
DirectSound
    About DirectSound
    IDirectSound Interface
    IDirectSoundBuffer Interface
    Using DirectSound
    DirectSound Reference

DirectSound
    About DirectSound

    Introduction
    Object Types
    Software Emulation
    Device Drivers
    System Integration
    DirectSound Features

    IDirectSound Interface
    IDirectSoundBuffer Interface
    Using DirectSound
    DirectSound Reference

DirectSound
    About DirectSound
    IDirectSound Interface

    Introduction
    Device Capabilities
    Creating Buffers
    Speaker Configuration
    Hardware Memory Management

    IDirectSoundBuffer Interface
    Using DirectSound
    DirectSound Reference

DirectSound
    About DirectSound
    IDirectSound Interface
    IDirectSoundBuffer Interface

    IDirectSoundBuffer Introduction
    Play Management
    Sound-Environment Management
    Information
    Memory Management
    IUnknown Interface

    Using DirectSound
    DirectSound Reference

DirectSound
    About DirectSound
    IDirectSound Interface
    IDirectSoundBuffer Interface
    Using DirectSound

    Introduction
    Implementation: A Broad Overview
    Creating a DirectSound Object
    Querying the Hardware Capabilities
    Creating Sound Buffers
    Writing to Sound Buffers
    Using the DirectSound Mixer
    Using a Custom Mixer
    Using Compressed Wave Formats

    DirectSound Reference

DirectSound
    About DirectSound
    IDirectSound Interface
    IDirectSoundBuffer Interface
    Using DirectSound
    DirectSound Reference

    Functions
    IDirectSound Interface and Member Functions
    IDirectSoundBuffer Interface and Member Functions
    Structures
    Constants

About DirectSound
Microsoft® DirectSound™application programming interface (API) is the audio component of the Microsoft
Windows® 95 Game Software Development Kit (SDK) that provides low-latency mixing, hardware acceleration,
and direct access to the sound device. DirectSound provides this functionality while maintaining compatibility with
existing Windows 95-based applications and device drivers.

The Windows Game subsystem allows game developers access to the display and audio hardware while
insulating them from the specific details of that hardware. The overriding design goal in the Windows Game
subsystem is speed. Instead of providing a high-level set of functions, DirectSound provides a device-independent
interface, allowing applications to take full advantage of the capabilities of the audio hardware.

Object Types
    Introduction
    The DirectSound Object
    The DirectSoundBuffer Object

Object Types
The most fundamental kind of DirectSound object is controlled by the IDirectSound component object model
(COM) interface; this object represents the sound card itself. Member functions of this interface allow your
application to change the characteristics of the card.

The second type of object is a sound buffer. DirectSound uses primary and secondary sound buffers. Primary
sound buffers represent the audio data that is actually heard by the user. Secondary sound buffers represent
individual source sounds. DirectSound provides controls for primary and secondary sound buffers in the
IDirectSoundBuffer COM interface.

Primary buffers control sound characteristics, such as output format and total volume. An application can also write
directly to the primary buffer. However, in this case, the DirectSound mixing and hardware acceleration features
will not be available. In addition, applications that write directly to the primary buffer may interfere with other
DirectSound applications. When possible, applications should write to secondary buffers instead of the primary
buffer. Secondary buffers allow the system to emulate features that might not be present in the hardware, and they
allow the application to share the sound card with other applications in the system.

Secondary buffers represent a single sound source used by the application. Each buffer can be played or stopped
independently; DirectSound mixes all playing buffers into the primary buffer, then outputs the primary buffer to the
sound device. Secondary buffers can reside in hardware or system buffers; hardware buffers are mixed by the
sound device without any system CPU overhead.

Secondary sound buffers can be either streaming buffers or static buffers. A static buffer means that the buffer
contains the entire sound. A streaming buffer means that the buffer only contains part of the sound, and therefore
the application must continually write new data to the buffer while it is playing. DirectSound will attempt to store
static buffers using sound memory located on the sound hardware, if available. Buffers stored on the sound
hardware do not consume system CPU time when they are played, because the mixing is done in hardware.
Reusable sounds, such as gunshots, are the perfect candidates for static buffers.

Your application will work with two significant positions within a sound buffer: the current play position and the
current write position. The current play position indicates the spot in the buffer at which the sound is being played.
The current write position indicates the spot at which your application can safely change the data in the buffer.

Although DirectSound buffers are conceptually circular, they are implemented using contiguous, linear memory.
When the current play position reaches the end of the buffer, it wraps back to the beginning of the buffer.

The DirectSound Object
Each sound device installed in the system is represented by a DirectSound object that is accessed through the
IDirectSound interface. Applications can create a DirectSound object by calling the DirectSoundCreate function
that returns an IDirectSound interface. Applications can enumerate DirectSound objects installed in the system by
calling the DirectSoundEnumerate function.

Windows is a multitasking operating system. Typically users run several programs at once, and expect all of them
to cooperate and share resources. DirectSound objects share sound devices by tracking the input focus and only
produce sound when the owning application currently has the input focus. When an application loses the input
focus, the audio streams from that object are muted. Multiple applications can create DirectSound objects for the
same sound device. When the input focus changes between these applications, the audio output automatically
switches from the streams of one application to the streams of the other. Applications do not have to play and stop
their buffers when the input focus changes.

Note
The header file for DirectSound includes C programming macro definitions for the member functions of the
IDirectSound and IDirectSoundBuffer COM interfaces.

The DirectSoundBuffer Object
Each sound or audio stream is represented by a DirectSoundBuffer object that your application can access
through the IDirectSoundBuffer interface. An application can create DirectSoundBuffer objects by calling the
IDirectSound::CreateSoundBuffer member function that returns an IDirectSoundBuffer interface.

Applications can create primary or secondary sound buffers. As previously stated, a secondary sound buffer
represents a single sound or audio stream. A primary buffer represents the output audio stream that can be a
composite of several mixed secondary buffers. In the current implementation, each DirectSound object has one
and only one primary buffer.

Applications can write data into sound buffers by locking the buffer, writing data to the buffer, and unlocking the
buffer. Your application can lock the buffer by using the IDirectSoundBuffer::Lock member function. This
member function returns a pointer to the locked portion of the buffer. You can copy audio data to the buffer . After
writing data to the buffer, your application must unlock the buffer and complete the write operation by using the
IDirectSoundBuffer::Unlock member function.

The primary sound buffer contains data that is heard. Your application can play audio data from a secondary
sound buffer by using the IDirectSoundBuffer::Play member function. IDirectSoundBuffer::Play causes
DirectSound to begin mixing the secondary buffer into the primary buffer. By default, IDirectSoundBuffer::Play
plays the buffer once and stops at the end. Your application can also play a sound repeatedly in a continuous loop
by specifying the DSBPLAY_LOOPING flag when it calls this member function. Your application can also stop a
buffer that is playing by using the IDirectSoundBuffer::Stop member function.

Generally, the duration of a sound determines how an application uses the associated sound buffer. If the sound
data is only a few seconds long, your application can use a static buffer to store the sound. If the sound is longer
than that, your application should use a streaming buffer.

Your application can create a DirectSoundBuffer object that has a static buffer by using the
IDirectSound::CreateSoundBuffer member function and specifying the DSBCAPS_STATIC flag. DirectSound
attempts to store static buffers using sound memory located on the sound hardware, if that memory is available.
Buffers stored on the sound hardware do not consume system CPU time when they are played, because the
mixing is done in hardware. Reusable sounds (such as engine roars, cheers, and jeers) are perfect candidates for
static buffers.

Streaming buffers can also use hardware mixing if the sound device supports this; however, this is efficient when
an application runs on computers with fast data buses, such as the PCI bus. If the computer does not have a fast
bus, the data transfer overhead outweighs the benefits of hardware mixing. DirectSound will locate streaming
buffers in hardware only if the sound device is located on a fast bus.

Note
The DSBCAPS_STATIC flag used with the IDirectSound::CreateSoundBuffer member function determines
whether the buffer is static or streaming. If this flag is specified, DirectSound creates a static buffer; otherwise,
DirectSound creates a streaming buffer.

Software Emulation
DirectSound emulates the features that a particular sound card does not directly support in software without any
loss of functionality . Applications can query DirectSound to determine the capabilities of the audio hardware by
using the IDirectSound::GetCaps member function. A high-performance game could use this information to scale
its audio features.

Device Drivers
DirectSound accesses the sound hardware through the DirectSound hardware-abstraction layer (HAL), an
interface that is implemented by the audio-device driver. This driver is a Windows 95 audio-device driver that has
been modified to support the HAL. This driver architecture provides backwards compatibility with existing
Windows-based applications. The DirectSound HAL provides the following functionality:

· Acquires and releases control of the audio hardware.
· Describes the capabilities of the audio hardware.
· Performs the specified operation when hardware is available.
· Fails the operation request when hardware is unavailable.
The device driver does not perform any software emulation; it simply reports the capabilities of the hardware to
DirectSound and passes requests from DirectSound to the hardware. If the hardware cannot perform a requested
operation, the device driver fails the request and DirectSound emulates the operation.

If a DirectSound driver is not available, DirectSound communicates with the audio hardware through the standard
Windows 95 or Windows 3.1 audio-device driver. In this case, all DirectSound features are still available through
software emulation, but hardware acceleration is not possible.

System Integration
Using a device driver for the sound hardware that implements the DirectSound HAL provides the best performance
for playing audio. The device driver implements each function of the HAL to leverage the architecture of the sound
hardware and provide functionality and high performance. The HAL describes the capabilities of the hardware to
DirectSound and passes requests from DirectSound to the hardware. If the hardware cannot handle the request,
the driver will fail the call. DirectSound then emulates the request in software.

An application can use DirectSound features even when no DirectSound driver is present. If the sound hardware
does not have an installed DirectSound driver, DirectSound uses its HAL emulation layer. This layer uses the
Windows multimedia waveform functions.

The DirectSound functions and the waveform audio functions provide alternative paths to the waveform-audio
portion of the sound hardware. A single device is limited to access from one path at a time. If a waveform driver
has allocated a device, trying to allocate the device using DirectSound will fail. Similarly, if a DirectSound driver
has allocated a device, trying to allocate the device using the waveform driver will fail.

If an application needs to use both sets of functions, use each set sequentially. For example, your application
could open the sound hardware by using the DirectSoundCreate function, play sounds using the IDirectSound
and IDirectSoundBuffer interfaces, and close the sound hardware by using the IDirectSound::Release member
function. The sound hardware would then be available for the waveform audio functions of the Microsoft Win32®
SDK.

Also, if two sound devices are installed in the system, an application can access each device independently
through either DirectSound or the waveform audio functions.

The waveform audio functions continue to be a practical solution for certain applications. For example, your
application can easily play a single sound or audio stream (such as an introductory sound) by using the
PlaySound function or the waveOut functions.

Note
Microsoft Video For Windows currently uses the waveform audio functions to output the audio track of an AVI
file. Therefore, if an application is using DirectSound and it plays an AVI file, the audio track will not be
audible. Similarly, if the application is playing an AVI file and it attempts to create a DirectSound object, the
creation function will return an error.

For now, an application can release the DirectSound object by calling the IDirectSound::Release member
function before playing an AVI file, and then recreate and reinitialize the DirectSound object and its
DirectSoundBuffer objects when the video finishes playing. For more information about
IDirectSound::Release, see IUnknown Interface.

DirectSound Features
    Mixing
    Hardware Acceleration
    Access to the Primary Buffer

Mixing
The most used feature of DirectSound is low-latency mixing of audio streams. An application creates one or more
secondary sound buffers and writes audio data to them. An application can play or stop any of these buffers.
DirectSound mixes all playing buffers and writes the result to the primary sound buffer (which supplies the sound
hardware with audio data). There is no limit to the number of buffers that can be mixed (except the practical
limitations of available CPU time).

Low-latency means the user experiences no perceptible delay between the time that a buffer plays and the time
that the speakers reproduce the sound. In practical terms, this means the latency is 20 milliseconds or less.
DirectSound mixer provides 20 milliseconds of latency and play begins with no perceptible delay. Therefore, if an
application plays a buffer and immediately begins a screen animation, the audio and the video appear to start
synchronously. Note, however, that if DirectSound uses the HAL emulation layer (that is, if a DirectSound driver for
the sound hardware is not present), the mixer cannot achieve low latency and a hardware-dependent delay
(typically 100-150 milliseconds) occurs before the sound is reproduced.

