

Not yet supported. Must be zero.
lpDDSurfaceDesc

Points to a DDSURFACEDESC structure to be checked against available modes. If NULL,
all modes will be enumerated.

lpContext
Points to a caller defined structure that will be passed to each enumeration member.

lpEnumCallback
Points to the function the enumeration procedure will call everytime a match is found.

lpEnumCallback(
LPDDMODEDESC lpDDModeDesc,
LPVOID lpContext)

lpDDModeDesc
Points to the structure that contains the mode identifier, monitor frequency, and flags
DWORD in addition to the included DDSURFACEDESC structure for a mode that
provides the necessary functionality. This data is read-only.

lpContext
Points to the caller defined structure that is passed to the member every time it is
invoked.

Return Values
DDENUMRET_OK Continue the enumeration
DDENUMRET_CANCEL Stop the enumeration

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
SetDisplayMode, RestoreDisplayMode

EnumSurfaces
Enumerate all of the existing or possible surfaces that meet the search criterion specified. If the
DDENUMSURFACES_CANBECREATED flag is set, then this member will attempt to temporarily create a
surface that meets the criteria. Note that as a surface is enumerated, its reference count is increased --
if you are not going to use the surface, Release the surface after each enumeration.

HRESULT EnumSurfaces(
LPDIRECTDRAW lpDD,
DWORD dwFlags,
LPDDSURFACEDESC lpDDSD,
LPVOID lpContext,
LPDDENUMSURFACESCALLBACK lpEnumCallback)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
dwFlags

DDENUMSURFACES_ALL
Enumerate all of the surfaces that meet the search criterion.

DDENUMSURFACES_MATCH
A search hit is a surface that matches the surface description.

DDENUMSURFACES_NOMATCH
A search hit is a surface that does not match the surface description.

DDENUMSURFACES_CANBECREATED
Enumerate the first surface that can be created which meets the search criterion.

DDENUMSURFACES_DOESEXIST
Enumerate the surfaces that already exist that meet the search criterion.

lplpDDSD
A pointer to a DDSURFACEDESC structure defining the surface of interest.

lpContext
Points to a caller-defined structure that will be passed to each enumeration member.

lpEnumCallback
Points to the function the enumeration procedure will call every time a match is found.

lpEnumCallback(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDDSURFACEDESC lpDDSurfaceDesc,
LPVOID lpContext)

lpDDSurface
If existing surfaces are being enumerated (DDENUMSURFACES_DOESEXIST), then
this pointer will point to the DirectDrawSurface currently being enumerated. If a potential
surface is being enumerated (DDENUMSURFACES_CANBECREATED), then the value
will be NULL.

lpDDSurfaceDesc
Points to the DDSURFACEDESC structure for the existing or potential surface that most
closely matches the requested surface.

lpContext
Points to the caller defined structure that is passed to the member every time it is
invoked.

Return Values
DDENUMRET_OK Continue the enumeration
DDENUMRET_CANCEL Stop the enumeration

Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

FlipToGDISurface
Make the surface that GDI writes to the primary surface. This call is used at the end of a page flipping
application to ensure that the video memory that GDI is writing to is visible to the user.

HRESULT FlipToGDISurface(
LPDIRECTDRAW lpDD)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
Return Values

DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_NOTFOUND

See Also
GetGDISurface

GetCaps
Fill in the raw (not remaining) capabilities of the device driver (the hardware) and/or the Hardware
Emulation Layer (HEL).

HRESULT GetCaps(
LPDIRECTDRAW lpDD,
LPDDCAPS lpDDDriverCaps,
LPDDCAPS lpDDHELCaps)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpDDDriverCaps

Points to a DDCAPS structure that will be filled in with the capabilities of the hardware (as
reported by the device driver).

lpDDHELCaps
Points to a DDCAPS structure that will be filled in with the capabilities of the Hardware
Emulation Layer (HEL).

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
DDCAPS

GetDisplayMode
Return the current display mode. An application should not save this mode in order to restore the display
mode on clean up. The mode restoration on clean up should be done with RestoreDisplayMode to avoid
mode setting conflicts that can arise in a multi-process environment.

HRESULT GetDisplayMode(
LPDIRECTDRAW lpDD,
LPDDSURFACEDESC lpDDSurfaceDesc)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpDDSurfaceDesc

Points to a DDSURFACEDESC structure that will be filled in with a description of the surface.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
RestoreDisplayMode, EnumDisplayModes

GetFourCCCodes
Get the FourCCCodes supported by the DirectDraw object. GetFourCCCodes can also be used to
return the number of codes supported.

HRESULT GetFourCCCodes(
LPDIRECTDRAW lpD,
DWORD FAR *lpNumCodes,
DWORD FAR *lpCodes)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpNumCodes

Points to a DWORD that contains the number of entries the lpCodes array can hold. If this
number is too small to accomodate all the codes, it will be set to the required number and the
lpCodes array will be filled with all that will fit.

lpCodes
Points to an array of DWORD's that will be filled in with the FourCC codes supported by this
DirectDraw object. If NULL is passed, then lpNumCodes will be set to the number of
supported FourCC codes and the member will return.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

GetGDISurface
Return the DirectDrawSurface object that currently represents the surface memory that GDI treats as the
primary surface.

HRESULT GetGDISurface(
LPDIRECTDRAW lpDD,
LPDIRECTDRAWSURFACE FAR *lplpGDIDDSSurface)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lplpGDIDDSSurface

Points to a DirectDrawSurface pointer that will be made to point at the DirectDrawSurface
object which is currently controlling GDI's primary surface memory.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_NOTFOUND

See Also
FlipToGDISurface

GetMonitorFrequency
Return the frequency of the monitor being driven by the DirectDraw object.

HRESULT GetMonitorFrequency(
LPDIRECTDRAW lpDD,
LPDWORD lpdwFrequency)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpdwFrequency

Points to the DWORD that will be filled in with the monitor frequency. Note: 60Hz is returned
6000.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_UNSUPPORTED

GetScanLine
Return the scan line that the monitor is currently updating to the display.

HRESULT GetScanLine(
LPDIRECTDRAW lpDD,
LPDWORD lpdwScanLine)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpdwScanLine

Points to the DWORD that will contain the scan line the display is currently on.
Return Values

DD_OK
DDERR_INVALIDOBJECT DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED DDERR_VERTICALBLANKINPROGRESS

See Also
GetVerticalBlankStatus, WaitForVerticalBlank

GetVerticalBlankStatus
Return the status of the vertical blank. It will set the passed BOOL to true if it is in the vertical blank and
false otherwise. To synchronize with the vertical blank, consider using WaitForVerticalBlank.

HRESULT GetVerticalBlankStatus(
LPDIRECTDRAW lpDD,
LPBOOL lpbIsInVB)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpbIsInVB

Points to the BOOL that will be filled in with the status of the vertical blank.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
GetScanLine, WaitForVerticalBlank

Initialize
Initialize the DirectDraw object. This member is provided for compliance with the Common Object Model
(COM) protocol. Since the DirectDraw object is initialized when it is created, calling this member will
always result in the ALREADYINITIALIZED return value.

HRESULT Initialize(
LPDIRECTDRAW lpDD,
GUID FAR *lpGUID)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object
lpGUID

Points to the GUID used as the interface identifier.
Return Values

DDERR_ALREADYINITIALIZED
See Also

AddRef, QueryInterface, Release

QueryInterface
This member is part of the IUnknown interface inherited by DirectDraw. It is used to increase the
reference count of the DirectDraw object. This is the member that applications use to determine
whether the DirectDraw object supports additional interfaces that they may be interested in. An
application can ask the DirectDraw object if it supports a particular COM interface and if it does the
application may begin using that interface immediately. If the application does not want to use that
interface it must call Release to free it. This member allows DirectDraw objects to be extended by
Microsoft and third parties without breaking, or interfering with, each other's existing or future functionality.

HRESULT QueryInterface(
LPDIRECTDRAW lpDD,
REFIID riid,
LPVOID FAR* ppvObj)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
riid

Points to a UUID. (Universally Unique Identifier).
obp

Points to a pointer that will be filled with the interface pointer if the query is successful.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
AddRef, Initialize, Release

Release
Decrease the reference count of the DirectDraw object. This member is part of the IUnknown interface
inherited by DirectDraw. When the DirectDraw object is initially created its reference count is set to
one. Each time Release is called by an application the DirectDraw object reduces the reference count
by one. The DirectDraw object deallocates itself when its reference count goes to zero. The AddRef
member is used to increase the reference count every time a new application binds to the DirectDraw
object.

DWORD Release(
LPDIRECTDRAW lpDD)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
Return Values

SUCCESS Reference count of the object.
FAILURE Zero

See Also
AddRef, QueryInterface, Initialize

RestoreDisplayMode
Reset the mode of the display device hardware for the primary surface to what it was before the
SetDisplayMode member function was called to change it. Exclusive level access is required to use this
member.

HRESULT RestoreDisplayMode(
LPDIRECTDRAW lpDD)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_LOCKEDSURFACES
DDERR_GENERIC DDERR_EXCLUSIVEMODENOTOWNED

See Also
SetDisplayMode, EnumDisplayModes, SetCooperativeLevel

SetCooperativeLevel
This member determines the top-level behavior of the application. DDSCL_EXCLUSIVE level is needed
to call functions that can have drastic performance consequences for other applications. In order to call
Compact, change the display mode, or modify the behavior (e.g. flipping) of the primary surface, an
application must have obtained exclusive level. If an application calls SetCooperativeLevel with
DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN, DirectDraw will attempt to resize its window to full
screen. An application must either set the DDSCL_EXCLUSIVE or DDSCL_NORMAL flags, and
DDSCL_EXCLUSIVE requires DDSCL_FULLSCREEN.

ModeX modes are only available if an application sets DDSCL_ALLOWMODEX | DDSCL_FULLSCREEN
| DDSCL_EXCLUSIVE. DDSCL_ALLOWMODEX cannot be used with DDSCL_NORMAL. If
DDSCL_ALLOWMODEX is not specifed, EnumDisplayModes will not enumerate the ModeX modes, and
SetDisplayMode will fail when a ModeX mode is requested. The set of supported display modes may
change after using SetCooperativeLevel.

