
Table of Contents
DirectPlay

About DirectPlay
DirectPlay Architecture
Globally Unique Identifiers
Using DirectPlay
Session Management
Player Management
Group Management
Message Management

DirectPlay Structures
Structure Summary
Data Structures
System Messages

DirectPlay Return Values
DP_OK
DirectPlay Error Return Codes

DirectPlay APIs
APIs

DirectPlay Members
Member Summary
DirectPlay Members

About DirectPlay
The Microsoft® DirectPlay™ application programming interface (API) for Windows® 95 is a software
interface that simplifies game access to communication services. DirectPlay provides a way for games to
communicate with each other that is independent of the underlying transport, protocol, or online service.
Games are more fun if they can be played against real players, and the personal computer has richer
connectivity options than any game platform in history. Instead of forcing the game developer to deal
with the differences that each of these connectivity solutions represents, DirectPlay provides well defined,
generalized communication capabilities. DirectPlay shields the developer from the underlying
complexities of diverse connectivity implementations, freeing them to concentrate on producing a great
game.

DirectPlay Architecture
DirectPlay uses a simple send/receive communications model to implement a connectivity API tailored to
the needs of game play. The DirectPlay architecture is composed of two types of components:
DirectPlay itself and the Service Provider. DirectPlay is provided by Microsoft and presents a common
interface to the game. The service providers furnish medium-specific communications services as
requested by DirectPlay. Anyone, including online services, can provide service providers for specialized
hardware and communications media. Microsoft includes two service providers, for networking and
modem support, with DirectPlay.
The DirectPlay interface hides the complexities and unique tasks required to establish an arbitrary
communications link inside the DirectPlay service provider implementation. A game using DirectPlay need
only concern itself with the performance of the communications medium, not whether that medium is
being provided by a modem, network, or online service.
DirectPlay will dynamically bind to any DirectPlay Service Provider installed on the user's system. The
game interacts with the DirectPlay object. The DirectPlay object interacts with one of the available
DirectPlay service providers, and the selected service provider interacts with the transport or protocol.

Globally Unique Identifiers
Each game requires a globally unique identifier (GUID) that it uses to identify itself on the communications
medium. These GUIDs (sometimes called UUIDS) can be generated on any computer that has a network
card and a copy of UUIDGEN.EXE, which is provided as part of the Microsoft Win32® SDK. You create a
GUID once, while developing the game, and use that GUID throughout the life of the product. There is no
need to register this number with Microsoft.

Using DirectPlay
You can implement DirectPlay in your application using the following steps:
1. Request the user to select a communication medium for the game.

Your application can identify the service providers installed on a personal computer by using the
DirectPlayEnumerate function.

2. Create a DirectPlay object based on the selected provider by calling the DirectPlayCreate function and
specifying the appropriate service provider GUID.

The call to DirectPlayCreate causes DirectPlay to load the library for the selected service provider.

3. Request game information, including preferences, from the user. Your application can store this
information in the dwUser fields of the DPSESSIONDESC structure.

4. Enumerate existing sessions (existing games that a user can join) by using the EnumSessions
member function.

If the user wants to start a new game, skip this step and continue with step six.

5. If the user wants to join a game enumerated by the EnumSessions member function, connect to that
game by using the Open member function and specifying the DPOPEN_OPENSESSION flag.

6. If the user wants to start a new game, create a game by using Open and specifying the
DPOPEN_CREATESESSION flag.

7. Create a player or players.

A player's communication capabilities can be determined using GetCaps and GetPlayerCaps. Other
players can be discovered by using EnumPlayers.

8. Exchange messages among players and the system by using the Send and Receive member
functions.

Each player is associated with a "friendly name" and a "formal name" that the game can use for tasks
such as error reporting and scoring. The game can exchange messages among players by using the
unique player ID that is created with the player. The service provider, rather than DirectPlay, limits the
number of players that can participate in a gaming session. In the current implementation, the number of
players ranges from 16 for a modem connection to 256 for a network connection.
Most messages are defined by the game developer to address the particular needs of the game.
However, some system messages are defined by DirectPlay. For example, when a player quits or a new
player joins the game, the game receives a system message that provides the name of the player and the
status change that has just occurred. System messages are always sent by the name server, a virtual
player whose player ID is zero. System messages start with a 32-bit value that identifies the type of
message. Constants that represent system messages begin with 'DPSYS_', and have a corresponding
message structure that must be used to interpret them.
Broadcasting a message to all players in the game is simply a matter of sending a message to the name
server (that is, to player ID zero). The players receiving a message that was broadcast in this way see the
message as having come from the player who sent it, not from the name server.
DirectPlay does not attempt to provide a general approach for game synchronization; to do so would
necessarily imposes limitations on the game-playing paradigm. However, the system includes some
services that are designed to help you with these tasks. For example, you can specify a notification event
when your application creates a player and then use the Microsoft Win32® function WaitForSingleObject
to find out whether there is a message pending for that player.

Session Management
 A DirectPlay "session" is an instance of a game. An application uses DirectPlay's session-management
functions to open or close a communications channel, save a session in the registry, or enumerate past
sessions that have been saved in the registry. A game either creates a new session or enumerates
existing or previous sessions and finds one to connect to. If a game has saved a session, it could
enumerate previous sessions and perhaps reconnect to the saved session. (This is a particularly
appropriate scenario in a modem environment, where a saved session would include phone numbers.)
Not all DirectPlay service providers will support the saving of sessions, however, and this functionality is
currently only implemented for modem connections.
The Open member function is used to create a new session or connect to an existing or saved session. A
session is described by its corresponding DPSESSIONDESC structure. This structure contains game-
specific values and session particulars such as the name of the session, an optional password for the
session, and the number of players to be allowed in the session. After opening a session, your application
can call the GetCaps member function to retrieve the speed of the communications link. To save a record
of the session in the registry, call the SaveSession member function. For a modem connection, you can
save the current session and later enumerate all of the saved sessions by calling EnumSessions
specifying the DPENUMSESSIONS_PREVIOUS flag. Opening one of these saved sessions retrieves the
phone number for that session and dials it. When a game session is over, it can be closed with the Close
member.