Because only one application at a time can open a particular DirectSound device, only buffers from that application
are audible.

Hardware Acceleration
DirectSound automatically takes advantage of accelerated sound hardware, including hardware mixing and
hardware sound-buffer memory. Applications do not need to query the hardware or program specifically to use
hardware acceleration.

However, if an application wants to make the best possible use of the hardware resources, it can query
DirectSound to receive a full description of the hardware capabilities of the sound device. From this information,
the application can specify which sound buffers should receive hardware acceleration.

Because the application determines when to use each effect, when to play each buffer, and the priority of each
sound buffer, it can allocate hardware resources as it needs them.

Access to the Primary Buffer
The primary buffer outputs audio samples to the sound device. DirectSound provides direct write access to the
primary sound buffer; however, this feature is useful for a very limited set of applications that require specialized
mixing or effects not supported by secondary buffers. Applications that directly access the primary buffer are
subject to very stringent performance requirements; it is difficult to avoid gaps when playing audio that is written
directly to the primary buffer.

A primary buffer is typically very small, so an application that writes directly to one of these buffers must write
blocks of data at short intervals to prevent the previous block in the buffer from being repeated. An application
cannot specify the size of the buffer and must simply accept the buffer size returned when the buffer is created.

When an application obtains write access to a primary sound buffer, other DirectSound features become
unavailable. Secondary buffers are not mixed and, consequently, hardware-acceleration mixing is unavailable.
(When DirectSound mixes sounds from secondary buffers, it places the mixed audio data in the primary buffer.)

Most applications should use secondary buffers instead of directly accessing the primary buffer. An application can
write to a secondary buffer easily because its larger buffer size provides much more time to write the next block of
data, thereby minimizing the risk of gaps in the audio. Even an application that has simple audio requirements,
such as using one stream of audio data where mixing is not needed, will achieve better performance by using a
secondary buffer to play its audio data.

IDirectSound Interface
A DirectSound object describes the audio hardware on a system. The audio data itself resides in a buffer called a
DirectSoundBuffer object. For more information about DirectSound buffers, see IDirectSoundBuffer Introduction.
The IDirectSound COM interface enables an application to define and control the sound card, speaker, and
memory environment.

This topic discusses the member functions of the IDirectSound COM interface.

Device Capabilities
After calling DirectSoundCreate to create a DirectSound object, your application can retrieve the capabilities of
the sound device by using the IDirectSound::GetCaps member function. For optimal performance, your
application should call IDirectSound::GetCaps to determine the capabilities of the resident sound card and
modify the game’s sound parameters as appropriate.

Creating Buffers
After calling the DirectSoundCreate function to create a DirectSound object and investigating the capabilities of
the sound device, your application can create and enumerate the sound buffers that contain audio data. The
IDirectSound::CreateSoundBuffer member function creates a sound buffer.
IDirectSound::DuplicateSoundBuffer creates a second sound buffer using the same physical buffer memory. An
application that duplicates a sound buffer can play both buffers independently without wasting buffer memory.

Your application must use the IDirectSound::SetCooperativeLevel member function to set its cooperation level
for a sound device before playing any sound buffers. Most applications use a “normal” priority level, which ensures
that they will not conflict with other applications.

Speaker Configuration
The IDirectSound interface contains two member functions that allow your application to investigate and set the
configuration of the system’s speakers. These member functions are IDirectSound::GetSpeakerConfig and
IDirectSound::SetSpeakerConfig. Currently recognized configurations include headphones, binaural
headphones, stereo, quadraphonic, and surround sound.

Hardware Memory Management
Your application can use the IDirectSound::Compact member function to move any onboard sound memory into
a contiguous block to make the largest portion of free memory available.

IDirectSoundBuffer Introduction
Audio data resides in a DirectSound buffer. An application creates DirectSound buffers for each sound or audio
stream to be played.

The primary sound buffer represents the actual audio samples output to the sound device. These samples can be
a single audio stream or the result of mixing several audio streams. The audio data in a primary sound buffer is
typically not accessed directly by applications; however, the primary buffer can be used for control purposes, such
as setting the output volume or wave format.

Secondary sound buffers represent a single output stream or sound. Your application can play these buffers into
the primary sound buffer. Secondary sound buffers that play concurrently are mixed into the primary buffer, which
is then sent to the sound device.

The IDirectSoundBuffer COM interface enables your application to work with buffers of audio data. This topic
discusses the member functions of the IDirectSoundBuffer interface.

Play Management
Your application can use the IDirectSoundBuffer::Play and IDirectSoundBuffer::Stop member functions to
control the real-time playback of sound. Your application can play a sound using IDirectSoundBuffer::Play. If the
buffer is played with looping specified, the buffer repeats until your application calls IDirectSoundBuffer::Stop.
Otherwise, the buffer stops automatically when the end of the buffer is reached.

The IDirectSound::Lock member function retrieves a write pointer into the current sound buffer. After writing
audio data into the buffer, your application must unlock the buffer by using the IDirectSound::Unlock member
function. Applications should not leave the buffer locked for extended periods

To retrieve or set the current position in the sound buffer, an application can call
IDirectSound::GetCurrentPosition or IDirectSound::SetCurrentPosition.

Sound-Environment Management
To retrieve and set the volume at which a buffer is played, your application can use the
IDirectSoundBuffer::GetVolume and IDirectSoundBuffer::SetVolume member functions. Setting the volume on
the primary sound buffer has the effect of changing the waveform volume of the sound card.

Similarly, the IDirectSoundBuffer::GetFrequency and IDirectSoundBuffer::SetFrequency functions retrieve
and set the frequency at which audio samples are played. The frequency of the primary buffer cannot be changed.

To retrieve and set the pan, your application can call the IDirectSoundBuffer::GetPan and
IDirectSoundBuffer::SetPan member functions. The pan of the primary buffer cannot be changed.

Information
The IDirectSoundBuffer::GetCaps member function retrieves the capabilities of the DirectSoundBuffer object.
Your application can use the IDirectSoundBuffer::GetStatus member function to find out whether the current
sound buffer is playing or has stopped.

Your application can use the IDirectSoundBuffer::GetFormat member function to retrieve information about the
format of the sound data in the buffer. Your application can use the IDirectSoundBuffer::GetFormat and
IDirectSoundBuffer::SetFormat member functions to set the format of the sound data in the primary buffer.

Note
The format for a secondary buffer is fixed. If your application needs a secondary buffer that uses another
format, it should create a new sound buffer with the desired format.

Memory Management
Your application can use the IDirectSoundBuffer::Restore memory-management function to restore the sound
buffer memory for a specified DirectSoundBuffer object. Although this is useful if the buffer has been lost, the
IDirectSoundBuffer::Restore function cannot restore the content of the memory, only the memory itself. Once
the buffer memory is restored, it must be rewritten with valid sound data.

IUnknown Interface
Like all COM interfaces, the IDirectSound and IDirectSoundBuffer interfaces also include the AddRef, Release,
and QueryInterface member functions. The AddRef function increases the reference count of the object and the
Release function decreases the reference count. Applications use the QueryInterface function to determine what
additional interfaces are supported by an object. For a description of these functions, see DirectDraw.

When an object is created, its reference count is set to one. Each time a new application binds to the object or a
previously bound application binds to a different COM interface of the object, the reference count is increased by
one. The object deallocates itself when its reference count goes to zero. The Release member notifies the object
that an application is no longer bound to the object.

An application can use the QueryInterface function to ask an object if it supports a particular COM interface. If it
does, the application may begin using that interface immediately. If the application does not want to use that
interface, it must call Release to free it. QueryInterface allows objects to be extended by Microsoft and third
parties without breaking, or interfering with, each other’s existing or future functionality.

The AddRef function uses one parameter that points to the object: either LPDIRECTSOUND or
LPDIRECTSOUNDBUFFER. This function returns a doubleword value specifying the new reference count for the
object.

The Release function uses one parameter that points to the object: either LPDIRECTSOUND or
LPDIRECTSOUNDBUFFER. This function returns a doubleword value specifying the new reference count for the
object.

The QueryInterface function uses two parameters in addition to the first parameter that points to the object. The
second parameter, whose type is REFIID, specifies a GUID identifying the requested interface. The third
parameter is a pointer to a location that is filled with the returned interface pointer if the query is successful; the
type of this parameter is LPVOID FAR *. QueryInterface returns an HRESULT: DS_OK if it is successful, or either
DSERR_INVALIDPARAM or E_NOINTERFACE if there is an error.

Note
DirectSoundBuffer objects are owned by the DirectSound object which created them.    When the DirectSound
object is released, all buffers created by that object will be released as well, and should not be referenced.

Using DirectSound
This topic describes the programming model for DirectSound and provides some guidelines for typical tasks.

Implementation: A Broad Overview
Your application should follow these basic steps to implement DirectSound. These steps and additional
functionality are discussed in greater detail later in this <chapter>.

1. Create a DirectSound object, by calling the DirectSoundCreate function.
2. Specify a cooperative level, by calling IDirectSound::SetCooperativeLevel. Most applications use the lowest

level, DSSCL_NORMAL.
3. Create secondary buffers, using IDirectSound::CreateSoundBuffer. You need not specify that they are

secondary buffers in the DSBUFFERDESC structure, because creating secondary buffers is the default case.
4. Load the secondary buffers with data. Use IDirectSoundBuffer::Lock to obtain a pointer to the data area and

IDirectSoundBuffer::Unlock to set the data to the device.
5. Use IDirectSoundBuffer::Play to play the secondary buffers.
6. Stop all buffers when you have finished playing sounds, using IDirectSoundBuffer::Stop method of the

DirectSoundBuffer object.
7. Release the secondary buffers.
8. Release the DirectSound object.
Your application can also perform the following optional items:

1. Set the output format of the primary buffer by creating a primary sound buffer and calling
IDirectSoundBuffer::SetFormat. This operation requires your application to set the cooperative level to
DSSCL_PRIORITY before setting the output format of the primary buffer.

2. Create a primary sound buffer and play the buffer using IDirectSoundBuffer::Play. This guarantees that the
primary buffer is always playing, even if no secondary buffers are playing. This action consumes some of the
CPU bandwidth, but it reduces startup time when the first secondary buffer is played.

Creating a DirectSound Object
The easiest way to create a DirectSound object is to call DirectSoundCreate and specify a NULL GUID. This will
attempt to create the object corresponding to the default Windows wave device. You must then call
IDirectSound::SetCooperativeLevel; no sound buffers can be played until this call has been made:

LPDIRECTSOUND lpDirectSound;
if(DS_OK == DirectSoundCreate(NULL, &lpDirectSound, NULL)) {
 // Create succeeded!
 lpDirectSound->lpVtbl->SetCooperativeLevel(lpDirectSound,
 hwnd, DSSCL_NORMAL);
 // .
 // . Place code to access DirectSound object here.
 // .
} else {
 // Create failed!
 // .
 // .
 // .
}

The DirectSoundEnumerate function can be used to specify the particular sound device to create. To use this
function, you must create a DirectSoundEnumCallback function, and usually an instance data structure:

typedef struct {
 // storage for GUIDs
 // storage for device description strings
} APPINSTANCEDATA, *LPAPPINSTANCEDATA;
BOOL AppEnumCallbackFunction(
 LPGUID lpGuid,
 LPTSTR lpstrDescription,
 LPTSTR lpstrModule,
 LPVOID lpContext)
{
 LPAPPINSTANCEDATA lpInstance = (LPAPPINSTANCEDATA)lpContext;
 // Copy GUID into lpInstance structure.
 // Strcpy description string into lpInstance structure.
 return TRUE; // Continue enumerating.
}

Then, to create the DirectSound object, the application would use code like this:

AppInitDirectSound()
{
 APPINSTANCEDATA AppInstanceData;
 LPGUID lpGuid;
 LPDIRECTSOUND lpDirectSound;
 HRESULT hr;
 DirectSoundEnumerate(AppEnumCallbackFunction, &AppInstanceData);
 lpGuid = AppLetUserSelectDevice(&AppInstanceData);

 // The application should check the return value of
 // DirectSoundCreate for errors.

 hr = DirectSoundCreate(lpGuid, &lpDirectSound, NULL);
 // .
 // .
 // .
}

The DirectSoundCreate function will fail if there is no sound device, or if the sound device (as specified by the

lpGuid parameter) has been allocated through the wave functions. Applications should be prepared for this call to
fail, and should either continue without sound or prompt the user to close the application that is using the sound
device.