Because the ModeX modes are not supported by Windows, when in a ModeX mode you cannot Lock the
primary surface, Blt to the primary surface, use GetDC on the primary surface, or use GDI with a screen
DC. ModeX modes are indicated by the DDCAPS_MODEX flag in the DDSCAPS field of the
DDSURFACEDESC structure returned by Surface::GetCaps and EnumDisplayModes.

HRESULT SetCooperativeLevel(
LPDIRECTDRAW lpDD,
HWND hWnd,
DWORD dwFlags)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
hWnd

Window handle used for the application.
dwFlags

DDSCL_ALLOWMODEX
Allow use of ModeX display modes.

DDSCL_ALLOWREBOOT
Allow CTRL_ALT_DEL to function while in fullscreen exclusive mode.

DDSCL_EXCLUSIVE
Application requests exclusive level.

DDSCL_FULLSCREEN
Exclusive mode owner will be responsible for the entire primary surface. GDI can be
ignored.

DDSCL_NORMAL
Application will function as a regular Windows application.

DDSCL_NOWINDOWCHANGES
Don't allow DirectDraw to minimize/restore the application window on activation.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_EXCLUSIVEMODEALREADYSET
DDERR_OUTOFMEMORY DDERR_HWNDALREADYSET
DDERR_HWNDSUBCLASSED

See Also
SetDisplayMode, Compact, EnumDisplayModes

SetDisplayMode
Set the mode of the display device hardware. SetCooperativeLevel must be used to set exclusive level
access before the mode can be changed. If other applications have created a DirectDrawSurface
object on the Primary Surface and the mode is changed, those applications' Primary Surface objects will
return DDERR_SURFACELOST until they are restored.

HRESULT SetDisplayMode(
LPDIRECTDRAW lpDD,
DWORD dwWidth,
DWORD dwHeight,
DWORD dwBpp)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
dwWidth

Width of the new mode.
dwHeight

Height of the new mode.
dwBpp

Bits per pixel of the new mode.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_GENERIC
DDERR_UNSUPPORTED DDERR_INVALIDMODE
DDERR_LOCKEDSURFACES DDERR_WASSTILLDRAWING
DDERR_SURFACEBUSY DDERR_NOEXCLUSIVEMODE

See Also
RestoreDisplayMode, EnumDisplayModes, SetCooperativeLevel

WaitForVerticalBlank
This member is used to help the caller synchronize itself with the vertical blank interval. Depending on
the option set with dwFlags, WaitForVerticalBlank will: 1) block until blank begins, 2) block until blank
ends, or 3) trigger an event when the blank interval begins.

HRESULT WaitForVerticalBlank(
LPDIRECTDRAW lpDD,
DWORD dwFlags,
HANDLE hEvent)

Parameters
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
dwFlags

Determines how to wait for the vertical blank.
DDWAITVB_BLOCKBEGIN

Return when the vertical blank interval begins.
DDWAITVB_BLOCKBEGINEVENT

Set up an event to trigger when the vertical blank begins. Not currently supported.
DDWAITVB_BLOCKEND

Return when the vertical blank interval ends and display begins.
hEvent

Handle for the event that should be triggered when the vertical blank begins.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_WASSTILLDRAWING
DDERR_UNSUPPORTED

See Also
GetVerticalBlankStatus, GetScanLine

Overview
The DirectDrawSurface object represents a two dimensional piece of memory that contains data. This
data is in a form that is understood by the display hardware represented by the DirectDraw object which
created the DirectDrawSurface object. A DirectDrawSurface object is created by the CreateSurface
member function of the DirectDraw object. In general, although it is not required, the DirectDrawSurface
object resides within the video RAM of the display card. Unless specifically stated when the
DirectDrawSurface object is being created, the DirectDraw object will put the DirectDrawSurface object
wherever the best performance can be achieved given the requested capabilities.
DirectDrawSurface objects can take advantage of specialized processors on display cards, not only to
perform certain tasks faster, but to perform some tasks in parallel with the system CPU.
DirectDrawSurface objects are aware of, and integrated with, the rest of the components composing the
Windows display system. DirectDrawSurface objects can create HDCs for themselves that allow GDI
functions to write to the surface memory represented by the DirectDrawSurface object. GDI thinks of
these HDCs as Memory Dcs but the hardware accelerators are usually enabled for them if they are in
video memory.

DIRECTDRAWSURFACE Member Implementation
The members AddRef, QueryInterface, and Release are from the standard COM interface IUnknown,
which all COM interfaces inherit. These three members allow additional interfaces to be added to the
DirectDrawSurface without affecting the functionality of the original interface.

Members
AddAttachedSurface
AddOverlayDirtyRect
AddRef
Blt
BltBatch
BltFast
DeleteAttachedSurfaces
EnumAttachedSurfaces
EnumOverlayZOrders
Flip
GetAttachedSurface
GetBltStatus
GetCaps
GetClipper
GetColorKey
GetDC
GetFlipStatus
GetOverlayPosition
GetPalette
GetPixelFormat
GetSurfaceDesc
Initialize
IsLost
Lock
QueryInterface
Release
ReleaseDC
Restore
SetClipper
SetColorKey
SetOverlayPosition
SetPalette
Unlock
UpdateOverlay
UpdateOverlayDisplay
UpdateOverlayZOrder

AddAttachedSurface
Attach a Surface to another Surface. Examples of possible Attachments include Zbuffers,
AlphaChannels, and BackBuffers. Some Attachments automatically break other Attachments. For
example, the 3DZBUFFER can only be Attached to one BACKBUFFER at a time. Attachment is not bi-
directional, and a surface cannot be attached to itself. Emulated (system memory) surfaces cannot be
attached to non-emulated surfaces. Unless one surface is a texture map, the two attached surfaces
must be the same size. A flippable surface cannot be attached to another flippable surface of the same
type, however it is allowable to attach two surfaces of different types; for example, a flippable Zbuffer can
be attached to a regular flippable surface. If a non-flippable surface is attached to another non-flippable
surface of the same type, the two surfaces will become a flippable chain. If a non-flippable surface is
attached to a flippable surface, it becomes part of the existing flippable chain. Additional surfaces can
be added to this chain, and each call of the Flip member will cycle one step through the surfaces.

HRESULT AddAttachedSurface(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDIRECTDRAWSURFACE lpDDSAttachedSurface)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDDSAttachedSurface

Points to the DIRECTDRAWSURFACE that is to be attached.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_GENERIC DDERR_SURFACELOST
DDERR_INVALIDPARAMS DDERR_SURFACEALREADYATTACHED
DDERR_WASSTILLDRAWING DDERR_CANNOTATTACHSURFACE

See Also
DeleteAttachedSurfaces, EnumAttachedSurfaces, Flip

AddOverlayDirtyRect
This member is used to build up the list of the rectangles that need to be updated the next time the
UpdateOverlayDisplay member is called. This member is used for the software implementation. It is
not needed if the overlay support is provided in hardware.

HRESULT AddOverlayDirtyRect(
LPDIRECTDRAWSURFACE lpDDSurface,
LPRECT lpRect)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpRect

Points to the RECT that needs to be updated.
Return Values

DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_UNSUPPORTED

See Also
UpdateOverlayDisplay

AddRef
This member is part of the IUnknown interface inherited by DIRECTDRAWSURFACE. It is used to
increase the reference count of the DIRECTDRAWSURFACE object. When the
DIRECTDRAWSURFACE object is initially created its reference count is set to one. Each time a new
application binds to the DIRECTDRAWSURFACE object, or a previously bound application binds to a
different COM interface of the DIRECTDRAWSURFACE object, the reference count is increased by one.
The DIRECTDRAWSURFACE object deallocates itself when its reference count goes to zero. The
Release member is used to notify the DIRECTDRAWSURFACE object that an application is no longer
bound to it.

DWORD AddRef(
LPDIRECTDRAWSURFACE lpDDSurface)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
Return Values

SUCCESS Reference count of the object.
FAILURE Zero

See Also
CreateSurface, Initialize, QueryInterface, Release

Blt
Perform a bit block transfer. This member is capable of synchronous or asynchronous blits, either video
memory to video memory, video memory to system memory, system memory to video memory, or system
memory to system memory. The blits can be performed using z information, alpha information, source
color keys and destination color keys. Arbitrary stretching/shrinking will be performed if the source and
destination rectangles are not the same size.

Normally, Blt will return immediately with an error if the blitter is busy and the blit could not be set up.
The DDBLT_WAIT flag can be used to alter this behavior such that Blt will wait until the blit can be set up,
or another error occurs, before returning.

HRESULT Blt(
LPDIRECTDRAWSURFACE lpDDSurface,
LPRECT lpDestRect,
LPDIRECTDRAWSURFACE lpDDSrcSurface,
LPRECT lpSrcRect,
DWORD dwFlags,
LPDDBLTFX lpDDBltFx)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface. This
is the destination of the blit operation.

lpDestRect
Points to a RECT structure that defines the upper left and lower right points of the rectangle
on the destination surface which is to be blted to.

lpDDSrcSurface
Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface. This
is the source for the blit operation.

lpSrcRect
Points to a RECT structure that defines the upper left and lower right points of the rectangle
on the source surface which is to be blted from.

dwFlags
DDBLT_ALPHADEST

Use the alpha information in the pixel format or the alpha channel surface attached to the
destination surface as the alpha channel for this blit.

DDBLT_ALPHADESTCONSTOVERRIDE
Use the dwConstAlphaDest field in the DDBLTFX structure as the alpha channel for the
destination surface for this blit.

DDBLT_ALPHADESTNEG
The NEG suffix indicates that the destination surface becomes more transparent as the
alpha value increases. (0 is opaque)

DDBLT_ALPHADESTSURFACEOVERRIDE
Use the lpDDSAlphaDest field in the DDBLTFX structure as the alpha channel for the
destination for this blit.

DDBLT_ALPHAEDGEBLEND
Use the dwAlphaEdgeBlend field in the DDBLTFX structure as the alpha channel for the
edges of the image that border the color key colors.

DDBLT_ALPHASRC
Use the alpha information in the pixel format or the alpha channel surface attached to the
source surface as the alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE

Use the dwConstAlphaSrc field in the DDBLTFX structure as the alpha channel for the
source for this blit.

DDBLT_ALPHASRCNEG
The NEG suffix indicates that the source surface becomes more transparent as the alpha
value increases. (0 is opaque)

DDBLT_ALPHASRCSURFACEOVERRIDE
Use the lpDDSAlphaSrc field in the DDBLTFX structure as the alpha channel for the
source for this blit.

