
Chapter 5 Part C

MicrosoftÒ DirectXÔ 3
Software Development
Kit

Direct3D Immediate-Mode
Reference

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names herein may be the trademarks of their respective
owners.

3

C H A P T E R 5

Macros...
Callback Functions...
IDirect3D..
IDirect3DDevice...
IDirect3DExecuteBuffer...
IDirect3DLight...
IDirect3DMaterial..
IDirect3DTexture..
IDirect3DViewport...
Structures..
Enumerated Types..
Other Types...
Return Values...

Direct3D Immediate-Mode
Reference

Macros
D3DDivide
D3DDivide(a, b) (float)((double) (a) / (double) (b))

Divides two values.

· Returns the quotient of the division.

a and b
Dividend and divisor in the expression, respectively.

See also D3DMultiply

D3DMultiply
D3DMultiply(a, b) ((a) * (b))

Multiplies two values.

· Returns the product of the multiplication.

a and b
Values to be multiplied.

See also D3DDivide

D3DRGB
D3DRGB(r, g, b) \
 (0xff000000L | (((long)((r) * 255)) << 16) | \
 (((long)((g) * 255)) << 8) | (long)((b) * 255))

Initializes a color with the supplied RGB values.

· Returns the D3DCOLOR value corresponding to the supplied RGB values.

r, g, and b
Red, green, and blue components of the color. These should be floating-point
values in the range 0 through 1.

See also D3DRGBA

D3DRGBA
D3DRGBA(r, g, b, a) \
 ((((long)((a) * 255)) << 24) | (((long)((r) * 255)) << 16) |

Chapter 5 Part C: Direct3D Immediate-Mode Reference 5

 (((long)((g) * 255)) << 8) | (long)((b) * 255))

Initializes a color with the supplied RGBA values.

· Returns the D3DCOLOR value corresponding to the supplied RGBA values.

r, g, b, and a
Red, green, blue, and alpha components of the color.

See also D3DRGB

D3DSTATE_OVERRIDE
D3DSTATE_OVERRIDE(type) ((DWORD) (type) + D3DSTATE_OVERRIDE_BIAS)

Overrides the state of the rasterization, lighting, or transformation module.
Applications can use this macro to lock and unlock a state.

· No return value.

type
State to override. This parameter should be one of the members of the
D3DTRANSFORMSTATETYPE, D3DLIGHTSTATETYPE, or
D3DRENDERSTATETYPE enumerated types.

An application might, for example, use the STATE_DATA macro (defined in the
D3dmacs.h header file in the Misc directory of the DirectX SDK sample code)
and D3DSTATE_OVERRIDE to lock and unlock the
D3DRENDERSTATE_SHADEMODE render state:

// Lock the shade mode.

STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), TRUE, lpBuffer);

// Work with the shade mode and unlock it when read-only status is not
required.

STATE_DATA(D3DSTATE_OVERRIDE(D3DRENDERSTATE_SHADEMODE), FALSE,
lpBuffer);

For more information about overriding rendering states, see States and State
Overrides.

D3DVAL
D3DVAL(val) ((float)val)

Creates a value whose type is D3DVALUE.

· Returns the converted value.

val
Value to be converted.

See also D3DVALP

D3DVALP
D3DVALP(val, prec) ((float)val)

Creates a value of the specified precision.

· Returns the converted value.

val
Value to be converted.

prec
Ignored.

The precision, as implemented by the D3DVAL macro, is 16 bits for the
fractional part of the value.

See also D3DVAL

RGB_GETBLUE
RGB_GETBLUE(rgb) ((rgb) & 0xff)

Retrieves the blue component of a D3DCOLOR value.

· Returns the blue component.

rgb
Color index from which the blue component is retrieved.

RGB_GETGREEN
RGB_GETGREEN(rgb) (((rgb) >> 8) & 0xff)

Retrieves the green component of a D3DCOLOR value.

· Returns the green component.

rgb
Color index from which the green component is retrieved.

RGB_GETRED
RGB_GETRED(rgb) (((rgb) >> 16) & 0xff)

Chapter 5 Part C: Direct3D Immediate-Mode Reference 7

Retrieves the red component of a D3DCOLOR value.

· Returns the red component.

rgb
Color index from which the red component is retrieved.

RGB_MAKE
RGB_MAKE(r, g, b) ((D3DCOLOR) (((r) << 16) | ((g) << 8) | (b)))

Creates an RGB color from supplied values.

· Returns the color.

r, g, and b
Red, green, and blue components of the color to be created. These should be
integer values in the range zero through 255.

RGB_TORGBA
RGB_TORGBA(rgb) ((D3DCOLOR) ((rgb) | 0xff000000))

Creates an RGBA color from a supplied RGB color.

· Returns the RGBA color.

rgb
RGB color to be converted to an RGBA color.

See also RGBA_TORGB

RGBA_GETALPHA
RGBA_GETALPHA(rgb) ((rgb) >> 24)

Retrieves the alpha component of an RGBA D3DCOLOR value.

· Returns the alpha component.

rgb
Color index from which the alpha component is retrieved.

RGBA_GETBLUE
RGB_GETBLUE(rgb) ((rgb) & 0xff)

Retrieves the blue component of an RGBA D3DCOLOR value.

· Returns the blue component.

rgb
Color index from which the blue component is retrieved.

RGBA_GETGREEN
RGB_GETGREEN(rgb) (((rgb) >> 8) & 0xff)

Retrieves the green component of an RGBA D3DCOLOR value.

· Returns the green component.

rgb
Color index from which the green component is retrieved.

RGBA_GETRED
RGB_GETRED(rgb) (((rgb) >> 16) & 0xff)

Retrieves the red component of an RGBA D3DCOLOR value.

· Returns the red component.

rgb
Color index from which the red component is retrieved.

RGBA_MAKE
RGBA_MAKE(r, g, b, a) \
 ((D3DCOLOR) (((a) << 24) | ((r) << 16) | ((g) << 8) | (b)))

Creates an RGBA D3DCOLOR value from supplied red, green, blue, and alpha
components.

· Returns the color.

r, g, b, and a
Red, green, blue, and alpha components of the RGBA color to be created.

RGBA_SETALPHA
RGBA_SETALPHA(rgba, x) (((x) << 24) | ((rgba) & 0x00ffffff))

Sets the alpha component of an RGBA D3DCOLOR value.

· Returns the RGBA color whose alpha component has been set.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 9

rgba
RGBA color for which the alpha component will be set.

x
Value of alpha component to be set.

RGBA_TORGB
RGBA_TORGB(rgba) ((D3DCOLOR) ((rgba) & 0xffffff))

Creates an RGB D3DCOLOR value from a supplied RGBA D3DCOLOR value
by stripping off the alpha component of the color.

· Returns the RGB color.

rgba
RGBA color to be converted to an RGB color.

See also RGB_TORGBA

Callback Functions
D3DENUMDEVICESCALLBACK
typedef HRESULT (FAR PASCAL * LPD3DENUMDEVICESCALLBACK)
 (LPGUID lpGuid, LPSTR lpDeviceDescription,
 LPSTR lpDeviceName, LPD3DDEVICEDESC lpD3DHWDeviceDesc,
 LPD3DDEVICEDESC lpD3DHELDeviceDesc, LPVOID lpUserArg);

Prototype definition for the callback function to enumerate installed Direct3D
devices.

· Applications should return one of the following values:
D3DENUMRET_CANCEL

Cancel the enumeration.
D3DENUMRET_OK

Continue the enumeration.

lpGuid
Address of a globally unique identifier (GUID).

lpDeviceDescription
Address of a textual description of the device.

lpDeviceName
Address of the device name.

lpD3DHWDeviceDesc
Address of a D3DDEVICEDESC structure that contains the hardware
capabilities of the Direct3D device.

lpD3DHELDeviceDesc
Address of a D3DDEVICEDESC structure that contains the emulated
capabilities of the Direct3D device.

lpUserArg
Address of application-defined data passed to this callback function.

When determining the order in which to call callback functions, the system
searches the objects highest in the hierarchy first, and then calls their callback
functions in the order in which they were created.

D3DENUMTEXTUREFORMATSCALLBACK
typedef HRESULT (WINAPI* LPD3DENUMTEXTUREFORMATSCALLBACK)
 (LPDDSURFACEDESC lpDdsd, LPVOID lpUserArg);

Prototype definition for the callback function to enumerate texture formats.

lpDdsd
Address of the DirectDrawSurface object containing the texture information.

lpUserArg
Address of application-defined data passed to this callback function.

When determining the order in which to call callback functions, the system
searches the objects highest in the hierarchy first, and then calls their callback
functions in the order in which they were created.

D3DVALIDATECALLBACK
typedef HRESULT (WINAPI* LPD3DVALIDATECALLBACK)
 (LPVOID lpUserArg, DWORD dwOffset);

Application-defined callback function supplied when an application calls the
IDirect3DExecuteBuffer::Validate method. This method is a debugging routine
that checks the execute buffer and returns an offset into the buffer when any
errors are encountered.

lpUserArg
Address of application-defined data passed to this callback function.

dwOffset
Offset into the execute buffer at which the system found an error.

When determining the order in which to call callback functions, the system
searches the objects highest in the hierarchy first, and then calls their callback
functions in the order in which they were created.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 11

IDirect3D
Applications use the methods of the IDirect3D interface to create Direct3D
objects and set up the environment. This section is a reference to the methods of
this interface. For a conceptual overview, see IDirect3D Interface.

The methods of the IDirect3D interface can be organized into the following
groups:

Creation CreateLight
CreateMaterial
CreateViewport

Enumeration EnumDevices
and initialization FindDevice

Initialize

The IDirect3D interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three
methods:

AddRef
QueryInterface
Release

IDirect3D::CreateLight
HRESULT CreateLight(LPDIRECT3DLIGHT* lplpDirect3DLight,
 IUnknown* pUnkOuter);

Allocates a Direct3DLight object. This object can then be associated with a
viewport by using the IDirect3DViewport::AddLight method.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lplpDirect3DLight
Address that will be filled with a pointer to an IDirect3DLight interface if the call
succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D::CreateLight method returns an
error if this parameter is anything but NULL.

IDirect3D::CreateMaterial
HRESULT CreateMaterial(LPDIRECT3DMATERIAL* lplpDirect3DMaterial,
 IUnknown* pUnkOuter);

Allocates a Direct3DMaterial object.

· Returns D3D_OK if successful, or an error otherwise. For a list of possible return
codes, see Direct3D Immediate-Mode Return Values.

lplpDirect3DMaterial
Address that will be filled with a pointer to an IDirect3DMaterial interface if the
call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D::CreateMaterial method returns an
error if this parameter is anything but NULL.

IDirect3D::CreateViewport
HRESULT CreateViewport(LPDIRECT3DVIEWPORT* lplpD3DViewport,
 IUnknown* pUnkOuter);

Creates a Direct3DViewport object. The viewport is associated with a
Direct3DDevice object by using the IDirect3DDevice::AddViewport method.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lplpD3DViewport
Address that will be filled with a pointer to an IDirect3DViewport interface if the
call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D::CreateViewport method returns an
error if this parameter is anything but NULL.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 13

IDirect3D::EnumDevices
HRESULT EnumDevices(LPD3DENUMDEVICESCALLBACK lpEnumDevicesCallback,
 LPVOID lpUserArg);

Enumerates all Direct3D device drivers installed on the system.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpEnumDevicesCallback
Address of the D3DENUMDEVICESCALLBACK callback function that the
enumeration procedure will call every time a match is found.

lpUserArg
Address of application-defined data passed to the callback function.

IDirect3D::FindDevice
HRESULT FindDevice(LPD3DFINDDEVICESEARCH lpD3DFDS,
 LPD3DFINDDEVICERESULT lpD3DFDR);

Finds a device with specified characteristics and retrieves a description of it.

· Returns D3D_OK if successful, or an error otherwise. For a list of possible return
codes, see Direct3D Immediate-Mode Return Values.

lpD3DFDS
Address of the D3DFINDDEVICESEARCH structure describing the device to
be located.

lpD3DFDR
Address of the D3DFINDDEVICERESULT structure describing the device if it
is found.

IDirect3D::Initialize
HRESULT Initialize(REFIID lpREFIID);

This method is provided for compliance with the COM protocol.

· Returns DDERR_ALREADYINITIALIZED because the Direct3D object is
initialized when it is created.

lpREFIID
Address of a universally unique identifier (UUID).

IDirect3DDevice
Applications use the methods of the IDirect3DDevice interface to retrieve and
set the capabilities of Direct3D devices. This section is a reference to the methods
of this interface. For a conceptual overview, see IDirect3DDevice Interface.

The methods of the IDirect3DDevice interface can be organized into the
following groups:

Execution CreateExecuteBuffer
Execute

Information EnumTextureFormats
GetCaps
GetDirect3D
GetPickRecords
GetStats

Matrices CreateMatrix
DeleteMatrix
GetMatrix
SetMatrix

Miscellaneous Initialize
Pick
SwapTextureHandles

Scenes BeginScene
EndScene

Viewports AddViewport
DeleteViewport
NextViewport

The IDirect3DDevice interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three
methods:

AddRef
QueryInterface

Chapter 5 Part C: Direct3D Immediate-Mode Reference 15

Release

The Direct3DDevice object is obtained through the appropriate call to the
IDirect3DDevice::QueryInterface method from a DirectDrawSurface object
that was created as a 3D-capable surface.

IDirect3DDevice::AddViewport
HRESULT AddViewport(LPDIRECT3DVIEWPORT lpDirect3DViewport);

Adds the specified viewport to the list of viewport objects associated with the
device.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DViewport
Address of the IDirect3DViewport interface that should be associated with this
Direct3DDevice object.

IDirect3DDevice::BeginScene
HRESULT BeginScene();

Begins a scene.

· Returns D3D_OK if successful or an error otherwise.

Applications must call this method before performing any rendering, and must
call IDirect3DDevice::EndScene when rendering is complete.

See also IDirect3DDevice::EndScene

IDirect3DDevice::CreateExecuteBuffer
HRESULT CreateExecuteBuffer(LPDIRECT3DEXECUTEBUFFERDESC lpDesc,
 LPDIRECT3DEXECUTEBUFFER* lplpDirect3DExecuteBuffer,
 IUnknown* pUnkOuter);

Allocates an execute buffer for a display list. The list may be read by hardware
DMA into VRAM for processing. All display primitives in the buffer that have
indices to vertices must also have those vertices in the same buffer.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDesc
Address of a D3DEXECUTEBUFFERDESC structure that describes the
Direct3DExecuteBuffer object to be created. The call will fail if a buffer of at
least the specified size cannot be created.

lplpDirect3DExecuteBuffer
Address of a pointer that will be filled with the address of the new
Direct3DExecuteBuffer object.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, this method returns an error if this parameter is
anything but NULL.

The D3DEXECUTEBUFFERDESC structure describes the execute buffer to be
created. At a minimum, the application must specify the size required. If the
application specifies DEBCAPS_VIDEO_MEMORY in the capabilities member,
Direct3D will attempt to keep the execute buffer in video memory.

The application can use the IDirect3DExecuteBuffer::Lock method to request
that the memory be moved. When this method returns, it will adjust the contents
of the D3DEXECUTEBUFFERDESC structure to indicate whether the data
resides in system or video memory.

IDirect3DDevice::CreateMatrix
HRESULT CreateMatrix(LPD3DMATRIXHANDLE lpD3DMatHandle);

Creates a matrix.

· Returns D3D_OK if successful, or an error otherwise, such as
DDERR_INVALIDPARAMS.

lpD3DMatHandle
Address of a variable that will contain a handle to the matrix that is created. The
call will fail if a buffer of at least the size of the matrix cannot be created.

See also IDirect3DDevice::DeleteMatrix, IDirect3DDevice::SetMatrix

IDirect3DDevice::DeleteMatrix
HRESULT DeleteMatrix(D3DMATRIXHANDLE d3dMatHandle);

Deletes a matrix handle. This matrix handle must have been created by using the
IDirect3DDevice::CreateMatrix method.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 17

· Returns D3D_OK if successful, or an error otherwise, such as
DDERR_INVALIDPARAMS.

d3dMatHandle
Matrix handle to be deleted.

See also IDirect3DDevice::CreateMatrix, IDirect3DDevice::SetMatrix

IDirect3DDevice::DeleteViewport
HRESULT DeleteViewport(LPDIRECT3DVIEWPORT lpDirect3DViewport);

Removes the specified viewport from the list of viewport objects associated with
the device.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DViewport
Address of the Direct3DViewport object that should be disassociated with this
Direct3DDevice object.

IDirect3DDevice::EndScene
HRESULT EndScene();

Ends a scene that was begun by calling the IDirect3DDevice::BeginScene
method.

· Returns D3D_OK if successful, or an error otherwise.

See also IDirect3DDevice::BeginScene

IDirect3DDevice::EnumTextureFormats
HRESULT EnumTextureFormats(
 LPD3DENUMTEXTUREFORMATSCALLBACK lpd3dEnumTextureProc,
 LPVOID lpArg);

Queries the current driver for a list of supported texture formats.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

lpd3dEnumTextureProc
Address of the D3DENUMTEXTUREFORMATSCALLBACK callback
function that the enumeration procedure will call for each texture format.

lpArg
Address of application-defined data passed to the callback function.