Querying the Hardware Capabilities
DirectSound provides the ability to retrieve the hardware capabilities of the sound device used by a DirectSound
object. Most applications will not need to do this; DirectSound will automatically take advantage of hardware
acceleration without intervention by the application. However, high-performance applications can use this
information to scale their sound requirements to the available hardware. For example, an application might play
more sounds if hardware mixing is available.

To retrieve the hardware capabilities, use the IDirectSound::GetCaps member function, which will fill in a
DSCAPS structure:

AppDetermineHardwareCaps(LPDIRECTSOUND lpDirectSound)
{
 DSCAPS dscaps;
 HRESULT hr;

dscaps.dwSize = sizeof(DSCAPS);
 hr = lpDirectSound->lpVtbl->GetCaps(lpDirectSound, &dscaps);
 if(DS_OK == hr) {
 // Succeeded, now parse DSCAPS structure.
 // .
 // .
 // .
 }
 // .
 // .
 // .
}

The DSCAPS structure contains information about the performance and resources of the sound device, including
the maximum resources of each type and the currently free resources. Note that there may be trade-offs between
the various resources; for example, allocating a single hardware streaming buffer might consume two static mixing
channels. Applications which scale to the hardware capabilities should call IDirectSound::GetCaps between
every buffer allocation to determine if there are enough resources for the next buffer, rather than making
assumptions about the resource trade-offs.

Do not make assumptions about the behavior of the sound device; otherwise your application will work on some
sound devices but not others. Furthermore, advanced devices are currently under development which will behave
differently from existing devices.

When attempting to allocate hardware resources, always handle the error case gracefully (that is, attempt to
allocate it as a software buffer instead). Applications should not assume that they have complete access to all
hardware resources. Because Windows 95 is a multitasking operating system, the IDirectSound::GetCaps
member function might indicate a free resource, but by the time the application attempts to allocate the resource, it
may have been allocated to another application.

Creating Sound Buffers
    Introduction
    Creating a Basic Sound Buffer
    Control Options
    Static and Streaming Sound Buffers
    Hardware and Software Sound Buffers
    Primary and Secondary Sound Buffers

Creating Sound Buffers
This topic discusses the topics such as creating a basic sound buffer and distinguishing between primary and
secondary buffers.

Creating a Basic Sound Buffer
To create a sound buffer, an application fills in a DSBUFFERDESC structure and then calls
IDirectSound::CreateSoundBuffer. This member function creates a DirectSoundBuffer object and returns a
pointer to an IDirectSoundBuffer interface. This interface can be used to write, manipulate, and play the buffer.

Applications should create buffers for the most important sounds first, and continue in descending order of
importance. DirectSound allocates hardware resources to the first buffer that can take advantage of them.

The following code fragment illustrates how to create a basic secondary buffer:

BOOL AppCreateBasicBuffer(
 LPDIRECTSOUND lpDirectSound,
 LPDIRECTSOUNDBUFFER *lplpDsb)
{
 PCMWAVEFORMAT pcmwf;
 DSBUFFERDESC dsbdesc;
 HRESULT hr;
 // Set up wave format structure.
 memset(&pcmwf, 0, sizeof(PCMWAVEFORMAT));
 pcmwf.wf.wFormatTag = WAVE_FORMAT_PCM;
 pcmwf.wf.nChannels = 2;
 pcmwf.wf.nSamplesPerSec = 22050;
 pcmwf.wf.nBlockAlign = 4;
 pcmwf.wf.nAvgBytesPerSec =
 pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;
 pcmwf.wBitsPerSample = 16;
 // Set up DSBUFFERDESC structure.
 memset(&dsbdesc, 0, sizeof(DSBUFFERDESC)); // Zero it out.
 dsbdesc.dwSize = sizeof(DSBUFFERDESC);
 dsbdesc.dwFlags = DSBCAPS_CTRLDEFAULT; // Need default controls
 (pan, volume, frequency).
 dsbdesc.dwBufferBytes = 3 * pcmwf.wf.nAvgBytesPerSec; // 3 second
 buffer.
 dsbdesc.lpwfxFormat = (LPWAVEFORMATEX)&pcmwf;
 // Create buffer.
 hr = lpDirectSound->lpVtbl->CreateSoundBuffer(lpDirectSound,
 &dsbdesc, lplpDsb, NULL);
 if(DS_OK == hr) {
 // Succeeded! Valid interface is in *lplpDsb.
 return TRUE;
 } else {
 // Failed!
 *lplpDsb = NULL;
 return FALSE;
 }
}

Control Options
When creating a sound buffer, applications must specify the control options needed for that buffer. The dwFlags
member of the DSBUFFERDESC structure can contain one or more DSBCAPS_CTRL flags. DirectSound uses
this information when allocating hardware resources to sound buffers. For example, a particular device might
support hardware buffers but not provide pan control on those buffers. In this case, DirectSound would only use
the hardware acceleration if DSBCAPS_CTRLPAN was not specified.

To obtain the best performance on all sound cards, applications should only specify those control options which
they will actually use.

If an application attempts to call a control function that a buffer lacks, the function fails. For example, if an
application attempts to change the volume by using IDirectSoundBuffer::SetVolume, the function succeeds if the
DSBCAPS_CTRLVOLUME flag was specified when the buffer was created. Otherwise, the function fails and
returns the DSERR_CONTROLUNAVAIL code. Providing controls for the buffers helps to ensure that all
applications run correctly on all sound devices, present and future.

Static and Streaming Sound Buffers
A static sound buffer is a buffer that contains a complete sound in memory. Static buffers are convenient because
the entire sound can be written once to the buffer.

A streaming buffer is a buffer that only represents a portion of the sound, such as a buffer that can hold three
seconds of audio data that plays a two-minute sound. In this case, the application must periodically write new data
into the sound buffer; however, the buffer takes up much less memory.

When creating a sound buffer, an application can indicate that a buffer is static by specifying the
DSBCAPS_STATIC flag. If this flag is not specified, the buffer is a streaming buffer.

On sound devices with onboard sound memory, DirectSound attempts to locate static buffers in the hardware
memory. These buffers can then take advantage of hardware mixing with the benefit that the system CPU incurs
no overhead to mix these sounds. This is particularly useful for sounds that will be played more than once (such as
the sound a character makes while walking or a firearm going off) because the sound data only needs to be
downloaded once to the hardware memory.

Streaming buffers are generally located in main system memory to allow efficient writing to the buffer (although
hardware mixing can be used on PCI machines or other fast buses). There are no requirements on the use of
streaming buffers. For example, you can write an entire sound into a streaming buffer if it is big enough. In fact, if
you do not intend to reuse the sound (that is, play it more than once) it may be more efficient to use a streaming
buffer because the sound data need not be downloaded to the hardware memory.

Note
The designation of a buffer as static versus streaming is used by DirectSound to optimize performance; it
does not restrict how an application can use the buffer.

Hardware and Software Sound Buffers
A hardware sound buffer is a buffer whose mixing is performed by a hardware mixer located on the sound device.
A software sound buffer is a buffer whose mixing is performed by the system CPU. In most cases, applications
should simply specify whether the buffer is a static or streaming buffer; DirectSound will locate the buffer in
hardware or software as appropriate.

However, if an application wishes to explicitly locate buffers in hardware or software, it may do so by specifying
either the DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE flags in the DSBUFFERDESC structure.
Note that if the DSBCAPS_LOCHARDWARE flag is specified and there is insufficient hardware memory or mixing
capacity, the buffer creation request will fail. Note also that most existing sound devices do not have any hardware
memory or mixing capacity, so no hardware buffers can be created on these devices.

The location of a sound buffer (hardware or software) can be determined by calling
IDirectSoundBuffer::GetCaps and checking the dwFlags member of the DSBCAPS structure for either the
DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE flags. One or the other will always be specified.

Primary and Secondary Sound Buffers
A primary sound buffer represents the actual audio samples that the listener will hear. A secondary buffer
represents a single sound or stream of audio. An application can create a primary buffer by specifying the
DSBCAPS_PRIMARYBUFFER flag in the DSBUFFERDESC structure. If this flag is not specified, a secondary
buffer will be created.

Most applications should create secondary sound buffers for each sound in the application (or each portion of the
application; sound buffers can be reused by overwriting the sound data). DirectSound takes care of hardware
resource allocation, and mixing together all playing buffers.

Applications which use secondary buffers may want to create a primary sound buffer to perform certain control
functions. For example, an application can control the hardware output format by calling
IDirectSoundBuffer::SetFormat on the primary buffer. However, any functions that access the actual buffer
memory (such as IDirectSoundBuffer::Lock and IDirectSoundBuffer::GetCurrentPosition) will fail.

For applications that perform their own mixing, DirectSound provides write access to the primary buffer. The
application is responsible for writing data into this buffer in a timely manner; if the application neglects to update
the data, the previous buffer will repeat itself causing gaps in the audio. Write access to the primary buffer is only
available to applications which have the DSSCL_WRITEPRIMARY cooperative level. At this cooperative level, no
secondary buffers can be played.

Note that primary sound buffers must be played with looping (that is, the DSBPLAY_LOOPING flag must be set).

The following code fragment is an example of how to obtain write access to the primary buffer:

BOOL AppCreateWritePrimaryBuffer(
 LPDIRECTSOUND lpDirectSound,
 LPDIRECTSOUNDBUFFER *lplpDsb,
 LPDWORD lpdwBufferSize,
 HWND hwnd)
{
 DSBUFFERDESC dsbdesc;
 DSBCAPS dsbcaps;
 HRESULT hr;
 // Set up wave format structure.
 memset(&pcmwf, 0, sizeof(PCMWAVEFORMAT));
 pcmwf.wf.wFormatTag = WAVE_FORMAT_PCM;
 pcmwf.wf.nChannels = 2;
 pcmwf.wf.nSamplesPerSec = 22050;
 pcmwf.wf.nBlockAlign = 4;
 pcmwf.wf.nAvgBytesPerSec =
 pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;
 pcmwf.wBitsPerSample = 16;
 // Set up DSBUFFERDESC structure.
 memset(&lplpDsb, 0, sizeof(DSBUFFERDESC)); // Zero it out.
 dsbdesc.dwSize = sizeof(DSBUFFERDESC);
 dsbdesc.dwFlags = DSBCAPS_PRIMARYBUFFER;
 dsbdesc.dwBufferBytes = 0; // Buffer size is determined
 // by sound hardware.
 dsbdesc.lpwfxFormat = NULL; // Must be NULL for primary buffers.

 // Obtain write-primary cooperative level.
 hr = lpDirectSound->lpVtbl->SetCooperativeLevel(lpDirectSound,
 hwnd, DSSCL_WRITEPRIMARY);
 if(DS_OK == hr) {
 // Succeeded! Try to create buffer.
 hr = lpDirectSound->lpVtbl->CreateSoundBuffer(lpDirectSound,
 &dsbdesc, lplpDsb, NULL);
 if(DS_OK == hr) {
 // Succeeded! Set primary buffer to desired format.

 hr = (*lplpDsb)->lpVtbl->SetFormat(*lplpDsb, &pcmwf); if(DS_OK
== hr) {
 // If you want to know the buffer size, call GetCaps.

dsbcaps.dwSize = sizeof(DSBCAPS);
 (*lplpDsb)->lpVtbl->GetCaps(*lplpDsb, &dsbcaps);
 *lpdwBufferSize = dsbcaps.dwBufferBytes;
 return TRUE;
 }
 }
 }
 // If we got here, then we failed SetCooperativeLevel.
 // CreateSoundBuffer, or SetFormat.
 *lplpDsb = NULL;
 *lpdwBufferSize = 0;
 return FALSE;
}

Writing to Sound Buffers
An application can obtain write access to a sound buffer by using the IDirectSoundBuffer::Lock member
function. Once locked, an application can write or copy data to the buffer. An application must unlock the buffer
memory by using the IDirectSoundBuffer::Unlock member function.

When locking a sound buffer, DirectSound returns two write pointers. This is because streaming sound buffers
usually wrap around and continue playing from the beginning of the buffer. For example, if an application tries to
lock 300 bytes starting halfway into a 400 byte buffer, IDirectSoundBuffer::Lock would return a pointer to the last
200 bytes of the buffer, and a second pointer to the first 100 bytes. Depending on the offset and the length of the
buffer, the second pointer may be NULL.