DDBLT_ASYNC
Do this blit asynchronously through the FIFO in the order received. If there is no room in
the hardware FIFO fail the call.

DDBLT_COLORFILL
Uses the dwFillColor field in the DDBLTFX structure as the RGB color to fill the
destination rectangle on the destination surface with.

DDBLT_DDFX
Uses the dwDDFX field in the DDBLTFX structure to specify the effects to use for the blit.

DDBLT_DDROPS
Uses the dwDDROPS field in the DDBLTFX structure to specify the ROPS that are not
part of the Win32 API.

DDBLT_KEYDEST
Use the color key associated with the destination surface.

DDBLT_KEYDESTOVERRIDE
Use the dckDestColorkey field in the DDBLTFX structure as the color key for the
destination surface.

DDBLT_KEYSRC
Use the color key associated with the source surface.

DDBLT_KEYSRCOVERRIDE
Use the dckSrcColorkey field in the DDBLTFX structure as the color key for the source
surface.

DDBLT_ROP
Use the dwROP field in the DDBLTFX structure for the raster operation for this blit.
These ROPs are the same as the ones defined in the Win32 API.

DDBLT_ROTATIONANGLE
Use the dwRotationAngle field in the DDBLTFX structure as the angle (specified in
1/100th of a degree) to rotate the surface.

DDBLT_WAIT
Do not return immediately with the DDERR_WASSTILLDRAWING message if the bltter is
busy -- wait until the Blt can be set up or another error occurs.

DDBLT_ZBUFFER
Z-buffered blit using the z-buffers attached to the source and destination surfaces and the
dwZBufferOpCode field in the DDBLTFX structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE
Z-buffered blit using the dwConstDest Zfield and the dwZBufferOpCode field in the
DDBLTFX structure as the z-buffer and z-buffer opcode respectively for the destination.

DDBLT_ZBUFFERDESTOVERRIDE
Z-buffered blit using the lpDDSDestZBuffer field and the dwZBufferOpCode field in the
DDBLTFX structure as the z-buffer and z-buffer opcode respectively for the destination.

DDBLT_ZBUFFERSRCCONSTOVERRIDE
Z-buffered blit using the dwConstSrcZ field and the dwZBufferOpCode field in the
DDBLTFX structure as the z-buffer and z-buffer opcode respectively for the source.

DDBLT_ZBUFFERSRCOVERRIDE
Z-buffered blit using the lpDDSSrcZBuffer field and the dwZBufferOpCode field in the
DDBLTFX structure as the z-buffer and z-buffer opcode respectively for the source.

lpDDBltFx

See DDBLTFX structure
DDBLTFX_ALPHA DDBLTFX_MIRRORLEFTRIGHT
DDBLTFX_MIRRORUPDOWN DDBLTFX_NOTEARING
DDBLTFX_ROTATE180 DDBLTFX_ROTATE270
DDBLTFX_ROTATE90

Return Values
DD_OK DDERR_GENERIC
DDERR_INVALIDCLIPLIST DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_INVALIDRECT
DDERR_INVALIDRECT DDERR_NOALPHAHW
DDERR_NOBLTHW DDERR_NOCLIPLIST
DDERR_NODDROPSHW DDERR_SURFACELOST
DDERR_UNSUPPORTED DDERR_NOMIRRORHW
DDERR_NORASTEROPHW DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW DDERR_SURFACEBUSY
DDERR_NOZBUFFERHW

BltBatch
Perform a sequence of Blt operations from several sources to a single destination.

HRESULT BltBatch(
LPDIRECTDRAWSURFACE lpDDDestSurface,
LPDDBLTBATCH lpDDBltBatch,
DWORD dwCount,
DWORD dwFlags)

Parameters
lpDDDestSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface. This
is the destination of the blit operations.

lpDDBltBatch
Points to the first DDBLTBATCH structure defining the parameters for the blit operations.

dwCount
The number of blit operations to be performed.

dwFlags
Not currently used.

Return Values
DD_OK DDERR_GENERIC
DDERR_INVALIDCLIPLIST DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_INVALIDRECT
DDERR_INVALIDRECT DDERR_NOALPHAHW
DDERR_NOBLTHW DDERR_NOCLIPLIST
DDERR_UNSUPPORTED DDERR_SURFACELOST
DDERR_NODDROPSHW DDERR_NOMIRRORHW
DDERR_NORASTEROPHW DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW DDERR_SURFACEBUSY
DDERR_NOZBUFFERHW

BltFast
Perform a source copy blit or transparent blit using a source or destination color key. BltFast always
attempts to perform an asynchronous blit if the hardware supports this. It only works on video memory
surfaces and cannot clip. The software implementation of BltFast is 10% faster than Blt. There is no
speed difference if the video hardware is being used.

Normally, BltFast will return immediately with an error if the blitter is busy and the blit could not be set up.
The DDBLTFAST_WAIT flag can be used to alter this behavior such that BltFast will wait until the blit can
be set up, or another error occurs, before returning.

HRESULT BltFast(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwX,
DWORD dwY,
LPDIRECTDRAWSURFACE lpDDSrcSurface,
LPRECT lpSrcRect,
DWORD dwTrans)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface. This
is the destination of the blit operation.

dwX
X coordinate on destination surface to blit to.

dwY
Y coordinate on destination surface to blit to.

lpDDSrcSurface
Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface. This
is the source for the blit operation.

lpSrcRect
Points to a RECT structure that defines the upper left and lower right points of the rectangle
on the source surface which is to be blted from.

dwTrans
Specify the type of transfer.
DDBLTFAST_DESTCOLORKEY

Transparent blit using the destination's color key.
DDBLTFAST_NOCOLORKEY

Normal copy blit -- no transparency.
DDBLTFAST_SRCCOLORKEY

Transparent blit using the source's color key.
DDBLTFAST_WAIT

Do not return immediately with the DDERR_WASSTILLDRAWING message if the bltter is
busy -- wait until the Blt can be set up or another error occurs.

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_SURFACELOST DDERR_SURFACEBUSY
DDERR_INVALIDOBJECT DDERR_INVALIDRECT
DDERR_EXCEPTION DDERR_UNSUPPORTED
DDERR_GENERIC DDERR_NOBLTHW

DeleteAttachedSurfaces
Detache two attached surfaces. The detached surface is not released. If NULL is passed as the
surface to be detached, all attached surfaces will be detached. Implicit attachments (those formed by
DirectDraw, rather than AddAttachedSurfaces) cannot be detached. Detaching surfaces from a flippable
chain can change other surfaces in the chain. If a FRONTBUFFER is detached from a flippable chain,
the next surface in the chain becomes the FRONTBUFFER and the surface following it becomes the
BACKBUFFER. If a BACKBUFFER is detached from a chain, the following surface becomes a
BACKBUFFER. If a plain surface is detached from a chain, the chain simply becomes shorter. If a
flippable chain only has two surfaces and they are detached, the flippable chain is destroyed and both
surfaces return to their previous designations.

HRESULT DeleteAttachedSurfaces(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags,
LPDIRECTDRAWSURFACE lpDDSAttachedSurface)

Parameter
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
dwFlags

0 is the only valid value.
lpDDSAttachedSurface

Points to the DIRECTDRAWSURACE structure which is to be detached. If NULL is passed,
all attached surfaces will be detached.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_SURFACELOST DDERR_SURFACENOTATTACHED
DDERR_INVALIDPARAMS DDERR_CANNOTDETACHSURFACE

See Also
Flip

EnumAttachedSurfaces
Enumerate all the surfaces attached to a given surface.

HRESULT EnumAttachedSurfaces(
LPDIRECTDRAWSURFACE lpDDSurface,
LPVOID lpContext,
LPDDENUMSURFACESCALLBACK lpEnumSurfacesCallback)

Parameter
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpContext

Points to the caller defined structure that is passed to the enumeration member every time it
is called.

lpEnumSurfacesCallback
Points to the callback function that will be called for each surface that is attached to this surface.

lpEnumSurfacesCallback(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDDSURFACEDESC lpDDSurfaceDesc,
LPVOID lpContext)

lpDDSurface
Points to the surface that is attached to this surface.

lpDDSurfaceDesc
Points to a DDSURFACEDESC structure that describes the attached surface.

lpContext
Points to the user defined context that was specified by the user.

Return Value
DDENUMRET_OK Continue the enumeration
DDENUMRET_CANCEL Stop the enumeration

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACELOST

EnumOverlayZOrders
Enumerate the overlays on the specified destination. The overlays can be enumerated in front to back or
back to front order.

HRESULT EnumOverlayZOrders(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags,
LPVOID lpContext,
LPDDENUMSURFACESCALLBACK lpfnCallback)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
dwFlags

DDENUMOVERLAYZ_BACKTOFRONT
Enumerate overlays back to front.

DDENUMOVERLAYZ_FRONTTOBACK
Enumerate overlays front to back.

lpContext
Points to the user defined context that will be passed to the callback for each overlay surface.

lpfnCallback
Points to the callback function that will be called for each overlay that is being overlayed on
this surface.

lpfnCallback(
LPDIRECTDRAWSURFACE lpDDSurface,
LPVOID lpContext)

lpDDSurface
Points to the surface that is being overlayed on this surface.

lpContext
Points to the user defined context that was specified by the user.

Return Value
DDENUMRET_OK Continue the enumeration
DDENUMRET_CANCEL Stop the enumeration

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Flip
Make the surface memory associated with the DDSCAPS_BACKBUFFER surface become associated
with the FRONTBUFFER surface. This member can only be called by a surface that has the
DDSCAPS_FLIP and DDSCAPS_FRONTBUFFER bits set. The video memory previously associated
with the front buffer is associated with the back buffer. If there is more than one back buffer, then a ring
is formed and the surface memory buffers cycle one step through it every time Flip is invoked.

The TargetOverride parameter is used in rare cases where the BACKBUFFER is not the buffer that
should become the FRONTBUFFER. Normally it is NULL.

Flip will always be synchronized with the vertical blank.