IDirect3DDevice::Execute
HRESULT Execute(LPDIRECT3DEXECUTEBUFFER lpDirect3DExecuteBuffer,
 LPDIRECT3DVIEWPORT lpDirect3DViewport, DWORD dwFlags);

Executes a buffer.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DExecuteBuffer
Address of the execute buffer to be executed.

lpDirect3DViewport
Address of the Direct3DViewport object that describes the transformation context
into which the execute buffer will be rendered.

dwFlags
Flags specifying whether or not objects in the buffer should be clipped. This
parameter must be one of the following values:
D3DEXECUTE_CLIPPED

Clip any primitives in the buffer that are outside or partially outside the
viewport.

D3DEXECUTE_UNCLIPPED
All primitives in the buffer are contained within the viewport.

See also D3DEXECUTEDATA, D3DINSTRUCTION,
IDirect3DExecuteBuffer::Validate

IDirect3DDevice::GetCaps
HRESULT GetCaps(LPD3DDEVICEDESC lpD3DHWDevDesc,
 LPD3DDEVICEDESC lpD3DHELDevDesc);

Retrieves the capabilities of the Direct3DDevice object.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 19

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpD3DHWDevDesc
Address of the D3DDEVICEDESC structure that will contain the hardware
features of the device.

lpD3DHELDevDesc
Address of the D3DDEVICEDESC structure that will contain the software
emulation being provided.

This method does not retrieve the capabilities of the display device. To retrieve
this information, use the IDirectDraw2::GetCaps method.

IDirect3DDevice::GetDirect3D
HRESULT GetDirect3D(LPDIRECT3D* lpD3D);

Retrieves the current IDirect3D interface.

· Returns D3D_OK if successful, or an error otherwise. For a list of possible return
codes, see Direct3D Immediate-Mode Return Values.

lpD3D
Address that will contain the interface when the method returns.

IDirect3DDevice::GetMatrix
HRESULT GetMatrix(D3DMATRIXHANDLE lpD3DMatHandle,
 LPD3DMATRIX lpD3DMatrix);

Retrieves a matrix from a matrix handle. This matrix handle must have been
created by using the IDirect3DDevice::CreateMatrix method.

· Returns D3D_OK if successful, or an error otherwise, such as
DDERR_INVALIDPARAMS.

lpD3DMatHandle
Address of a variable that contains the matrix to be retrieved.

lpD3DMatrix
Address of a D3DMATRIX structure that contains the matrix when the method
returns.

See also IDirect3DDevice::CreateMatrix, IDirect3DDevice::DeleteMatrix,
IDirect3DDevice::SetMatrix

IDirect3DDevice::GetPickRecords
HRESULT GetPickRecords(LPDWORD lpCount,
 LPD3DPICKRECORD lpD3DPickRec);

Retrieves the pick records for a device.

· Returns D3D_OK if successful or an error otherwise.

lpCount
Address of a variable that contains the number of D3DPICKRECORD structures
to retrieve.

lpD3DPickRec
Address that will contain an array of D3DPICKRECORD structures when the
method returns.

An application typically calls this method twice. In the first call, the second
parameter is set to NULL, and the first parameter retrieves a count of all relevant
D3DPICKRECORD structures. The application then allocates sufficient
memory for those structures and calls the method again, specifying the newly
allocated memory for the second parameter.

IDirect3DDevice::GetStats
HRESULT GetStats(LPD3DSTATS lpD3DStats);

Retrieves statistics about a device.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpD3DStats
Address of a D3DSTATS structure that will be filled with the statistics.

IDirect3DDevice::Initialize
HRESULT Initialize(LPDIRECT3D lpd3d, LPGUID lpGUID,
 LPD3DDEVICEDESC lpd3ddvdesc);

Initializes a device.

· Returns D3D_OK if successful, or an error otherwise. For a list of possible return
values, see Direct3D Immediate-Mode Return Values.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 21

lpd3d
Address of the Direct3D device to use as an initializer.

lpGUID
Address of the globally unique identifier (GUID) used as the interface identifier.

lpd3ddvdesc
Address of a D3DDEVICEDESC structure describing the Direct3DDevice object
to be initialized.

IDirect3DDevice::NextViewport
HRESULT NextViewport(LPDIRECT3DVIEWPORT lpDirect3DViewport,
 LPDIRECT3DVIEWPORT* lplpDirect3DViewport, DWORD dwFlags);

Enumerates the viewports associated with the device.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DViewport
Address of a viewport in the list of viewports associated with this
Direct3DDevice object.

lplpDirect3DViewport
Address of the next viewport in the list of viewports associated with this
Direct3DDevice object.

dwFlags
Flags specifying which viewport to retrieve from the list of viewports. The
default setting is D3DNEXT_NEXT.
D3DNEXT_HEAD Retrieve the item at the beginning of the list.
D3DNEXT_NEXT Retrieve the next item in the list.
D3DNEXT_TAIL Retrieve the item at the end of the list.

IDirect3DDevice::Pick
HRESULT Pick(LPDIRECT3DEXECUTEBUFFER lpDirect3DExecuteBuffer,
 LPDIRECT3DVIEWPORT lpDirect3DViewport, DWORD dwFlags,
 LPD3DRECT lpRect);

Executes a buffer without performing any rendering, but returns a z-ordered list
of offsets to the primitives that cover the rectangle specified by lpRect.

This call fails if the Direct3DExecuteBuffer object is locked.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DExecuteBuffer
Address of an execute buffer from which the z-ordered list is retrieved.

lpDirect3DViewport
Address of a viewport in the list of viewports associated with this
Direct3DDevice object.

dwFlags
No flags are currently defined for this method.

lpRect
Address of a D3DRECT structure specifying the range of device coordinates to
be picked.

If the x1 and x2 members of the structure specified in the lpRect parameter are
equal, and the y1 and y2 members are equal, a single pixel is used for picking.
The coordinates are specified in device-pixel space.

All Direct3DExecuteBuffer objects must be attached to a Direct3DDevice object
in order for this method to succeed.

See also IDirect3DDevice::GetPickRecords

IDirect3DDevice::SetMatrix
HRESULT SetMatrix(D3DMATRIXHANDLE d3dMatHandle,
 LPD3DMATRIX lpD3DMatrix);

Applies a matrix to a matrix handle. This matrix handle must have been created
by using the IDirect3DDevice::CreateMatrix method.

· Returns D3D_OK if successful, or an error otherwise, such as
DDERR_INVALIDPARAMS.

d3dMatHandle
Matrix handle to be set.

lpD3DMatrix
Address of a D3DMATRIX structure that describes the matrix to be set.

Transformations inside the execute buffer include a handle of a matrix. The
IDirect3DDevice::SetMatrix method enables an application to change this
matrix without having to lock and unlock the execute buffer.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 23

See also IDirect3DDevice::CreateMatrix, IDirect3DDevice::GetMatrix,
IDirect3DDevice::DeleteMatrix

IDirect3DDevice::SwapTextureHandles
HRESULT SwapTextureHandles(LPDIRECT3DTEXTURE lpD3DTex1,
 LPDIRECT3DTEXTURE lpD3DTex2);

Swaps two texture handles.

· Returns D3D_OK if successful or an error otherwise.

lpD3DTex1 and lpD3DTex2
Addresses of the textures whose handles will be swapped when the method
returns.

This method is useful when an application is changing all the textures in a
complicated object.

IDirect3DExecuteBuffer
Applications use the methods of the IDirect3DExecuteBuffer interface to set up
and control a Direct3D execute buffer. This section is a reference to the methods
of this interface. For a conceptual overview, see IDirect3DExecuteBuffer
Interface.

The methods of the IDirect3DExecuteBuffer interface can be organized into the
following groups:

Execute data GetExecuteData
SetExecuteData

Lock and unlock Lock
Unlock

Miscellaneous Initialize
Optimize
Validate

The IDirect3DExecuteBuffer interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface

Release

IDirect3DExecuteBuffer::GetExecuteData
HRESULT GetExecuteData(LPD3DEXECUTEDATA lpData);

Retrieves the execute data state of the Direct3DExecuteBuffer object. The
execute data is used to describe the contents of the Direct3DExecuteBuffer
object.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpData
Address of a D3DEXECUTEDATA structure that will be filled with the current
execute data state of the Direct3DExecuteBuffer object.

This call fails if the Direct3DExecuteBuffer object is locked.

See also IDirect3DExecuteBuffer::SetExecuteData

IDirect3DExecuteBuffer::Initialize
HRESULT Initialize(LPDIRECT3DDEVICE lpDirect3DDevice,
 LPD3DEXECUTEBUFFERDESC lpDesc);

This method is provided for compliance with the COM protocol.

· Returns DDERR_ALREADYINITIALIZED because the
Direct3DExecuteBuffer object is initialized when it is created.

lpDirect3DDevice
Address of the device representing the Direct3D object.

lpDesc
Address of a D3DEXECUTEBUFFERDESC structure that describes the
Direct3DExecuteBuffer object to be created. The call fails if a buffer of at least
the specified size cannot be created.

IDirect3DExecuteBuffer::Lock
HRESULT Lock(LPD3DEXECUTEBUFFERDESC lpDesc);

Obtains a direct pointer to the commands in the execute buffer.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 25

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_WASSTILLDRAWING

lpDesc
Address of a D3DEXECUTEBUFFERDESC structure. When the method
returns, the lpData member will be set to point to the actual data the application
has access to. This data may reside in system or video memory, and is specified
by the dwCaps member. The application may use the
IDirect3DExecuteBuffer::Lock method to request that Direct3D move the data
between system or video memory.

This call fails if the Direct3DExecuteBuffer object is locked—that is, if another
thread is accessing the buffer, or if a IDirect3DDevice::Execute method that
was issued on this buffer has not yet completed.

See also IDirect3DExecuteBuffer::Unlock

IDirect3DExecuteBuffer::Optimize
HRESULT Optimize();

Not currently supported.

IDirect3DExecuteBuffer::SetExecuteData
HRESULT SetExecuteData(LPD3DEXECUTEDATA lpData);

Sets the execute data state of the Direct3DExecuteBuffer object. The execute
data is used to describe the contents of the Direct3DExecuteBuffer object.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
D3DERR_EXECUTE_LOCKED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpData
Address of a D3DEXECUTEDATA structure that describes the execute buffer
layout.

This call fails if the Direct3DExecuteBuffer object is locked.

See also IDirect3DExecuteBuffer::GetExecuteData

IDirect3DExecuteBuffer::Unlock
HRESULT Unlock();

Releases the direct pointer to the commands in the execute buffer. This must be
done prior to calling the IDirect3DDevice::Execute method for the buffer.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
D3DERR_EXECUTE_NOT_LOCKED
DDERR_INVALIDOBJECT

See also IDirect3DExecuteBuffer::Lock

IDirect3DExecuteBuffer::Validate
HRESULT Validate(LPDWORD lpdwOffset, LPD3DVALIDATECALLBACK lpFunc,
 LPVOID lpUserArg, DWORD dwReserved);

Not currently implemented.

IDirect3DLight
Applications use the methods of the IDirect3DLight interface to retrieve and set
the capabilities of lights. This section is a reference to the methods of this
interface. For a conceptual overview, see IDirect3DLight Interface.

The methods of the IDirect3DLight interface can be organized into the following
groups:

Get and set GetLight
SetLight

Initialization Initialize

The IDirect3DLight interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three
methods:

AddRef
QueryInterface

Chapter 5 Part C: Direct3D Immediate-Mode Reference 27

Release

IDirect3DLight::GetLight
HRESULT GetLight(LPD3DLIGHT lpLight);

Retrieves the light information for the Direct3DLight object.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpLight
Address of a D3DLIGHT structure that will be filled with the current light data.

See also IDirect3DLight::SetLight

IDirect3DLight::Initialize
HRESULT Initialize(LPDIRECT3D lpDirect3D);

This method is provided for compliance with the COM protocol.

· Returns DDERR_ALREADYINITIALIZED because the Direct3DLight object
is initialized when it is created.

lpDirect3D
Address of the Direct3D structure representing the Direct3D object.

IDirect3DLight::SetLight
HRESULT SetLight(LPD3DLIGHT lpLight);

Sets the light information for the Direct3DLight object.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpLight
Address of a D3DLIGHT structure that will be used to set the current light data.

See also IDirect3DLight::GetLight

IDirect3DMaterial
Applications use the methods of the IDirect3DMaterial interface to retrieve and
set the properties of materials. This section is a reference to the methods of this
interface. For a conceptual overview, see IDirect3DMaterial Interface.

The methods of the IDirect3DMaterial interface can be organized into the
following groups:

Color reservation Reserve
Unreserve

Materials GetMaterial
SetMaterial

Miscellaneous GetHandle
Initialize

The IDirect3DMaterial interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface
Release

IDirect3DMaterial::GetHandle
HRESULT GetHandle(LPDIRECT3DDEVICE lpDirect3DDevice,
 LPD3DMATERIALHANDLE lpHandle);

Obtains the material handle for the Direct3DMaterial object. This handle is used
in all Direct3D API calls where a material is to be referenced. A material can be
used by only one device at a time.

If the device is destroyed, the material is disassociated from the device.

· Returns D3D_OK if successful, or DDERR_INVALIDOBJECT otherwise.

lpDirect3DDevice
Address of the Direct3DDevice object in which the material is being used.

lpHandle
Address of a variable that will be filled with the material handle corresponding to
the Direct3DMaterial object.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 29

IDirect3DMaterial::GetMaterial
HRESULT GetMaterial(LPD3DMATERIAL lpMat);

Retrieves the material data for the Direct3DMaterial object.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpMat
Address of a D3DMATERIAL structure that will be filled with the current
material properties.

See also IDirect3DMaterial::SetMaterial

IDirect3DMaterial::Initialize
HRESULT Initialize(LPDIRECT3D lpDirect3D);

This method is provided for compliance with the COM protocol.

· Returns DDERR_ALREADYINITIALIZED because the Direct3DMaterial
object is initialized when it is created.

lpDirect3D
Address of the Direct3D structure representing the Direct3D object.

IDirect3DMaterial::Reserve
HRESULT Reserve();

Not currently implemented.

IDirect3DMaterial::SetMaterial
HRESULT SetMaterial(LPD3DMATERIAL lpMat);

Sets the material data for the Direct3DMaterial object.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpMat
Address of a D3DMATERIAL structure that contains the material properties.

See also IDirect3DMaterial::GetMaterial

IDirect3DMaterial::Unreserve
HRESULT Unreserve();

Not currently implemented.

IDirect3DTexture
Applications use the methods of the IDirect3DTexture interface to retrieve and
set the properties of textures. This section is a reference to the methods of this
interface. For a conceptual overview, see IDirect3DTexture Interface.

The methods of the IDirect3DTexture interface can be organized into the
following groups:

Handles GetHandle

Initialization Initialize

Loading Load
Unload

Palette information PaletteChanged

The IDirect3DTexture interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three
methods:

AddRef
QueryInterface
Release

The Direct3DTexture object is obtained through the appropriate call to the
IDirect3D::QueryInterface method from a DirectDrawSurface object that was
created as a texture map.

IDirect3DTexture::GetHandle
HRESULT GetHandle(LPDIRECT3DDEVICE lpDirect3DDevice,
 LPD3DTEXTUREHANDLE lpHandle);

Chapter 5 Part C: Direct3D Immediate-Mode Reference 31

Obtains the texture handle for the Direct3DTexture object. This handle is used in
all Direct3D API calls where a texture is to be referenced.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
D3DERR_BADOBJECT
DDERR_INVALIDPARAMS

lpDirect3DDevice
Address of the Direct3DDevice object into which the texture is to be loaded.

lpHandle
Address that will contain the texture handle corresponding to the
Direct3DTexture object.

IDirect3DTexture::Initialize
HRESULT Initialize(LPDIRECT3DDEVICE lpD3DDevice,
 LPDIRECTDRAWSURFACE lpDDSurface);

This method is provided for compliance with the COM protocol.

· Returns DDERR_ALREADYINITIALIZED because the Direct3DTexture
object is initialized when it is created.

lpD3DDevice
Address of the device representing the Direct3D object.

lpDDSurface
Address of the DirectDraw surface for this object.

IDirect3DTexture::Load
HRESULT Load(LPDIRECT3DTEXTURE lpD3DTexture);

Loads a texture that was created with the DDSCAPS_ALLOCONLOAD flag,
which indicates that memory for the DirectDraw surface is not allocated until the
surface is loaded by using this method.

· Returns D3D_OK if successful, or an error otherwise. For a list of possible return
values, see Direct3D Immediate-Mode Return Values.

lpD3DTexture
Address of the texture to load.

See also IDirect3DTexture::Unload

IDirect3DTexture::PaletteChanged
HRESULT PaletteChanged(DWORD dwStart, DWORD dwCount);

Informs the driver that the palette has changed on a surface.

· Returns D3D_OK if successful, or an error otherwise. For a list of possible return
values, see Direct3D Immediate-Mode Return Values.

dwStart
Index of first palette entry that has changed.

dwCount
Number of palette entries that have changed.