Developers should be aware that memory for a sound buffer can be lost in certain situations. In particular, this
might occur when buffers are located in hardware sound memory. In the most dramatic case, the sound card itself
might be removed from the system while being used; this situation can occur with PCMCIA sound cards. It can
also occur when an application with the write-primary cooperative level (DSSCL_WRITEPRIMARY flag) gains the
input focus. DirectSound makes all other sound buffers lost so that the application with the focus can write directly
to the primary buffer. If this happens, DirectSound returns the DSERR_BUFFERLOST error code in response to
IDirectSoundBuffer::Lock and IDirectSoundBuffer::Play. When the application lowers its cooperative level from
write-primary or loses the input focus, other applications can attempt to reallocate the buffer memory by calling
IDirectSoundBuffer::Restore. If successful, this function restores the buffer memory and all other setting for the
buffer, such as volume and pan settings. However, a restored buffer does not contain valid sound data. The
application must rewrite the data to the restored buffer.

The following function writes data to a sound buffer using IDirectSoundBuffer::Lock and
IDirectSoundBuffer::Unlock:

BOOL AppWriteDataToBuffer(
 LPDIRECTSOUNDBUFFER lpDsb,
 DWORD dwOffset,
 LPBYTE lpbSoundData,
 DWORD dwSoundBytes)
{
 LPVOID lpvPtr1;
 DWORD dwBytes1;
 LPVOID lpvPtr2;
 DWORD dwBytes2;
 HRESULT hr;
 // Obtain write pointer.
 hr = lpDsb->lpVtbl->Lock(lpDsb, dwOffset, dwSoundBytes, &lpvPtr1,
 &dwBytes1, &lpvPtr2, &dwBytes2, 0);

 // If we got DSERR_BUFFERLOST, restore and retry lock.
 if(DSERR_BUFFERLOST == hr) {
 lpDsb->lpVtbl->Restore(lpDsb);
 hr = lpDsb->lpVtbl->Lock(lpDsb, dwOffset, dwSoundBytes,
 &lpvPtr1, &dwAudio1, &lpvPtr2, &dwAudio2, 0);
 }
 if(DS_OK == hr) {
 // Write to pointers.
 CopyMemory(lpvPtr1, lpbSoundData, dwBytes1);
 if(NULL != lpvPtr2) {
 CopyMemory(lpvPtr2, lpbSoundData+dwBytes1, dwBytes2);
 }
 // Release the data back to DirectSound.
 hr = lpDsb->lpVtbl->Unlock(lpDsb, lpvPtr1, dwBytes1, lpvPtr2,
 dwBytes2);
 if(DS_OK == hr) {
 // Success!
 return TRUE;
 }
 }

 // If we got here, then we failed Lock, Unlock, or Restore.
 return FALSE;
}

Using the DirectSound Mixer
It is easy to mix multiple streams with DirectSound. An application simply creates secondary buffers, receiving an
IDirectSoundBuffer interface for each sound. It then uses these interfaces to write data into the buffers using the
IDirectSoundBuffer::Lock and IDirectSoundBuffer::Unlock member functions and plays the buffers using the
IDirectSoundBuffer::Play member function. The buffers can be stopped at any time by calling the
IDirectSoundBuffer::Stop member function.

The IDirectSoundBuffer::Play member function always starts playing at the buffer’s current position. The current
position is specified by an offset (in bytes) into the buffer. The current position of newly created buffers is zero.
When a buffer is stopped, the current position is immediately after the next sample played. The current position
can be set explicitly by calling IDirectSoundBuffer::SetCurrentPosition, and can be queried by calling
IDirectSoundBuffer::GetCurrentPosition.

By default, IDirectSoundBuffer::Play will stop playing when it reaches the end of the buffer. This is the correct
behavior for nonlooping static buffers. (The current position will be reset to the beginning of the buffer at this point.)
For streaming buffers or for static buffers that continuously repeat, applications should call
IDirectSoundBuffer::Play and specify DSBPLAY_LOOPING in the dwFlags parameter. The buffer will loop back
to the beginning of the buffer when it reaches the end.

For streaming buffers, the application is responsible for ensuring that the next block of data is written into the
buffer before the play cursor loops back to the beginning. This can be done by using the Win32 functions SetTimer
or timeSetEvent to cause a message or callback to occur at regular intervals. In addition, many DirectSound
applications will already have a real-time DirectDraw component which needs to service the display at regular
intervals; this component should be able to service DirectSound buffers as well. For optimal efficiency, an
application should write at least one second ahead of the current play cursor to minimize the possibility of gaps in
the audio output during playback.

The DirectSound mixer can obtain the best usage out of hardware acceleration if the application correctly specifies
the DSBCAPS_STATIC flag for static buffers. This flag should be specified for any static buffers that will be reused.
DirectSound will download these buffers to the sound hardware memory (where available), and will thereby not
incur any CPU overhead in mixing these buffers. The most important static buffers should be created first, in order
to give them first priority at hardware acceleration.

The DirectSound mixer will produce the best sound quality if all of the application’s sounds use the same wave
format and the application matches the hardware output format to the format of the sounds. Then the mixer does
not need to perform any format conversion.

The hardware output format can be changed by creating a primary buffer and calling
IDirectSoundBuffer::SetFormat. Note that this primary buffer is for control purposes only; only applications with
a cooperative level of DSSCL_PRIORITY or higher can call this function. DirectSound will then restore the
hardware format to the format specified in the last IDirectSoundBuffer::SetFormat call whenever the application
gains the input focus.

Using a Custom Mixer
Most applications should use the DirectSound mixer, as it should be sufficient for almost all mixing needs and it
automatically takes advantage of hardware acceleration, when available. However, if an application requires some
other functionality that DirectSound does not provide, it can obtain write access to the primary buffer and mix
streams directly into this buffer. This feature is provided for completeness, and should only be useful for a very
limited set of high-performance applications. Applications that take advantage of this feature are subject to very
stringent performance requirements; it is difficult to avoid gaps in the audio.

To implement a custom mixer, an application should first obtain the DSSCL_WRITEPRIMARY cooperative level
and then create a primary sound buffer. The application can then call IDirectSoundBuffer::Lock, write data into
the returned pointers, and call IDirectSoundBuffer::Unlock to release the data back to DirectSound. The
application must explicitly play the primary buffer by calling IDirectSoundBuffer::Play to reproduce the sound
data at the speakers. Note that the DSBPLAY_LOOPING flag must be specified or the IDirectSoundBuffer::Play
call will fail.

The following example illustrates how an application might implement a custom mixer. This function would have to
be called at regular intervals, frequently enough to prevent the sound device from repeating blocks of data. The
CustomMixer() function is an application-defined function which mixes several streams together (as specified in
the application-defined AppStreamInfo structure) and writes the result into the pointer specified:

BOOL AppMixIntoPrimaryBuffer(
 LPAPPSTREAMINFO lpAppStreamInfo,
 LPDIRECTSOUNDBUFFER lpDsbPrimary,
 DWORD dwDataBytes,
 DWORD dwOldPos,
 LPDWORD lpdwNewPos)
{
 LPVOID lpvPtr1;
 DWORD dwBytes1;
 LPVOID lpvPtr2;
 DWORD dwBytes2;
 HRESULT hr;
 // Obtain write pointer.
 hr = lpDsbPrimary->lpVtbl->Lock(lpDsbPrimary, dwOldPos, dwDataBytes,
 &lpvPtr1, &dwBytes1, &lpvPtr2, &dwBytes2, 0);
 // If we got DSERR_BUFFERLOST, restore and retry lock.
 if(DSERR_BUFFERLOST == hr) {
 lpDsbPrimary->lpVtbl->Restore(lpDsbPrimary);
 hr = lpDsbPrimary->lpVtbl->Lock(lpDsbPrimary, dwOldPos,
 dwDataBytes, &lpvPtr1, &dwBytes1, &lpvPtr2, &dwBytes2, 0);
 }
 if(DS_OK == hr) {
 // Mix data into the returned pointers.
 CustomMixer(lpAppStreamInfo, lpvPtr1, dwBytes1);
 *lpdwNewPos = dwOldPos + dwBytes1;
 if(NULL != lpvPtr2) {
 CustomMixer(lpAppStreamInfo, lpvPtr2, dwBytes2);
 *lpdwNewPos = dwBytes2; // Because we wrapped around.
 }
 // Release the data back to DirectSound.
 hr = lpDsbPrimary->lpVtbl->Unlock(lpDsbPrimary, lpvPtr1,
 dwBytes1, lpvPtr2, dwBytes2);
 if(DS_OK == hr) {
 // Success!
 return TRUE;
 }
 }
 // If we got here, then we failed Lock or Unlock.
 return FALSE;
}

Using Compressed Wave Formats
DirectSound does not currently support compressed wave formats. Applications should use the Audio
Compression Manager (ACM) functions (provided with the Win32 SDK) to convert compressed audio to PCM data
before writing the data to a sound buffer. In fact, by locking a pointer to the sound buffer memory and passing this
pointer to the ACM, the data can be decoded directly into the sound buffer for maximum efficiency.

Functions
    DirectSoundCreate
    DirectSoundEnumCallback
    DirectSoundEnumerate

DirectSoundCreate
HRESULT DirectSoundCreate(GUID FAR * lpGuid,
 LPDIRECTSOUND * ppDS, IUnknown FAR *pUnkOuter);

Creates and initializes an IDirectSound interface.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_ALLOCATED The function failed because resources (such

as a priority level) were already in use by
another caller.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_NOAGGREGATION This object does not support aggregation.

DSERR_NODRIVER    No sound driver is available for use.

DSERR_OUTOFMEMORY The DirectSound subsystem couldn't allocate
sufficient memory to complete the caller's
request.

lpGuid
Address of the GUID identifying the sound device. The value of this parameter must be one of the GUIDs
returned by DirectSoundEnumerate or NULL to request the default device.

ppDS
Address of a pointer to a DirectSound object created in response to this member function.

pUnkOuter
Controlling unknown of the aggregate. Must be NULL.

An application must call IDirectSound::SetCooperativeLevel immediately after creating a DirectSound object

DirectSoundEnumCallback
BOOL DirectSoundEnumCallback(GUID FAR * lpGuid, LPSTR lpstrDescription,
 LPSTR lpstrModule, LPVOID lpContext);

Application-defined callback function to enumerate the DirectSound drivers. The system calls this function in
response to an application’s previous call to the DirectSoundEnumerate function.

· Returns TRUE to continue enumerating or FALSE to stop enumerating drivers.
lpGuid

The GUID identifying the DirectSound driver being enumerated.    This value can be passed to
DirectSoundCreate to create a DirectSound object for that driver.

lpstrDescription
Address of a null-terminated string giving a textual description of the DirectSound device.

lpstrModule
Address of a null-terminated string specifying the module name of the DirectSound driver corresponding to this
device.

lpContext
Address of application-defined data that is passed to each callback function.

An application can save the strings passed in lpstrDescription and lpstrModule, by copying them into memory
allocated from the heap. The memory used to pass the strings to this callback function is valid only during this
callback function.

DirectSoundEnumerate
BOOL DirectSoundEnumerate(LPDSENUMCALLBACK lpDSEnumCallback,
 LPVOID lpContext);

Enumerates the DirectSound drivers installed in the system.

· Returns DS_OK if successful or DSERR_INVALIDPARAM otherwise.
lpDSEnumCallback

Address of the DirectSoundEnumCallback callback function that will be called for each DirectSound object
installed in the system.

lpContext
Address of the user-defined context passed to the enumeration callback function every time it is made.

IDirectSound Interface and Member Functions
    IDirectSound
    IDirectSound::Compact
    IDirectSound::CreateSoundBuffer
    IDirectSound::DuplicateSoundBuffer
    IDirectSound::GetCaps
    IDirectSound::GetSpeakerConfig
    IDirectSound::Initialize
    IDirectSound::SetCooperativeLevel
    IDirectSound::SetSpeakerConfig

IDirectSound
Designates an interface that enables an application to define and control the sound card, speaker, and memory
environment. The member functions of the IDirectSound interface can be broken down into the following functional
groups.

Creating buffers

CreateSoundBuffer Creates a DirectSoundBuffer object that holds a sequence
of audio samples.

DuplicateSoundBuffer Creates a new DirectSoundBuffer object that uses the same
buffer memory as the original object.

SetCooperativeLevel Sets the cooperative level of this application for this sound
device.