HRESULT Flip(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDIRECTDRAWSURFACE lpDDSurfaceTargetOverride,
DWORD dwFlags)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDDSurfaceTargetOverride

Points to the DIRECTDRAWSURFACE structure which is to be flipped to. The default for
this parameter is NULL, in which case Flip cycles through the buffers in the order they are
attached to each other. This parameter is only used as an override.

dwFlags
DDFLIP_WAIT

Normally, if the Flip cannot be set up because the state of the video hardware is not
appropriate, the error WASSTILLDRAWING will be returned immediately and no flip will
occur. Setting this flag will cause Flip to continue trying if it receives the
WASSTILLDRAWING error from the HAL. Flip will not return until the flipping operation
has been successfully set up or another error, such as SURFACEBUSY, has occurred.

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_SURFACELOST
DDERR_SURFACEBUSY DDERR_GENERIC
DDERR_WASSTILLDRAWING DDERR_UNSUPPORTED
DDERR_NOTFLIPPABLE DDERR_NOFLIPHW

See Also
GetFlipStatus

GetAttachedSurface
Find the attached surface that has the specified capabilities. Attachments are used to connect multiple
DIRECTDRAWSURFACE objects into Complex Structures like the ones needed to support 3D Page
Flipping with Z Buffers. GetAttachedSurface will fail if there is more than one surface attached which
matches the capabilities requested. In this case the application must use EnumAttachedSurfaces to
obtain the non-unique attached surfaces.

HRESULT GetAttachedSurface(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDDSCAPS lpDDSCaps,
LPLPDIRECTDRAWSURFACE FAR *lplpDDAttachedSurface)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDDSCaps

Points to a DDCAPS structure that contains the hardware capabilities of the surface.
lplpDDAttachedSurface

Points to a pointer that will be filled with the address of the DIRECTDRAWSURFACE that is
attached to the requesting surface and has the appropriate capabilities.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_SURFACELOST DDERR_INVALIDPARAMS
DDERR_NOTFOUND

GetBltStatus
Return the blitter status. This member returns OK if a blitter is present, WASSTILLDRAWING if the bltter
is busy, or NOBLTHW if there is no blitter.

HRESULT GetBltStatus(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags)

lpDDSurface
Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.

dwFlags
DDGBS_CANBLT

Can a blit occur involving this surface now? Returns OK if the blit can be completed.
DDGBS_ISBLTDONE

Is the blit done? Returns OK if the last blit on this surface has completed.
Return Values

DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_SURFACELOST
DDERR_SURFACEBUSY DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING DDERR_NOBLTHW

GetCaps
Return the capabilities of the surface. These are not necessarily related to the capabilities of the display
device.

HRESULT GetCaps(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDDSCAPS lpDDSCaps)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDDCaps

Points to a DDCAPS structure that will be filled in with the hardware capabilities of the
surface.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

GetClipper
Return the DirectDrawClipper associated with this surface. It returns an error if there is no
DirectDrawClipper associated.

HRESULT GetClipper(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDIRECTDRAWCLIPPER FAR * lplpDDClipper)

Parameters
lpDDSurface

Points to the DirectDrawSurface structure representing the DirectDrawSurface.
lplpDDClipper

Points to a pointer to the DirectDrawClipper associated with the surface.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_NOCLIPPERATTACHED

See Also
SetClipper

GetColorKey
Return the color key value for the DIRECTDRAWSURFACE object.

HRESULT GetColorKey(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags,
LPDDCOLORKEY lpDDColorKey)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
dwFlags

Determines which color key is being requested.
DDCKEY_COLORSPACE

Set if the structure contains a colorspace. Not set if the structure contains a single color
key.

DDCKEY_DESTBLT
Set if the structure specifies a color key or color space which is to be used as a
destination color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the structure specifies a color key or color space which is to be used as a
destination color key for overlay operations.

DDCKEY_SRCBLT
Set if the structure specifies a color key or color space which is to be used as a source
color key for blit operations.

DDCKEY_SRCOVERLAY
Set if the structure specifies a color key or color space which is to be used as a source
color key for overlay operations.

lpDDColorKey
Points to the DDCOLORKEY structure that will be filled in with the current values for the
specified color key for the DIRECTDRAWSURFACE object.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACELOST
DDERR_UNSUPPORTED DDERR_NOCOLORKEYHW
DDERR_NOCOLORKEY

See Also
SetColorKey

GetDC
Create a GDI compatible hDC for the surface. It uses an internal version of the Lock member to lock the
surface, and the surface will remain locked until DirectDraw's ReleaseDC member is called. See the
description of the Lock member for more information on this behavior.

HRESULT GetDC(
LPDIRECTDRAWSURFACE lpDirectDrawSurface,
HDCFAR *lphDC)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lphDC

Points to the hDC returned.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACELOST
DDERR_WASSTILLDRAWING DDERR_GENERIC
DDERR_UNSUPPORTED

See Also
ReleaseDC, Lock

GetFlipStatus
This member returns OK if the surface that it is called on has finished its flipping process, otherwise it
returns WASSTILLDRAWING.

HRESULT GetFlipStatus(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
dwFlags

DDGFS_CANFLIP
Can this surface be flipped now? Returns OK if the flip can be completed.

DDGFS_ISFLIPDONE
Is the flip done? Returns OK if the last flip on this surface has completed.

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_SURFACELOST
DDERR_UNSUPPORTED DDERR_WASSTILLDRAWING
DDERR_SURFACEBUSY

See Also
Flip

GetOverlayPosition
Given a visible, active overlay surface (DDSCAPS_OVERLAY set), this member returns the display
coordinates of the surface.

HRESULT GetOverlayPosition(
LPDIRECTDRAWSURFACE lpDDSurface,
LPLONG lplX,
LPLONG lplY)

Parameters
lpDirectDrawSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lplX

Points to the X display coordinate.
lplY

Points to the Y display coordinate.
Return Values

DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_SURFACELOST
DDERR_GENERIC DDERR_NOTAOVERLAYSURFACE
DDERR_NOOVERLAYDEST DDERR_OVERLAYNOTVISIBLE
DDERR_INVALIDPOSITION

See Also
SetOverlayPosition, UpdateOverlay

GetPalette
Return the DIRECTDRAWPALETTE structure associated with this surface. If no palette has been
explicitly associated with this surface then it returns NULL for the associated palette, unless this is the
primary surface or a back buffer to the primary surface, in which case it returns a pointer to the system
palette if the primary surface is in 8bpp mode.

HRESULT GetPalette(
LPDIRECTDRAWSURFACE lpDDSurface,
LPLPDIRECTDRAWPALETTE lplpDDPalette)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lplpDDPalette

Points to a pointer to a DIRECTDRAWPALETTE structure. This pointer will be filled in with
the address of the DIRECTDRAWPALETTE structure associated with this surface. This will
be set to NULL if there is no DIRECTDRAWPALETTE associated with this surface.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACELOST
DDERR_UNSUPPORTED DDERR_GENERIC
DDERR_NOEXCLUSIVEMODE DDERR_NOPALETTEATTACHED

See Also
SetPalette

GetPixelFormat
Return the color and pixel format of the surface.

HRESULT GetPixelFormat(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDDPIXELFORMAT lpDDPixelFormat)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDDPixelFormat

Points to the DDPIXELFORMAT structure which will be filled in with a detailed description of
the current pixel and color space format of the surface.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

GetSurfaceDesc
Return a DDSURFACEDESCstructure describing the surface in its current condition.

HRESULT GetSurfaceDesc(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDDSURFACEDESC lpDDSurfaceDesc)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDDSurfaceDesc

Points to a DDSURFACEDESC structure to be filled in with the current description of this
surface.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
DDSURFACEDESC

Initialize
Initialize a DirectDrawSurface. This member is provided for compliance with the Common Object Model
(COM) protocol. Since the DirectDrawSurface object is initialized when it is created, calling this member
will always result in the ALREADYINITIALIZED return value.

HRESULT Initialize(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDIRECTDRAW lpDD,
LPDDSURFACEDESC lpDDSurfaceDesc)

Parameters
lpDDSurface

Points to the DirectDrawSurface structure representing the DirectDrawSurface.
lpDD

Points to the DirectDraw structure representing the DirectDraw object.
lpDDSurfaceDesc

Points to a DDSURFACEDESC structure to be filled in with the relevant details about the
surface.

Return Values
DDERR_ALREADYINITIALIZED

See Also
AddRef, QueryInterface, Release

IsLost
Determine if the surface memory associated with a DirectDrawSurface has been freed. If the memory
has not been freed, this member will return OK. The Restore member can be used to reallocate surface
memory. When a DirectDrawSurface object loses its surface memory, most members will return
SURFACELOST and perform no other function.

Surfaces can lose their memory when the mode of the display card is changed, or because an application
received exclusive access to the display card and freed all of the surface memory currently allocated on
the video card.

HRESULT IsLost(
LPDIRECTDRAWSURFACE lpDDSurface)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACELOST

See Also
Restore

Lock
Obtain a valid pointer to the surface memory. DirectDraw relies on the application calling Unlock. It is
illegal behavior to Blt from a region of a surface that is locked.

An application should call the Lock member with a RECT structure specifying the rectangle on the
surface that the application wants access to. If the application calls Lock with a NULL RECT then the
application is assumed to be requesting exclusive access to the entire piece of surface memory.

The Lock member fills in a DDSURFACEDESCstructure with the information needed by the application to
access the surface memory. This information includes the stride (or pitch) and the pixel format of the
surface if it is different from the pixel format of the primary surface. The DDSURFACEDESC structure
also contains a pointer to the surface memory. Since it is possible to call Lock multiple times for the same
Surface with different destination rectangles, this pointer is used to tie the Lock and Unlock calls
together.

Normally, Lock will return immediately with an error when a lock cannot be obtained because a blit is in
progress. The DDLOCK_WAIT flag can be used to alter this behavior.

In order to prevent VRAM from being lost during access to a surface, DirectDraw holds the Win16 lock
between Lock and Unlock operations. The Win16 lock is the critical section used to serialize access to
GDI and USER. Although this technique allows direct access to video memory and prevents other
applications from changing the mode during this access, it will stop Windows from running, so
Lock/Unlock and GetDC/ReleaseDC periods should be kept short. Unfortunately, because Windows is
stopped, GUI debuggers cannot be used in between Lock/Unlock and GetDC/ReleaseDC operations.