Player Management
An application uses DirectPlay's player-management functions to manage the players in a game session.
In addition to creating and destroying players, the application can enumerate the players or retrieve a
player's communication capabilities.
The CreatePlayer and DestroyPlayer member functions create and delete players in a game session.
Upon creation, each player is given a "friendly name", a "formal name", and a DirectPlay Player ID. The
Player ID is used by the game and DirectPlay to route message traffic. The friendly and formal names
are not used internally by DirectPlay; instead, your application can use them when communicating with
the players. The GetPlayerName and SetPlayerName member functions allow your application to work
with the friendly and formal names while the game is being played. The EnableNewPlayers member
function enables or disables the addition of new players and can be used to prohibit the creation of new
players once a game is in progress.
An application uses the EnumPlayers member function to discover what players are in a current game
session and their friendly and formal names. This function is typically called immediately after a call to the
Open member function that opens an existing session. The GetPlayerCaps member function retrieves
information about the speed of a player's connection to the session.

Group Management
The group-management functions allow your application to create groups of players in a session. Your
application can then use a single call to the Send member function to send messages to an entire group,
rather than to one player at a time. Some service providers can send messages to groups more efficiently
than they could send them to the individual players in the group, so in addition to simplifying player
management, groups can be used to conserve communication channel bandwidth.
The CreateGroup and DestroyGroup member functions create and delete a group of players. When you
create a group you assign it a friendly and formal name, just as you would when creating a player. The
group is initially empty; your application uses the AddPlayerToGroup and DeletePlayerFromGroup
member functions to control the membership of the group. The state of the EnableNewPlayers member
function does not affect the ability to create groups.
To discover what groups exist, your application can call the EnumGroups member function. To enumerate
the players in a group, call the EnumGroupPlayers member function.

Message Management
The message-management functions help your application route messages between game players. With
the exception of a small number of messages that have been defined by the system, the messages can
be anything your application requires, although messages should not be excessively large. Your
application can use the Send member function to send a message to an individual player, to a group, or to
all the players in the session, by specifying a player ID, a group ID, or zero for the destination.
To receive a message from the message queue, use the Receive member function. This function allows
your application to specify whether to retrieve the first message in the queue, only the messages to a
particular player, or only those from a particular player. Your application can use the GetMessageCount
member function to retrieve the number of messages waiting for a given player.

Structure Summary
Note that DirectPlay structures must have their "size" fields, where present, properly set before calling
DirectPlay functions or an error will result.

DPCAPS This structure defines the capabilities of the DirectPlay object as
supported by a particular service provider.

DPMSG_ADDPLAYER Message sent when a player or group has been added to a
session.

DPMSG_DELETEPLAYER Message sent when a player or group is deleted from a session.

DPMSG_GENERIC A generic message structure provided for message handling.

DPMSG_GROUPADD Message sent when a player is added to a group

DPMSG_GROUPDELETE Message sent when a player is removed from a group.

DPSESSIONDESC This structure defines the capabilities of a DirectPlay session.

Data Structures
DPCAPS
DPSESSIONDESC

DPCAPS
Contains the capabilities of a DirectPlay object after a call to the GetCaps function. This structure is
read-only.

Structure

typedef struct {
DWORD dwSize;
DWORD dwFlags;
DWORD dwMaxBufferSize;
DWORD dwMaxQueueSize;
DWORD dwMaxPlayers;
DWORD dwHundredBaud;
DWORD dwLatency;

} DPCAPS;

dwSize
Size, in bytes, of this structure. Must be initialized before the structure is used.

dwFlags
DPCAPS_GUARANTEE Supports verification of received messages.

Retransmits message, if necessary.
DPCAPS_NAMESERVER Computer represented by calling application

is the name server.
DPCAPS_NAMESERVIC
E

A name server is supported.

dwMaxBufferSize
Maximum buffer size for this DirectPlay object.

dwMaxQueueSize
Maximum queue size for this DirectPlay object.

dwMaxPlayers
Maximum number of players supported in a session.

dwHundredBaud
Baud rate in multiples of one hundred. For example, the value 24 specifies 2400 baud.

dwLatency
Latency estimate, in milliseconds, by service provider. If this value is zero, DirectPlay cannot
provide an estimate. Accuracy for some service providers rests on application-to-application
testing, taking into consideration the average message size.

DPSESSIONDESC
Contains a description of the capabilities of a DirectPlay session.

typedef struct {
 DWORD dwSize;
 GUID guidSession;
 DWORD dwSession;
 DWORD dwMaxPlayers;
 DWORD dwCurrentPlayers;
 DWORD dwFlags;
 char szSessionName[DPSESSIONNAMELEN];
 char szUserField[DPUSERRESERVED];
 DWORD dwReserved1;
 char szPassword[DPPASSWORDLEN];
 DWORD dwReserved2;
 DWORD dwUser1;
 DWORD dwUser1;
 DWORD dwUser2;
 DWORD dwUser3;
 DWORD dwUser4;

} DPSESSIONDESC;

typedef DPSESSIONDESC FAR *LPDPSESSIONDESC;

dwSize
Size, in bytes, of this structure. Must be initialized before the structure is used.

guidSession
Globally unique identifier (GUID) for the game. It uniquely identifies the game so that
DirectPlay connects only to other machines playing the same game.

dwSession
Session identifier of the session that has been created or opened.

dwMaxPlayers
Maximum number of players and groups allowed in this session. This member is ignored if
the application is not creating a new session.

dwCurrentPlayers
Current players and groups in the session.

dwFlags
One of the following flags:

DPOPEN_CREATESESSIO
N

Create a new session described by the
DPSESSIONDESC structure.

DPOPEN_OPENSESSION Open the session identified by dwSession.
szSessionName

String containing the name of the session.
szUserField

String containing user data.
dwReserved1, dwReserved2

Reserved for future use.
szPassword

String containing the optional password required to join this session.
dwUser1, dwUser2, dwUser3, dwUser4

User-specific data for the game or session.

System Messages
Messages returned by Receive from PlayerID 0 are system messages. All system messages begin with
a DWORD dwType. Most programmers cast the buffer returned by Receive to a generic message
(DPMSG_GENERIC) and switch on the dwType element, which will have a value equal to one of the
DPSYS_* messages (DPSYS_ADDPLAYER, etc.).
Your application should be prepared to handle the following system messages:

Value of dwType Message Structure Cause
DPSYS_ADDPLAYER DPMSG_ADDPLAYER A player or group has been added to

the session. dwPlayerType indicates
whether it is a player or a group.