Allocating memory

Compact Moves all of the pieces of onboard sound memory to a
contiguous block to make the largest portion of free memory
available.

Initialize Initializes a DirectSound object.

Device capabilities

GetCaps Retrieves the capabilities of the hardware device
represented by the DirectSound object.

Speaker configuration

GetSpeakerConfig Returns the speaker configuration specified for this
DirectSound object.

SetSpeakerConfig Specifies the speaker configuration for this DirectSound
object.

Like all COM interfaces, IDirectSound also includes the QueryInterface, AddRef, and Release functions. For a
description of these functions, see DirectDraw.

IDirectSound::Compact
HRESULT Compact(LPDIRECTSOUND lpDirectSound);

Moves the unused portions of onboard sound memory (if any) to a contiguous block to make the largest portion of
free memory available.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_INVALIDPARAM An invalid parameter was passed to the

returning function

DSERR_PRIOLEVELNEEDED The caller does not have the priority level
required for the function to succeed.

lpDirectSound
Address of the DirectSound object to compact.

The application calling this function must have exclusive cooperation with the DirectSound object. (To get
exclusive access, specify DSSCL_EXCLUSIVE in a call to the IDirectSound::SetCooperativeLevel member
function.) This member function will fail if any operations are in progress.

IDirectSound::CreateSoundBuffer
HRESULT CreateSoundBuffer(LPDIRECTSOUND lpDirectSound,
 LPDSBUFFERDESC lpDSBufferDesc,
 LPDIRECTSOUNDBUFFER * lplpDirectSoundBuffer,
 IUnknown FAR * pUnkOuter)

Creates a DirectSoundBuffer object for holding a sequence of audio samples.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_ALLOCATED The function failed because resources (such

as a priority level) were already in use by
another caller.

DSERR_BADFORMAT The specified wave format is not supported.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_NOAGGREGATION This object does not support aggregation.

DSERR_OUTOFMEMORY The DirectSound subsystem couldn't allocate
sufficient memory to complete the caller's
request.

lpDirectSound
Address of the DirectSound object to associate with the new DirectSoundBuffer object.

lpDSBufferDesc
Address of a DSBUFFERDESC structure that contains a description of the sound buffer to create.

lplpDirectSoundBuffer
Address to contain a pointer to the new DirectSoundBuffer object or NULL if the buffer cannot be created.

pUnkOuter
Controlling unknown of the aggregate. Must be NULL.

An application must specify a cooperative level for a DirectSound object by using the
IDirectSound::SetCooperativeLevel member function before it can play any sound buffers.

The lpDSBufferDesc parameter points to a structure describing the type of buffer desired, including format, size,
and capabilities. An application must specify the needed capabilities; otherwise, those capabilities will not be
available. For example, if an application creates a DirectSoundBuffer object without specifying the
DSBCAPS_CTRLFREQUENCY flag, any call to IDirectSoundBuffer::SetFrequency will fail.

You can also specify the DSBCAPS_STATIC flag, in which case DirectSound attempts to store the buffer in
onboard memory (if available), to take advantage of hardware mixing. To force the buffer to use either hardware or
software mixing, use the DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE flags.

DirectSound supports two types of sound buffers: primary and secondary. A primary buffer represents the final
audio data that will be output by the sound device and heard by the listener. A secondary buffer represents a single
channel of audio, before effects or mixing has been applied. In order to use most of the mixing and hardware
acceleration features of DirectSound, applications must use secondary sound buffers. The CreateSoundBuffer
function creates secondary sound buffers by default. Samples in a secondary sound buffer must be played (often
by using IDirectSoundBuffer::Play) to be audible to the listener; the buffer will then be mixed into the primary
buffer (whether or not the application has a pointer to the primary) and output to the sound device.

Any application may create a primary buffer, which will allow it to call such member functions as
IDirectSoundBuffer::GetFormat, IDirectSoundBuffer::SetFormat, and IDirectSoundBuffer::GetVolume. To
create a primary buffer, specify the DSBCAPS_PRIMARYBUFFER flag in the DSBUFFERDESC structure. In
addition, to get access to the audio samples themselves, the application must have write-primary cooperation,
which is obtained by calling IDirectSound::SetCooperativeLevel and requesting the DSSCL_WRITEPRIMARY
level. If the application is not in this mode, then all calls to IDirectSoundBuffer::Lock and
IDirectSoundBuffer::Play will fail.

For secondary buffers, an application must specify a wave format in the DSBUFFERDESC structure. This must be
a pulse coded modulation (PCM) format.

For primary buffers, , an application must specify a NULL waveform format and set the dwBufferBytes member of
the DSBUFFERDESC structure to zero. Using this value for dwBufferBytes creates a primary buffer of optimal
size for the sound device. Once a primary buffer is created, an application can retrieve the format and size of the
primary buffer by using the IDirectSoundBuffer::SetFormat member function. An application can also change the
format by using IDirectSoundBuffer::SetFormat.

IDirectSound::DuplicateSoundBuffer
HRESULT DuplicateSoundBuffer(LPDIRECTSOUND lpDirectSound,
 LPDIRECTSOUNDBUFFER lpDsbOriginal,
 LPDIRECTSOUNDBUFFER* lplpDsbDuplicate);

Creates a new DirectSoundBuffer object that uses the same buffer memory as the original object.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_ALLOCATED The function failed because resources (such

as a priority level) were already in use by
another caller.

DSERR_INVALIDCALL This function is not valid for the current state of
this object

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_OUTOFMEMORY The DirectSound subsystem couldn't allocate
sufficient memory to complete the caller's
request.

lpDirectSound
Address of the DirectSound object to associate with the new DirectSoundBuffer object.

lpDsbOriginal
Address of the DirectSoundBuffer object to duplicate.

lplpDsbDuplicate
Address to contain a pointer to the new DirectSoundBuffer object.

The new object can be used just like the original.

Initially, the duplicate buffer will have the same parameters as the original buffer. However, an application can
change the parameters of the buffers independently; both buffers can be played or stopped independently of one
another.

If data in the buffer is changed through one object, the change will be reflected in the other object since the buffer
memory is shared.

The buffer memory will be released when the last object referencing it is released.

IDirectSound::GetCaps
HRESULT GetCaps(LPDIRECTSOUND lpDirectSound,LPDSCAPS lpDSCaps);

Retrieves the capabilities of the hardware device represented by the DirectSound object.

· Returns DS_OK if successful or DSERR_INVALIDPARAM otherwise.
lpDirectSound

Address of the DirectSound object to examine.
lpDSCaps

Address of the DSCAPS structure to contain the capabilities of this sound device.
Information retrieved in the DSCAPS structure contains information about the maximum capabilities of the sound
device and currently available capabilities, such as the number of hardware mixing channels and amount of
onboard sound memory. This information can be used to tune performance and optimize resource allocation.

Due to resource sharing requirements, the maximum capabilities in one area might only be available at the cost of
another area. For example, the maximum number of hardware-mixed streaming buffers may only be available if
there are no hardware static buffers.

An application that explicitly requests hardware resources should retrieve an accurate description of the sound
card capabilities by calling GetCaps before creating each buffer, and should create buffers in order of their
importance.

DirectSound can emulate all hardware functions using the system CPU and memory.

IDirectSound::GetSpeakerConfig
HRESULT GetSpeakerConfig(LPDIRECTSOUND lpDirectSound,
 LPDWORD lpdwSpeakerConfig);

Retrieves the speaker configuration specified for this DirectSound object.

· Returns DS_OK if successful or DSERR_INVALIDPARAM otherwise.
lpDirectSound

Address of the DirectSound object with the speaker configuration to examine.
lpdwSpeakerConfig

Address to contain the speaker configuration for this DirectSound object. The speaker configuration is indicated
with one of the following values:
DSSPEAKER_HEADPHONE Audio is output through headphones.

DSSPEAKER_MONO Audio is output through a single speaker.

DSSPEAKER_QUAD Audio is output through quadraphonic
speakers.

DSSPEAKER_STEREO Audio is output through stereo speakers
(default value).

DSSPEAKER_SURROUND Audio is output through surround speakers.

IDirectSound::Initialize
HRESULT Initialize(LPDIRECTSOUND lpDirectSound, GUID FAR *lpGuid)

Initializes the DirectSound object if it has not yet been initialized.

· Returns DSERR_ALREADYINITIALIZED.
lpDirectSound

Address of the DirectSound object for which this function is being called.
lpGuid

GUID corresponding to the sound driver for this DirectSound object to bind to, or NULL to select the primary
sound driver.

Because the DirectSoundCreate function calls this function internally, it is not needed for the current release of
DirectSound.

IDirectSound::SetCooperativeLevel
HRESULT SetCooperativeLevel(LPDIRECTSOUND lpDirectSound, HWND hwnd,
 DWORD dwLevel)

Sets the cooperative level of this application for this sound device.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_ALLOCATED The function failed because resources (such

as a priority level) were already in use by
another caller.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

lpDirectSound
Address of the DirectSound object for which this function is being called.

hwnd
Window handle of this application.

dwLevel
Requested priority level. Specify one of the following values:
DSSCL_EXCLUSIVE Sets this application to exclusive level. When this

application has the input focus, it will be the only
application audible (even in future releases of
DirectSound). This application also has all the privileges
of the DSSCL_PRIORITY level. DirectSound will restore
the hardware format (as specified by the most recent call
to IDirectSoundBuffer::SetFormat) when the application
gets the input focus.

DSSCL_NORMAL Sets the application to fully cooperative status. Most
applications should use this level, as it is guaranteed to
have the smoothest multitasking and resource-sharing
behavior.

DSSCL_PRIORITY Sets this application to priority level. Applications with this
cooperative level can call
IDirectSoundBuffer::SetFormat and
IDirectSound::Compact.

DSSCL_WRITEPRIMARY The highest priority level. The application has write
access to the primary buffers. No secondary buffers (in
this application or other applications) can be played.

An application must set the cooperative level by calling this member function before its buffers can be played. The
recommended cooperative level is DSSCL_NORMAL; use other priority levels when necessary.

Four cooperative levels are defined: normal, priority, exclusive, and write-primary.

The normal cooperative level is the lowest level. At the normal level, IDirectSoundBuffer::SetFormat and
IDirectSound::Compact cannot be called; in addition, the application cannot get write access to primary buffers.
All applications using this cooperative level use a primary buffer format of 22 kHz, monaural sound, and 8-bit
samples to make task switching as smooth as possible.

When using a DirectSound object with the priority cooperative level, the application has first priority to hardware
resources (such as hardware mixing), and can call IDirectSoundBuffer::SetFormat and
IDirectSound::Compact.

When using a DirectSound object with the exclusive cooperative level, the application has all the privileges of the
priority level and, in addition, only that application’s buffers are audible when the application has the input focus.
When the application gains the input focus, DirectSound restores the application’s preferred wave format (defined
in the most recent call to IDirectSoundBuffer::SetFormat).

When using a DirectSound object with the write-primary cooperative level, the application has direct access to the
primary sound buffer. In this mode, the application must lock the buffer using IDirectSoundBuffer::Lock and write
directly into the primary buffer; secondary buffers cannot be played.

When an application with the write-primary cooperative level gains the input focus, all secondary buffers for other
applications are stopped, marked as lost, and must be restored using IDirectSoundBuffer::Restore before they
can be played. When an application with the write-primary cooperative level loses the input focus, its primary
buffer is marked as lost, and can be restored after the application regains the input focus.

Note that the write-primary level is not required in order to create a primary buffer. However, to get access to the
audio samples in the primary buffer, the application must have the write-primary level. If the application does not
have this level, then all calls to IDirectSoundBuffer::Lock and IDirectSoundBuffer::Play will fail, although some
functions such as IDirectSoundBuffer::GetFormat, IDirectSoundBuffer::SetFormat, and
IDirectSoundBuffer::GetVolume can still be called.

IDirectSound::SetSpeakerConfig
HRESULT SetSpeakerConfig(LPDIRECTSOUND lpDirectSound,
 DWORD dwSpeakerConfig);

Specifies the speaker configuration for this DirectSound object.

· Returns DS_OK if successful or DSERR_INVALIDPARAM otherwise.
lpDirectSound

Address of the DirectSound object for which this function is being called.
dwSpeakerConfig

Speaker configuration of the specified DirectSound object. Specify one of the following values:
DSSPEAKER_HEADPHONE Speakers are headphones.

DSSPEAKER_MONO Speakers are monaural.