HRESULT Lock(
LPDIRECTDRAWSURFACE lpDDSurface,
LPRECT lpDestRect,
LPDDSURFACEDESC lpDDSurfaceDesc,
DWORD dwFlags,
HANDLE hEvent)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDestRect

Points to a RECT structure identyfing the region of surface that is being locked.
lpDDSurfaceDesc

Points to a DDSURFACEDESC structure to be filled in with the relevant details about the
surface.

dwFlags
DDLOCK_SURFACEMEMORYPTR

The default. Set to indicate that Lock should return a valid memory pointer to the top of
the specified rectangle. If no rectangle is specified then a pointer to the top of the
surface is returned.

DDLOCK_EVENT
Set if an event handle is being passed to Lock. Lock will trigger the event when it can
return the surface memory pointer requested. If multiple locks of this type are placed on
a surface, events will be triggered in FIFO order.

DDLOCK_WAIT
Normally, if a lock cannot be obtained because a Blt is in progress, a
WASSTILLDRAWING error will be returned immediately. If this flag is set, however,
Lock will retry until a lock is obtained or another error, such as SURFACEBUSY, occurs.

hEvent
Handle to a system event that should be triggered when the surface is ready to be locked.

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_SURFACEBUSY
DDERR_SURFACELOST DDERR_WASSTILLDRAWING
DDERR_OUTOFMEMORY

See Also
Unlock, GetDC, ReleaseDC

QueryInterface
This member is part of the IUnknown interface inherited by DIRECTDRAWSURFACE. It is used to
increase the reference count of the DIRECTDRAWSURFACE object. This is the member that
applications use to determine whether the DIRECTDRAWSURFACE object supports additional interfaces
that they may be interested in. An application can ask the DIRECTDRAWSURFACE object if it supports
a particular COM interface, and if it does, the application may begin using that interface immediately. If
the application does not want to use that interface it must call Release to free it. This member allows
DIRECTDRAWSURFACE objects to be extended by Microsoft and third parties without breaking, or
interfering with, each other's existing or future functionality.

HRESULT QueryInterface(
LPDIRECTDRAWSURFACE lpDDSurface,
REFIID riid,
LPVOID FAR *ppvObj)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
riid

Points to a UUID. (Universally Unique Identifier)
ppvObj

Points to a pointer that will be filled with the interface pointer if the query is successful.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_OUTOFMEMORY

See Also
AddRef, Initialize, Release

Release
This member is part of the IUnknown interface inherited by DIRECTDRAWSURFACE. It is used to
decrease the reference count of the DIRECTDRAWSURFACE object. When the
DIRECTDRAWSURFACE object is initially created, its reference count is set to one. Each time Release
is called by an application the DIRECTDRAWSURFACE object reduces the reference count by one. The
DIRECTDRAWSURFACE object deallocates itself when its reference count goes to zero. The AddRef
member is used to increase the reference count every time a new application binds to the
DIRECTDRAWSURFACE object.

Implicit surfaces created by DirectDraw to satisfy "complex" requests should be released by releasing the
front buffer of the complex structure. Releasing an implicit surface directly is not allowed. For example,
a complex flipping structure creating with the DDSCAPS_OFFSCREENPLAIN, DDSCAPS_COMPLEX,
and DDSCAPS_FLIP flags, with 2 back buffers, is released with a single call to Release, passing the front
buffer surface, not individual calls for each surface.

DWORD Release(
LPDIRECTDRAWSURFACE lpDDSurface)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
Return Values

SUCCESS Reference count of the object.
FAILURE Zero

See Also
AddRef, Initialize, QueryInterface

ReleaseDC
Release the hDC previously obtained with GetDC. It also Unlocks the surface previously Locked when
GetDC was called.

HRESULT ReleaseDC(
LPDIRECTDRAWSURFACE lpDDSurface,
HDC hDC)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
hDC

hDC previously obtained by GetDC.
Return Values

DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_SURFACELOST
DDERR_GENERIC DDERR_UNSUPPORTED

See Also
GetDC

Restore
Restore a surface that has been "lost" -- the surface memory associated with the DirectDrawSurface
object has been freed. Surfaces can be lost because the mode of the display card was changed or
because an application received exclusive access to the display card and freed all of the surface memory
currently allocated on the video card. When a DirectDrawSurface object loses its surface memory, many
members will return SURFACELOST and perform no other function. Restore will reallocate surface
memory and reattach it to the DirectDrawSurface object.
A single call to Restore will restore a DirectDrawSurface's associated implicit surfaces (back buffers, etc.).
An attempt to Restore an implicitly created surface will result in an error. Restore will not work across
explicit attachments created using the AddAttachedSurface member -- each of these surfaces must be
restored individually.

HRESULT Restore(
LPDIRECTDRAWSURFACE lpDDSurface)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
Return Values

DD_OK
DDERR_INVALIDPARAMS DDERR_IMPLICITLYCREATED
DDERR_INVALIDOBJECT DDERR_WRONGMODE
DDERR_OUTOFMEMORY DDERR_NOEXCLUSIVEMODE
DDERR_GENERIC DDERR_INCOMPATIBLEPRIMARY
DDERR_UNSUPPORTED

See Also
IsLost, AddAttachedSurface

SetClipper
Attaches a DirectDrawClipper to a DirectDrawSurface. This function is primarily used by surfaces that are
being overlayed on or blted to the primary surface, but it can be used on any surface. Once a
DirectDrawClipper has been attached, and a clip list associated with it, it will be used for Blt, BltBatch, and
UpdateOverlay operations involving the parent DirectDrawSurface. This member can also be used to
detach a DirectDrawSurface's current Clipper.

HRESULT SetClipper(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDIRECTDRAWCLIPPER lpDDClipper)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDirectDrawClipper

Either NULL, or points to the DIRECTDRAWCLIPPER structure representing the
DirectDrawClipper that will be attached to the DirectDrawSurface. If NULL, the current
clipper will be detached.

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_NOCLIPPERATTACHED

See Also
GetClipper

SetColorKey
Set the color key value for the DIRECTDRAWSURFACE object if the hardware supports color keys on a
per surface basis.

HRESULT SetColorKey(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags,
LPDDCOLORKEY lpDDColorKey)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
dwFlags

Determines which color key is being requested.
DDCKEY_COLORSPACE

Set if the structure contains a colorspace. Not set if the structure contains a single color
key.

DDCKEY_DESTBLT
Set if the structure specifies a color key or color space which is to be used as a
destination color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the structure specifies a color key or color space which is to be used as a
destination color key for overlay operations.

DDCKEY_SRCBLT
Set if the structure specifies a color key or color space which is to be used as a source
color key for blit operations.

DDCKEY_SRCOVERLAY
Set if the structure specifies a color key or color space which is to be used as a source
color key for overlay operations.

lpDDColorKey
Points to the DDCOLORKEY structure which has the new color key values for the
DIRECTDRAWSURFACE object.

Return Values
DD_OK
DDERR_NOOVERLAYHW DDERR_COLORKEYDRIVERWIDE
DDERR_NODESTCLRKEYHW DDERR_NOSRCCLRKEYHW
DDERR_INVALIDPARAMS DDERR_INVALIDOBJECT
DDERR_SURFACELOST DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING DDERR_GENERIC
DDERR_NOTAOVERLAYSURFACE

See Also
GetColorKey

SetOverlayPosition
Change the display coordinates of an overlay surface.

HRESULT SetOverlayPosition(
LPDIRECTDRAWSURFACE lpDDSurface,
LONG lX,
LONG lY)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lX

New X display coordinate.
lY

New Y display coordinate.
Return Values

DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_SURFACELOST
DDERR_GENERIC DDERR_UNSUPPORTED

See Also
GetOverlayPosition, UpdateOverlay

SetPalette
Attach the DIRECTDRAWPALETTE specified to a Surface. The Surface will use this Palette for all
subsequent operations. The palette change takes place immediately, without regard to refresh timing.

HRESULT SetPalette(
LPDIRECTDRAWSURFACE lpDDSurface,
LPDIRECTDRAWPALETTE lpDDPalette)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpDDPalette

Pointer to the DIRECTDRAWPALETTE structure that this Surface should use for future
operations.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_NOEXCLUSIVEMODE DDERR_NOT8BITCOLOR
DDERR_UNSUPPORTED DDERR_GENERIC
DDERR_INVALIDPARAMS DDERR_NOPALETTEATTACHED
DDERR_NOPALETTEHW DDERR_SURFACELOST

See Also
GetPalette, CreatePalette

Unlock
Notify DirectDraw that the direct surface manipulations are complete.

HRESULT Unlock(
LPDIRECTDRAWSURFACE lpDDSurface,
LPVOID lpSurfaceData)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
lpSurfaceData

This is the pointer returned by Lock. Since it is possible to call Lock multiple times for the
same Surface with different destination rectangles, this pointer is used to tie the Lock and
Unlock calls together.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_SURFACELOST
DDERR_NOTLOCKED DDERR_GENERIC
DDERR_INVALIDRECT

See also
Lock

UpdateOverlay
Reposition and/or modify the visual attributes of an overlay surface. These surfaces must have the
DDSCAPS_OVERLAY bit set.

HRESULT UpdateOverlay(
LPDIRECTDRAWSURFACE lpDDSrcSurface,
LPRECT lpSrcRect,
LPDIRECTDRAWSURFACE lpDDDestSurface,
LPRECT lpDestRect,
DWORD dwFlags,
LPDDOVERLAYFX lpDDOverlayFx)

Parameters
lpDDSrcSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface. This
is the source for the overlay operation.

dwSrcRect
Points to a RECT structure that defines the X, Y, Width, and Height of the region on the
source surface which is being used as the overlay.

lpDDDestSurface
Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface. This
is the surface that is being overlayed.

lpDestRect
Points to a RECT structure that defines the X, Y, Width, and Height of the region on the
destination surface which the overlay should be moved to.

dwFlags
DDOVER_ALPHADEST

Use the alpha information in the pixel format or the alpha channel surface attached to the
destination surface as the alpha channel for the destination overlay.

DDOVER_ALPHADESTCONSTOVERRIDE
Use the dwConstAlphaDest field in the DDOVERLAYFX structure as the destination
alpha channel for this overlay.

DDOVER_ALPHADESTNEG
The NEG suffix indicates that the destination surface becomes more transparent as the
alpha value increases.