DPSYS_ADDPLAYERTOGROUP DPMSG_GROUPADD An existing player has been added to
an existing group.

DPSYS_DELETEGROUP DPMSG_DELETEPLAYER A group has been deleted from the
session.

DPSYS_DELETEPLAYER DPMSG_DELETEPLAYER A player has been deleted from the
session.

DPSYS_DELETEPLAYERFROMGR
P

DPMSG_GROUPDELETE A player has been removed from a
group.

DPSYS_SESSIONLOST DPMSG_GENERIC The connection has been lost.

See:
DPMSG_ADDPLAYER
DPMSG_DELETEPLAYER
DPMSG_GENERIC
DPMSG_GROUPADD
DPMSG_GROUPDELETE

DPMSG_ADDPLAYER
Contains information for the DPSYS_ADDPLAYER system message. The system sends this message
when players and groups are added to a session.

typedef struct{
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 char szLongName[DPLONGNAMELEN];
 char szShortName[DPSHORTNAMELEN];
 DWORD dwCurrentPlayers;

} DPMSG_ADDPLAYER;

dwType
Identifies the message.

dwPlayerType
Flag indicating whether a player or a group was added. TRUE indicates a player was added;
FALSE indicates a group was added.

dpID
Player or group identifier.

szLongName
Formal name for player or group.

chShortName
Friendly name for player or group.

dwCurrentPlayers
Number of players in the session.

DPMSG_DELETEPLAYER
Contains information for the DPSYS_DELETEPLAYER and DPSYS_DELETEGROUP system messages.
The system sends these messages when players and groups are deleted from a session.

typedef struct{
DWORD dwType;
DPID dpId;

} DPMSG_DELETEPLAYER;

dwType
Identifies the message.

dpId
DirectPlay ID of player or group that was deleted.

DPMSG_GENERIC
This structure is provided for message processing; first cast the unknown message to the
DPMSG_GENERIC type, then perform further processing based on the value of dwType. Note that one
system message, DPSYS_SESSIONLOST, also uses this structure.

typedef struct{
DWORD dwType;

} DPMSG_GENERIC;

dwType
Identifies the message.

DPMSG_GROUPADD
Contains information for the DPSYS_ADDPLAYERTOGROUP and DPSYS_DELETEPLAYERFROMGRP
system messages. The system sends these messages when players are added to and deleted from a
group.

typedef struct{
 DWORD dwType;
 DPID dpIdGroup;
 DPID dpIdPlayer;

} DPMSG_GROUPADD;

dwType
Identifies the message.

dpIdGroup
DirectPlay ID of the group to which the player was added or deleted.

dpIdPlayer
DirectPlay ID of the player that was added to or deleted from the specified group.

DPMSG_GROUPDELETE
Contains information for the DPSYS_DELETEPLAYERFROMGRP message. For a description of the
structure members, see DPMSG_GROUPADD.

typedef DPMSG_GROUPADD DMSG_GROUPDELETE;

DP_OK
The OK message indicates success and is returned when any DirectDraw related member has performed
the action requested of it.

DP_OK
Request completed successfully.

DirectPlay Error Return Codes
Errors are represented by negative values and cannot be combined. This table lists the failures that can
be returned by all DirectPlay members. See the individual member descriptions for a list of the error
codes each one is capable of returning.

DPERR_ACCESSDENIED
The session is full or an incorrect password was supplied.

DPERR_ACTIVEPLAYERS
Cannot perform the requested operation because there are existing active players.

DPERR_ALREADYINITIALIZED
This object is already initialized.

DPERR_BUFFERTOOSMALL
The supplied buffer was not large enough to contain the requested data.

DPERR_BUSY
The DirectPlay message queue is full.

DPERR_CANTADDPLAYER
The player could not be added to the session.

DPERR_CANTCREATEPLAYER
Can't create a new player.

DPERR_CAPSNOTAVAILABLEYET
The capabilities of the DirectPlay object have not been determined yet. This error will
occur if the DirectPlay object is implemented on a connectivity solution that requires
polling to determine available bandwidth and latency.

DPERR_EXCEPTION
An exception occurred when processing the request.

DPERR_GENERIC
Undefined error condition.

DPERR_INVALIDFLAGS
The flags passed to this function are invalid.

DPERR_INVALIDOBJECT
The DirectPlay object pointer is invalid.

DPERR_INVALIDPARAMS
One or more of the parameters passed to the function are invalid.

DPERR_INVALIDPLAYER
The player ID is not recognized as a valid player ID for this game session.

DPERR_NOCAPS
The communication link underneath DirectPlay is not capable of this function.

DPERR_NOCONNECTION
No communication link was established.

DPERR_NOMESSAGES
There are no messages to be received.

DPERR_NONAMESERVERFOUND
No name server could be found or created. A name server must exist in order to create
a player.

DPERR_NOPLAYERS
There are no active players in the session.

DPERR_NOSESSIONS
There are no existing sessions for this game.

DPERR_OUTOFMEMORY
Insufficient memory to perform requested operation.

DPERR_TIMEOUT
The operation could not be completed in the specified time.

DPERR_UNAVAILABLE

The requested service provider or session is not available.
DPERR_UNSUPPORTED

The function is not available in this implementation.
DPERR_USERCANCEL

The user cancelled the connection process during a call to Open.

APIs
The DirectPlay APIs are used to initiate communication through the DirectPlay interface. The first API,
DirectPlayCreate, is used to instantiate a DirectPlay object for a particular service provider. The second
one, DirectPlayEnumerate, is used to obtain a list of all the DirectPlay service providers installed on the
system. This is the mechanism DirectPlay uses to support multiple communication transports and
protocols. To utilize protocol-independent communication services, the application need only select a
specific service provider and instantiate it.

See:
DirectPlayCreate
DirectPlayEnumerate

DirectPlayCreate
This API is used to create an instance of a DirectPlay object. It attempts to initialize a DirectPlay object
and sets a pointer to it if it was successful. Calling the DirectPlay member DirectPlayEnumerate
immediately before initialization is advised to determine what types of service providers are available.

HRESULT DirectPlayCreate(
LPGUID lpGUID,
LPDIRECTPLAY FAR *lplpDP,
IUnknown FAR *pUnkOuter)

Parameters
lpGUID

Points to the GUID representing the driver that should be created.
lplpDP

Points to a pointer to be initialized with a valid DirectPlay pointer if the call succeeds.
pUnkOuter

Pointer to the containing IUnkown. This parameter is provided for future compability with
COM aggregation features. Presently, however, DirectPlayCreate will return an error if it is
anything but NULL.