DSSPEAKER_QUAD Speakers are quadraphonic.

DSSPEAKER_STEREO Speakers are stereo (default value).

DSSPEAKER_SURROUND Speakers are surround sound.

IDirectSoundBuffer Interface and Member Functions
    IDirectSoundBuffer
    IDirectSoundBuffer::GetCaps
    IDirectSoundBuffer::GetCurrentPosition
    IDirectSoundBuffer::GetFormat
    IDirectSoundBuffer::GetFrequency
    IDirectSoundBuffer::GetPan
    IDirectSoundBuffer::GetStatus
    IDirectSoundBuffer::GetVolume
    IDirectSoundBuffer::Initialize
    IDirectSoundBuffer::Lock
    IDirectSoundBuffer::Play
    IDirectSoundBuffer::Restore
    IDirectSoundBuffer::SetCurrentPosition
    IDirectSoundBuffer::SetFormat
    IDirectSoundBuffer::SetFrequency
    IDirectSoundBuffer::SetPan
    IDirectSoundBuffer::SetVolume
    IDirectSoundBuffer::Stop
    IDirectSoundBuffer::Unlock

IDirectSoundBuffer
Designates an interface that enables an application to work with audio data in memory. The member functions of
the IDirectSoundBuffer interface can be broken down into the following functional groups.

Play management

GetCurrentPosition Retrieves the current position of the sound playing cursor in the
sound buffer.

Lock Obtains a valid pointer to the sound buffer’s audio data.

Play Causes the sound buffer to start playing.

SetCurrentPosition Moves the current play cursor for a DirectSoundBuffer object.

Stop Causes the sound buffer to stop playing.

Unlock Releases a locked sound buffer.

Sound-environment
management

GetFrequency Retrieves the frequency at which the buffer is being played.

GetPan Retrieves a variable that represents the mix between the left and
right speakers.

GetVolume Retrieves the current volume for this sound buffer.

SetFrequency Sets the frequency at which the audio samples are to be played.

SetPan Specifies the mix between the left and right speakers.

SetVolume Changes the volume of a sound buffer.

Information

GetCaps Retrieves the capabilities of the DirectSoundBuffer object.

GetFormat Retrieves a DSBUFFERFORMAT structure with a detailed
description of the format of the sound data in this sound buffer.

GetStatus Retrieves a variable containing the current status of the sound
buffer.

SetFormat Changes the format of a sound buffer to the format described in
the DSBUFFERFORMAT structure.

Memory management

Initialize Initializes a DirectSoundBuffer object, if it has not yet been
initialized.

Restore Restores the sound buffer memory for the specified
DirectSoundBuffer object, if possible.

Like all COM interfaces, IDirectSoundBuffer also includes the QueryInterface, AddRef, and Release member
functions. For a description of these functions, see DirectDraw.

IDirectSoundBuffer::GetCaps
HRESULT GetCaps(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPDSBCAPS lpDSBufferCaps);

Retrieves the capabilities of the DirectSoundBuffer object.

· Returns DS_OK if successful or DSERR_INVALIDPARAM otherwise.
lpDirectSoundBuffer

Address of the DirectSoundBuffer object to examine.
lpDSBufferCaps

Address of a DSBCAPS structure to contain the capabilities of the specified sound buffer.
The DSBCAPS structure contains similar information to the DSBUFFERDESC structure passed to
CreateSoundBuffer, with some additional information. This additional information can include the location of the
buffer (hardware or software), and some cost measures. Examples of cost measures include the time to download
to a hardware buffer and CPU overhead to mix and play the buffer when the buffer is in system memory.

The flags specified in the dwFlags member of the DSBCAPS structure are the same flags used by the
DSBUFFERDESC structure. The only difference is that in the DSBCAPS structure, either
DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE will be specified according to the location of the
buffer memory. In the DSBUFFERDESC structure, these flags are optional and are used to force the buffer to be
located in either hardware or software.

IDirectSoundBuffer::GetCurrentPosition
HRESULT GetCurrentPosition(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPDWORD lpdwCurrentPlayCursor, LPDWORD lpdwCurrentWriteCursor);

Retrieves the current position of the sound-playing and sound-writing cursors in the sound buffer.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_INVALIDPARAM An invalid parameter was passed to the

returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority level
required for the function to succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to examine.

lpdwCurrentPlayCursor
Address of a variable to contain the current playing position in the DirectSoundBuffer object. This position is an
offset within the sound buffer and is specified in bytes.

lpdwCurrentWriteCursor
Address of a variable to contain the current writing position in the DirectSoundBuffer object. This position is an
offset within the sound buffer and is specified in bytes.

The write cursor is the position at which it is safe to write new data into the buffer. The write cursor always leads
the play cursor and is typically spaced ahead in the buffer by about 15 milliseconds worth of audio data.

It is always safe to change data that is behind the position indicated by the lpdwCurrentPlayCursor parameter.

IDirectSoundBuffer::GetFormat
HRESULT GetFormat(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPWAVEFORMATEX lpwfxFormat, DWORD dwSizeAllocated,
 LPDWORD lpdwSizeWritten));

Retrieves a description of the format of the sound data in this sound buffer or retrieves the buffer size needed to
retrieve the format description.

· Returns DS_OK if successful or DSERR_INVALIDPARAM otherwise.
lpDirectSoundBuffer

Address of the DirectSoundBuffer object to examine.
lpwfxFormat

Address of the WAVEFORMATEX structure to contain a description of the sound data in this sound buffer.
Specify NULL to retrieve the buffer size needed to contain the format description.

dwSizeAllocated
Size, in bytes, of the WAVEFORMATEX structure. DirectSound writes at most dwSizeAllocated bytes to that
pointer; if the WAVEFORMATEX structure requires more memory, it is truncated.

lpdwSizeWritten
Address of a variable to contain the number of bytes written to the WAVEFORMATEX structure. This parameter
can be NULL.

The WAVEFORMATEX structure can have a variable length that depends on the details of the format. Before
retrieving the format description, an application should query the DirectSoundBuffer object for the size of the
format by calling this member function and specifying NULL for the lpwfxFormat parameter. The size of the
structure will be returned in the lpdwSizeWritten parameter. The application can then allocate sufficient memory
and call IDirectSoundBuffer::GetFormat again to retrieve the format description.

IDirectSoundBuffer::GetFrequency
HRESULT GetFrequency(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPDWORD lpdwFrequency);

Retrieves the frequency at which the buffer is being played, in samples per second. This value will be in the range
of 100-100,000.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_CONTROLUNAVAIL The control (volume, pan, and so forth)

requested by the caller is not available.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority level
required for the function to succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object for which this function is being called.

lpdwFrequency
Address of the variable for the frequency at which the audio buffer is being played.

IDirectSoundBuffer::GetPan
HRESULT GetPan(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPLONG lplPan);

Retrieves a variable that represents the relative volume between the left and right channels.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_CONTROLUNAVAIL The control (volume, pan, and so forth)

requested by the caller is not available.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority level
required for the function to succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to examine.

lplPan
Address of a variable to contain the relative mix between the left and right speakers.

The returned value is measured in hundredths of a decibel (db), in the range of -10,000 to 10,000. The value -
10,000 means the right channel is attenuated by 100 db. The value 10,000 means the left channel is attenuated by
100 db. Zero is the neutral value; a pan of zero means that both channels are at full volume (that is, they are
attenuated by zero decibels). At any setting other than zero, one of the channels is at full volume and the other is
attenuated.

A pan of -2173 means that the left channel is at full volume and the right channel is attenuated by 21.73 db.
Similarly, a pan of 870 means that the left channel is attenuated by 8.7 db and the right channel is at full volume. A
pan of -10,000 means that the right channel is silent (the sound is “all the way to the left”), and a pan of 10,000
means that the left channel is silent (the sound is “all the way to the right”).

The pan control is cumulative with volume control.

IDirectSoundBuffer::GetStatus
HRESULT GetStatus(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPDWORD lpdwStatus);

Retrieves the current status of the sound buffer.

· Returns DS_OK if successful or DSERR_INVALIDPARAM otherwise.
lpDirectSoundBuffer

Address of the DirectSoundBuffer object to examine.
lpdwStatus

Address of a variable to contain the status of the sound buffer. The status can be one of the following values:
DSBSTATUS_BUFFERLOST The buffer is lost, and must be restored before

it can be played or locked.

DSBSTATUS_LOOPING Buffer is being looped. If this value is not set,
the buffer will stop when it reaches the end.
Note that if this value is set, the buffer must
also be playing.

DSBSTATUS_PLAYING Buffer is being played. If this value is not set,
the buffer is stopped.

IDirectSoundBuffer::GetVolume
HRESULT GetVolume(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPLONG lplVolume);

Retrieves the current volume for this sound buffer.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_CONTROLUNAVAIL The control (volume, pan, and so forth)

requested by the caller is not available.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority level
required for the function to succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to examine.

lplVolume
Address of the variable to contain the volume associated with the specified DirectSound buffer.

The volume is specified in hundredths of decibels (db), and ranges from zero to -10,000. The value zero
represents the original, unadjusted volume of the stream. The value -10000 indicates an audio volume attenuated
by -100 db, which is essentially silence. Amplification is not currently supported.

The decibel (dB) scale corresponds to the logarithmic hearing characteristics of the ear: positive decibels. An
attenuation of 20 dB makes a buffer sound half as loud; an attenuation of 40 dB makes a buffer sound one quarter
as loud.

IDirectSoundBuffer::Initialize
HRESULT Initialize(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPDIRECTSOUND lpDirectSound, LPDSBUFFERDESC lpDSBufferDesc);

Initializes a DirectSoundBuffer object, if it has not yet been initialized.

· Returns DSERR_ALREADYINITIALIZED.
lpDirectSoundBuffer

Address of the DirectSound object to initialize.
lpDirectSound

Address of the DirectSound object associated with this DirectSoundBuffer object.
lpDSBufferDesc

Address of a DSBUFFERDESC structure that containing the values to use to initialize this sound buffer.
Because the IDirectSound::CreateSoundBuffer function calls IDirectSoundBuffer::Initialize internally, it is not
needed for the current release of DirectSound. This function is provided for future extensibility.

IDirectSoundBuffer::Lock
HRESULT Lock(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 DWORD dwWriteCursor, DWORD dwWriteBytes,
 LPLPVOID lplpvAudioPtr1, LPDWORD lpdwAudioBytes1,
 LPLPVOID lplpvAudioPtr2, LPDWORD lpdwAudioBytes2,
 DWORD dwFlags);

Obtains a valid write pointer to the sound buffer’s audio data.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_BUFFERLOST The buffer memory has been lost and must be

restored.

DSERR_INVALIDCALL Indicates the buffer is already locked and has
not been unlocked.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority level
required for the function to succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to lock.

dwWriteCursor
Offset, in bytes, from the start of the buffer where the lock begins. This parameter is ignored if
DSBLOCK_FROMWRITECURSOR is specified in the dwFlags parameter.

dwWriteBytes
Size, in bytes, of the portion of the buffer to lock. The sound buffer is circular.

lplpvAudioPtr1
Address of a pointer to contain the first block of the sound buffer that is locked.

lpdwAudioBytes1
Address of a variable to contain the number of bytes pointed to by the lplpvAudioPtr1 parameter. If this value is
less than the dwWriteBytes parameter, lplpvAudioPtr2 will point to a second block of sound data.

lplpvAudioPtr2
Address of a pointer to contain a second block of the sound buffer that is locked. If the value of this parameter
is NULL, the lplpvAudioPtr1 parameter points to the entire locked portion of the sound buffer.

lpdwAudioBytes2
Address of a variable to contain the number of bytes pointed to by the lplpvAudioPtr2 parameter. If
lplpvAudioPtr2 is NULL, this value will be zero.

dwFlags
Flags modifying the lock event. DSBLOCK_FROMWRITECURSOR is optional. It locks from the current write
cursor, making a call to IDirectSoundBuffer::GetCurrentPosition unnecessary. If this flag is specified, the
dwWriteCursor parameter is ignored.

This member function accepts an offset and a count of bytes, and returns two write pointers and their associated
sizes. Two pointers are required because sound buffers are circular. If the locked bytes do not wrap around the
end of the buffer, the second pointer (lplpvAudioBytes2) will be NULL. However, if the bytes do wrap around, then
the second pointer will point to the beginning of the buffer.