DDOVER_ALPHADESTSURFACEOVERRIDE
Use the lpDDSAlphaDest field in the DDOVERLAYFX structure as the alpha channel
destination for this overlay.

DDOVER_ALPHAEDGEBLEND
Use the dwAlphaEdgeBlend field in the DDOVERLAYFX structure as the alpha channel
for the edges of the image that border the color key colors.

DDOVER_ALPHASRC
Use the alpha information in the pixel format or the alpha channel surface attached to the
source surface as the source alpha channel for this overlay.

DDOVER_ALPHASRCCONSTOVERRIDE
Use the dwConstAlphaSrc field in the DDOVERLAYFX structure as the source alpha
channel for this overlay.

DDOVER_ALPHASRCNEG
The NEG suffix indicates that the source surface becomes more transparent as the alpha
value increases.

DDOVER_ALPHASRCSURFACEOVERRIDE
Use the lpDDSAlphaSrc field in the DDOVERLAYFX structure as the alpha channel

source for this overlay.
DDOVER_HARDWAREONLY

This overlay must be done in hardware. If neither this flag nor the
DDOVER_HARDWAREONLY flag is set DirectDraw tries to use hardware first and then
falls back to software emulation if possible. NOTE: May not be defined in the current
verision of DDRAW.H

DDOVER_HIDE
Turn this overlay off.

DDOVER_KEYDEST
Use the color key associated with the destination surface.

DDOVER_KEYDESTOVERRIDE
Use the dckDestColorkey field in the DDOVERLAYFX structure as the color key for the
destination surface.

DDOVER_KEYSRC
Use the color key associated with the source surface.

DDOVER_KEYSRCOVERRIDE
Use the dckSrcColorkey field in the DDOVERLAYFX structure as the color key for the
source surface.

DDOVER_SHOW
Turn this overlay on.

DDOVER_SOFTWAREONLY
This overlay must be done in software. If neither this flag nor the
DDOVER_HARDWAREONLY flag is set DirectDraw tries to use hardware first and then
falls back to software emulation if possible.

DDOVER_ZORDER
Use the dwZOrderFlags field in the DDOVERLAYFX structure as the z order for the
display of this overlay. The lpDDSRelative field will be used if the dwZOrderFlags field is
set to either DDOVERZ_INSERTINBACKOF or DDOVERZ_INSERTINFRONTOF.

lpDDOverlayFx
See DDOVERLAYFX structure

Return Values
DD_OK DDERR_SURFACELOST
DDERR_INVALIDPARAMS DDERR_INVALIDOBJECT
DDERR_INVALIDRECT DDERR_HEIGHTALIGN
DDERR_XALIGN DDERR_UNSUPPORTED
DDERR_HEIGHTALIGN DDERR_NOSTRETCHHW
DDERR_GENERIC DDERR_NOTAOVERLAYSURFACE

UpdateOverlayDisplay
Repaint the rectangles in the dirty rectangle lists of all active overlays. The dirty rectangle list is cleared.
This function is for software emulation only -- it does nothing if the hardware supports overlays.

HRESULT UpdateOverlayDisplay(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
dwFlags

Specify type of update to perform.
DDOVER_REFRESHDIRTYRECTS

Update the overlay display using the list of dirty rectangles previously constructed for this
destination. The dirty rectangle list is cleared after this.

DDOVER_REFRESHALL
Ignore the dirty rectangle list and update the overlay display completely. The dirty
rectangle list is cleared after this.

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT DDERR_UNSUPPORTED

See Also
AddOverlayDirtyRect

UpdateOverlayZOrder
Set the z order of an overlay. The z order is used to determine which overlay should be occluded when
multiple overlays are being displayed simultaneously. Overlay positions are all relative to other overlays
-- there is no true z value for them.

HRESULT UpdateOverlayZOrder(
LPDIRECTDRAWSURFACE lpDDSurface,
DWORD dwFlags,
LPDIRECTDRAWSURFACE lpDDSReference)

Parameters
lpDDSurface

Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface.
dwFlags

DDOVERZ_INSERTINBACKOF
Insert this overlay in the overlay chain in back of the overlay specified as the reference
overlay.

DDOVERZ_INSERTINFRONTOF
Insert this overlay in the overlay chain in front of the overlay specified as the reference
overlay.

DDOVERZ_MOVEBACKWARD
Move this overlay one overlay position backward

DDOVERZ_MOVEFORWARD
Move this overlay one overlay position forward.

DDOVERZ_SENDTOBACK
Move this overlay to the back of the overlay chain

DDOVERZ_SENDTOFRONT
Move this overlay to the front of the overlay chain.

lpDDSReference
Points to the DIRECTDRAWSURFACE structure representing the DirectDrawSurface that
should be used as a relative position in the overlay chain. This parameter is needed only for
DDOVERZ_INSERTINBACKOF and DDOVERZ_INSERTINFRONTOF.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_NOTAOVERLAYSURFACE

See Also
EnumOverlayZOrders

Overview
The DirectDrawPalette object is provided to enable direct manipulation of 16 and 256 color palettes. It
reserves entries 0 and 255 for 256 color palettes. It reserves no entries for 16 color palettes. It allows
direct manipulation of the palette table as a table. This table can have 16 or 24 bit RGB entries
representing the colors associated with each of the indexes or, for 16 color palettes, it can also contain
indexes to another 256 color palette.
Entries in these tables can be retrieved with the GetEntries member function and changed with the
SetEntries member function. The SetEntries member function has a dwFlags parameter that specifies
when the changes to the palette should take effect.
DirectDrawPalette objects are usually attached to DirectDrawSurface objects.
Palette animation is straightforward using DirectDrawPalette objects. There are two approaches. The
first involves simply changing the palette entries that correspond to the colors which need to be animated.
This can be done with a single call to the SetEntries member function. The second one requires two
DirectDrawPalette objects. The animation is performed by attaching first one and then the other to the
DirectDrawSurface. This can be done using the SetPalette member function of the DirectDrawSurface
objects.

DIRECTDRAWPALETTE Member Implementation
The members AddRef, QueryInterface, and Release are from the standard COM interface IUnknown
which all COM interfaces inherit. These three members allow additional interfaces to be added to the
DirectDrawPalette without effecting the functionality of the original interface.

Members
AddRef
GetCaps
GetEntries
Initialize
QueryInterface
Release
SetEntries

AddRef
This member increases the reference count of a DirectDrawPalette object previously created by the
CreatePalette member function of a DirectDraw object.

DWORD AddRef(
LPDIRECTDRAWPALETTE lpDDPalette)

Parameters
lpDDPalette

Points to the DIRECTDRAWPALETTE structure which was returned to the application when
the DirectDrawPalette was created.

Return Values
SUCCESS Reference count of the object.
FAILURE Zero

See Also
Initialize, QueryInterface, Release

GetCaps
Return the capabilities of this palette object.

HRESULT GetCaps(
LPDIRECTDRAWPALETTE lpDDPalette,
LPDWORD lpdwCaps)

Parameters
lpDDPalette

Points to the DIRECTDRAWPALETTE structure which was returned to the application when
the DirectDrawPalette was created.

lpdwCaps
Flags for dwPalCaps.
DDPCAPS_4BIT DDPCAPS_8BITENTRIES
DDPCAPS_8BIT DDPCAPS_ALLOW256
DDPCAPS_PRIMARYSURFACE DDPCAPS_PRIMARYSURFACELEFT
DDPCAPS_VSYNC

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT

GetEntries
Query palette values from a DirectDrawPalette.

HRESULT GetEntries(
LPDIRECTDRAWPALETTE lpDDPalette,
DWORD dwFlags,
DWORD dwBase,
DWORD dwNumEntries,
LPPALETTEENTRY lpEntries)

Parameters
lpDDPalette

Points to the DIRECTDRAWPALETTE structure which was returned to the application when
the DirectDraw member CreatePalette was called.

dwFlags
Not used at this time. Must be zero.

dwBase
This is the start of the entries that should be retrieved sequentially.

dwNumEntries
How many palette entries does lpPixelEntryRequests have room for. The colors of each
palette entry will be returned in sequence starting from dwStartingEntry and proceeding
through dwCount - 1.

lpPaletteEntries
A pointer to the palette entries. The palette entries are one byte each if the
DDPCAPS_8BITENTRIES field is set and four bytes otherwise. Each field is a color
description.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_NOTPALETTIZED

See Also
SetEntries

Initialize
This member is provided for compliance with the Common Object Model (COM) protocol. Since the
DirectDrawPalette object is initialized when it is created, calling this member will always result in the
ALREADYINITIALIZED return value.

HRESULT Initialize(
LPDIRECTDRAWPALETTE lpDDPalette,
LPDIRECTDRAW lpDD
DWORD dwFlags,
LPPALETTEENTRY lpDDColorTable)

Parameters
lpDDPalette

Points to the DIRECTDRAWPALETTE structure which was returned to the application when
the DirectDraw member CreatePalette was called.

lpDD
Points to the DIRECTDRAWSTUCTURE representing the DirectDraw object.

dwFlags
Not used.

lpDDColorTable
Not used.

Return Values
DDERR_ALREADYINITIALIZED

See Also
AddRef, QueryInterface, Initialize

QueryInterface
This member is part of the IUnknown interface inherited by the DirectDrawPalette. It is used to increase
the reference count of the DirectDrawPalette object. This is the member that applications use to
determine whether the DirectDrawPalette object supports additional interfaces that they may be
interested in. An application can ask the DirectDrawPalette object if it supports a particular COM
interface, and if it does, the application may begin using that interface immediately. If the application
does not want to use that interface it must call Release to free it. This member allows DirectDrawPalette
objects to be extended by Microsoft and third parties without breaking, or interfering with, each other's
existing or future functionality.

HRESULT QueryInterface(
LPDIRECTDRAWPALETTE lpDDPalette
REFIID riid,
LPVOID FAR* ppvObj)

Parameters
lpDDPalette

Points to the DIRECTDRAWPALETTE structure which was returned to the application when
the DirectDrawPalette was created.

riid
Points to the GUID used as the interface identifier.

ppvObj
Points to a pointer which will receive the interface pointer if the request is successful.

Return Values
DD_OK DDERR_INVALIDPARAMS
DDERR_INVALIDOBJECT

See Also
AddRef, Initialize, Release

Release
This function reduces the interface reference count on the DIRECTDRAWPALETTE created by and
returned from the DirectDraw member CreatePalette. When the reference count reaches zero, the
object will be freed.