Return Values
DP_OK DPERR_GENERIC
DPERR_EXCEPTION DPERR_UNAVAILABLE

See Also
DirectPlayEnumerate

DirectPlayEnumerate
Enumerate the DirectPlay service providers installed on the system.

HRESULT DirectPlayEnumerate(
LPDPENUMCALLBACK lpCallback,
LPVOID lpContext)

Parameters
lpCallback

Points to a callback function that will be called with a description of each DirectPlay service
provider interface installed in the system.

 BOOL Callback(
LPGUID lpGUID,
LPSTR lpDriverDescription,
DWORD dwMajorVersion,
DWORD dwMinorVersion,
LPVOID lpContext)

lpSPGUID
Pointer to the unique identifier of the DirectPlay service provider driver.

lpDriverDescription
Pointer to a string containing the driver description.

dwMajorVersion
Major version number of the driver.

dwMinorVersion
Minor version number of the driver.

lpContext
Pointer to a caller-defined context.

Return Value
TRUE Continue the enumeration
FALSE Stop the enumeration

lpContext
Points to a caller-defined context that will be passed to the enumeration callback each time it
is called.

Return Values
DP_OK DPERR_EXCEPTION
DPERR_GENERIC

Member Summary
Session management

Close Closes a communication channel.
EnumSessions Enumerates all of the sessions connected

to a specified DirectPlay object.
GetCaps Retrieves the capabilities of the specified

DirectPlay object.
Open Establishes a new gaming session or

connects to an existing one.
SaveSession Saves the current session in the registry.

Player management
CreatePlayer Creates a player for a session.
DestroyPlayer Deletes a player from a sessions.
EnableNewPlayers Enables or disables the addition of new

players or groups.
EnumPlayers Enumerates all of the players in a

specified session.
GetPlayerCaps Retrieves the capabilities of a player's

connection.
GetPlayerName Retrieves a player's friendly and formal

names.
SetPlayerName Changes the player's friendly and formal

names.

Group management
AddPlayerToGroup Adds a player to an existing group.
CreateGroup Creates an empty group of players for a

session.
DeletePlayerFromGrou
p

Deletes a player from a group.

DestroyGroup Destroys a group of players for a session.
EnumGroupPlayers Enumerates the players in a group.
EnumGroups Enumerates all of the groups associated

with a specified session.

Message management
GetMessageCount Retrieves the number of messages

waiting for a player.
Receive Retrieves messages that have been sent

to a player.
Send Sends messages to other players or all of

the players in a session.

DirectPlay Members
AddPlayerToGroup

AddRef
Close
CreateGroup
CreatePlayer
DeletePlayerFromGroup
DestroyGroup
DestroyPlayer
EnableNewPlayers
EnumGroups
EnumGroupPlayers
EnumPlayers
EnumSessions
GetCaps
GetMessageCount
GetPlayerCaps
GetPlayerName
Initialize
Open
QueryInterface
Receive
Release
SaveSession
Send
SetPlayerName

AddPlayerToGroup
This member adds an existing player to an existing group. A DPMSG_GROUPADD system message is
automatically generated to inform the other players that this has occured. Groups cannot be added to
other groups. Players can be members of multiple groups. AddPlayerToGroup will generate an error if
the player is already a member of the group.

HRESULT AddPlayerToGroup(
LPDIRECTPLAY lpDirectPlay,
DPID pidGroup,
DPID pidPlayer)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidGroup

Player ID of the group to be augmented.
pidPlayer

Player ID of the player to be added to group.
Return Values

DP_OK DPERR_GENERIC
DPERR_INVALIDPLAYER DPERR_INVALIDOBJECT

See Also
CreateGroup, DeletePlayerFromGroup, DPMSG_GROUPADD

AddRef
This member is part of the IUnknown interface inherited by DirectPlay. AddRef is used to increase the
reference count of the DirectPlay object. When the DirectPlay object is initially created, its reference
count is set to one. Each time a new application binds to the DirectPlay object, or a previously bound
application binds to a different COM interface of the DirectPlay object, the reference count is increased by
one. The DirectPlay object deallocates itself when its reference count goes to zero. The Release
member is used to notify the DirectPlay object that an application is no longer bound to it.

ULONG AddRef(
LPDIRECTPLAY lpDirectPlay)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
Return Values

SUCCESS Reference count of the object.
FAILURE Zero

See Also
Initialize, QueryInterface, Release

Close
This function closes a previously opened communication channel. All locally created players will be
destroyed, with corresponding DPMSG_DELETEPLAYER system messages sent to other session
participants.

HRESULT Close(
LPDIRECTPLAY lpDirectPlay)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

See Also
DestroyPlayer, DPMSG_DELETEPLAYER

CreateGroup
This member is used to create a group of players for a session. A player ID representing the new group
will be returned to the caller. Messages sent to a player ID designating a group will be sent to all
members of the group. The GroupFriendlyName and GroupFormalName fields are provided for
human use only; they are not used internally and need not be unique. Player IDs assigned by DirectPlay
will always be unique within a session. Note that groups count as players in the session player count -- if
you have a four player game with four existing players, calls to CreateGroup will fail. The state of
EnableNewPlayers does not affect the ability to create groups.

This member, upon successful completion, sends a DPMSG_ADDPLAYER system message to all of the
other players in the game announcing that a new group has been created.

HRESULT CreateGroup(
LPDIRECTPLAY lpDirectPlay,
LPDPID lppidID,
LPSTR lpGroupFriendlyName,
LPSTR lpGroupFormalName)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
lppidID

Points to the DPID that will hold the DirectPlay player identification.
lpGroupFriendlyName

Points to the zero terminated string that contains the friendly name of the group.
lpGroupName

Points to the zero terminated string that contains the formal name of the group.
Return Values

DP_OK DPERR_CANTADDPLAYER
DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY

See Also
DestroyGroup, DPMSG_ADDPLAYER, EnableNewPlayers, EnumGroups,
EnumGroupPlayers

CreatePlayer
This member is used to create a player for the current game session. A single process can have multiple
players which can communicate through a DirectPlay object with any number of other players running on
multiple computers. The Player ID returned to the caller will be used internally to direct the player's
message traffic and manage the player. The PlayerFriendlyName and PlayerFormalName fields are
provided for human use only, they are not used internally and need not be unique. Player IDs assigned
by DirectPlay will always be unique within the session.