If the application passes NULL for the lplpvAudioPtr2 and lpdwAudioBytes2 parameters, DirectSound will not lock
the wraparound portion of the buffer.

Applications should write data into the pointers returned by IDirectSoundBuffer::Lock and then call
IDirectSoundBuffer::Unlock to release the buffer back to DirectSound. The sound buffer should not be locked for
long periods of time; otherwise the play cursor will reach the locked bytes, and configuration-dependent audio
problems (possibly random noise) will result.

Warning
This function returns a write pointer only. Applications should not try to access sound data by reading from this

pointer, as the data may not be valid even though the DirectSoundBuffer object contains valid sound data. For
example, if the buffer is located in onboard memory, the pointer may point to a temporary buffer in main
system memory; when IDirectSoundBuffer::Unlock is called, this temporary buffer will be transferred to the
onboard memory.

IDirectSoundBuffer::Play
HRESULT Play(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer, DWORD dwReserved1,
 DWORD dwReserved2, DWORD dwFlags);

Causes the sound buffer to start playing from the current position.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_BUFFERLOST The buffer memory has been lost and must be

restored.

DSERR_INVALIDCALL This function is not valid for the current state of
this object.

DSERR_INVALIDPARAM An invalid parameter was passed to the
returning function.

DSERR_PRIOLEVELNEEDED Cooperative level has not been set.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to play. The audio is copied into the primary sound buffer and played.

dwReserved1
Reserved; must be zero.

dwReserved2
Reserved; must be zero.

dwFlags
Flags specifying how to play the buffer. The following flag is defined:
DSBPLAY_LOOPING Play restarts at the beginning of the audio

buffer when the end of the buffer is reached.
Play continues until it is explicitly stopped. This
flag must always be set when playing primary
buffers.

For secondary buffers, this member function will cause the buffer to be mixed into the primary buffer and output to
the sound device. If this is the first buffer to play, it will implicitly create a primary buffer and start that buffer
playing; the application does not need to explicitly tell the primary buffer to play.

If the buffer specified in the member function is already playing, the call to the member function will succeed and
the buffer continues to play. However, the flags that define playback characteristics are superseded by the flags
defined in the most recent call.

Primary buffers must always be played with the DSBPLAY_LOOPING flag set.

For primary buffers, this member function will cause the primary sound buffer to start playing to the sound device.
If the application has the DSSCL_WRITEPRIMARY cooperative level, this will cause the audio data in the primary
buffer to be output to the sound device. However, if the application has any other cooperative level, this application
will simply ensure that the primary buffer is playing even when no secondaries are playing (it will play silence in
that case). This may reduce overhead when sounds are started and stopped in sequence, because the primary
buffer will play continuously rather than stopping and starting between secondary buffers.

Note
Before this member function can be called on any sound buffer, the application must call
IDirectSound::SetCooperativeLevel and specify a cooperative level (typically DSSCL_NORMAL). If
IDirectSoundBuffer::SetCooperativeLevel has not been called, the IDirectSoundBuffer::Play function
returns DSERR_PRIOLEVELNEEDED.

IDirectSoundBuffer::Restore
HRESULT Restore(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer);

Restores the memory allocation for a lost sound buffer for the specified DirectSoundBuffer object.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_BUFFERLOST The buffer memory could not be

restored.
DSERR_INVALIDCALL This function is not valid for the

current state of this object.
DSERR_INVALIDPARAM An invalid parameter was passed to

the returning function.
DSERR_PRIOLEVELNEEDED Cooperative level has not been set.

lpDirectSoundBuffer
Address of the DirectSound object to have its memory allocation restored.

If the application does not have input focus, IDirectSoundBuffer::Restore might not succeed. For example, if the
input focus application has the DSSCL_WRITEPRIMARY cooperative level, no other application will be able to
restore its buffers. Similarly, an application with DSSCL_WRITEPRIMARY cooperative level can only restore the
primary buffer when it has the input focus.

Once DirectSound restores the buffer memory, an application must rewrite the buffer with valid sound data.
DirectSound cannot restore the contents of the memory, only the memory itself.

An application can receive notification that a buffer is lost when it specifies that buffer in a call to the
IDirectSoundBuffer::Lock or IDirectSoundBuffer::Play member function. These member functions return
DSERR_BUFFERLOST to indicate a lost buffer. The IDirectSoundBuffer::GetStatus can also be used to retrieve
the status of the sound buffer and test for the DSBSTATUS_BUFFERLOST flag.

IDirectSoundBuffer::SetCurrentPosition
HRESULT SetCurrentPosition(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 DWORD dwNewPosition);

Moves the current play cursor for secondary sound buffers.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_INVALIDCALL This function is not valid for the

current state of this object.
DSERR_INVALIDPARAM An invalid parameter was passed to

the returning function.
DSERR_PRIOLEVELNEEDED The caller does not have the priority

level required for the function to
succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object whose cursor is moved.

dwNewPosition
New position, in bytes, from the beginning of the buffer that will be used when the sound buffer is played.

This method cannot be called on primary sound buffers.

If the buffer is playing, it will immediately begin playing from the new position. If it is not playing, it will begin playing
from the new position the next time IDirectSoundBuffer::Play is called.

IDirectSoundBuffer::SetFormat
HRESULT SetFormat(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPWAVEFORMATEX lpwfxFormat);

Sets the format of the primary sound buffer for this application. Whenever this application has the input focus,
DirectSound will set the primary buffer to the specified format.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_BADFORMAT The specified wave format is not

supported.
DSERR_INVALIDCALL    The specified buffer is a secondary

buffer.
DSERR_INVALIDPARAM An invalid parameter was passed to

a returning function.
DSERR_OUTOFMEMORY The DirectSound subsystem could

not allocate sufficient memory to
complete the request.

DSERR_PRIOLEVELNEEDED Cooperative level has not been set.
lpDirectSoundBuffer

Address of the DirectSoundBuffer object to recieve the format change.
lpfxFormat

Address of a WAVEFORMATEX structure that describes the new format for the primary sound buffer.
A call to this member function fails if the sound buffer is playing or the hardware does not directly support the
requested PCM format. It will also fail if the calling application has DSSCL_NORMAL cooperative level.

If a secondary buffer requires a format change, an application should create a new DirectSoundBuffer object using
the new format.

DirectSound supports PCM formats; it does not currently support compressed formats.

IDirectSoundBuffer::SetFrequency
HRESULT SetFrequency(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 DWORD dwFrequency);

Sets the frequency at which the audio samples are played.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_CONTROLUNAVAIL The control (volume, pan, and so

forth) requested by the caller is not
available.

DSERR_INVALIDPARAM An invalid parameter was passed to
the returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority
level required for the function to
succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to receive the playback frequency change.

dwFrequency
New frequency, in Hz, to play audio samples (by calling the IDirectSoundBuffer::Play function). The value
must be between 100 and 100,000.
If the value is zero, the frequency is reset to the current buffer format (specified in
IDirectSound::CreateSoundBuffer).

Increasing or decreasing the frequency changes the perceived pitch of the audio data. This function does not
affect the format of the buffer.

IDirectSoundBuffer::SetPan
HRESULT SetPan(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer, LONG lPan);

Specifies the relative volume between the left and right channels.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_CONTROLUNAVAIL The control (volume, pan, and so

forth) requested by the caller is not
available.

DSERR_INVALIDPARAM An invalid parameter was passed to
the returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority
level required for the function to
succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer to receive the new pan setting.

lPan
Relative volume between the left and right channels. This value has a range of -10,000 to 10,000 and is
measured in hundredths of a decibel.

Zero is the neutral value for lPan and indicates that both channels are at full volume (that is, they are attenuated
by zero decibels). At any other setting, one of the channels is at full volume and the other is attenuated. For
example, a pan of -2173 means that the left channel is at full volume and the right channel is attenuated by 21.73
db. Similarly, a pan of 870 means that the left channel is attenuated by 8.7 db and the right channel is at full
volume.

A pan of -10,000 means that the right channel is silent (the sound is “all the way to the left”), and a pan of 10,000
means that the left channel is silent (the sound is “all the way to the right”).

The pan control is cumulative with volume control.

IDirectSoundBuffer::SetVolume
HRESULT SetVolume(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LONG lVolume);

Changes the volume of a sound buffer.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_CONTROLUNAVAIL The control (volume, pan, and so

forth) requested by the caller is not
available.

DSERR_INVALIDPARAM An invalid parameter was passed to
the returning function.

DSERR_PRIOLEVELNEEDED The caller does not have the priority
level required for the function to
succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to receive the new volume setting.

lVolume
New volume requested for this sound buffer. Values range from 0 (0 db, no volume adjustment) to -10,000 (-
100 db, essentially silent). Amplification is not currently supported.

Volume units of are hundredths of a decibel, where zero is the original volume of the stream.

Positive decibels correspond to amplification and negative decibels correspond to attenuation. The decibel (db)
scale corresponds to the logarithmic hearing characteristics of the ear. An attenuation of 20 db makes a buffer
sound half as loud; an attenuation of 40 db makes a buffer sound one quarter as loud. Amplification is not currently
supported.

The pan control is cumulative with volume control.

IDirectSoundBuffer::Stop
HRESULT Stop(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer);

Causes the sound buffer to stop playing.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_INVALIDPARAM An invalid parameter was passed to

the returning function.
DSERR_PRIOLEVELNEEDED The caller does not have the priority

level required for the function to
succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to stop playing.

For secondary buffers, the IDirectSoundBuffer::Stop member function will set the current position of the buffer to
the sample after the last sample played. This means that if IDirectSoundBuffer::Play is called on the buffer, it will
continue playing where it left off.

For primary buffers, if an application has the DSSCL_WRITEPRIMARY level, this member function will stop the
buffer and reset the current position to zero (the beginning of the buffer). This is necessary because the primary
buffers on most sound cards can only play from the beginning of the buffer.

However, if IDirectSoundBuffer::Stop is called on a primary buffer and the application has any other cooperative
level, this member function simply reverses the effects of IDirectSoundBuffer::Play. That is, it configures the
primary buffer to stop if no other secondary buffers are playing. If other buffers are playing (in this or other
applications), then the buffer will not actually stop until they are stopped. This member function is useful because
playing the primary buffer consumes CPU overhead even if the buffer is playing sound data with the amplitude of
0.

IDirectSoundBuffer::Unlock
HRESULT Unlock(LPDIRECTSOUNDBUFFER lpDirectSoundBuffer,
 LPVOID lpvAudioPtr1, DWORD dwAudioBytes1, LPVOID lpvAudioPtr2,
 DWORD dwAudioBytes2);

Releases a locked sound buffer.

· Returns DS_OK if successful or one of the following values otherwise:
DSERR_INVALIDCALL This function is not valid for the

current state of this object.
DSERR_INVALIDPARAM An invalid parameter was passed to

the returning function.
DSERR_PRIOLEVELNEEDED The caller does not have the priority

level required for the function to
succeed.

lpDirectSoundBuffer
Address of the DirectSoundBuffer object to unlock.

lpvAudioPtr1
Address of the value retrieved in the lplpvAudioPtr1 parameter of the IDirectSoundBuffer::Lock function.

dwAudioBytes1
Number of bytes actually written into the lpvAudioPtr1 parameter. It should not exceed the number of bytes
returned by the IDirectSoundBuffer::Lock function.

lpvAudioPtr2
Address of the value retrieved in the lplpvAudioPtr2 parameter of the IDirectSoundBuffer::Lock function.

dwAudioBytes2
Number of bytes actually written into the lpvAudioPtr2 parameter. It should not exceed the number of bytes
returned by the IDirectSoundBuffer::Lock function.

An application must pass both pointers, lpvAudioPtr1 and lpvAudioPtr2, returned by the
IDirectSoundBuffer::Lock function to ensure the correct pairing of IDirectSoundBuffer::Lock and
IDirectSoundBuffer::Unlock. The second pointer is needed even if zero bytes were written to the second pointer
(that is, if dwAudioBytes2 equals 0).

Applications must pass the number of bytes actually written to the two pointers in the parameters dwAudioBytes1
and dwAudioBytes2.

The sound buffer must not be locked for long periods.