DWORD Release(
LPDIRECTDRAWPALETTE lpDDPalette)

Parameters
lpDDPalette

Points to the DIRECTDRAWPALETTE structure which was returned to the client when the
DirectDraw member CreatePalette was called to create the DirectDrawPalette.

Return Values
SUCCESS Reference count of the object.
FAILURE Zero

See Also
AddRef, Initialize, QueryInterface

SetEntries
Change entries in a DirectDrawPalette. The changes will be performed immediately. The palette must
be attached to a surface using the SetPalette member before SetEntries can be used.

HRESULT SetEntries(
LPDIRECTDRAWPALETTE lpDDPalette,
DWORD dwFlags,
DWORD dwStartingEntry,
DWORD dwCount,
LPPALETTEENTRY lpEntries)

Parameters
lpDDPalette

This is the pointer to the DIRECTDRAWPALETTE structure which was returned to the client
when the DirectDraw member CreatePalette was called to create the target palette.

dwFlags
Not currently used. Must be zero.

dwStartingEntry
The first entry to be set.

dwCount
The number of palette entries to be changed.

lpPixelEntryReplacements
The palette entries are one byte each if the DDPCAPS_8BITENTRIES field is set and four
bytes otherwise. Each field is a color description.

Return Values
DD_OK DDERR_UNSUPPORTED
DDERR_INVALIDOBJECT DDERR_INVALIDPARAMS
DDERR_NOTPALETTIZED DDERR_NOPALETTEATTACHED

See Also
GetEntries, SetPalette

Overview
Cliplists are managed by DirectDraw using the DirectDrawClipper object. A DirectDrawClipper can be
attached to any surface. A window handle can also be attached to a DirectDrawClipper, in which case
DirectDraw will update the DirectDrawClipper's clip list with the clip list for the window as it changes.

DIRECTDRAWCLIPPER Member Implementation
The members AddRef, QueryInterface, and Release are from the standard COM interface IUnknown
which all COM interfaces inherit. These three members allow additional interfaces to be added to the
DirectDrawClipper without effecting the functionality of the original interface.

Members
AddRef
GetClipList
GetHWnd
Initialize
IsClipListChanged
QueryInterface
Release
SetClipList
SetHWnd

AddRef
This member is part of the IUnknown interface inherited by the DirectDrawClipper. It is used to
increase the reference count of the DirectDrawClipper object. When the DirectDrawClipper object is
initially created, its reference count is set to one. Each time a new application binds to the
DirectDrawClipper object, or a previously bound application binds to a different COM interface of the
DirectDraw object, the reference count is increased by one. The DirectDrawClipper object deallocates
itself when its reference count goes to zero. The Release member is used to notify the DirectDraw
object that an application is no longer bound to it.

DWORD AddRef(
LPDIRECTDRAWCLIPPER lpDDClipper)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure which was returned to the application when
the DirectDrawClipper was created using the CreateClipper member of the DirectDraw object.

Return Values
SUCCESS Reference count of the object.
FAILURE Zero

See Also
AddRef, CreateClipper, Initialize, QueryInterface, Release

GetClipList
Return a copy of the clip list associated with a DirectDrawClipper. A subset of the clip list can be
selected by passing a rectangle which will be used to clip the clip list.

HRESULT GetClipList(
LPDIRECTDRAWCLIPPER lpDDClipper,
LPRECT lpRect,
LPRGNDATA lpClipList,
LPDWORD lpdwSize)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure representing the DirectDrawClipper.
lpRect

Points to a rectangle that will be used to clip the clip list.
lpClipList

Points to a RGNDATA structure which will contain the resulting copy of the clip list.
lpdwSize

Set by GetClipList to indicate the size of the resulting clip list.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_INVALIDCLIPLIST
DDERR_NOCLIPLIST DDERR_REGIONTOOSMALL
DDERR_GENERIC

See Also
SetClipList

GetHWnd
Returns the hWnd previously associated with this DirectDrawClipper using the SetHWnd member.

HRESULT GetHWnd(
LPDIRECTDRAWCLIPPER lpDDClipper,
HWND FAR *lphWnd)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure representing the DirectDrawClipper.
lphWnd

Points to the hWnd previously associated with this DirectDrawClipper using the SetHWnd
member.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
SetHwnd

Initialize
Initialize a DirectDrawClipper. This member is provided for compliance with the Common Object Model
(COM) protocol. Since the DirectDrawClipper object is initialized when it is created, calling this member
will always result in the ALREADYINITIALIZED return value.

HRESULT Initialize(
LPDIRECTDRAWCLIPPER lpDDClipper,
LPDIRECTDRAW lpDD,
DWORD dwFlags)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure which was returned to the application when
the DirectDraw member CreateClipper was called.

lpDD
Points to the DIRECTDRAW structure representing the DirectDraw object.

dwFlags
Not currently used.

Return Values
DDERR_ALREADYINITIALIZED

See Also
AddRefAddRef, CreateClipper, QueryInterfaceQueryInterfaceQueryInterface, Release

IsClipListChanged
If an hWnd is associated with a DirectDrawClipper, this member can be used to monitor the status of the
clip list.

HRESULT IsClipListChanged(
LPDIRECTDRAWCLIPPER lpDDClipper,
BOOL FAR *lpbChanged)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure representing the DirectDrawClipper.
lpbChanged

A pointer to a Boolean value set equal to TRUE if the clip list has changed.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

QueryInterface
This member is part of the IUnknown interface inherited by the DirectDrawClipper. It is used to increase
the reference count of the DirectDrawClipper object. This is the member that applications use to
determine whether the DirectDrawClipper object supports additional interfaces that they may be
interested in. An application can ask the DirectDrawClipper object if it supports a particular COM
interface, and if it does, the application may begin using that interface immediately. If the application
does not want to use that interface it must call Release to free it. This member allows DirectDrawClipper
objects to be extended by Microsoft and third parties without breaking, or interfering with, each other's
existing or future functionality.

HRESULT QueryInterface(
LPDIRECTDRAWCLIPPER lpDDClipper,
REFIID riid,
LPVOID FAR * ppvObj)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure which was returned to the application when
the DirectDrawClipper was created using the CreateClipper member of the DirectDraw object.

riid
Points to the GUID used as the interface identifier.

ppvObj
Points to a pointer which will receive the interface pointer if the request is successful.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
AddRef, Release, Initialize

Release
This member is part of the IUnknown interface inherited by the DirectDrawClipper. It is used to
decrease the reference count of the DirectDrawClipper object. When the DirectDrawClipper object is
initially created, its reference count is set to one. Each time Release is called by an application the
DirectDrawClipper object reduces the reference count by one. The DirectDrawClipper object deallocates
itself when its reference count goes to zero. The AddRef member is used to increase the reference
count every time a new application binds to the DirectDrawClipper object.

DWORD Release(
LPDIRECTDRAWCLIPPER lpDDClipper)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure which was returned to the client when the
DirectDraw member CreateClipper was called to create the DirectDrawClipper.

Return Values
SUCCESS Reference count of the object.
FAILURE Zero

See Also
AddRef, Initialize, QueryInterface

SetClipList
Set or delete the clip list used by the Blt, BltBatch, and UpdateOverlay members of surfaces to which the
parent DirectDrawClipper is attached. The clip list is a series of rectangles that describe the areas of the
surface that are visible. The clip list cannot be set if there is already an hWnd associated with the
DirectDrawClipper object. Note that the BltFast member cannot clip.

HRESULT SetClipList(
LPDIRECTDRAWCLIPPER lpDDClipper,
LPRGNDATA lpClipList,
DWORD dwFlags)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure representing the DirectDrawClipper.
lpClipList

This is either a pointer to a valid RGNDATA or NULL. If it is NULL, and there is an existing
clip list associated with the DirectDrawClipper, it will be deleted.

dwFlags
Not used at this time.

Return Values
DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_INVALIDCLIPLIST
DDERR_OUTOFMEMORY DDERR_CLIPPERISUSINGHWND

See Also
GetClipList, Blt, BltFast, BltBatch, UpdateOverlay

SetHWnd
Set the HWnd that will be used to obtain clipping information.

HRESULT SetHWnd(
LPDIRECTDRAWCLIPPER lpDDClipper,
DWORD dwFlags,
HWND hWnd)

Parameters
lpDDClipper

Points to the DIRECTDRAWCLIPPER structure representing the DirectDrawClipper.
dwFlags

Not in use.
hWnd

The hWnd that represents the clipping information.
Return Values

DD_OK DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS DDERR_OUTOFMEMORY

See Also
GetHWnd

Return Codes
DD_OK
DDERR_ALREADYINITIALIZED
DDERR_BLTFASTCANTCLIP
DDERR_CANNOTATTACHSURFACE
DDERR_CANNOTDETACHSURFACE
DDERR_CANTCREATEDC
DDERR_CANTDUPLICATE
DDERR_CLIPPERISUSINGHWND
DDERR_COLORKEYNOTSET
DDERR_CURRENTLYNOTAVAIL
DDERR_DIRECTDRAWALREADYCREATED
DDERR_EXCEPTION
DDERR_EXCLUSIVEMODEALREADYSET
DDERR_GENERIC
DDERR_HEIGHTALIGN
DDERR_HWNDALREADYSET
DDERR_HWNDSUBCLASSED
DDERR_IMPLICITLYCREATED
DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDCAPS
DDERR_INVALIDCLIPLIST
DDERR_INVALIDDIRECTDRAWGUID
DDERR_INVALIDMODE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT
DDERR_INVALIDPOSITION
DDERR_INVALIDRECT
DDERR_LOCKEDSURFACES
DDERR_NO3D
DDERR_NOALPHAHW
DDERR_NOANTITEARHW
DDERR_NOBLTHW
DDERR_NOBLTQUEUEHW
DDERR_NOCLIPLIST
DDERR_NOCLIPPERATTACHED