This function, upon successful completion, sends a DPMSG_ADDPLAYER system message to all of the
other players in the game session announcing that a new player has joined the session. The newly
created player can use the EnumPlayers member to find out who else is in the game session.

It is highly recommended that an application provide a non-NULL lpEvent and use this event for
synchronization. After the creation of a player, use WaitForSingleObject(*lpEvent, dwTimeout = 0) to
determine if a player has messages (the return value will be WAIT_TIMEOUT if there aren't any waiting
messages) or use a different timeout to wait for a message to come in. It is inefficient to spin on
Receive.

HRESULT CreatePlayer(
LPDIRECTPLAY lpDirectPlay,
LPDPID lppidID,
LPSTR lpPlayerFriendlyName,
LPSTR lpPlayerFormalName,
LPHANDLE lpEvent)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
lppidID

Points to the DPID that will hold the DirectPlay player ID.
lpPlayerFriendlyName

Points to the zero terminated string that contains the friendly name of the player.
lpPlayerName

Points to the zero terminated string that contains the formal name of the player.
lpEvent

Pointer to an event which will be triggered when a message addressed to this player is
received.

Return Values
DP_OK DPERR_CANTCREATEPLAYER
DPERR_NOCONNECTION DPERR_CANTADDPLAYER
DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS
DPERR_GENERIC

See Also
DestroyPlayer, DPMSG_ADDPLAYER, EnumPlayers, Receive

DeletePlayerFromGroup
This member removes a player from a group. A DPMSG_GROUPDELETE system message is
automatically generated to inform the other players of the change.

HRESULT DeletePlayerFromGroup(
LPDIRECTPLAY lpDirectPlay,
DPID pidGroup,
DPID pidPlayer)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidGroup

Player ID of the group to be adjusted.
pidPlayer

Player ID of the player to be removed from group.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

See Also
AddPlayerToGroup, DPMSG_GROUPDELETE

DestroyGroup
This member deletes a group from the session. The Player ID belonging to the group will not be reused
during the current session. It is not necessary to empty a group before deleting it. The individual
players belonging to the group are not destroyed, however they will be notified by a
DPMSG_DELETEPLAYER system message that the group has been removed from the session.

HRESULT DestroyGroup(
LPDIRECTPLAY lpDirectPlay,
DPID pidID)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidID

The player id of the group that is being removed from the game.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

See Also
CreateGroup, DPMSG_DELETEPLAYER

DestroyPlayer
This member deletes a player from the game session, removes any pending messages destined for that
player from the message queue, and removes the player from any groups to which it belonged. The
Player ID will not be reused during the current session. Calling this member automatically sends a
DPMSG_DELETEPLAYER system message to all other players, informing them that this player has been
removed from the session.

HRESULT DestroyPlayer(
LPDIRECTPLAY lpDirectPlay,
DPID pidID)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidID

The Player ID of the player that is being removed from the game.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

See Also
CreatePlayer, DPMSG_DELETEPLAYER

EnableNewPlayers
This member can be used to enable or disable the creation of new players. It doe not affect the ability to
create groups. Normally, new players and groups can be added to a session until the session's player
limit has been reached. This member can be used to override this behavior if, for example, a session is
"in progress" and new players are not desired. EnumSessions will not enumerate sessions where
EnableNewPlayers has been set to false unless the DPENUMSESSIONS_ALL flag is used.

HRESULT EnableNewPlayers(
LPDIRECTPLAY lpDirectPlay,
BOOL bEnable)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
bEnable

If TRUE (the default condition for a session), new players can be created (assuming the
session has not reached its maximum capacity). If FALSE, any attempt to create a new
player will return an error.

Return Values
DP_OK DPERR_INVALIDOBJECT

See Also
CreatePlayer, CreateGroup, EnumSessions

EnumGroups
This function is used to enumerate the groups in a session. By default, the member will enumerate using
the local player list for the current session. The DPENUMPLAYERS_SESSION flag can be used, along
with a session ID, to request a session's name server to provide its list for enumeration. EnumGroups
cannot be called from within an EnumSessions enumeration. Furthermore, use of the
DPENUMPLAYERS_SESSION flag with this function must occur after a call to EnumSessions and before
any calls to Close or Open.

HRESULT EnumGroups(
LPDIRECTPLAY lpDirectPlay,
DWORD dwSessionID,
LPDPENUMPLAYERSCALLBACK lpEnumCallback,
LPVOID pContext,
DWORD dwFlags)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
dwSessionID

The DirectPlay session of interest. Not used unless the DPENUMPLAYERS_SESSION flag
is specified.

lpEnumCallback
Points to the function which will be called for every group in the session.
 BOOL EnumCallback(

DPID pidID,
LPSTR lpFriendlyName,
LPSTR lpFormalName,
DWORD dwFlags,
LPVOID lpContext)

pidID
The Player ID of the group being enumerated.

lpFriendlyName
Pointer to a string containing the group's friendly name.

lpFormalName
Pointer to a string containing the group's formal name.

dwFlags
DPENUMPLAYERS_LOCAL
DPENUMPLAYERS_REMOTE
DPENUMPLAYERS_GROUP

lpContext
Pointer to a caller-defined context.

Return Value
TRUE Continue the enumeration
FALSE Stop the enumeration

dwFlags
DPENUMPLAYERS_SESSION

Request the name server for the specified session to supply its group list.
LPVOID lpContext

Pointer to a caller-defined context that is passed to each enumeration callback.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS DPERR_UNSUPPORTED

See Also
CreatePlayer, DestroyPlayer

EnumGroupPlayers
This function is used to enumerate all of the members of a particular group existing in the current session.

HRESULT EnumGroupPlayers(
LPDIRECTPLAY lpDirectPlay,
DPID pidGroupPID,
LPDPENUMPLAYERSCALLBACK lpEnumCallback,
LPVOID pContext,
DWORD dwFlags)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidGroupID

The DirectPlay ID of the group to be enumerated.
lpEnumCallback

Points to the function which will be called for every player in the group.
 BOOL EnumCallback(

DPID pidID,
LPSTR lpFriendlyName,
LPSTR lpFormalName,
DWORD dwFlags,
LPVOID lpContext)

pidID
The Player ID of the player being enumerated.

lpFriendlyName
Pointer to a string containing the players's friendly name.

lpFormalName
Pointer to a string containing the players's formal name.

dwFlags
DPENUMPLAYERS_LOCAL
DPENUMPLAYERS_REMOTE
DPENUMPLAYERS_GROUP

lpContext
Pointer to a caller-defined context.