Structures
    DSBCAPS
    DSBUFFERDESC
    DSCAPS

DSBCAPS
typedef struct _DSBCAPS {
 DWORD dwSize; // size, in bytes, of this structure
 DWORD dwFlags; // see below
 DWORD dwBufferBytes; // size, in bytes, of the buffer
 DWORD dwUnlockTransferRate; // see below
 DWORD dwPlayCpuOverhead; // see below
} DSBCAPS, *LPDSBCAPS;

Specifies the capabilities of a DirectSound buffer object, for use by the IDirectSoundBuffer::GetCaps member
function.

dwFlags
Flags specifying buffer-object capabilities. This member can be one or more of the following values:
DSBCAPS_CTRLFREQUENCY Buffer must have frequency control

capability.

DSBCAPS_CTRLPAN Buffer must have pan control capability.

DSBCAPS_CTRLVOLUME Buffer must have volume control capability.

DSBCAPS_LOCHARDWARE Forces the buffer to use hardware mixing,
even if DSBCAPS_STATIC is not specified. If
this device does not support hardware
mixing or the required hardware memory is
not available, the call to
IDirectSound::CreateSoundBuffer will fail.
Note that there is no guarantee that a mixing
channel will be available for this buffer — the
application must make sure of this.

DSBCAPS_LOCSOFTWARE Forces the buffer to be stored in software
(main system) memory and use software
mixing, even if DSBCAPS_STATIC is
specified and hardware resources are
available.

DSBCAPS_PRIMARYBUFFER Buffer is a primary sound buffer. If not
specified, a secondary buffer will be created.

DSBCAPS_STATIC Indicates that the buffer will be used for static
sound data. Typically used for buffers which
are loaded once and played many times.
These buffers are candidates for hardware
(onboard) memory.

dwUnlockTransferRate
Specifies the rate, in kilobytes per second, that data is transferred to the buffer memory when
IDirectSoundBuffer::Unlock is called. High-performance applications can use this value to determine the time
required for IDirectSoundBuffer::Unlock to execute. For software buffers located in system memory, the rate
will be very high as no processing is required. For hardware buffers, the buffer might have to be downloaded to
the card which may have a limited transfer rate.

dwPlayCpuOverhead
Specifies the CPU overhead as a percentage of main CPU cycles needed to mix this sound buffer. For
hardware buffers, this member will be zero because the mixing is performed by the sound device. For software
buffers, this member depends on the buffer format and the speed of the system processor.

The DSBCAPS structure contains similar information to the DSBUFFERDESC structure passed to
IDirectSound::CreateSoundBuffer, with some additional information such as the location of the buffer (hardware
or software), and some cost measures (such as the time to download the buffer, if located in hardware, and the
CPU overhead to play the buffer, if mixed in software).

Note that the dwFlags member of the DSBCAPS structure contains the same flags used by the
DSBUFFERDESC structure. The only difference is that in the DSBCAPS structure, either
DSBCAPS_LOCHARDWARE or DSBCAPS_LOCSOFTWARE will be specified, according to the location of the
buffer memory. In the DSBUFFERDESC structure, these flags are optional and are used to force the buffer to be
located in either hardware or software.

DSBUFFERDESC
typedef struct _DSBUFFERDESC
{
 DWORD dwSize; // size, in bytes, of this structure
 DWORD dwFlags; // see below
 DWORD dwBufferBytes; // see below
 DWORD dwReserved; // reserved. must be zero
 LPWAVEFORMATEX lpwfxFormat; // see below
} DSBUFFERDESC, *LPDSBUFFERDESC;

Describes the needed characteristics of a new DirectSoundBuffer object. This structure is used by the
IDirectSound::CreateSoundBuffer member function.

dwFlags
Flags identifying capabilities to include when creating the new DirectSoundBuffer object. Specify one or more of
the following values:
DSBCAPS_CTRLALL Buffer must have all control capabilities.

DSBCAPS_CTRLDEFAULT Buffer should have default control options.
This is the same as specifying the
DSBCAPS_CTRLPAN,
DSBCAPS_CTRLVOLUME, and
DSBCAPS_CTRLFREQUENCY flags.

DSBCAPS_CTRLFREQUENCY Buffer must have frequency control
capability.

DSBCAPS_CTRLPAN Buffer must have pan control capability.

DSBCAPS_CTRLVOLUME Buffer must have volume control capability.

DSBCAPS_LOCHARDWARE Forces the buffer to use hardware mixing,
even if DSBCAPS_STATIC is not specified. If
the device does not support hardware mixing
or the required hardware memory is not
available, the call to
IDirectSound::CreateSoundBuffer will fail.
Note that the application must ensure that a
mixing channel will be available for this
buffer — this condition is not guaranteed.

DSBCAPS_LOCSOFTWARE Forces the buffer to be stored in main
system memory (not on the sound card) and
use software mixing, even if
DSBCAPS_STATIC is specified and
hardware resources are available.

DSBCAPS_PRIMARYBUFFER Buffer is a primary sound buffer.

DSBCAPS_STATIC Indicates that the buffer will be used for static
sound data. Typically used for buffers that
are loaded once and played many times.
These buffers are candidates for hardware
(onboard) memory.

dwBufferBytes
Size, in bytes, of new buffer. Must be zero when creating primary buffers.

lpwfxFormat
Address of a structure specifying the waveform format for the buffer. Must be NULL for primary buffers. You can
use IDirectSoundBuffer::SetFormat to set the format of the primary buffer.

The DSBCAPS_LOCHARDWARE and DSBCAPS_LOCSOFTWARE flags used in the dwFlags member are
optional and mutually exclusive. DSBCAPS_LOCHARDWARE forces, if possible, the buffer to reside in memory

located in the sound card. DSBCAPS_LOCSOFTWARE forces the buffer to reside in main system memory.

These flags are also defined for the dwFlags member of the DSBCAPS structure, and when used there, the
specified flag indicates the actual location of the DirectSoundBuffer object.

When creating a primary buffer, applications must set the dwBufferBytes member to zero; DirectSound will
determine the optimal buffer size for the particular sound device in use.    To determine the size of a created
primary buffer, call IDirectSoundBuffer::GetCaps.

DSCAPS
typedef struct _DSCAPS {
 DWORD dwSize; // see below
 DWORD dwFlags; // see below
 DWORD dwMinSecondarySampleRate; // see below
 DWORD dwMaxSecondarySampleRate; // see below
 DWORD dwPrimaryBuffers; // see below
 DWORD dwMaxHwMixingAllBuffers; // see below
 DWORD dwMaxHwMixingStaticBuffers; // see below
 DWORD dwMaxHwMixingStreamingBuffers; // see below
 DWORD dwFreeHwMixingAllBuffers; // see below
 DWORD dwFreeHwMixingStaticBuffers; // see below
 DWORD dwFreeHwMixingStreamingBuffers; // see below
 DWORD dwMaxHw3DAllBuffers; // see below
 DWORD dwMaxHw3DStaticBuffers; // see below
 DWORD dwMaxHw3DStreamingBuffers; // see below
 DWORD dwFreeHw3DAllBuffers; // see below
 DWORD dwFreeHw3DStaticBuffers; // see below
 DWORD dwFreeHw3DStreamingBuffers; // see below
 DWORD dwTotalHwMemBytes; // see below
 DWORD dwFreeHwMemBytes; // see below
 DWORD dwMaxContigFreeHwMemBytes; // see below
 DWORD dwUnlockTransferRateHwBuffers; // see below
 DWORD dwPlayCpuOverheadSwBuffers; // see below
 DWORD dwReserved1; // reserved. do not use
 DWORD dwReserved2; // reserved. do not use
} DSCAPS, *LPDSCAPS;

Specifies the capabilities of a DirectSound device, for use by the IDirectSound::GetCaps member function.

dwSize
The size, in bytes, of the structure.

dwFlags
Flags specifying device capabilities. This member can be one or more of the following values:
DSCAPS_CONTINUOUSRATE Device supports all sample rates between the

dwMinSecondarySampleRate and
dwMaxSecondarySampleRate values.
Typically this means that the actual output rate
will be within +/- 10Hz of the requested
frequency.

DSCAPS_EMULDRIVER Device does not have a DirectSound driver
installed, so it is being accessed through
emulation (that is, through the waveform
functions). Applications should expect
performance degradation.

DSCAPS_CERTIFIED This driver has been tested and certified by
Microsoft.

DSCAPS_PRIMARY16BIT Device supports primary buffers with 16-bit
samples.

DSCAPS_PRIMARY8BIT Device supports primary buffers with 8-bit
samples.

DSCAPS_PRIMARYMONO Device supports monophonic primary buffers.

DSCAPS_PRIMARYSTEREO Device supports stereo primary buffers.

DSCAPS_SECONDARY16BIT Device supports hardware-mixed secondary

buffers with 16-bit samples.

DSCAPS_SECONDARY8BIT Device supports hardware-mixed secondary
buffers with 8-bit samples.

DSCAPS_SECONDARYMONO Device supports hardware-mixed monophonic
secondary buffers.

DSCAPS_SECONDARYSTEREO Device supports hardware-mixed stereo
secondary buffers.

dwMinSecondarySampleRate and dwMaxSecondarySampleRate
Minimum and maximum sample rate specification that is supported by this device’s hardware secondary sound
buffers.

dwPrimaryBuffers
Number of primary buffers supported. Will always be 1 for this release.

dwMaxHwMixingAllBuffers, dwMaxHwMixingStaticBuffers, and dwMaxHwMixingStreamingBuffers
Description of the hardware mixing capabilities of the device. dwMaxHwMixingAllBuffers specifies the total
number of buffers that can be mixed in hardware. dwMaxHwMixingStaticBuffers specifies the maximum
number of static buffers (that is, the buffers located in onboard sound memory), and
dwMaxHwMixingStreamingBuffers specifies the maximum number of streaming buffers. Note that the first
member may be less than the sum of the others, as there are usually some resource trade-offs.

dwFreeHwMixingAllBuffers, dwFreeHwMixingStaticBuffers, and dwFreeHwMixingStreamingBuffers
Description of the free (unallocated) hardware mixing capabilities of the device. An application can use these
values to determine whether hardware resources are available for allocation to a secondary sound buffer. Also,
by comparing these values to the members that specify maximum mixing capabilities, an application can
determine whether some hardware resources are already allocated.

dwMaxHw3DAllBuffers, dwMaxHw3DStaticBuffers, and dwMaxHw3DStreamingBuffers
Description of the hardware 3D positional capabilities of the device. These will be all be zero for the first
release.

dwFreeHw3DAllBuffers, dwFreeHw3DStaticBuffers, and dwFreeHw3DStreamingBuffers
Description of the free (unallocated) hardware 3D positional capabilities of the device. These will be all be zero
for the first release.

dwTotalHwMemBytes
Size, in bytes, of the amount of memory on the sound card that can store static sound buffers.

dwFreeHwMemBytes
Size, in bytes, of the free memory on the sound card.

dwMaxContigFreeHwMemBytes
Size, in bytes, of the largest contiguous block of free memory on the sound card.

dwUnlockTranferRateHwBuffers
Description of the rate, in kilobytes per second, at which data can be transferred to hardware static sound
buffers (that is, buffers located in onboard sound memory). This (and the number of bytes transferred)
determines the duration of that IDirectSoundBuffer::Unlock.

dwPlayCpuOverheadSwBuffers
Description of the CPU overhead (in percentage of CPU) needed to mix software buffers (that is, the buffer
located in main system memory). This varies according to the bus type, and the processor type and clock
speed.
Note that the unlock transfer rate for software buffers is zero because the data does not need to be transferred
anywhere. Similarly, the play CPU overhead for hardware buffers is zero because the mixing is done by the
sound device.

Constants
    Error Values

Error Values

DS_OK The function succeeded.

DSERR_ALLOCATED The function failed because resources (such as
a priority level) were already in use by another
caller.

DSERR_ALREADYINITIALIZED This object is already initialized.

DSERR_BADFORMAT The specified wave format is not supported.

DSERR_BUFFERLOST The buffer memory has been lost and must be
restored.

DSERR_CONTROLUNAVAIL The control (volume, pan, and so forth)
requested by the caller is not available.

DSERR_INVALIDCALL This function is not valid for the current state of
this object

DSERR_INVALIDPARAM An invalid parameter was passed to the returning
function.

DSERR_NOAGGREGATION This object does not support aggregation.

DSERR_NODRIVER No sound driver is available for use.

DSERR_OUTOFMEMORY The DirectSound subsystem couldn't allocate
sufficient memory to complete the caller's
request.

DSERR_PRIOLEVELNEEDED The caller does not have the priority level
required for the function to succeed.

E_NOINTERFACE The requested COM interface is not available.