This method is particularly useful for applications that play video clips and
therefore require palette-changing capabilities.

IDirect3DTexture::Unload
HRESULT Unload();

Unloads the current texture.

· Returns D3D_OK if successful, or an error otherwise. For a list of possible return
values, see Direct3D Immediate-Mode Return Values.

See also IDirect3DTexture::Load

IDirect3DViewport
Applications use the methods of the IDirect3DViewport interface to retrieve and
set the properties of viewports. This section is a reference to the methods of this
interface. For a conceptual overview, see IDirect3DViewport Interface.

The methods of the IDirect3DViewport interface can be organized into the
following groups:

Backgrounds GetBackground
GetBackgroundDepth
SetBackground
SetBackgroundDepth

Initialization Initialize

Lights AddLight

Chapter 5 Part C: Direct3D Immediate-Mode Reference 33

DeleteLight
LightElements
NextLight

Materials and viewports Clear
GetViewport
SetViewport

Transformation TransformVertices

The IDirect3DViewport interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface
Release

IDirect3DViewport::AddLight
HRESULT AddLight(LPDIRECT3DLIGHT lpDirect3DLight);

Adds the specified light to the list of Direct3DLight objects associated with this
viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DLight
Address of the Direct3DLight object that should be associated with this
Direct3DDevice object.

IDirect3DViewport::Clear
HRESULT Clear(DWORD dwCount, LPD3DRECT lpRects, DWORD dwFlags);

Clears the viewport or a set of rectangles in the viewport to the current
background material.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

dwCount
Number of rectangles pointed to by lpRects.

lpRects
Address of an array of D3DRECT structures.

dwFlags
Flags indicating what to clear: the rendering target, the z-buffer, or both.
D3DCLEAR_TARGET Clear the rendering target to the background

material (if set).
D3DCLEAR_ZBUFFER Clear the z-buffer or set it to the current

background depth field (if set).

IDirect3DViewport::DeleteLight
HRESULT DeleteLight(LPDIRECT3DLIGHT lpDirect3DLight);

Removes the specified light from the list of Direct3DLight objects associated
with this viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DLight
Address of the Direct3DLight object that should be disassociated with this
Direct3DDevice object.

IDirect3DViewport::GetBackground
HRESULT GetBackground(LPD3DMATERIALHANDLE lphMat, LPBOOL lpValid);

Retrieves the handle of a material that represents the current background
associated with the viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Chapter 5 Part C: Direct3D Immediate-Mode Reference 35

lphMat
Address that will contain the handle of the material being used as the
background.

lpValid
Address of a variable that will be filled to indicate whether a background is
associated with the viewport. If this parameter is FALSE, no background is
associated with the viewport.

See also IDirect3DViewport::SetBackground

IDirect3DViewport::GetBackgroundDepth
HRESULT GetBackgroundDepth(LPDIRECTDRAWSURFACE* lplpDDSurface,
 LPBOOL lpValid);

Retrieves a DirectDraw surface that represents the current background-depth
field associated with the viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lplpDDSurface
Address that will be initialized to point to a DirectDrawSurface object
representing the background depth.

lpValid
Address of a variable that is set to FALSE if no background depth is associated
with the viewport.

See also IDirect3DViewport::SetBackgroundDepth

IDirect3DViewport::GetViewport
HRESULT GetViewport(LPD3DVIEWPORT lpData);

Retrieves the viewport registers of the viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpData
Address of a D3DVIEWPORT structure representing the viewport.

See also IDirect3DViewport::SetViewport

IDirect3DViewport::Initialize
HRESULT Initialize(LPDIRECT3D lpDirect3D);

This method is provided for compliance with the COM protocol.

· Returns DDERR_ALREADYINITIALIZED because the Direct3DViewport
object is initialized when it is created.

lpDirect3D
Address of the Direct3D structure representing the Direct3D object.

IDirect3DViewport::LightElements
HRESULT LightElements(DWORD dwElementCount, LPD3DLIGHTDATA lpData);

Not currently implemented.

IDirect3DViewport::NextLight
HRESULT NextLight(LPDIRECT3DLIGHT lpDirect3DLight,
 LPDIRECT3DLIGHT* lplpDirect3DLight, DWORD dwFlags);

Enumerates the Direct3DLight objects associated with the viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDirect3DLight
Address of a light in the list of lights associated with this Direct3DDevice object.

lplpDirect3DLight
Address of a pointer that will contain the requested light in the list of lights
associated with this Direct3DDevice object. The requested light is specified in
the dwFlags parameter.

dwFlags
Flags specifying which light to retrieve from the list of lights. The default setting
is D3DNEXT_NEXT.
D3DNEXT_HEAD Retrieve the item at the beginning of the list.
D3DNEXT_NEXT Retrieve the next item in the list.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 37

D3DNEXT_TAIL Retrieve the item at the end of the list.

IDirect3DViewport::SetBackground
HRESULT SetBackground(D3DMATERIALHANDLE hMat);

Sets the background associated with the viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

hMat
Material handle that will be used as the background.

See also IDirect3DViewport::GetBackground

IDirect3DViewport::SetBackgroundDepth
HRESULT SetBackgroundDepth(LPDIRECTDRAWSURFACE lpDDSurface);

Sets the background-depth field for the viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDDSurface
Address of the DirectDrawSurface object representing the background depth.

The z-buffer is filled with the specified depth field when the
IDirect3DViewport::Clear method is called and the D3DCLEAR_ZBUFFER
flag is specified. The bit depth must be 16 bits.

See also IDirect3DViewport::GetBackgroundDepth

IDirect3DViewport::SetViewport
HRESULT SetViewport(LPD3DVIEWPORT lpData);

Sets the viewport registers of the viewport.

· Returns D3D_OK if successful, or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpData
Address of a D3DVIEWPORT structure that contains the new viewport.

See also IDirect3DViewport::GetViewport

IDirect3DViewport::TransformVertices
HRESULT TransformVertices(DWORD dwVertexCount,
 LPD3DTRANSFORMDATA lpData, DWORD dwFlags, LPDWORD lpOffscreen);

Transforms a set of vertices by the transformation matrix.

· Returns D3D_OK if successful or an error otherwise, which may be one of the
following values:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

dwVertexCount
Number of vertices in the lpData parameter to be transformed.

lpData
Address of a D3DTRANSFORMDATA structure that contains the vertices to be
transformed.

dwFlags
One of the following flags. See the comments section following the parameter
description for a discussion of how to use these flags.
D3DTRANSFORM_CLIPPED
D3DTRANSFORM_UNCLIPPED

lpOffscreen
Address of a variable that is set to a nonzero value if the resulting vertices are all
off-screen.

If the dwFlags parameter is set to D3DTRANSFORM_CLIPPED, this method
uses the current transformation matrix to transform a set of vertices, checking the
resulting vertices to see if they are within the viewing frustum. The homogeneous
part of the D3DLVERTEX structure within lpData will be set if the vertex is
clipped; otherwise only the screen coordinates will be set. The clip intersection of
all the vertices transformed is returned in lpOffscreen. That is, if lpOffscreen is
nonzero, all the vertices were off-screen and not straddling the viewport. The

Chapter 5 Part C: Direct3D Immediate-Mode Reference 39

drExtent member of the D3DTRANSFORMDATA structure will also be set to
the 2D bounding rectangle of the resulting vertices.

If the dwFlags parameter is set to D3DTRANSFORM_UNCLIPPED, this method
uses the current transformation matrix to transform a set of vertices. In this case,
the system assumes that all the resulting coordinates will be within the viewing
frustum. The drExtent member of the D3DTRANSFORMDATA structure will
be set to the bounding rectangle of the resulting vertices.

The dwClip member of D3DTRANSFORMDATA can help the transformation
module determine whether the geometry will need clipping against the viewing
volume. Before transforming a geometry, high-level software often can test
whether bounding boxes or bounding spheres are wholly within the viewing
volume, allowing clipping tests to be skipped, or wholly outside the viewing
volume, allowing the geometry to be skipped entirely.

Structures
D3DBRANCH
typedef struct _D3DBRANCH {
 DWORD dwMask;
 DWORD dwValue;
 BOOL bNegate;
 DWORD dwOffset;
} D3DBRANCH, *LPD3DBRANCH;

Performs conditional operations inside an execute buffer. This structure is a
forward-branch structure.

dwMask
Bitmask for the branch. This mask is combined with the driver-status mask by
using the logical AND operator. If the result equals the value specified in the
dwValue member and the bNegate member is FALSE, the branch is taken.
For a list of the available driver-status masks, see the dwStatus member of the
D3DSTATUS structure.

dwValue
Application-defined value to compare against the operation described in the
dwMask member.

bNegate
TRUE to negate comparison.

dwOffset
How far to branch forward. Specify zero to exit.

D3DCOLORVALUE
typedef struct _D3DCOLORVALUE {
 union {
 D3DVALUE r;
 D3DVALUE dvR;
 };
 union {
 D3DVALUE g;
 D3DVALUE dvG;
 };
 union {
 D3DVALUE b;
 D3DVALUE dvB;
 };
 union {
 D3DVALUE a;
 D3DVALUE dvA;
 };
} D3DCOLORVALUE;

Describes color values for the D3DLIGHT and D3DMATERIAL structures.

dvR, dvG, dvB, and dvA
Values of the D3DVALUE type specifying the red, green, blue, and alpha
components of a color.

D3DDEVICEDESC
typedef struct _D3DDeviceDesc {
 DWORD dwSize;
 DWORD dwFlags;
 D3DCOLORMODEL dcmColorModel;
 DWORD dwDevCaps;
 D3DTRANSFORMCAPS dtcTransformCaps;
 BOOL bClipping;
 D3DLIGHTINGCAPS dlcLightingCaps;
 D3DPRIMCAPS dpcLineCaps;
 D3DPRIMCAPS dpcTriCaps;
 DWORD dwDeviceRenderBitDepth;
 DWORD dwDeviceZBufferBitDepth;
 DWORD dwMaxBufferSize;
 DWORD dwMaxVertexCount;
} D3DDEVICEDESC, *LPD3DDEVICEDESC;

Contains a description of the current device. This structure is used to query the
current device by such methods as IDirect3DDevice::GetCaps.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 41

dwSize
Size, in bytes, of this structure.

dwFlags
Flags identifying the members of this structure that contain valid data.
D3DDD_BCLIPPING

The bClipping member is valid.
D3DDD_COLORMODEL

The dcmColorModel member is valid.
D3DDD_DEVCAPS

The dwDevCaps member is valid.
D3DDD_LIGHTINGCAPS

The dlcLightingCaps member is valid.
D3DDD_LINECAPS

The dpcLineCaps member is valid.
D3DDD_MAXBUFFERSIZE

The dwMaxBufferSize member is valid.
D3DDD_MAXVERTEXCOUNT

The dwMaxVertexCount member is valid.
D3DDD_TRANSFORMCAPS

The dtcTransformCaps member is valid.
D3DDD_TRICAPS

The dpcTriCaps member is valid.

dcmColorModel
One of the members of the D3DCOLORMODEL enumerated type, specifying
the color model for the device.

dwDevCaps
Flags identifying the capabilities of the device.
D3DDEVCAPS_EXECUTESYSTEMMEMORY

Device can use execute buffers from system memory.
D3DDEVCAPS_EXECUTEVIDEOMEMORY

Device can use execute buffers from video memory.
D3DDEVCAPS_FLOATTLVERTEX

Device accepts floating point for post-transform vertex data.
D3DDEVCAPS_SORTDECREASINGZ

Device needs data sorted for decreasing depth.
D3DDEVCAPS_SORTEXACT

Device needs data sorted exactly.

D3DDEVCAPS_SORTINCREASINGZ
Device needs data sorted for increasing depth.

D3DDEVCAPS_TEXTURESYSTEMMEMORY
Device can retrieve textures from system memory.

D3DDEVCAPS_TEXTUREVIDEOMEMORY
Device can retrieves textures from device memory.

D3DDEVCAPS_TLVERTEXSYSTEMMEMORY
Device can use buffers from system memory for transformed and lit
vertices.

D3DDEVCAPS_TLVERTEXVIDEOMEMORY
Device can use buffers from video memory for transformed and lit
vertices.

dtcTransformCaps
One of the members of the D3DTRANSFORMCAPS structure, specifying the
transformation capabilities of the device.

bClipping
TRUE if the device can perform 3D clipping.

dlcLightingCaps
One of the members of the D3DLIGHTINGCAPS structure, specifying the
lighting capabilities of the device.

dpcLineCaps and dpcTriCaps
D3DPRIMCAPS structures defining the device's support for line-drawing and
triangle primitives.

dwDeviceRenderBitDepth
Device's rendering bit-depth. This can be one or more of the following
DirectDraw bit-depth constants: DDBD_8, DDBD_16, DDBD_24, or DDBD_32.

dwDeviceZBufferBitDepth
Device's z-buffer bit-depth. This can be one of the following DirectDraw bit-
depth constants: DDBD_8, DDBD_16, DDBD_24, or DDBD_32.

dwMaxBufferSize
Maximum size of the execute buffer for this device. If this member is 0, the
application can use any size.

dwMaxVertexCount
Maximum vertex count for this device.

See also D3DCOLORMODEL, D3DFINDDEVICERESULT,
D3DLIGHTINGCAPS, D3DPRIMCAPS, D3DTRANSFORMCAPS

D3DEXECUTEBUFFERDESC
typedef struct _D3DExecuteBufferDesc {
 DWORD dwSize;

Chapter 5 Part C: Direct3D Immediate-Mode Reference 43

 DWORD dwFlags;
 DWORD dwCaps;
 DWORD dwBufferSize;
 LPVOID lpData;
} D3DEXECUTEBUFFERDESC;
typedef D3DEXECUTEBUFFERDESC *LPD3DEXECUTEBUFFERDESC;

Describes the execute buffer for such methods as
IDirect3DDevice::CreateExecuteBuffer and IDirect3DExecuteBuffer::Lock.

dwSize
Size of this structure, in bytes.

dwFlags
Flags identifying the members of this structure that contain valid data.
D3DDEB_BUFSIZE The dwBufferSize member is valid.
D3DDEB_CAPS The dwCaps member is valid.
D3DDEB_LPDATA The lpData member is valid.

dwCaps
Location in memory of the execute buffer.
D3DDEBCAPS_MEM

A logical OR of D3DDEBCAPS_SYSTEMMEMORY and
D3DDEBCAPS_VIDEOMEMORY.

D3DDEBCAPS_SYSTEMMEMORY
The execute buffer data resides in system memory.

D3DDEBCAPS_VIDEOMEMORY
The execute buffer data resides in device memory.

dwBufferSize
Size of the execute buffer, in bytes.

lpData
Address of the buffer data.

D3DEXECUTEDATA
typedef struct _D3DEXECUTEDATA {
 DWORD dwSize;
 DWORD dwVertexOffset;
 DWORD dwVertexCount;
 DWORD dwInstructionOffset;
 DWORD dwInstructionLength;
 DWORD dwHVertexOffset;
 D3DSTATUS dsStatus;
} D3DEXECUTEDATA, *LPD3DEXECUTEDATA;

Specifies data for the IDirect3DDevice::Execute method. When this method is
called and the transformation has been done, the instruction list starting at the
value specified in the dwInstructionOffset member is parsed and rendered.

dwSize
Size of this structure, in bytes.

dwVertexOffset
Offset into the list of vertices.

dwVertexCount
Number of vertices to execute.

dwInstructionOffset
Offset into the list of instructions to execute.

dwInstructionLength
Length of the instructions to execute.

dwHVertexOffset
Offset into the list of vertices for the homogeneous vertex used when the
application is supplying screen coordinate data that needs clipping.

dsStatus
Value storing the screen extent of the rendered geometry for use after the
transformation is complete. This value is a D3DSTATUS structure.

See also D3DSTATUS

D3DFINDDEVICERESULT
typedef struct _D3DFINDDEVICERESULT {
 DWORD dwSize;
 GUID guid;
 D3DDEVICEDESC ddHwDesc;
 D3DDEVICEDESC ddSwDesc;
} D3DFINDDEVICERESULT, *LPD3DFINDDEVICERESULT;

Identifies a device an application has found by calling the
IDirect3D::FindDevice method.

dwSize
Size, in bytes, of the structure.

guid
Globally unique identifier (GUID) of the device that was found.

ddHwDesc and ddSwDesc
D3DDEVICEDESC structures describing the hardware and software devices that
were found.

See also D3DFINDDEVICESEARCH

Chapter 5 Part C: Direct3D Immediate-Mode Reference 45

D3DFINDDEVICESEARCH
typedef struct _D3DFINDDEVICESEARCH {
 DWORD dwSize;
 DWORD dwFlags;
 BOOL bHardware;
 D3DCOLORMODEL dcmColorModel;
 GUID guid;
 DWORD dwCaps;
 D3DPRIMCAPS dpcPrimCaps;
} D3DFINDDEVICESEARCH, *LPD3DFINDDEVICESEARCH;

Specifies the characteristics of a device an application wants to find. This
structure is used in calls to the IDirect3D::FindDevice method.

dwSize
Size, in bytes, of this structure.

dwFlags
Flags defining the type of device the application wants to find. This member can
be one or more of the following values:
D3DFDS_ALPHACMPCAPS

Match the dwAlphaCmpCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_COLORMODEL
Match the color model specified in the dcmColorModel member of this
structure.