Return Value
TRUE Continue the enumeration
FALSE Stop the enumeration

lpContext
Pointer to a caller-defined context that is passed to each enumeration callback.

dwFlags
Not used at this time.

Return Values
DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDFLAGS DPERR_EXCEPTION
DPERR_INVALIDPLAYER

See Also
CreatePlayer, DestroyPlayer

EnumPlayers
This function is used to enumerate the players in a session. Groups can also be included in the
enumeration by using the DPENUMPLAYERS_GROUP flag. By default, the member will enumerate
using the local player list for the current session. This member is often called immediately after the
DirectPlay object is opened. EnumPlayers may be called after the EnumSessions member to obtain a
list of the players in a particular session by using the DPENUMPLAYERS_SESSION flag and the session
id returned from EnumSessions. Note, however, it cannot be called from within an EnumSessions
enumeration. The use of the DPENUMPLAYERS_SESSION flag with this function must occur after a
call to EnumSessions and before any calls to Close or Open.

HRESULT EnumPlayers(
LPDIRECTPLAY lpDirectPlay,
DWORD dwSessionId,
LPDPENUMPLAYERSCALLBACK lpEnumCallback,
LPVOID pContext,
DWORD dwFlags)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
dwSessionID

The DirectPlay session of interest. Not used unless the DPENUMPLAYERS_SESSION flag
is specified.

lpEnumCallback
Points to the function which will be called for every player in the session.
 BOOL EnumCallback(

DPID pidID,
LPSTR lpFriendlyName,
LPSTR lpFormalName,
DWORD dwFlags,
LPVOID lpContext)

pidID
The Player ID of the player being enumerated.

lpFriendlyName
Pointer to a string containing the players's friendly name.

lpFormalName
Pointer to a string containing the players's formal name.

dwFlags
DPENUMPLAYERS_LOCAL
DPENUMPLAYERS_REMOTE
DPENUMPLAYERS_GROUP

lpContext
Pointer to a caller-defined context.

Return Value
TRUE Continue the enumeration
FALSE Stop the enumeration

lpContext
Pointer to a caller-defined context that is passed to each enumeration callback.

dwFlags
DPENUMPLAYERS_GROUP

Include groups in the enumeration of players.
DPENUMPLAYERS_PREVIOUS

Enumerate players previously stored in the registry. Not yet supported.
DPENUMPLAYERS_SESSION

Request the name server for the specified session to supply its group list.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_GENERIC DPERR_UNSUPPORTED
DPERR_EXCEPTION

See Also
CreatePlayer, DestroyPlayer, EnumSessions

EnumSessions
This member is used to enumerate the game sessions connected to this DirectPlay object.
EnumSessions is usually called immediately after the DirectPlay object is instantiated -- it cannot be
called while connected to a session or after a game has created a session. EnumSessions works by
broadcasting an enumeration request and collecting replies from DirectPlay objects that respond. The
amount of time DirectPlay spends listening for these replies is controlled by the dwTimeout parameter.
When this time interval has expired, your callback will be notified using the DPESC_TIMEDOUT flag, and
a NULL will be passed for lpDPSGameDesc. At this point, you may choose to continue the enumeration
by setting *lpdwTimeOut to a new value and returning TRUE, or returning FALSE to cancel the
enumeration.

HRESULT EnumSessions(
LPDIRECTPLAY lpDirectPlay,
LPDPSESSIONDESC lpSDesc,
DWORD dwTimeout,
LPDPENUMSESSIONSCALLBACK lpEnumCallback,
LPVOID lpvContext,
DWORD dwFlags)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
lpSDesc

Points to a DPSESSIONDESC structure describing the sessions to be enumerated. If a list
of all connected sessions, regardless of GUID, is desired, then the guidSession field should
be set to NULL. If the DPENUMSESSIONS_AVAILABLE flag is going to be used with a
password, then szPassword should be set accordingly.

dwTimeout
A timeout value in milliseconds. This value is the total amount of time that DirectPlay will
allow for the enumeration to complete (not the time between enumerations).

lpEnumCallback
Points to the function which will be called for each DirectPlay session responding.
 BOOL EnumCallback(

LPDPSESSIONDESC lpDPSGameDesc,
 LPVOID lpContext,
 LPDWORD lpdwTimeOut,
 DWORD dwFlags)
lpDPSGameDesc

Pointer to a DPSESSIONDESC structure describing the enumerated session. Will be
set to NULL if the enumeration has timed out.

lpContext
Pointer to a caller-defined context.

lpdwTimeOut
Pointer to a DWORD containing the current timeout value. This can be reset if you feel
that some sessions have yet to respond.

dwFlags
DPESC_TIMEDOUT

The enumeration has timed out. Reset *lpdwTimeOut and return TRUE to
continue, or FALSE to stop the enumeration.

Return Value
TRUE Continue the enumeration
FALSE Stop the enumeration

lpContext

Points to a user-defined context that is passed to each enumeration callback.
dwFlags

DPENUMSESSIONS_AVAILABLE
Enumerate all sessions with a matching password (if provided), open player slots, and
EnableNewPlayers set to TRUE.

DPENUMSESSIONS_PREVIOUS
Enumerate sessions previously stored in the registry.

DPENUMSESSIONS_ALL
Enumerate all active sessions connected to this DirectPlay object, regardless of their
occupancy, passwords, or EnableNewPlayers status.

Return Values
DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

See Also
DPSESSIONDESC, EnableNewPlayers

GetCaps
This member returns the capabilities of this DirectPlay object.

HRESULT GetCaps(
LPDIRECTPLAY lpDirectPlay,
LPDPCAPS lpDPCaps)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
lpDPCaps

Points to a DPCAPS structure which will be filled in with the capabilities of the DirectPlay
object.

Return Values
DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

See Also
GetPlayerCaps, DPCAPS

GetMessageCount
This member returns the number of messages queued for a specific local player.