DDERR_NOCOLORCONVHW
DDERR_NOCOLORKEY
DDERR_NOCOLORKEYHW
DDERR_NOCOOPERATIVELEVELSET
DDERR_NODC
DDERR_NODDROPSHW
DDERR_NODIRECTDRAWHW
DDERR_NOEMULATION
DDERR_NOEXCLUSIVEMODE
DDERR_NOFLIPHW
DDERR_NOGDI
DDERR_NOHWND
DDERR_NOMIRRORHW
DDERR_NOOVERLAYDEST
DDERR_NOOVERLAYHW
DDERR_NOPALETTEATTACHED
DDERR_NOPALETTEHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW
DDERR_NOT4BITCOLOR
DDERR_NOT4BITCOLORINDEX
DDERR_NOT8BITCOLOR
DDERR_NOTAOVERLAYSURFACE
DDERR_NOTEXTUREHW
DDERR_NOTFLIPPABLE
DDERR_NOTFOUND
DDERR_NOTLOCKED
DDERR_NOTPALETTIZED
DDERR_NOVSYNCHW
DDERR_NOZBUFFERHW
DDERR_NOZOVERLAYHW
DDERR_OUTOFCAPS
DDERR_OUTOFMEMORY
DDERR_OUTOFVIDEOMEMORY
DDERR_OVERLAYCANTCLIP
DDERR_OVERLAYCOLORKEYONLYONEACTIVE

DDERR_OVERLAYNOTVISIBLE
DDERR_PALETTEBUSY
DDERR_PRIMARYSURFACEALREADYEXISTS
DDERR_REGIONTOOSMALL
DDERR_SURFACEALREADYATTACHED
DDERR_SURFACEALREADYDEPENDENT
DDERR_SURFACEBUSY
DDERR_SURFACEISOBSCURED
DDERR_SURFACELOST
DDERR_SURFACENOTATTACHED
DDERR_TOOBIGHEIGHT
DDERR_TOOBIGSIZE
DDERR_TOOBIGWIDTH
DDERR_UNSUPPORTED
DDERR_UNSUPPORTEDFORMAT
DDERR_UNSUPPORTEDMASK
DDERR_VERTICALBLANKINPROGRESS
DDERR_WASSTILLDRAWING
DDERR_WRONGMODE
DDERR_XALIGN

DD_OK

Status OK, request completed successfully.

DDERR_ALREADYINITIALIZED

This object is already initialized.

DDERR_BLTFASTCANTCLIP

Return if a clipper object is attached to the source surface passed into a BltFast call.

DDERR_CANNOTATTACHSURFACE

This surface can not be attached to the requested surface.

DDERR_CANNOTDETACHSURFACE

This surface can not be detached from the requested surface.

DDERR_CANTCREATEDC

Windows can not create any more DCs

DDERR_CANTDUPLICATE

Can't duplicate primary & 3D surfaces, or surfaces that are implicitly created.

DDERR_CLIPPERISUSINGHWND

An attempt was made to set a cliplist for a clipper object that is already monitoring an hwnd.

DDERR_COLORKEYNOTSET

No src color key specified for this operation.

DDERR_CURRENTLYNOTAVAIL

Support is currently not available.

DDERR_DIRECTDRAWALREADYCREATED

A DirectDraw object representing this driver has already been created for this process.

DDERR_EXCEPTION

An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET

An attempt was made to set the cooperative level when it was already set to exclusive.

DDERR_GENERIC

Generic failure.

DDERR_HEIGHTALIGN

Height of rectangle provided is not a multiple of reqd alignment.

DDERR_HWNDALREADYSET

The CooperativeLevel HWND has already been set. It can not be reset while the process has surfaces or
palettes created.

DDERR_HWNDSUBCLASSED

HWND used by DirectDraw CooperativeLevel has been subclassed, this prevents DirectDraw from
restoring state.

DDERR_IMPLICITLYCREATED

This surface can not be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY

Unable to match primary surface creation request with existing primary surface.

DDERR_INVALIDCAPS

One or more of the caps bits passed to the callback are incorrect.

DDERR_INVALIDCLIPLIST

DirectDraw does not support the provided cliplist.

DDERR_INVALIDDIRECTDRAWGUID

The GUID passed to DirectDrawCreate is not a valid DirectDraw driver identifier.

DDERR_INVALIDMODE

DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT

DirectDraw received a pointer that was an invalid DIRECTDRAW object.

DDERR_INVALIDPARAMS

One or more of the parameters passed to the function are incorrect.

DDERR_INVALIDPIXELFORMAT

The pixel format was invalid as specified.

DDERR_INVALIDPOSITION

Returned when the position of the overlay on the destination is no longer legal for that destination.

DDERR_INVALIDRECT

Rectangle provided was invalid.

DDERR_LOCKEDSURFACES

Operation could not be carried out because one or more surfaces are locked.

DDERR_NO3D

There is no 3D present.

DDERR_NOALPHAHW

Operation could not be carried out because there is no alpha accleration hardware present or available.

DDERR_NOANTITEARHW

Operation could not be carried out because there is no hardware support for synchronizing blits to avoid
tearing.

DDERR_NOBLTHW

No blitter hardware present.

DDERR_NOBLTQUEUEHW

Operation could not be carried out because there is no hardware support for asynchronous blitting.

DDERR_NOCLIPLIST

No cliplist available.

DDERR_NOCLIPPERATTACHED

No clipper object attached to surface object.

DDERR_NOCOLORCONVHW

Operation could not be carried out because there is no color conversion hardware present or available.

DDERR_NOCOLORKEY

Surface doesn't currently have a color key

DDERR_NOCOLORKEYHW

Operation could not be carried out because there is no hardware support of the destination color key.

DDERR_NOCOOPERATIVELEVELSET

Create function called without DirectDraw object method SetCooperativeLevel being called.

DDERR_NODC

No DC was ever created for this surface.

DDERR_NODDROPSHW

No DirectDraw ROP hardware.

DDERR_NODIRECTDRAWHW

A hardware-only DirectDraw object creation was attempted but the driver did not support any hardware.

DDERR_NOEMULATION

Software emulation not available.

DDERR_NOEXCLUSIVEMODE

Operation requires the application to have exclusive mode but the application does not have exclusive
mode.

DDERR_NOFLIPHW

Flipping visible surfaces is not supported.

DDERR_NOGDI

There is no GDI present.

DDERR_NOHWND

Clipper notification requires an HWND or no HWND has previously been set as the CooperativeLevel
HWND.

DDERR_NOMIRRORHW

Operation could not be carried out because there is no hardware present or available.

DDERR_NOOVERLAYDEST

Returned when GetOverlayPosition is called on an overlay that UpdateOverlay has never been called on
to establish a destination.

DDERR_NOOVERLAYHW

Operation could not be carried out because there is no overlay hardware present or available.

DDERR_NOPALETTEATTACHED

No palette object attached to this surface.

DDERR_NOPALETTEHW

No hardware support for 16 or 256 color palettes.

DDERR_NORASTEROPHW

Operation could not be carried out because there is no appropriate raster op hardware present or
available.

DDERR_NOROTATIONHW

Operation could not be carried out because there is no rotation hardware present or available.

DDERR_NOSTRETCHHW

Operation could not be carried out because there is no hardware support for stretching.

DDERR_NOT4BITCOLOR

DirectDrawSurface is not in 4 bit color palette and the requested operation requires 4 bit color palette.

DDERR_NOT4BITCOLORINDEX

DirectDrawSurface is not in 4 bit color index palette and the requested operation requires 4 bit color index
palette.

DDERR_NOT8BITCOLOR

DirectDrawSurface is not in 8 bit color mode and the requested operation requires 8 bit color.

DDERR_NOTAOVERLAYSURFACE

Returned when an overlay member is called for a non-overlay surface.

DDERR_NOTEXTUREHW

Operation could not be carried out because there is no texture mapping hardware present or available.

DDERR_NOTFLIPPABLE

An attempt has been made to flip a surface that is not flippable.

DDERR_NOTFOUND

Requested item was not found.

DDERR_NOTLOCKED

Surface was not locked. An attempt to unlock a surface that was not locked at all, or by this process, has
been attempted.

DDERR_NOTPALETTIZED

The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW

Operation could not be carried out because there is no hardware support for vertical blank synchronized
operations.

DDERR_NOZBUFFERHW

Operation could not be carried out because there is no hardware support for zbuffer blitting.

DDERR_NOZOVERLAYHW

Overlay surfaces could not be z layered based on their BltOrder because the hardware does not support
z layering of overlays.

DDERR_OUTOFCAPS

The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY

DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY

DirectDraw does not have enough memory to perform the operation.

DDERR_OVERLAYCANTCLIP

The hardware does not support clipped overlays.

DDERR_OVERLAYCOLORKEYONLYONEACTIVE

Can only have ony color key active at one time for overlays.

DDERR_OVERLAYNOTVISIBLE

Returned when GetOverlayPosition is called on a hidden overlay.

DDERR_PALETTEBUSY

Access to this palette is being refused because the palette is already locked by another thread.

DDERR_PRIMARYSURFACEALREADYEXISTS

This process already has created a primary surface.

DDERR_REGIONTOOSMALL

Region passed to Clipper::GetClipList is too small.

DDERR_SURFACEALREADYATTACHED

This surface is already attached to the surface it is being attached to.

DDERR_SURFACEALREADYDEPENDENT

This surface is already a dependency of the surface it is being made a dependency of.

DDERR_SURFACEBUSY

Access to this surface is being refused because the surface is already locked by another thread.

DDERR_SURFACEISOBSCURED

Access to surface refused because the surface is obscured.

DDERR_SURFACELOST

Access to this surface is being refused because the surface memory is gone. The DirectDrawSurface
object representing this surface should have Restore called on it.

DDERR_SURFACENOTATTACHED

The requested surface is not attached.

DDERR_TOOBIGHEIGHT

Height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE

Size requested by DirectDraw is too large -- the individual height and width are OK.

DDERR_TOOBIGWIDTH

Width requested by DirectDraw is too large.

DDERR_UNSUPPORTED

Action not supported.

DDERR_UNSUPPORTEDFORMAT

FOURCC format requested is unsupported by DirectDraw.

DDERR_UNSUPPORTEDMASK

Bitmask in the pixel format requested is unsupported by DirectDraw.

DDERR_VERTICALBLANKINPROGRESS

Vertical blank is in progress.

DDERR_WASSTILLDRAWING

Informs DirectDraw that the previous Blt which is transfering information to or from this Surface is
incomplete.

DDERR_WRONGMODE

This surface can not be restored because it was created in a different mode.

DDERR_XALIGN

Rectangle provided was not horizontally aligned on required boundary.