D3DFDS_DSTBLENDCAPS
Match the dwDestBlendCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_GUID
Match the globally unique identifier (GUID) specified in the guid
member of this structure.

D3DFDS_HARDWARE
Match the hardware or software search specification given in the
bHardware member of this structure.

D3DFDS_LINES
Match the D3DPRIMCAPS structure specified by the dpcLineCaps
member of the D3DDEVICEDESC structure.

D3DFDS_MISCCAPS
Match the dwMiscCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_RASTERCAPS
Match the dwRasterCaps member of the D3DPRIMCAPS structure

specified as the dpcPrimCaps member of this structure.
D3DFDS_SHADECAPS

Match the dwShadeCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_SRCBLENDCAPS
Match the dwSrcBlendCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_TEXTUREBLENDCAPS
Match the dwTextureBlendCaps member of the D3DPRIMCAPS
structure specified as the dpcPrimCaps member of this structure.

D3DFDS_TEXTURECAPS
Match the dwTextureCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

D3DFDS_TEXTUREFILTERCAPS
Match the dwTextureFilterCaps member of the D3DPRIMCAPS
structure specified as the dpcPrimCaps member of this structure.

D3DFDS_TRIANGLES
Match the D3DPRIMCAPS structure specified by the dpcTriCaps
member of the D3DDEVICEDESC structure.

D3DFDS_ZCMPCAPS
Match the dwZCmpCaps member of the D3DPRIMCAPS structure
specified as the dpcPrimCaps member of this structure.

bHardware
Flag specifying whether the device to find is implemented as hardware or
software. If this member is TRUE, the device to search for has hardware
rasterization and may also provide other hardware acceleration. Applications that
use this flag should set the D3DFDS_HARDWARE bit in the dwFlags member.

dcmColorModel
One of the members of the D3DCOLORMODEL enumerated type, specifying
whether the device to find should use the ramp or RGB color model.

guid
Globally unique identifier (GUID) of the device to find.

dwCaps
Capability flags.

dpcPrimCaps
Specifies a D3DPRIMCAPS structure defining the device's capabilities for each
primitive type.

See also D3DFINDDEVICERESULT

Chapter 5 Part C: Direct3D Immediate-Mode Reference 47

D3DHVERTEX
typedef struct _D3DHVERTEX {
 DWORD dwFlags;
 union {
 D3DVALUE hx;
 D3DVALUE dvHX;
 };
 union {
 D3DVALUE hy;
 D3DVALUE dvHY;
 };
 union {
 D3DVALUE hz;
 D3DVALUE dvHZ;
 };
} D3DHVERTEX, *LPD3DHVERTEX;

Defines a homogeneous vertex used when the application is supplying screen
coordinate data that needs clipping. This structure is part of the
D3DTRANSFORMDATA structure.

dwFlags
Flags defining the clip status of the homogeneous vertex. This member can be
one or more of the flags described in the dwClip member of the
D3DTRANSFORMDATA structure.

dvHX, dvHY, and dvHZ
Values of the D3DVALUE type describing transformed homogeneous
coordinates. These coordinates define the vertex.

D3DINSTRUCTION
typedef struct _D3DINSTRUCTION {
 BYTE bOpcode;
 BYTE bSize;
 WORD wCount;
} D3DINSTRUCTION, *LPD3DINSTRUCTION;

Defines an instruction in an execute buffer. A display list is made up from a list
of variable length instructions. Each instruction begins with a common instruction
header and is followed by the data required for that instruction.

bOpcode
Rendering operation, specified as a member of the D3DOPCODE enumerated
type.

bSize
Size of each instruction data unit. This member can be used to skip to the next
instruction in the sequence.

wCount
Number of data units of instructions that follow. This member allows efficient
processing of large batches of similar instructions, such as triangles that make up
a triangle mesh.

D3DLIGHT
typedef struct _D3DLIGHT {
 DWORD dwSize;
 D3DLIGHTTYPE dltType;
 D3DCOLORVALUE dcvColor;
 D3DVECTOR dvPosition;
 D3DVECTOR dvDirection;
 D3DVALUE dvRange;
 D3DVALUE dvFalloff;
 D3DVALUE dvAttenuation0;
 D3DVALUE dvAttenuation1;
 D3DVALUE dvAttenuation2;
 D3DVALUE dvTheta;
 D3DVALUE dvPhi;
} D3DLIGHT, *LPD3DLIGHT;

Defines the light type in calls to methods such as IDirect3DLight::SetLight and
IDirect3DLight::GetLight.

dwSize
Size, in bytes, of this structure.

dltType
Type of the light source. This value is one of the members of the
D3DLIGHTTYPE enumerated type.

dcvColor
Color of the light. This member is a D3DCOLORVALUE structure.

dvPosition and dvDirection
Position and direction of the light in world space.

dvRange
Distance beyond which the light has no effect.

dvFalloff
Decrease in illumination between the umbra (the angle specified by the dvTheta
member) and the outer edge of the penumbra (the angle specified by the dvPhi
member). The intensity of the light at any point in the penumbra is described by
the following equation:

Chapter 5 Part C: Direct3D Immediate-Mode Reference 49

In this equation, rho is the angle between the axis of the spotlight and the
illuminated point.

dvAttenuation0
Constant light intensity. Specifies a light level that does not decrease between the
light and the cutoff point given by the dvRange member.

dvAttenuation1
Light intensity that decreases linearly. The light intensity is 50 percent of this
value halfway between the light and the cutoff point given by the dvRange
member.

dvAttenuation2
Light intensity that decreases according to a quadratic attenuation factor.

dvTheta
Angle, in radians, of the spotlight's umbra—that is, the fully illuminated spotlight
cone.

dvPhi
Angle, in radians, defining the outer edge of the spotlight's penumbra. Points
outside this cone are not lit by the spotlight.

The system uses all three of the attenuation settings to determine how the effect
of a light decreases with distance from the source. The following equation shows
how the attentuation settings are interpreted. The value d here is the distance
between the vertex being lit and the light:

For more information about lights, see Lighting Module.

See also D3DLIGHTTYPE

D3DLIGHTDATA
typedef struct _D3DLIGHTDATA {
 DWORD dwSize;
 LPD3DLIGHTINGELEMENT lpIn;
 DWORD dwInSize;
 LPD3DTLVERTEX lpOut;
 DWORD dwOutSize;
} D3DLIGHTDATA, *LPD3DLIGHTDATA;

Describes the points to be lit and resulting colors in calls to the
IDirect3DViewport::LightElements method.

dwSize
Size, in bytes, of this structure.

lpIn
Address of a D3DLIGHTINGELEMENT structure specifying the input
positions and normal vectors.

dwInSize
Amount to skip from one input element to the next. This allows the application to
store extra data inline with the element.

lpOut
Address of a D3DTLVERTEX structure specifying the output colors.

dwOutSize
Amount to skip from one output color to the next. This allows the application to
store extra data inline with the color.

D3DLIGHTINGCAPS
typedef struct _D3DLIGHTINGCAPS {
 DWORD dwSize;
 DWORD dwCaps;
 DWORD dwLightingModel;
 DWORD dwNumLights;
} D3DLIGHTINGCAPS, *LPD3DLIGHTINGCAPS;

Describes the lighting capabilities of a device. This structure is a member of the
D3DDEVICEDESC structure.

dwSize
Size, in bytes, of this structure.

dwCaps
Flags describing the capabilities of the lighting module. The following flags are
defined:
D3DLIGHTCAPS_DIRECTIONAL

Supports directional lights.
D3DLIGHTCAPS_GLSPOT

Supports OpenGL-style spotlights.
D3DLIGHTCAPS_PARALLELPOINT

Supports parallel point lights.
D3DLIGHTCAPS_POINT

Supports point lights.
D3DLIGHTCAPS_SPOT

Supports spotlights.

dwLightingModel
Flags defining whether the lighting model is RGB or monochrome. The
following flags are defined:

Chapter 5 Part C: Direct3D Immediate-Mode Reference 51

D3DLIGHTINGMODEL_MONO Monochromatic lighting model.
D3DLIGHTINGMODEL_RGB RGB lighting model.

dwNumLights
Number of lights that can be handled.

D3DLIGHTINGELEMENT
typedef struct _D3DLIGHTINGELEMENT {
 D3DVECTOR dvPosition;
 D3DVECTOR dvNormal;
} D3DLIGHTINGELEMENT, *LPD3DLIGHTINGELEMENT;

Describes the points in model space that will be lit. This structure is part of the
D3DLIGHTDATA structure.

dvPosition
Value specifying the lightable point in model space. This value is a
D3DVECTOR structure.

dvNormal
Value specifying the normalized unit vector. This value is a D3DVECTOR
structure.

See also D3DLIGHTDATA, IDirect3DViewport::LightElements

D3DLINE
typedef struct _D3DLINE {
 union {
 WORD v1;
 WORD wV1;
 };
 union {
 WORD v2;
 WORD wV2;
 };
} D3DLINE, *LPD3DLINE;

Describes a line for the D3DOP_LINE opcode in the D3DOPCODE
enumerated type.

wV1 and wV2
Vertex indices.

Because lines are rendered by using a list of vertices that are to be joined, one
less than the count of lines will be rendered.

D3DLINEPATTERN
typedef struct _D3DLINEPATTERN {
 WORD wRepeatFactor;
 WORD wLinePattern;
} D3DLINEPATTERN;

Describes a line pattern. These values are used by the
D3DRENDERSTATE_LINEPATTERN render state in the
D3DRENDERSTATETYPE enumerated type.

wRepeatFactor
Number of bits in the pattern specified by the wLinePattern member to use
before starting over again at the beginning of the pattern.

wLinePattern
Bits specifying the line pattern. For example, the following value would produce
a dotted line: 1100110011001100.

D3DLVERTEX
typedef struct _D3DLVERTEX {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
 DWORD dwReserved;
 union {
 D3DCOLOR color;
 D3DCOLOR dcColor;
 };
 union {
 D3DCOLOR specular;
 D3DCOLOR dcSpecular;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;

Chapter 5 Part C: Direct3D Immediate-Mode Reference 53

 };
} D3DLVERTEX, *LPD3DLVERTEX;

Defines an untransformed and lit vertex (model coordinates with color).
Applications should use this structure if the hardware handles vertex
transformations. This structure contains only data and a color that would be filled
by software lighting.

dvX, dvY, and dvZ
Values of the D3DVALUE type specifying the homogeneous coordinates of the
vertex.

dwReserved
Reserved; must be zero.

dcColor and dcSpecular
Values of the D3DCOLOR type specifying the color and specular component of
the vertex.

dvTU and dvTV
Values of the D3DVALUE type specifying the texture coordinates of the vertex.

D3DMATERIAL
typedef struct _D3DMATERIAL {
 DWORD dwSize;
 union {
 D3DCOLORVALUE diffuse;
 D3DCOLORVALUE dcvDiffuse;
 };
 union {
 D3DCOLORVALUE ambient;
 D3DCOLORVALUE dcvAmbient;
 };
 union {
 D3DCOLORVALUE specular;
 D3DCOLORVALUE dcvSpecular;
 };
 union {
 D3DCOLORVALUE emissive;
 D3DCOLORVALUE dcvEmissive;
 };
 union {
 D3DVALUE power;
 D3DVALUE dvPower;
 };
 D3DTEXTUREHANDLE hTexture;
 DWORD dwRampSize;
} D3DMATERIAL, *LPD3DMATERIAL;

Specifies material properties in calls to the IDirect3DMaterial::GetMaterial
and IDirect3DMaterial::SetMaterial methods.

dwSize
Size, in bytes, of this structure.

dcvDiffuse, dcvAmbient, dcvSpecular, and dcvEmissive
Values specifying the diffuse color, ambient color, specular color, and emissive
color of the material, respectively. These values are D3DCOLORVALUE
structures.

dvPower
Value of the D3DVALUE type specifying the sharpness of specular highlights.

hTexture
Handle of the texture map.

dwRampSize
Size of the color ramp. For the monochromatic (ramp) driver, this value must be
less than or equal to 1 for materials assigned to the background; otherwise, the
background is not displayed. This behavior also occurs when a texture that is
assigned to the background has an associated material whose dwRampSize
member is greater than 1.

The texture handle is acquired from Direct3D by loading a texture into the
device. The texture handle may be used only when it has been loaded into the
device.

See also IDirect3DMaterial::GetMaterial, IDirect3DMaterial::SetMaterial

D3DMATRIX
typedef struct _D3DMATRIX {
 D3DVALUE _11, _12, _13, _14;
 D3DVALUE _21, _22, _23, _24;
 D3DVALUE _31, _32, _33, _34;
 D3DVALUE _41, _42, _43, _44;
} D3DMATRIX, *LPD3DMATRIX;

Describes a matrix for such methods as IDirect3DDevice::GetMatrix and
IDirect3DDevice::SetMatrix.

In Direct3D, the _44 element of a projection matrix cannot be a negative number.
If your application needs to use a negative value in this location, it should scale
the entire projection matrix by -1, instead.

See also IDirect3DDevice::GetMatrix,IDirect3DDevice::SetMatrix

D3DMATRIXLOAD
typedef struct _D3DMATRIXLOAD {

Chapter 5 Part C: Direct3D Immediate-Mode Reference 55

 D3DMATRIXHANDLE hDestMatrix;
 D3DMATRIXHANDLE hSrcMatrix;
} D3DMATRIXLOAD, *LPD3DMATRIXLOAD;

Describes the operand data for the D3DOP_MATRIXLOAD opcode in the
D3DOPCODE enumerated type.

hDestMatrix and hSrcMatrix
Handles of the destination and source matrices. These values are D3DMATRIX
structures.

See also D3DOPCODE

D3DMATRIXMULTIPLY
typedef struct _D3DMATRIXMULTIPLY {
 D3DMATRIXHANDLE hDestMatrix;
 D3DMATRIXHANDLE hSrcMatrix1;
 D3DMATRIXHANDLE hSrcMatrix2;
} D3DMATRIXMULTIPLY, *LPD3DMATRIXMULTIPLY;

Describes the operand data for the D3DOP_MATRIXMULTIPLY opcode in
the D3DOPCODE enumerated type.

hDestMatrix
Handle of the matrix that stores the product of the source matrices. This value is
a D3DMATRIX structure.

hSrcMatrix1 and hSrcMatrix2
Handles of the first and second source matrices. These values are D3DMATRIX
structures.

See also D3DOPCODE

D3DPICKRECORD
typedef struct _D3DPICKRECORD {
 BYTE bOpcode;
 BYTE bPad;
 DWORD dwOffset;
 D3DVALUE dvZ;
} D3DPICKRECORD, *LPD3DPICKRECORD;

Returns information about picked primitives in an execute buffer for the
IDirect3DDevice::GetPickRecords method.

bOpcode
Opcode of the picked primitive.

bPad
Pad byte.

dwOffset
Offset from the start of the execute buffer in which the picked primitive was
found.

dvZ
Depth of the picked primitive.

The x- and y-coordinates of the picked primitive are specified in the call to the
IDirect3DDevice::Pick method that created the pick records.

See also IDirect3DDevice::GetPickRecords, IDirect3DDevice::Pick

D3DPOINT
typedef struct _D3DPOINT {
 WORD wCount;
 WORD wFirst;
} D3DPOINT, *LPD3DPOINT;

Describes operand data for the D3DOP_POINT opcode in the in D3DOPCODE
enumerated type.

wCount
Number of points.

wFirst
Index of the first vertex.

Points are rendered by using a list of vertices.

See also D3DOPCODE

D3DPRIMCAPS
typedef struct _D3DPrimCaps {
 DWORD dwSize;
 DWORD dwMiscCaps;
 DWORD dwRasterCaps;
 DWORD dwZCmpCaps;
 DWORD dwSrcBlendCaps;
 DWORD dwDestBlendCaps;
 DWORD dwAlphaCmpCaps;
 DWORD dwShadeCaps;
 DWORD dwTextureCaps;
 DWORD dwTextureFilterCaps;
 DWORD dwTextureBlendCaps;
 DWORD dwTextureAddressCaps;
 DWORD dwStippleWidth;
 DWORD dwStippleHeight;
} D3DPRIMCAPS, *LPD3DPRIMCAPS;

Chapter 5 Part C: Direct3D Immediate-Mode Reference 57

Defines the capabilities for each primitive type. This structure is used when
creating a device and when querying the capabilities of a device. This structure
defines several members in the D3DDEVICEDESC structure.

dwSize
Size, in bytes, of this structure.

dwMiscCaps
General capabilities for this primitive. This member can be one or more of the
following:
D3DPMISCCAPS_CONFORMANT

The device conforms to the OpenGL standard.
D3DPMISCCAPS_CULLCCW

The driver supports counterclockwise culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle
primitives.) This corresponds to the D3DCULL_CCW member of the
D3DCULL enumerated type.