HRESULT GetMessageCount(
LPDIRECTPLAY lpDirectPlay,
DPID pidID,
LPDWORD lpdwCount)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidID

Player ID that the message count is being requested for. The player must be local.
lpdwCount

Points to a DWORD that will be set to the message count.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS DPERR_INVALIDPLAYER

See Also
Receive

GetPlayerCaps
This member returns the capabilities of this player's connection through the DirectPlay object. This
member is needed because communicating with some players maybe slower than communicating with
others.

HRESULT GetPlayerCaps(
LPDIRECTPLAY lpDirectPlay,
DPID pidID
LPDPCAPS lpDPPlayersCaps)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidID

Player ID that the communication capabilities are being requested for.
lpDPPlayerCaps

Points to a DPCAPS structure which will be filled in with the communication capabilities of the
specified player on this DirectPlay object.

Return Values
DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS DPERR_INVALIDPLAYER

See Also
GetCaps

GetPlayerName
This member returns the player's friendly and formal names. If just one of the names is required, the
other pair of pointers can be set to NULL. If the length of the names needs to be determined, the
pointers to the lengths must be valid, but they can either point to zeros or the pointers to the friendly and
formal names should be NULL.

If the supplied buffer is not long enough to hold one of the names, an error code will be returned and the
corresponding buffer length will be adjusted to be the size of the buffer needed.

HRESULT GetPlayerName(
LPDIRECTPLAY lpDirectPlay,
DPID pidID,
LPSTR lpPlayerFriendlyName,
LPDWORD lpdwFriendlyNameLength,
LPSTR lpPlayerName,
LPDWORD lpdwPlayerNameLength)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidID

The Player ID for which the player names are being requested.
lpPlayerFriendlyName

Points to the buffer that should be filled in with the players friendly name. Can be set to
NULL if only looking for the size of the friendly name or if only looking for the formal name.

lpdwFriendlyNameLength
Points to a DWORD that either contains the length of the buffer pointed to by
lpPlayerFriendlyName or will be filled in with the length needed for the buffer. Can be set
to NULL if only interested in the formal name.

lpPlayerFormalName
Points to the buffer that should be filled in with the players formal name. Can be set to NULL
if only looking for the size of the formal name or if only looking for the friendly name.

lpdwFormalNameLength
Points to a DWORD that either contains the length of the buffer pointed to by
lpPlayerFormalName or will be filled in with the length needed for the buffer. Can be set to
NULL if only interested in the friendly name.

Return Values
DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS DPERR_BUFFERTOOSMALL
DPERR_INVALIDPLAYER

See Also
SetPlayerName

Initialize
This member is provided for compliance with the Common Object Model (COM) protocol. Since the
DirectPlay object is initialized when it is created, calling this member will always result in the
DDERR_ALREADYINITIALIZED return value.

HRESULT Initialize(
LPDIRECTPLAY lpDirectPlay,
GUID FAR *lpGUID)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
lpGUID

Points to the GUID used as the interface identifier.
Return Values

DPERR_ALREADYINITIALIZED
See Also

AddRef, QueryInterface

Open
This function actually establishes the communication link. In a modem environment this would be
equivalent to actually dialing the phone. This is where the user interface that is required to configure the
communications protocol will be invoked with the DirectPlay object. In the case of the serial modem
service provider supplied with DirectPlay, the user is prompted for dialing information. If the user cancels
the dialing process, Open will return a USERCANCEL error. Open will also return an error if local
players exist when it is called.

HRESULT Open(
LPDPSESSIONDESC lpSDesc)

Parameters
lpSDesc

Points to the DPSESSIONDESC structure describing the session to be connected to or
created.

Return Values
DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS DPERR_GENERIC
DPERR_UNAVAILABLE DPERR_UNSUPPORTED
DPERR_USERCANCEL DPERR_ACTIVEPLAYERS

See Also
Close, DPSESSIONDESC

QueryInterface
This member is part of the IUnknown interface inherited by DirectPlay. QueryInterface is used to
increase the reference count of the DirectPlay object. This is the member that applications use to
determine whether the DirectPlay object supports additional interfaces that they may be interested in. An
application can ask the DirectPlay object if it supports a particular COM interface and if it does, the
application may begin using that interface immediately. If the application does not want to use that
interface it must call Release to free it. This member allows DirectPlay objects to be extended by
Microsoft and third parties without breaking, or interfering with, each other's existing or future functionality.

HRESULT QueryInterface(
LPDIRECTPLAY lpDirectPlay,
LPVOID riid,
LPVOID FAR* obp)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay.
riid

Points to a UUID. (Universally Unique Identifier)
obp

Points to a pointer that will be filled with the interface pointer if the query is successful.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

See Also
AddRef, Release

Receive
This member is used to retrieve a message from the message queue. Messages received from player
ID 0 are system messages from the name server. Messages sent to the name server as a way to
broadcast them to all players still appear to come from the sender. Both DPRECEIVE_TOPLAYER and
DPRECEIVE_FROMPLAYER may be specified, in which case Receive will return whichever message is
encountered first.

HRESULT Receive(
LPDIRECTPLAY lpDirectPlay,
LPDPID lppidFrom,
LPDPID lppidTo,
DWORD dwFlags,
LPVOID lpvBuffer,
LPDWORD lpdwSize)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
lppidFrom

Points to the DPID structure which is, or will be filled in with, the sender's DPID.
lppidTo

Points to the DPID structure which is, or will be filled in with, the receiver's DPID.
dwFlags

DPRECEIVE_ALL
Return the first available message. This is the default.

DPRECEIVE_TOPLAYER
Return the first message intended for the Player ID pointed to by lppidTo. System
messages are addressed to Player 0.

DPRECEIVE_FROMPLAYER
Return the first message from the Player ID pointed to by lppidFrom.

DPRECEIVE_PEEK
Return a message as specified by the other flags, but do not remove it from the message
queue.

lpvBuffer
Points to the message buffer. If the message buffer is not long enough to hold the message,
an error will be returned and lpdwSize will be filled in with the size of message buffer
needed.

lpdwSize
Points to the DWORD that specifies how long the message buffer is.

Return Values
DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS DPERR_BUFFERTOOSMALL
DPERR_NOMESSAGES DPERR_GENERIC

See Also
Send

Release
This member is part of the IUnknown interface inherited by DirectPlay. Release is used to decrease the
reference count of the DirectPlay object. When the DirectPlay object is initially created, its reference
count is set to one. Each time Release is called by an application, the DirectPlay object reduces the
reference count by one. The DirectPlay object deallocates itself when its reference count goes to zero.
The AddRef member is used to increase the reference count every time a new application binds to the
DirectPlay object.