D3DPMISCCAPS_CULLCW
The driver supports clockwise triangle culling through the
D3DRENDERSTATE_CULLMODE state. (This applies only to triangle
primitives.) This corresponds to the D3DCULL_CW member of the
D3DCULL enumerated type.

D3DPMISCCAPS_CULLNONE
The driver does not perform triangle culling. This corresponds to the
D3DCULL_NONE member of the D3DCULL enumerated type.

D3DPMISCCAPS_LINEPATTERNREP
The driver can handle values other than 1 in the wRepeatFactor member
of the D3DLINEPATTERN structure. (This applies only to line-drawing
primitives.)

D3DPMISCCAPS_MASKPLANES
The device can perform a bitmask of color planes.

D3DPMISCCAPS_MASKZ
The device can enable and disable modification of the z-buffer on pixel
operations.

dwRasterCaps
Information on raster-drawing capabilities. This member can be one or more of
the following:
D3DPRASTERCAPS_DITHER

The device can dither to improve color resolution.
D3DPRASTERCAPS_FOGTABLE

The device calculates the fog value by referring to a lookup table
containing fog values that are indexed to the depth of a given pixel.

D3DPRASTERCAPS_FOGVERTEX
The device calculates the fog value during the lighting operation, places
the value into the alpha component of the D3DCOLOR value given for
the specular member of the D3DTLVERTEX structure, and interpolates
the fog value during rasterization.

D3DPRASTERCAPS_PAT
The driver can perform patterned drawing (lines or fills with
D3DRENDERSTATE_LINEPATTERN or one of the
D3DRENDERSTATE_STIPPLEPATTERN render states) for the
primitive being queried.

D3DPRASTERCAPS_ROP2
The device can support raster operations other than R2_COPYPEN.

D3DPRASTERCAPS_STIPPLE
The device can stipple polygons to simulate translucency.

D3DPRASTERCAPS_SUBPIXEL
The device performs subpixel placement of z, color, and texture data,
rather than working with the nearest integer pixel coordinate. This helps
avoid bleed-through due to z imprecision, and jitter of color and texture
values for pixels. Note that there is no corresponding state that can be
enabled and disabled; the device either performs subpixel placement or it
does not, and this bit is present only so that the Direct3D client will be
better able to determine what the rendering quality will be.

D3DPRASTERCAPS_SUBPIXELX
The device is subpixel accurate along the x-axis only and is clamped to an
integer y-axis scanline. For information about subpixel accuracy, see
D3DPRASTERCAPS_SUBPIXEL.

D3DPRASTERCAPS_XOR
The device can support XOR operations. If this flag is not set but
D3DPRIM_RASTER_ROP2 is set, then XOR operations must still be
supported.

D3DPRASTERCAPS_ZTEST
The device can perform z-test operations. This effectively renders a
primitive and indicates whether any z pixels would have been rendered.

dwZCmpCaps
Z-buffer comparison functions that the driver can perform. This member can be
one or more of the following:
D3DPCMPCAPS_ALWAYS

Always pass the z test.
D3DPCMPCAPS_EQUAL

Pass the z test if the new z equals the current z.
D3DPCMPCAPS_GREATER

Chapter 5 Part C: Direct3D Immediate-Mode Reference 59

Pass the z test if the new z is greater than the current z.
D3DPCMPCAPS_GREATEREQUAL

Pass the z test if the new z is greater than or equal to the current z.
D3DPCMPCAPS_LESS

Pass the z test if the new z is less than the current z.
D3DPCMPCAPS_LESSEQUAL

Pass the z test if the new z is less than or equal to the current z.
D3DPCMPCAPS_NEVER

Always fail the z test.
D3DPCMPCAPS_NOTEQUAL

Pass the z test if the new z does not equal the current z.

dwSrcBlendCaps
Source blending capabilities. This member can be one or more of the following.
(The RGBA values of the source and destination are indicated with the subscripts
s and d.)
D3DPBLENDCAPS_BOTHINVSRCALPHA

Source blend factor is (1-As, 1-As, 1-As, 1-As) and destination blend
factor is (As, As, As, As); the destination blend selection is overridden.

D3DPBLENDCAPS_BOTHSRCALPHA
Source blend factor is (As, As, As, As) and destination blend factor is (1-
As, 1-As, 1-As, 1-As); the destination blend selection is overridden.

D3DPBLENDCAPS_DESTALPHA
Blend factor is (Ad, Ad, Ad, Ad).

D3DPBLENDCAPS_DESTCOLOR
Blend factor is (Rd, Gd, Bd, Ad).

D3DPBLENDCAPS_INVDESTALPHA
Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).

D3DPBLENDCAPS_INVDESTCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_INVSRCALPHA
Blend factor is (1-As, 1-As, 1-As, 1-As).

D3DPBLENDCAPS_INVSRCCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DPBLENDCAPS_ONE
Blend factor is (1, 1, 1, 1).

D3DPBLENDCAPS_SRCALPHA
Blend factor is (As, As, As, As).

D3DPBLENDCAPS_SRCALPHASAT
Blend factor is (f, f, f, 1); f = min(As, 1-Ad).

D3DPBLENDCAPS_SRCCOLOR
Blend factor is (Rs, Gs, Bs, As).

D3DPBLENDCAPS_ZERO
Blend factor is (0, 0, 0, 0).

dwDestBlendCaps
Destination blending capabilities. This member can be the same capabilities that
are defined for the dwSrcBlendCaps member.

dwAlphaCmpCaps
Alpha-test comparison functions that the driver can perform. This member can be
the same capabilities that are defined for the dwZCmpCaps member.

dwShadeCaps
Shading operations that the device can perform. It is assumed, in general, that if a
device supports a given command (such as D3DOP_TRIANGLE) at all, it
supports the D3DSHADE_FLAT mode (as specified in the D3DSHADEMODE
enumerated type). This flag specifies whether the driver can also support
Gouraud and Phong shading and whether alpha color components are supported
for each of the three color-generation modes. When alpha components are not
supported in a given mode, the alpha value of colors generated in that mode is
implicitly 255. This is the maximum possible alpha (that is, the alpha component
is at full intensity).
The color, specular highlights, fog, and alpha interpolants of a triangle each have
capability flags that an application can use to find out how they are implemented
by the device driver. These are modified by the shade mode, color model, and by
whether the alpha component of a color is blended or stippled. For more
information, see Polygons.
This member can be one or more of the following:
D3DPSHADECAPS_ALPHAFLATBLEND
D3DPSHADECAPS_ALPHAFLATSTIPPLED

Device can support an alpha component for flat blended and stippled
transparency, respectively (the D3DSHADE_FLAT state for the
D3DSHADEMODE enumerated type). In these modes, the alpha color
component for a primitive is provided as part of the color for the first
vertex of the primitive.

D3DPSHADECAPS_ALPHAGOURAUDBLEND
D3DPSHADECAPS_ALPHAGOURAUDSTIPPLED

Device can support an alpha component for Gouraud blended and stippled
transparency, respectively (the D3DSHADE_GOURAUD state for the
D3DSHADEMODE enumerated type). In these modes, the alpha color
component for a primitive is provided at vertices and interpolated across a
face along with the other color components.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 61

D3DPSHADECAPS_ALPHAPHONGBLEND
D3DPSHADECAPS_ALPHAPHONGSTIPPLED

Device can support an alpha component for Phong blended and stippled
transparency, respectively (the D3DSHADE_PHONG state for the
D3DSHADEMODE enumerated type). In these modes, vertex
parameters are reevaluated on a per-pixel basis, applying lighting effects
for the red, green, and blue color components. Phong shading is not
currently supported.

D3DPSHADECAPS_COLORFLATMONO
D3DPSHADECAPS_COLORFLATRGB

Device can support colored flat shading in the D3DCOLOR_MONO and
D3DCOLOR_RGB color models, respectively. In these modes, the color
component for a primitive is provided as part of the color for the first
vertex of the primitive. In monochromatic lighting modes, only the blue
component of the color is interpolated; in RGB lighting modes, of course,
the red, green, and blue components are interpolated.

D3DPSHADECAPS_COLORGOURAUDMONO
D3DPSHADECAPS_COLORGOURAUDRGB

Device can support colored Gouraud shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models,
respectively. In these modes, the color component for a primitive is
provided at vertices and interpolated across a face along with the other
color components. In monochromatic lighting modes, only the blue
component of the color is interpolated; in RGB lighting modes, of course,
the red, green, and blue components are interpolated.

D3DPSHADECAPS_COLORPHONGMONO
D3DPSHADECAPS_COLORPHONGRGB

Device can support colored Phong shading in the D3DCOLOR_MONO
and D3DCOLOR_RGB color models, respectively. In these modes,
vertex parameters are reevaluated on a per-pixel basis. Lighting effects
are applied for the red, green, and blue color components in RGB mode,
and for the blue component only for monochromatic mode. Phong
shading is not currently supported.

D3DPSHADECAPS_FOGFLAT
D3DPSHADECAPS_FOGGOURAUD
D3DPSHADECAPS_FOGPHONG

Device can support fog in the flat, Gouraud, and Phong shading models,
respectively. Phong shading is not currently supported.

D3DPSHADECAPS_SPECULARFLATMONO
D3DPSHADECAPS_SPECULARFLATRGB

Device can support specular highlights in flat shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models,
respectively.

D3DPSHADECAPS_SPECULARGOURAUDMONO
D3DPSHADECAPS_SPECULARGOURAUDRGB

Device can support specular highlights in Gouraud shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models,
respectively.

D3DPSHADECAPS_SPECULARPHONGMONO
D3DPSHADECAPS_SPECULARPHONGRGB

Device can support specular highlights in Phong shading in the
D3DCOLOR_MONO and D3DCOLOR_RGB color models,
respectively. Phong shading is not currently supported.

dwTextureCaps
Miscellaneous texture-mapping capabilities. This member can be one or more of
the following:
D3DPTEXTURECAPS_ALPHA

Supports RGBA textures in the D3DTEX_DECAL and
D3DTEX_MODULATE texture filtering modes. If this capability is not
set, then only RGB textures are supported in those modes. Regardless of
the setting of this flag, alpha must always be supported in
D3DTEX_DECAL_MASK, D3DTEX_DECAL_ALPHA, and
D3DTEX_MODULATE_ALPHA filtering modes whenever those
filtering modes are available.

D3DPTEXTURECAPS_BORDER
Supports texture mapping along borders.

D3DPTEXTURECAPS_PERSPECTIVE
Perspective correction is supported.

D3DPTEXTURECAPS_POW2
All non-mipmapped textures must have widths and heights specified as
powers of two if this flag is set. (Note that all mipmapped textures must
always have dimensions that are powers of two.)

D3DPTEXTURECAPS_SQUAREONLY
All textures must be square.

D3DPTEXTURECAPS_TRANSPARENCY
Texture transparency is supported. (Only those texels that are not the
current transparent color are drawn.)

dwTextureFilterCaps
Texture-mapping capabilities. This member can be one or more of the following:
D3DPTFILTERCAPS_LINEAR

A weighted average of a 2-by-2 area of texels surrounding the desired
pixel is used. This applies to both zooming in and zooming out. If either
zooming in or zooming out is supported, then both must be supported.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 63

D3DPTFILTERCAPS_LINEARMIPLINEAR
Similar to D3DPRIM_TEX_MIP_LINEAR, but interpolates between the
two nearest mipmaps.

D3DPTFILTERCAPS_LINEARMIPNEAREST
Similar to D3DPRIM_TEX_MIP_NEAREST, but interpolates between
the two nearest mipmaps.

D3DPTFILTERCAPS_MIPLINEAR
Similar to D3DPRIM_TEX_LINEAR, but uses the appropriate mipmap
for texel selection.

D3DPTFILTERCAPS_MIPNEAREST
Similar to D3DPRIM_TEX_NEAREST, but uses the appropriate mipmap
for texel selection.

D3DPTFILTERCAPS_NEAREST
The texel with coordinates nearest to the desired pixel value is used. This
applies to both zooming in and zooming out. If either zooming in or
zooming out is supported, then both must be supported.

dwTextureBlendCaps
Texture-blending capabilities. See the D3DTEXTUREBLEND enumerated type
for discussions of the various texture-blending modes. This member can be one
or more of the following:
D3DPTBLENDCAPS_COPY

Copy mode texture-blending (D3DTBLEND_COPY from the
D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_DECAL
Decal texture-blending mode (D3DTBLEND_DECAL from the
D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_DECALALPHA
Decal-alpha texture-blending mode (D3DTBLEND_DECALALPHA
from the D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_DECALMASK
Decal-mask texture-blending mode (D3DTBLEND_DECALMASK
from the D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_MODULATE
Modulate texture-blending mode (D3DTBLEND_MODULATE from
the D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_MODULATEALPHA
Modulate-alpha texture-blending mode
(D3DTBLEND_MODULATEALPHA from the
D3DTEXTUREBLEND enumerated type) is supported.

D3DPTBLENDCAPS_MODULATEMASK

Modulate-mask texture-blending mode
(D3DTBLEND_MODULATEMASK from the
D3DTEXTUREBLEND enumerated type) is supported.

dwTextureAddressCaps
Texture-addressing capabilities. This member can be one or more of the
following:
D3DPTADDRESSCAPS_CLAMP

Device can clamp textures to addresses.
D3DPTADDRESSCAPS_MIRROR

Device can mirror textures to addresses.
D3DPTADDRESSCAPS_WRAP

Device can wrap textures to addresses.

dwStippleWidth and dwStippleHeight
Maximum width and height of the supported stipple (up to 32-by-32).

D3DPROCESSVERTICES
typedef struct _D3DPROCESSVERTICES {
 DWORD dwFlags;
 WORD wStart;
 WORD wDest;
 DWORD dwCount;
 DWORD dwReserved;
} D3DPROCESSVERTICES, *LPD3DPROCESSVERTICES;

Describes how vertices in the execute buffer should be handled by the driver.
This is used by the D3DOP_PROCESSVERTICES opcode in the
D3DOPCODE enumerated type.

dwFlags
One or more of the following flags indicating how the driver should process the
vertices:
D3DPROCESSVERTICES_COPY

Vertices should simply be copied to the driver, because they have always
been transformed and lit. If all the vertices in the execute buffer can be
copied, the driver does not need to do the work of processing the vertices,
and a performance improvement results.

D3DPROCESSVERTICES_NOCOLOR
Vertices should not be colored.

D3DPROCESSVERTICES_OPMASK
Specifies a bitmask of the other flags in the dwFlags member, exclusive
of D3DPROCESSVERTICES_NOCOLOR and
D3DPROCESSVERTICES_UPDATEEXTENTS.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 65

D3DPROCESSVERTICES_TRANSFORM
Vertices should be transformed.

D3DPROCESSVERTICES_TRANSFORMLIGHT
Vertices should be transformed and lit.

D3DPROCESSVERTICES_UPDATEEXTENTS
Extents of all transformed vertices should be updated. This information is
returned in the drExtent member of the D3DSTATUS structure.

wStart
Index of the first vertex in the source.

wDest
Index of the first vertex in the local buffer.

dwCount
Number of vertices to be processed.

dwReserved
Reserved; must be zero.

See also D3DOPCODE

D3DRECT
typedef struct _D3DRECT {
 union {
 LONG x1;
 LONG lX1;
 };
 union {
 LONG y1;
 LONG lY1;
 };
 union {
 LONG x2;
 LONG lX2;
 };
 union {
 LONG y2;
 LONG lY2;
 };
} D3DRECT, *LPD3DRECT;

Rectangle definition.

lX1 and lY1
Coordinates of the upper-left corner of the rectangle.

lX2 and lY2
Coordinates of the lower-right corner of the rectangle.

See also D3DRMUPDATECALLBACK, IDirect3DDevice::Pick,
IDirect3DViewport::Clear

D3DSPAN
typedef struct _D3DSPAN {
 WORD wCount;
 WORD wFirst;
} D3DSPAN, *LPD3DSPAN;

Defines a span for the D3DOP_SPAN opcode in the D3DOPCODE enumerated
type. Spans join a list of points with the same y value. If the y value changes, a
new span is started.

wCount
Number of spans.

wFirst
Index to first vertex.

See also D3DOPCODE

D3DSTATE
typedef struct _D3DSTATE {
 union {
 D3DTRANSFORMSTATETYPE dtstTransformStateType;
 D3DLIGHTSTATETYPE dlstLightStateType;
 D3DRENDERSTATETYPE drstRenderStateType;
 };
 union {
 DWORD dwArg[1];
 D3DVALUE dvArg[1];
 };
} D3DSTATE, *LPD3DSTATE;

Describes the render state for the D3DOP_STATETRANSFORM,
D3DOP_STATELIGHT, and D3DOP_STATERENDER opcodes in the
D3DOPCODE enumerated type. The first member of this structure is the
relevant enumerated type and the second is the value for that type.

dtstTransformStateType, dlstLightStateType, and drstRenderStateType
One of the members of the D3DTRANSFORMSTATETYPE,
D3DLIGHTSTATETYPE, or D3DRENDERSTATETYPE enumerated type
specifying the render state.

dvArg
Value of the type specified in the first member of this structure.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 67

See also D3DLIGHTSTATETYPE, D3DOPCODE,
D3DRENDERSTATETYPE, and D3DTRANSFORMSTATETYPE,
D3DVALUE

D3DSTATS
typedef struct _D3DSTATS {
 DWORD dwSize;
 DWORD dwTrianglesDrawn;
 DWORD dwLinesDrawn;
 DWORD dwPointsDrawn;
 DWORD dwSpansDrawn;
 DWORD dwVerticesProcessed;
} D3DSTATS, *LPD3DSTATS;

Contains statistics used by the IDirect3DDevice::GetStats method.

dwSize
Size, in bytes, of this structure.

dwTrianglesDrawn, dwLinesDrawn, dwPointsDrawn, and dwSpansDrawn
Number of triangles, lines, points, and spans drawn since the device was created.

dwVerticesProcessed
Number of vertices processed since the device was created.