ULONG Release(
LPDIRECTPLAY lpDirectPlay)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay.
Return Values

SUCCESS Reference count of the object.
FAILURE Zero

See Also
AddRef, QueryInterface

SaveSession
This member function saves the current session in the registry. The functionality of this member is
dependent on the service provider, which will save enough transport-specific information in the registry to
restore the connection. SaveSession is unsupported in the TCP and IPX service providers. In the
serial modem service provider, SaveSession functions only for the client session (the one that dials), in
which case it will save the phone number in the registry for future use.

HRESULT SaveSession(
LPDIRECTPLAY lpDirectPlay)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
Return Values

DP_OK DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS DPERR_GENERIC
DPERR_OUTOFMEMORY DPERR_UNSUPPORTED

See Also
EnumSessions

Send
This member function sends messages to other players, other groups of players, or all the players in the
session. To send a message to another player, specify the receiving player's ID. To send a message to
a group of players, send the message to the player ID assigned to the previously created group. To send
messages to the entire session, the message is sent to the DPID of 0, which always represents the
"name server". Send will either return a code as described below or the number of messages currently
queued for transmission. If the internal queue fills to the limit specified by DPCAPS.dwMaxQueueSize,
an error will be generated and the message will not be added to the queue. Note that Send cannot be
used inside a DirectDraw Lock/Unlock or DirectDraw GetDC/Release DC pair.

HRESULT Send(
LPDIRECTPLAY lpDirectPlay,
DPID pidFrom,
DPID pidTo,
DWORD dwFlags,
LPVOID lpvBuffer,
DWORD dwBuffSize)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidFrom

The DPID of the sending player.
pidTo

The DPID of the receiving player.
dwFlags

The flags indicating how the message should be sent. Note not all options may be
supported by a particular service provider.
DPSEND_GUARANTEE

Send the message using a reliable method. Retry until it is received or the DirectPlay
timeout occurs.

DPSEND_HIGHPRIORITY
Send the message as a HIGHPRIORITY message.

DPSEND_TRYONCE
Send the message without error detection and without retry options enabled.

lpvBuffer
Points to the message being sent.

dwBuffSize
The length of the message being sent.

Return Values
Send will either return a code as summarized below or the number of messages queued for
transmission in DirectPlay's internal queue.

DP_OK DPERR_INVALIDPLAYER
DPERR_INVALIDOBJECT DPERR_INVALIDPARAMS
DPERR_BUSY

See Also
Receive

SetPlayerName
This member changes the player's friendly and formal names. SetPlayerName cannot be used to change
the names of a group.

HRESULT SetPlayerName(
LPDIRECTPLAY lpDirectPlay,
DPID pidID,
LPSTR lpPlayerFriendlyName,
LPSTR lpPlayerFormalName)

Parameters
lpDirectPlay

Points to the DirectPlay structure representing the DirectPlay object.
pidID

The player id for which the player name is being requested.
lpPlayerFriendlyName

A pointer to a string containing the player's new friendly name.
lpPlayerFormalName

A pointer to a string containing the player's new formal name.
Return Values

DP_OK DPERR_INVALIDPLAYER
DPERR_INVALIDOBJECT

See Also
GetPlayerName

Error Codes
DP_OK
DPERR_ACCESSDENIED
DPERR_ACTIVEPLAYERS
DPERR_ALREADYINITIALIZED
DPERR_BUFFERTOOSMALL
DPERR_BUSY
DPERR_CANTADDPLAYER
DPERR_CANTCREATEPLAYER
DPERR_CAPSNOTAVAILABLEYET
DPERR_EXCEPTION
DPERR_GENERIC
DPERR_INVALIDFLAGS
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER
DPERR_NOCAPS
DPERR_NOCONNECTION
DPERR_NOMESSAGES
DPERR_NONAMESERVERFOUND
DPERR_NOPLAYERS
DPERR_NOSESSIONS
DPERR_OUTOFMEMORY
DPERR_TIMEOUT
DPERR_UNAVAILABLE
DPERR_UNSUPPORTED
DPERR_USERCANCEL

DP_OK

Request completed successfully.

DPERR_ACCESSDENIED

The session is full or an incorrect password was supplied.

DPERR_ACTIVEPLAYERS

Cannot perform the requested operation because there are existing active players.

DPERR_ALREADYINITIALIZED

This object is already initialized.

DPERR_BUFFERTOOSMALL

The supplied buffer was not large enough to contain the requested data.

DPERR_BUSY

The DirectPlay message queue is full.

DPERR_CANTADDPLAYER

The player could not be added to the session.

DPERR_CANTCREATEPLAYER

Can't create a new player.

DPERR_CAPSNOTAVAILABLEYET

The capabilities of the DirectPlay object have not been determined yet. This error will occur if the
DirectPlay object is implemented on a connectivity solution that requires polling to determine available
bandwidth and latency.

DPERR_EXCEPTION

An exception occurred when processing the request.

DPERR_GENERIC

Undefined error condition.

DPERR_INVALIDFLAGS

The flags passed to this function are invalid.

DPERR_INVALIDOBJECT

The DirectPlay object pointer is invalid.

DPERR_INVALIDPARAMS

One or more of the parameters passed to the function are invalid.

DPERR_INVALIDPLAYER

The player ID is not recognized as a valid player ID for this game session.

DPERR_NOCAPS

The communication link underneath DirectPlay is not capable of this function.

DPERR_NOCONNECTION

No communication link was established.

DPERR_NOMESSAGES

There are no messages to be received.

DPERR_NONAMESERVERFOUND

No name server could be found or created. A name server must exist in order to create a player.

DPERR_NOPLAYERS

There are no active players in the session.

DPERR_NOSESSIONS

There are no existing sessions for this game.

DPERR_OUTOFMEMORY

Insufficient memory to perform requested operation.

DPERR_TIMEOUT

The operation could not be completed in the specified time.

DPERR_UNAVAILABLE

The requested service provider or session is not available.

DPERR_UNSUPPORTED

The function is not available in this implementation.

DPERR_USERCANCEL

The user cancelled the connection process during a call to Open.