See also IDirect3DDevice::GetStats

D3DSTATUS
typedef struct _D3DSTATUS {
 DWORD dwFlags;
 DWORD dwStatus;
 D3DRECT drExtent;
} D3DSTATUS, *LPD3DSTATUS;

Describes the current status of the execute buffer. This structure is part of the
D3DEXECUTEDATA structure and is used with the D3DOP_SETSTATUS
opcode in the D3DOPCODE enumerated type.

dwFlags
One of the following flags, specifying whether the status, the extents, or both are
being set:
D3DSETSTATUS_STATUS

Set the status.
D3DSETSTATUS_EXTENTS

Set the extents specified in the drExtent member.
D3DSETSTATUS_ALL

Set both the status and the extents.

dwStatus
Clipping flags. This member can be one or more of the following flags:
Combination and General Flags
D3DSTATUS_CLIPINTERSECTION

Combination of all CLIPINTERSECTION flags.
D3DSTATUS_CLIPUNIONALL

Combination of all CLIPUNION flags.
D3DSTATUS_DEFAULT

Combination of D3DSTATUS_CLIPINTERSECTION and
D3DSTATUS_ZNOTVISIBLE flags. This value is the default.

D3DSTATUS_ZNOTVISIBLE

Clip Intersection Flags
D3DSTATUS_CLIPINTERSECTIONBACK

Logical AND of the clip flags for the vertices compared to the back
clipping plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONBOTTOM
Logical AND of the clip flags for the vertices compared to the bottom of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONFRONT
Logical AND of the clip flags for the vertices compared to the front
clipping plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONGEN0 through
D3DSTATUS_CLIPINTERSECTIONGEN5

Logical AND of the clip flags for application-defined clipping planes.
D3DSTATUS_CLIPINTERSECTIONLEFT

Logical AND of the clip flags for the vertices compared to the left side of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONRIGHT
Logical AND of the clip flags for the vertices compared to the right side
of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONTOP
Logical AND of the clip flags for the vertices compared to the top of the
viewing frustum.

Clip Union Flags
D3DSTATUS_CLIPUNIONBACK

Equal to D3DCLIP_BACK.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 69

D3DSTATUS_CLIPUNIONBOTTOM
Equal to D3DCLIP_BOTTOM.

D3DSTATUS_CLIPUNIONFRONT
Equal to D3DCLIP_FRONT.

D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5
Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5.

D3DSTATUS_CLIPUNIONLEFT
Equal to D3DCLIP_LEFT.

D3DSTATUS_CLIPUNIONRIGHT
Equal to D3DCLIP_RIGHT.

D3DSTATUS_CLIPUNIONTOP
Equal to D3DCLIP_TOP.

Basic Clipping Flags
D3DCLIP_BACK

All vertices are clipped by the back plane of the viewing frustum.
D3DCLIP_BOTTOM

All vertices are clipped by the bottom plane of the viewing frustum.
D3DCLIP_FRONT

All vertices are clipped by the front plane of the viewing frustum.
D3DCLIP_LEFT

All vertices are clipped by the left plane of the viewing frustum.
D3DCLIP_RIGHT

All vertices are clipped by the right plane of the viewing frustum.
D3DCLIP_TOP

All vertices are clipped by the top plane of the viewing frustum.
D3DCLIP_GEN0 through D3DCLIP_GEN5

Application-defined clipping planes.

drExtent
A D3DRECT structure that defines a bounding box for all the relevant vertices.
For example, the structure might define the area containing the output of the
D3DOP_PROCESSVERTICES opcode, assuming the
D3DPROCESSVERTICES_UPDATEEXTENTS flag is set in the
D3DPROCESSVERTICES structure.

The status is a rolling status and is updated during each execution. The bounding
box in the drExtent member can grow with each execution, but it does not
shrink; it can be reset only by using the D3DOP_SETSTATUS opcode.

See also D3DEXECUTEDATA, D3DOPCODE, D3DRECT

D3DTEXTURELOAD
typedef struct _D3DTEXTURELOAD {
 D3DTEXTUREHANDLE hDestTexture;
 D3DTEXTUREHANDLE hSrcTexture;
} D3DTEXTURELOAD, *LPD3DTEXTURELOAD;

Describes operand data for the D3DOP_TEXTURELOAD opcode in the
D3DOPCODE enumerated type.

hDestTexture
Handle of the destination texture.

hSrcTexture
Handle of the source texture.

The textures referred to by the hDestTexture and hSrcTexture members must
be the same size.

D3DTLVERTEX
typedef struct _D3DTLVERTEX {
 union {
 D3DVALUE sx;
 D3DVALUE dvSX;
 };
 union {
 D3DVALUE sy;
 D3DVALUE dvSY;
 };
 union {
 D3DVALUE sz;
 D3DVALUE dvSZ;
 };
 union {
 D3DVALUE rhw;
 D3DVALUE dvRHW;
 };
 union {
 D3DCOLOR color;
 D3DCOLOR dcColor;
 };
 union {
 D3DCOLOR specular;
 D3DCOLOR dcSpecular;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };

Chapter 5 Part C: Direct3D Immediate-Mode Reference 71

 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DTLVERTEX, *LPD3DTLVERTEX;

Defines a transformed and lit vertex (screen coordinates with color) for the
D3DLIGHTDATA structure.

dvSX, dvSY, and dvSZ
Values of the D3DVALUE type describing a vertex in screen coordinates.

dvRHW
Value of the D3DVALUE type that is the reciprocal of homogeneous w. This
value is 1 divided by the distance from the origin to the object along the z-axis.

dcColor and dcSpecular
Values of the D3DCOLOR type describing the color and specular component of
the vertex.

dvTU and dvTV
Values of the D3DVALUE type describing the texture coordinates of the vertex.

See also D3DLIGHTDATA

D3DTRANSFORMCAPS
typedef struct _D3DTransformCaps {
 DWORD dwSize;
 DWORD dwCaps;
} D3DTRANSFORMCAPS, *LPD3DTRANSFORMCAPS;

Describes the transformation capabilities of a device. This structure is part of the
D3DDEVICEDESC structure.

dwSize
Size, in bytes, of this structure.

dwCaps
Flag specifying whether the system clips while transforming. This member can
be zero or the following flag:
D3DTRANSFORMCAPS_CLIP The system clips while transforming.

D3DTRANSFORMDATA
typedef struct _D3DTRANSFORMDATA {
 DWORD dwSize;
 LPVOID lpIn;
 DWORD dwInSize;
 LPVOID lpOut;
 DWORD dwOutSize;

 LPD3DHVERTEX lpHOut;
 DWORD dwClip;
 DWORD dwClipIntersection;
 DWORD dwClipUnion;
 D3DRECT drExtent;
} D3DTRANSFORMDATA, *LPD3DTRANSFORMDATA;

Contains information about transformations for the
IDirect3DViewport::TransformVertices method.

dwSize
Size of the structure, in bytes.

lpIn
Address of the vertices to be transformed. This should be a D3DLVERTEX
structure.

dwInSize
Stride of the vertices to be transformed.

lpOut
Address used to store the transformed vertices.

dwOutSize
Stride of output vertices.

lpHOut
Address of a value that contains homogeneous transformed vertices. This value is
a D3DHVERTEX structure

dwClip
Flags specifying how the vertices are clipped. This member can be one or more
of the following values:
D3DCLIP_BACK

Clipped by the back plane of the viewing frustum.
D3DCLIP_BOTTOM

Clipped by the bottom plane of the viewing frustum.
D3DCLIP_FRONT

Clipped by the front plane of the viewing frustum.
D3DCLIP_GEN0 through D3DCLIP_GEN5

Application-defined clipping planes.
D3DCLIP_LEFT

Clipped by the left plane of the viewing frustum.
D3DCLIP_RIGHT

Clipped by the right plane of the viewing frustum.
D3DCLIP_TOP

Clipped by the top plane of the viewing frustum.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 73

dwClipIntersection
Flags denoting the intersection of the clip flags. This member can be one or more
of the following values:
D3DSTATUS_CLIPINTERSECTIONBACK

Logical AND of the clip flags for the vertices compared to the back
clipping plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONBOTTOM
Logical AND of the clip flags for the vertices compared to the bottom of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONFRONT
Logical AND of the clip flags for the vertices compared to the front
clipping plane of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONGEN0 through
D3DSTATUS_CLIPINTERSECTIONGEN5

Logical AND of the clip flags for application-defined clipping planes.
D3DSTATUS_CLIPINTERSECTIONLEFT

Logical AND of the clip flags for the vertices compared to the left side of
the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONRIGHT
Logical AND of the clip flags for the vertices compared to the right side
of the viewing frustum.

D3DSTATUS_CLIPINTERSECTIONTOP
Logical AND of the clip flags for the vertices compared to the top of the
viewing frustum.

dwClipUnion
Flags denoting the union of the clip flags. This member can be one or more of the
following values:
D3DSTATUS_CLIPUNIONBACK

Equal to D3DCLIP_BACK.
D3DSTATUS_CLIPUNIONBOTTOM

Equal to D3DCLIP_BOTTOM.
D3DSTATUS_CLIPUNIONFRONT

Equal to D3DCLIP_FRONT.
D3DSTATUS_CLIPUNIONGEN0 through D3DSTATUS_CLIPUNIONGEN5

Equal to D3DCLIP_GEN0 through D3DCLIP_GEN5.
D3DSTATUS_CLIPUNIONLEFT

Equal to D3DCLIP_LEFT.
D3DSTATUS_CLIPUNIONRIGHT

Equal to D3DCLIP_RIGHT.

D3DSTATUS_CLIPUNIONTOP
Equal to D3DCLIP_TOP.

drExtent
Value that defines the extent of the transformed vertices. This structure is filled
by the transformation module with the screen extent of the transformed
geometry. For geometries that are clipped, this extent will only include vertices
that are inside the viewing volume. This value is a D3DRECT structure

Each input vertex should be a three-vector vertex giving the [x y z] coordinates in
model space for the geometry. The dwInSize member gives the amount to skip
between vertices, allowing the application to store extra data inline with each
vertex.

All values generated by the transformation module are stored as 16-bit precision
values. The clip is treated as an integer bitfield that is set to the inclusive OR of
the viewing volume planes that clip a given transformed vertex.

See also IDirect3DViewport::TransformVertices

D3DTRIANGLE
typedef struct _D3DTRIANGLE {
 union {
 WORD v1;
 WORD wV1;
 };
 union {
 WORD v2;
 WORD wV2;
 };
 union {
 WORD v3;
 WORD wV3;
 };
 WORD wFlags;
} D3DTRIANGLE, *LPD3DTRIANGLE;

Describes the base type for all triangles. The triangle is the main rendering
primitive.

For related information, see the D3DOP_TRIANGLE member in the
D3DOPCODE enumerated type.

wV1, wV2, and wV3
Vertices describing the triangle.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 75

wFlags
Flags describing which edges of the triangle to enable. (This information is useful
only in wireframe mode.) This value can be a combination of the following edge
and strip and fan flags:
Edge flags
D3DTRIFLAG_EDGEENABLE1

Edge defined by v1–v2.
D3DTRIFLAG_EDGEENABLE2

Edge defined by v2–v3.
D3DTRIFLAG_EDGEENABLE3

Edge defined by v3–v1.
D3DTRIFLAG_EDGEENABLETRIANGLE

All edges.

Strip and fan flags
D3DTRIFLAG_EVEN

The v1–v2 edge of the current triangle is adjacent to the v3–v1 edge of
the previous triangle; that is, v1 is the previous v1, and v2 is the previous
v3.

D3DTRIFLAG_ODD
The v1–v2 edge of the current triangle is adjacent to the v2–v3 edge of
the previous triangle; that is, v1 is the previous v3, and v2 is the previous
v2.

D3DTRIFLAG_START
Begin the strip or fan, loading all three vertices.

D3DTRIFLAG_STARTFLAT(len)
If this triangle is culled, also cull the specified number of subsequent
triangles. This length must be greater than zero and less than 30.

This structure can be used directly for all triangle fills. For flat shading, the color
and specular components are taken from the first vertex. The three vertex indices
v1, v2, and v3 are vertex indexes into the vertex list at the start of the execute
buffer.

Enabled edges are visible in wireframe mode. When an application displays
wireframe triangles that share an edge, it typically enables only one (or neither)
edge to avoid drawing the edge twice.

The D3DTRIFLAG_ODD and D3DTRIFLAG_EVEN flags refer to the locations
of a triangle in a conventional triangle strip or fan. If a triangle strip had five
triangles, the following flags would be used to define the strip:

D3DTRIFLAG_START

D3DTRIFLAG_ODD
D3DTRIFLAG_EVEN
D3DTRIFLAG_ODD
D3DTRIFLAG_EVEN

Similarly, the following flags would define a triangle fan with five triangles:

D3DTRIFLAG_START
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN

The following flags could define a flat triangle fan with five triangles:

D3DTRIFLAG_STARTFLAT(4)
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN
D3DTRIFLAG_EVEN

See also Triangle Strips and Fans

D3DVECTOR
typedef struct _D3DVECTOR {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
} D3DVECTOR, *LPD3DVECTOR;

Defines a vector for many Direct3D and Direct3DRM methods and structures.

dvX, dvY, and dvZ
Values of the D3DVALUE type describing the vector.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 77

See also D3DLIGHT, D3DLIGHTINGELEMENT, D3DRMBOX,
D3DRMQUATERNION, D3DRMVERTEX

D3DVERTEX
typedef struct _D3DVERTEX {
 union {
 D3DVALUE x;
 D3DVALUE dvX;
 };
 union {
 D3DVALUE y;
 D3DVALUE dvY;
 };
 union {
 D3DVALUE z;
 D3DVALUE dvZ;
 };
 union {
 D3DVALUE nx;
 D3DVALUE dvNX;
 };
 union {
 D3DVALUE ny;
 D3DVALUE dvNY;
 };
 union {
 D3DVALUE nz;
 D3DVALUE dvNZ;
 };
 union {
 D3DVALUE tu;
 D3DVALUE dvTU;
 };
 union {
 D3DVALUE tv;
 D3DVALUE dvTV;
 };
} D3DVERTEX, *LPD3DVERTEX;

Defines an untransformed and unlit vertex (model coordinates with normal
direction vector).

For related information, see the D3DOP_TRIANGLE member in the
D3DOPCODE enumerated type.

dvX, dvY, and dvZ
Values of the D3DVALUE type describing the homogeneous coordinates of the
vertex.

dvNX, dvNY, and dvNZ
Values of the D3DVALUE type describing the normal coordinates of the vertex.

dvTU and dvTV
Values of the D3DVALUE type describing the texture coordinates of the vertex.

See also D3DVALUE

D3DVIEWPORT
typedef struct _D3DVIEWPORT {
 DWORD dwSize;
 DWORD dwX;
 DWORD dwY;
 DWORD dwWidth;
 DWORD dwHeight;
 D3DVALUE dvScaleX;
 D3DVALUE dvScaleY;
 D3DVALUE dvMaxX;
 D3DVALUE dvMaxY;
 D3DVALUE dvMinZ;
 D3DVALUE dvMaxZ;
} D3DVIEWPORT, *LPD3DVIEWPORT;

Defines the visible 3D volume and the 2D screen area that a 3D volume projects
onto for the IDirect3DViewport::GetViewport and
IDirect3DViewport::SetViewport methods.

When the viewport is changed, the driver builds a new transformation matrix.

The coordinates and dimensions of the viewport are given relative to the top left
of the device.

dwSize
Size of this structure, in bytes.

dwX and dwY
Coordinates of the top-left corner of the viewport.

dwWidth and dwHeight
Dimensions of the viewport.

dvScaleX and dvScaleY
Values of the D3DVALUE type describing the scaling quantities homogeneous
to screen.

dvMaxX, dvMaxY, dvMinZ, and dvMaxZ
Values of the D3DVALUE type describing the maximum and minimum
homogeneous coordinates of x, y, and z.

See also D3DVALUE, IDirect3DViewport::GetViewport,
IDirect3DViewport::SetViewport

Chapter 5 Part C: Direct3D Immediate-Mode Reference 79

Enumerated Types
D3DBLEND
typedef enum _D3DBLEND {
 D3DBLEND_ZERO = 1,
 D3DBLEND_ONE = 2,
 D3DBLEND_SRCCOLOR = 3,
 D3DBLEND_INVSRCCOLOR = 4,
 D3DBLEND_SRCALPHA = 5,
 D3DBLEND_INVSRCALPHA = 6,
 D3DBLEND_DESTALPHA = 7,
 D3DBLEND_INVDESTALPHA = 8,
 D3DBLEND_DESTCOLOR = 9,
 D3DBLEND_INVDESTCOLOR = 10,
 D3DBLEND_SRCALPHASAT = 11,
 D3DBLEND_BOTHSRCALPHA = 12,
 D3DBLEND_BOTHINVSRCALPHA = 13,
} D3DBLEND;

Defines the supported blend modes for the
D3DRENDERSTATE_DESTBLEND values in the
D3DRENDERSTATETYPE enumerated type. In the member descriptions that
follow, the RGBA values of the source and destination are indicated with the
subscripts s and d.

D3DBLEND_ZERO
Blend factor is (0, 0, 0, 0).

D3DBLEND_ONE
Blend factor is (1, 1, 1, 1).

D3DBLEND_SRCCOLOR
Blend factor is (Rs, Gs, Bs, As).

D3DBLEND_INVSRCCOLOR
Blend factor is (As, As, As, As, 1-As).

D3DBLEND_SRCALPHA
Blend factor is (As, As, As, As).

D3DBLEND_INVSRCALPHA
Blend factor is (1-As, 1-As, 1-As).

D3DBLEND_DESTALPHA
Blend factor is (Ad, Ad, Ad, Ad).

D3DBLEND_INVDESTALPHA
Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad).

D3DBLEND_DESTCOLOR
Blend factor is (Rd, Gd, Bd, Ad).

D3DBLEND_INVDESTCOLOR
Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad).

D3DBLEND_SRCALPHASAT
Blend factor is (f, f, f, 1); f = min(As, 1-Ad).

D3DBLEND_BOTHSRCALPHA
Source blend factor is (As, As, As, As), and destination blend factor is (1-As, 1-
As, 1-As, 1-As); the destination blend selection is overridden.

D3DBLEND_BOTHINVSRCALPHA
Source blend factor is (1-As, 1-As, 1-As, 1-As), and destination blend factor is
(As, As, As, As); the destination blend selection is overridden.

D3DCMPFUNC
typedef enum _D3DCMPFUNC {
 D3DCMP_NEVER = 1,
 D3DCMP_LESS = 2,
 D3DCMP_EQUAL = 3,
 D3DCMP_LESSEQUAL = 4,
 D3DCMP_GREATER = 5,
 D3DCMP_NOTEQUAL = 6,
 D3DCMP_GREATEREQUAL = 7,
 D3DCMP_ALWAYS = 8,
} D3DCMPFUNC;

Defines the supported compare functions for the
D3DRENDERSTATE_ZFUNC and D3DRENDERSTATE_ALPHAFUNC
values of the D3DRENDERSTATETYPE enumerated type.

D3DCMP_NEVER
Always fail the test.

D3DCMP_LESS
Accept the new pixel if its value is less than the value of the current pixel.

D3DCMP_EQUAL
Accept the new pixel if its value equals the value of the current pixel.

D3DCMP_LESSEQUAL
Accept the new pixel if its value is less than or equal to the value of the current
pixel.

D3DCMP_GREATER
Accept the new pixel if its value is greater than the value of the current pixel.

D3DCMP_NOTEQUAL
Accept the new pixel if its value does not equal the value of the current pixel.

D3DCMP_GREATEREQUAL
Accept the new pixel if its value is greater than or equal to the value of the
current pixel.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 81

D3DCMP_ALWAYS
Always pass the test.

D3DCOLORMODEL
typedef enum _D3DCOLORMODEL {
 D3DCOLOR_MONO = 1,
 D3DCOLOR_RGB = 2,
} D3DCOLORMODEL;

Defines the color model that the system will run in.

D3DCOLOR_MONO
Use a monochromatic model (or ramp model). In this model, the blue component
of a vertex color is used to define the brightness of a lit vertex.

D3DCOLOR_RGB
Use a full RGB model.

See also D3DDEVICEDESC, D3DFINDDEVICESEARCH,
D3DLIGHTSTATETYPE, IDirect3DRMDevice::GetColorModel

D3DCULL
typedef enum _D3DCULL {
 D3DCULL_NONE = 1,
 D3DCULL_CW = 2,
 D3DCULL_CCW = 3,
} D3DCULL;

Defines the supported cull modes. These define how faces are culled when
rendering a geometry.

D3DCULL_NONE
Do not cull faces.

D3DCULL_CW
Cull faces with clockwise vertices.

D3DCULL_CCW
Cull faces with counterclockwise vertices.

See also D3DPRIMCAPS, D3DRENDERSTATETYPE

D3DFILLMODE
typedef enum _D3DFILLMODE {
 D3DFILL_POINT = 1,
 D3DFILL_WIREFRAME = 2,
 D3DFILL_SOLID = 3
} D3DFILLMODE;

Contains constants describing the fill mode. These values are used by the
D3DRENDERSTATE_FILLMODE render state in the
D3DRENDERSTATETYPE enumerated type.

D3DFILL_POINT
Fill points.

D3DFILL_WIREFRAME
Fill wireframes.

D3DFILL_SOLID
Fill solids.

D3DFOGMODE
typedef enum _D3DFOGMODE {
 D3DFOG_NONE = 0,
 D3DFOG_EXP = 1,
 D3DFOG_EXP2 = 2,
 D3DFOG_LINEAR = 3
} D3DFOGMODE;

Contains constants describing the fog mode. These values are used by the
D3DRENDERSTATE_FOGTABLEMODE render state in the
D3DRENDERSTATETYPE enumerated type.

D3DFOG_NONE
No fog effect.

D3DFOG_EXP
The fog effect intensifies exponentially, according to the following formula:

D3DFOG_EXP2
The fog effect intensifies exponentially with the square of the distance, according
to the following formula:

D3DFOG_LINEAR
The fog effect intensifies linearly between the start and end points, according to
the following formula:

Chapter 5 Part C: Direct3D Immediate-Mode Reference 83

This is the only fog mode currently supported.
Note that fog can be considered a measure of visibility—the lower the fog value
produced by one of the fog equations, the less visible an object is.

D3DLIGHTSTATETYPE
typedef enum _D3DLIGHTSTATETYPE {
 D3DLIGHTSTATE_MATERIAL = 1,
 D3DLIGHTSTATE_AMBIENT = 2,
 D3DLIGHTSTATE_COLORMODEL = 3,
 D3DLIGHTSTATE_FOGMODE = 4,
 D3DLIGHTSTATE_FOGSTART = 5,
 D3DLIGHTSTATE_FOGEND = 6,
 D3DLIGHTSTATE_FOGDENSITY = 7,
} D3DLIGHTSTATETYPE;

Defines the light state for the D3DOP_STATELIGHT opcode. This enumerated
type is part of the D3DSTATE structure.

D3DLIGHTSTATE_MATERIAL
Defines the material that is lit and used to compute the final color and intensity
values during rasterization. The default value is NULL.

D3DLIGHTSTATE_AMBIENT
Sets the color and intensity of the current ambient light. If an application
specifies this value, it should not specify a light as a parameter. The default value
is 0.

D3DLIGHTSTATE_COLORMODEL
One of the members of the D3DCOLORMODEL enumerated type. The default
value is D3DCOLOR_RGB.

D3DLIGHTSTATE_FOGMODE
One of the members of the D3DFOGMODE enumerated type. The default value
is D3DFOG_NONE.

D3DLIGHTSTATE_FOGSTART
Defines the starting value for fog. The default value is 1.0.

D3DLIGHTSTATE_FOGEND
Defines the ending value for fog. The default value is 100.0.

D3DLIGHTSTATE_FOGDENSITY
Defines the density setting for fog. The default value is 1.0.

See also D3DOPCODE and D3DSTATE

D3DLIGHTTYPE
typedef enum _D3DLIGHTTYPE {
 D3DLIGHT_POINT = 1,
 D3DLIGHT_SPOT = 2,

 D3DLIGHT_DIRECTIONAL = 3,
 D3DLIGHT_PARALLELPOINT = 4,
 D3DLIGHT_GLSPOT = 5,
} D3DLIGHTTYPE;

Defines the light type. This enumerated type is part of the D3DLIGHT structure.

D3DLIGHT_POINT
Light is a point source.

D3DLIGHT_SPOT
Light is a spotlight source.

D3DLIGHT_DIRECTIONAL
Light is a directional source.

D3DLIGHT_PARALLELPOINT
Light is a parallel point source.

D3DLIGHT_GLSPOT
Light is a GL-style spotlight.

See also IDirect3DRMLight and IDirect3DRMLightArray Interfaces

D3DOPCODE
typedef enum _D3DOPCODE {
 D3DOP_POINT = 1,
 D3DOP_LINE = 2,
 D3DOP_TRIANGLE = 3,
 D3DOP_MATRIXLOAD = 4,
 D3DOP_MATRIXMULTIPLY = 5,
 D3DOP_STATETRANSFORM = 6,
 D3DOP_STATELIGHT = 7,
 D3DOP_STATERENDER = 8,
 D3DOP_PROCESSVERTICES = 9,
 D3DOP_TEXTURELOAD = 10,
 D3DOP_EXIT = 11,
 D3DOP_BRANCHFORWARD = 12,
 D3DOP_SPAN = 13,
 D3DOP_SETSTATUS = 14,
} D3DOPCODE;

Contains the opcodes for execute buffers.

D3DOP_POINT
Sends a point to the renderer. Operand data is described by the D3DPOINT
structure.

D3DOP_LINE
Sends a line to the renderer. Operand data is described by the D3DLINE
structure.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 85

D3DOP_TRIANGLE
Sends a triangle to the renderer. Operand data is described by the
D3DTRIANGLE structure.

D3DOP_MATRIXLOAD
Triggers a data transfer in the rendering engine. Operand data is described by the
D3DMATRIXLOAD structure.

D3DOP_MATRIXMULTIPLY
Triggers a data transfer in the rendering engine. Operand data is described by the
D3DMATRIXMULTIPLY structure.

D3DOP_STATETRANSFORM
Sets the value of internal state variables in the rendering engine for the
transformation module. Operand data is a variable token and the new value. The
token identifies the internal state variable, and the new value is the value to
which that variable should be set. For more information about these variables, see
the D3DSTATE structure and the D3DTRANSFORMSTATETYPE
enumerated type.

D3DOP_STATELIGHT
Sets the value of internal state variables in the rendering engine for the lighting
module. Operand data is a variable token and the new value. The token identifies
the internal state variable, and the new value is the value to which that variable
should be set. For more information about these variables, see the D3DSTATE
structure and the D3DLIGHTSTATETYPE enumerated type.

D3DOP_STATERENDER
Sets the value of internal state variables in the rendering engine for the rendering
module. Operand data is a variable token and the new value. The token identifies
the internal state variable, and the new value is the value to which that variable
should be set. For more information about these variables, see the D3DSTATE
structure and the D3DRENDERSTATETYPE enumerated type.

D3DOP_PROCESSVERTICES
Sets both lighting and transformations for vertices. Operand data is described by
the D3DPROCESSVERTICES structure.

D3DOP_TEXTURELOAD
Triggers a data transfer in the rendering engine. Operand data is described by the
D3DTEXTURELOAD structure.

D3DOP_EXIT
Signals that the end of the list has been reached.

D3DOP_BRANCHFORWARD
Enables a branching mechanism within the execute buffer. For more information,
see the D3DBRANCH structure.

D3DOP_SPAN
Spans a list of points with the same y value. For more information, see the
D3DSPAN structure.

D3DOP_SETSTATUS
Resets the status of the execute buffer. For more information, see the
D3DSTATUS structure.

An execute buffer has two parts: an array of vertices (each typically with
position, normal vector, and texture coordinates) and an array of opcode/operand
groups. One opcode can have several operands following it; the system simply
performs the relevant operation on each operand.

See also D3DINSTRUCTION

D3DRENDERSTATETYPE
typedef enum _D3DRENDERSTATETYPE {
 D3DRENDERSTATE_TEXTUREHANDLE = 1,
 D3DRENDERSTATE_ANTIALIAS = 2,
 D3DRENDERSTATE_TEXTUREADDRESS = 3,
 D3DRENDERSTATE_TEXTUREPERSPECTIVE = 4,
 D3DRENDERSTATE_WRAPU = 5,
 D3DRENDERSTATE_WRAPV = 6,
 D3DRENDERSTATE_ZENABLE = 7,
 D3DRENDERSTATE_FILLMODE = 8,
 D3DRENDERSTATE_SHADEMODE = 9,
 D3DRENDERSTATE_LINEPATTERN = 10,
 D3DRENDERSTATE_MONOENABLE = 11,
 D3DRENDERSTATE_ROP2 = 12,
 D3DRENDERSTATE_PLANEMASK = 13,
 D3DRENDERSTATE_ZWRITEENABLE = 14,
 D3DRENDERSTATE_ALPHATESTENABLE = 15,
 D3DRENDERSTATE_LASTPIXEL = 16,
 D3DRENDERSTATE_TEXTUREMAG = 17,
 D3DRENDERSTATE_TEXTUREMIN = 18,
 D3DRENDERSTATE_SRCBLEND = 19,
 D3DRENDERSTATE_DESTBLEND = 20,
 D3DRENDERSTATE_TEXTUREMAPBLEND = 21,
 D3DRENDERSTATE_CULLMODE = 22,
 D3DRENDERSTATE_ZFUNC = 23,
 D3DRENDERSTATE_ALPHAREF = 24,
 D3DRENDERSTATE_ALPHAFUNC = 25,
 D3DRENDERSTATE_DITHERENABLE = 26,
 D3DRENDERSTATE_BLENDENABLE = 27,
 D3DRENDERSTATE_FOGENABLE = 28,
 D3DRENDERSTATE_SPECULARENABLE = 29,
 D3DRENDERSTATE_ZVISIBLE = 30,
 D3DRENDERSTATE_SUBPIXEL = 31,
 D3DRENDERSTATE_SUBPIXELX = 32,
 D3DRENDERSTATE_STIPPLEDALPHA = 33,
 D3DRENDERSTATE_FOGCOLOR = 34,
 D3DRENDERSTATE_FOGTABLEMODE = 35,
 D3DRENDERSTATE_FOGTABLESTART = 36,

Chapter 5 Part C: Direct3D Immediate-Mode Reference 87

 D3DRENDERSTATE_FOGTABLEEND = 37,
 D3DRENDERSTATE_FOGTABLEDENSITY = 38,
 D3DRENDERSTATE_STIPPLEENABLE = 39,
 D3DRENDERSTATE_STIPPLEPATTERN00 = 64,
 // Stipple patterns 01 through 30 omitted here.
 D3DRENDERSTATE_STIPPLEPATTERN31 = 95,
} D3DRENDERSTATETYPE;

Describes the render state for the D3DOP_STATERENDER opcode. This
enumerated type is part of the D3DSTATE structure. The values mentioned in
the following descriptions are set in the second member of this structure.

D3DRENDERSTATE_TEXTUREHANDLE
Texture handle. The default value is NULL.

D3DRENDERSTATE_ANTIALIAS
Antialiasing primitive edges. The default value is FALSE.

D3DRENDERSTATE_TEXTUREADDRESS
One of the members of the D3DTEXTUREADDRESS enumerated type. The
default value is D3DTADDRESS_WRAP.

D3DRENDERSTATE_TEXTUREPERSPECTIVE
TRUE for perspective correction. The default value is FALSE.

D3DRENDERSTATE_WRAPU
TRUE for wrapping in u direction. The default value is FALSE.

D3DRENDERSTATE_WRAPV
TRUE for wrapping in v direction. The default value is FALSE.

D3DRENDERSTATE_ZENABLE
TRUE to enable the z-buffer comparison test when writing to the frame buffer.
The default value is FALSE.

D3DRENDERSTATE_FILLMODE
One or more members of the D3DFILLMODE enumerated type. The default
value is D3DFILL_SOLID.

D3DRENDERSTATE_SHADEMODE
One or more members of the D3DSHADEMODE enumerated type. The default
value is D3DSHADE_GOURAUD.

D3DRENDERSTATE_LINEPATTERN
The D3DLINEPATTERN structure. The default values are 0 for
wRepeatPattern and 0 for wLinePattern.

D3DRENDERSTATE_MONOENABLE
TRUE to enable monochromatic rendering. The default value is FALSE. If the
device does not support RGB rendering, the value will be TRUE. Applications
can check whether the device supports RGB rendering by using the
dcmColorModel member of the D3DDEVICEDESC structure.

D3DRENDERSTATE_ROP2
One of the 16 ROP2 binary raster operations specifying how the supplied pixels
are combined with the pixels of the display surface. The default value is
R2_COPYPEN. Applications can use the D3DPRASTERCAPS_ROP2 flag in
the dwRasterCaps member of the D3DPRIMCAPS structure to determine
whether additional raster operations are supported.

D3DRENDERSTATE_PLANEMASK
Physical plane mask whose type is ULONG. The default value is ~0.

D3DRENDERSTATE_ZWRITEENABLE
TRUE to enable z writes. The default value is TRUE. This member enables an
application to prevent the system from updating the z-buffer with new z values.

D3DRENDERSTATE_ALPHATESTENABLE
TRUE to enable alpha tests. The default value is FALSE. This member enables
applications to turn off the tests that otherwise would accept or reject a pixel
based on its alpha value.

D3DRENDERSTATE_LASTPIXEL
TRUE to prevent drawing the last pixel in a line. The default value is TRUE.

D3DRENDERSTATE_TEXTUREMAG
One of the members of the D3DTEXTUREFILTER enumerated type. The
default value is D3DFILTER_NEAREST.

D3DRENDERSTATE_TEXTUREMIN
One of the members of the D3DTEXTUREFILTER enumerated type. The
default value is D3DFILTER_NEAREST.

D3DRENDERSTATE_SRCBLEND
One of the members of the D3DBLEND enumerated type. The default value is
D3DBLEND_ONE.

D3DRENDERSTATE_DESTBLEND
One of the members of the D3DBLEND enumerated type. The default value is
D3DBLEND_ZERO.

D3DRENDERSTATE_TEXTUREMAPBLEND
One of the members of the D3DTEXTUREBLEND enumerated type. The
default value is D3DTBLEND_MODULATE.

D3DRENDERSTATE_CULLMODE
One of the members of the D3DCULL enumerated type. The default value is
D3DCULL_CCW. Software renderers have a fixed culling order and do not
support changing the culling mode.

D3DRENDERSTATE_ZFUNC
One of the members of the D3DCMPFUNC enumerated type. The default value
is D3DCMP_LESSEQUAL. This member enables an application to accept or
reject a pixel based on its distance from the camera.

D3DRENDERSTATE_ALPHAREF
Value specifying a reference alpha value against which pixels are tested when
alpha-testing is enabled. This value's type is D3DFIXED. The default value is 0.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 89

D3DRENDERSTATE_ALPHAFUNC
One of the members of the D3DCMPFUNC enumerated type. The default value
is D3DCMP_ALWAYS. This member enables an application to accept or reject a
pixel based on its alpha value.

D3DRENDERSTATE_DITHERENABLE
TRUE to enable dithering. The default value is FALSE.

D3DRENDERSTATE_BLENDENABLE
TRUE to enable alpha blending. The default value is FALSE.

D3DRENDERSTATE_FOGENABLE
TRUE to enable fog. The default value is FALSE.

D3DRENDERSTATE_SPECULARENABLE
TRUE to enable specular. The default value is TRUE.

D3DRENDERSTATE_ZVISIBLE
TRUE to enable z-checking. The default value is FALSE. Z-checking is a culling
technique in which a polygon representing the screen space of an entire group of
polygons is tested against the z-buffer to discover whether any of the polygons
should be drawn.

D3DRENDERSTATE_SUBPIXEL
TRUE to enable subpixel correction. The default value is FALSE.

D3DRENDERSTATE_SUBPIXELX
TRUE to enable correction in X only. The default value is FALSE.

D3DRENDERSTATE_STIPPLEDALPHA
TRUE to enable stippled alpha. The default value is FALSE.

D3DRENDERSTATE_FOGCOLOR
Value whose type is D3DCOLOR. The default value is 0.

D3DRENDERSTATE_FOGTABLEMODE
One of the members of the D3DFOGMODE enumerated type. The default value
is D3DFOG_NONE.

D3DRENDERSTATE_FOGTABLESTART
Fog table start. This is the position at which fog effects begin for linear fog
mode.

D3DRENDERSTATE_FOGTABLEEND
Fog table end. This is the position at which fog effects reach their maximum
density for linear fog mode.

D3DRENDERSTATE_FOGTABLEDENSITY
Sets the maximum fog density for linear fog mode. This value can range from 0
to 1.

D3DRENDERSTATE_STIPPLEENABLE
Enables stippling in the device driver. When stippled alpha is enabled, it must
override the current stipple pattern. When stippled alpha is disabled, the stipple
pattern must be returned.

D3DRENDERSTATE_STIPPLEPATTERN00 through
D3DRENDERSTATE_STIPPLEPATTERN31

Stipple pattern. Each render state applies to a separate line of the stipple pattern.
See also D3DOPCODE, D3DSTATE

D3DSHADEMODE
typedef enum _D3DSHADEMODE {
 D3DSHADE_FLAT = 1,
 D3DSHADE_GOURAUD = 2,
 D3DSHADE_PHONG = 3,
} D3DSHADEMODE;

Describes the supported shade mode for the
D3DRENDERSTATE_SHADEMODE render state in the
D3DRENDERSTATETYPE enumerated type.

D3DSHADE_FLAT
Flat shade mode. The color of the first vertex in the triangle is used to determine
the color of the face.

D3DSHADE_GOURAUD
Gouraud shade mode. The color of the face is determined by a linear
interpolation between all three of the triangle's vertices.

D3DSHADE_PHONG
Phong shade mode is not currently supported.

See also D3DRENDERSTATETYPE

D3DTEXTUREADDRESS
typedef enum _D3DTEXTUREADDRESS {
 D3DTADDRESS_WRAP = 1,
 D3DTADDRESS_MIRROR = 2,
 D3DTADDRESS_CLAMP = 3,
} D3DTEXTUREADDRESS;

Describes the supported texture address for the
D3DRENDERSTATE_TEXTUREADDRESS render state in the
D3DRENDERSTATETYPE enumerated type.

D3DTADDRESS_WRAP
The D3DRENDERSTATE_WRAPU and D3DRENDERSTATE_WRAPV
render states of the D3DRENDERSTATETYPE enumerated type are used. This
is the default setting.

D3DTADDRESS_MIRROR
Equivalent to a tiling texture-addressing mode (that is, when neither
D3DRENDERSTATE_WRAPU nor D3DRENDERSTATE_WRAPV is used)

Chapter 5 Part C: Direct3D Immediate-Mode Reference 91

except that the texture is flipped at every integer junction. For u values between 0
and 1, for example, the texture is addressed normally, between 1 and 2 the
texture is flipped (mirrored), between 2 and 3 the texture is normal again, and so
on.

D3DTADDRESS_CLAMP
Texture coordinates greater than 1.0 are set to 1.0, and values less than 0.0 are set
to 0.0.

For more information about using the D3DRENDERSTATE_WRAPU and
D3DRENDERSTATE_WRAPV render states, see IDirect3DTexture Interface.

See also D3DRENDERSTATETYPE

D3DTEXTUREBLEND
typedef enum _D3DTEXTUREBLEND {
 D3DTBLEND_DECAL = 1,
 D3DTBLEND_MODULATE = 2,
 D3DTBLEND_DECALALPHA = 3,
 D3DTBLEND_MODULATEALPHA = 4,
 D3DTBLEND_DECALMASK = 5,
 D3DTBLEND_MODULATEMASK = 6,
 D3DTBLEND_COPY = 7,
} D3DTEXTUREBLEND;

Defines the supported texture-blending modes. This enumerated type is used by
the D3DRENDERSTATE_TEXTUREMAPBLEND render state in the
D3DRENDERSTATETYPE enumerated type.

D3DTBLEND_DECAL
Decal texture-blending mode is supported. In this mode, the RGB and alpha
values of the texture replace the colors that would have been used with no
texturing.

D3DTBLEND_MODULATE
Modulate texture-blending mode is supported. In this mode, the RGB values of
the texture are multiplied with the RGB values that would have been used with
no texturing. Any alpha values in the texture replace the alpha values in the
colors that would have been used with no texturing.

D3DTBLEND_DECALALPHA
Decal-alpha texture-blending mode is supported. In this mode, the RGB and
alpha values of the texture are blended with the colors that would have been used
with no texturing, according to the following formula:

In this formula, C stands for color, A for alpha, t for texture, and o for original
object (before blending).

In the D3DTBLEND_DECALALPHA mode, any alpha values in the texture
replace the alpha values in the colors that would have been used with no
texturing.

D3DTBLEND_MODULATEALPHA
Modulate-alpha texture-blending mode is supported. In this mode, the RGB
values of the texture are multiplied with the RGB values that would have been
used with no texturing, and the alpha values of the texture are multiplied with the
alpha values that would have been used with no texturing.

D3DTBLEND_DECALMASK
Decal-mask texture-blending mode is supported.

D3DTBLEND_MODULATEMASK
Modulate-mask texture-blending mode is supported.

D3DTBLEND_COPY
Copy texture-blending mode is supported.

Modulation combines the effects of lighting and texturing. Because colors are
specified as values between and including 0 and 1, modulating (multiplying) the
texture and pre-existing colors together typically produces colors that are less
bright than either source. The brightness of a color component is undiminished
when one of the sources for that component is white (1). The simplest way to
ensure that the colors of a texture do not change when the texture is applied to an
object is to ensure that the object is white (1,1,1).

D3DTEXTUREFILTER
typedef enum _D3DTEXTUREFILTER {
 D3DFILTER_NEAREST = 1,
 D3DFILTER_LINEAR = 2,
 D3DFILTER_MIPNEAREST = 3,
 D3DFILTER_MIPLINEAR = 4,
 D3DFILTER_LINEARMIPNEAREST = 5,
 D3DFILTER_LINEARMIPLINEAR = 6,
} D3DTEXTUREFILTER;

Defines the supported texture filter modes used by the
D3DRENDERSTATE_TEXTUREMAG render state in the
D3DRENDERSTATETYPE enumerated type.

D3DFILTER_NEAREST
The texel with coordinates nearest to the desired pixel value is used. This applies
to both zooming in and zooming out. If either zooming in or zooming out is
supported, then both must be supported.

D3DFILTER_LINEAR
A weighted average of a 2-by-2 area of texels surrounding the desired pixel is
used. This applies to both zooming in and zooming out. If either zooming in or
zooming out is supported, then both must be supported.

Chapter 5 Part C: Direct3D Immediate-Mode Reference 93

D3DFILTER_MIPNEAREST
Similar to D3DFILTER_NEAREST, but uses the appropriate mipmap for texel
selection.

D3DFILTER_MIPLINEAR
Similar to D3DFILTER_LINEAR, but uses the appropriate mipmap for texel
selection.

D3DFILTER_LINEARMIPNEAREST
Similar to D3DFILTER_MIPNEAREST, but interpolates between the two
nearest mipmaps.

D3DFILTER_LINEARMIPLINEAR
Similar to D3DFILTER_MIPLINEAR, but interpolates between the two nearest
mipmaps.

D3DTRANSFORMSTATETYPE
typedef enum _D3DTRANSFORMSTATETYPE {
 D3DTRANSFORMSTATE_WORLD = 1,
 D3DTRANSFORMSTATE_VIEW = 2,
 D3DTRANSFORMSTATE_PROJECTION = 3,
} D3DTRANSFORMSTATETYPE;

Describes the transformation state for the D3DOP_STATETRANSFORM
opcode in the D3DOPCODE enumerated type. This enumerated type is part of
the D3DSTATE structure.

D3DTRANSFORMSTATE_WORLD
D3DTRANSFORMSTATE_VIEW
D3DTRANSFORMSTATE_PROJECTION

Define the matrices for the world, view, and projection transformations. The
default values are NULL (the identity matrices).

See also D3DOPCODE, D3DRENDERSTATETYPE

Other Types
D3DCOLOR
typedef DWORD D3DCOLOR, D3DCOLOR, *LPD3DCOLOR;

This type is the fundamental Direct3D color type.

See also D3DRGB, D3DRGBA

D3DVALUE
typedef float D3DVALUE, *LPD3DVALUE;

This type is the fundamental Direct3D fractional data type.

Return Values
Errors are represented by negative values and cannot be combined. This table
lists the values that can be returned by all Direct3D methods. See the individual
method descriptions for lists of the values each can return.

D3D_OK

D3DERR_BADMAJORVERSION

D3DERR_BADMINORVERSION

D3DERR_EXECUTE_CLIPPED_FAILED

D3DERR_EXECUTE_CREATE_FAILED

D3DERR_EXECUTE_DESTROY_FAILED

D3DERR_EXECUTE_FAILED

D3DERR_EXECUTE_LOCK_FAILED

D3DERR_EXECUTE_LOCKED

D3DERR_EXECUTE_NOT_LOCKED

D3DERR_EXECUTE_UNLOCK_FAILED

D3DERR_LIGHT_SET_FAILED

D3DERR_MATERIAL_CREATE_FAILED

D3DERR_MATERIAL_DESTROY_FAILED

D3DERR_MATERIAL_GETDATA_FAILED

D3DERR_MATERIAL_SETDATA_FAILED

D3DERR_MATRIX_CREATE_FAILED

D3DERR_MATRIX_DESTROY_FAILED

D3DERR_MATRIX_GETDATA_FAILED

D3DERR_MATRIX_SETDATA_FAILED

D3DERR_SCENE_BEGIN_FAILED

D3DERR_SCENE_END_FAILED

Chapter 5 Part C: Direct3D Immediate-Mode Reference 95

D3DERR_SCENE_IN_SCENE

D3DERR_SCENE_NOT_IN_SCENE

D3DERR_SETVIEWPORTDATA_FAILED

D3DERR_TEXTURE_CREATE_FAILED

D3DERR_TEXTURE_DESTROY_FAILED

D3DERR_TEXTURE_GETSURF_FAILED

D3DERR_TEXTURE_LOAD_FAILED

D3DERR_TEXTURE_LOCK_FAILED

D3DERR_TEXTURE_LOCKED

D3DERR_TEXTURE_NO_SUPPORT

D3DERR_TEXTURE_NOT_LOCKED

D3DERR_TEXTURE_SWAP_FAILED

D3DERR_TEXTURE_UNLOCK_FAILED

	Macros
	D3DDivide
	D3DMultiply
	D3DRGB
	D3DRGBA
	D3DSTATE_OVERRIDE
	D3DVAL
	D3DVALP
	RGB_GETBLUE
	RGB_GETGREEN
	RGB_GETRED
	RGB_MAKE
	RGB_TORGBA
	RGBA_GETALPHA
	RGBA_GETBLUE
	RGBA_GETGREEN
	RGBA_GETRED
	RGBA_MAKE
	RGBA_SETALPHA
	RGBA_TORGB

	Callback Functions
	D3DENUMDEVICESCALLBACK
	D3DENUMTEXTUREFORMATSCALLBACK
	D3DVALIDATECALLBACK

	IDirect3D
	IDirect3D::CreateLight
	IDirect3D::CreateMaterial
	IDirect3D::CreateViewport
	IDirect3D::EnumDevices
	IDirect3D::FindDevice
	IDirect3D::Initialize

	IDirect3DDevice
	IDirect3DDevice::AddViewport
	IDirect3DDevice::BeginScene
	IDirect3DDevice::CreateExecuteBuffer
	IDirect3DDevice::CreateMatrix
	IDirect3DDevice::DeleteMatrix
	IDirect3DDevice::DeleteViewport
	IDirect3DDevice::EndScene
	IDirect3DDevice::EnumTextureFormats
	IDirect3DDevice::Execute
	IDirect3DDevice::GetCaps
	IDirect3DDevice::GetDirect3D
	IDirect3DDevice::GetMatrix
	IDirect3DDevice::GetPickRecords
	IDirect3DDevice::GetStats
	IDirect3DDevice::Initialize
	IDirect3DDevice::NextViewport
	IDirect3DDevice::Pick
	IDirect3DDevice::SetMatrix
	IDirect3DDevice::SwapTextureHandles

	IDirect3DExecuteBuffer
	IDirect3DExecuteBuffer::GetExecuteData
	IDirect3DExecuteBuffer::Initialize
	IDirect3DExecuteBuffer::Lock
	IDirect3DExecuteBuffer::Optimize
	IDirect3DExecuteBuffer::SetExecuteData
	IDirect3DExecuteBuffer::Unlock
	IDirect3DExecuteBuffer::Validate

	IDirect3DLight
	IDirect3DLight::GetLight
	IDirect3DLight::Initialize
	IDirect3DLight::SetLight

	IDirect3DMaterial
	IDirect3DMaterial::GetHandle
	IDirect3DMaterial::GetMaterial
	IDirect3DMaterial::Initialize
	IDirect3DMaterial::Reserve
	IDirect3DMaterial::SetMaterial
	IDirect3DMaterial::Unreserve

	IDirect3DTexture
	IDirect3DTexture::GetHandle
	IDirect3DTexture::Initialize
	IDirect3DTexture::Load
	IDirect3DTexture::PaletteChanged
	IDirect3DTexture::Unload

	IDirect3DViewport
	IDirect3DViewport::AddLight
	IDirect3DViewport::Clear
	IDirect3DViewport::DeleteLight
	IDirect3DViewport::GetBackground
	IDirect3DViewport::GetBackgroundDepth
	IDirect3DViewport::GetViewport
	IDirect3DViewport::Initialize
	IDirect3DViewport::LightElements
	IDirect3DViewport::NextLight
	IDirect3DViewport::SetBackground
	IDirect3DViewport::SetBackgroundDepth
	IDirect3DViewport::SetViewport
	IDirect3DViewport::TransformVertices

	Structures
	D3DBRANCH
	D3DCOLORVALUE
	D3DDEVICEDESC
	D3DEXECUTEBUFFERDESC
	D3DEXECUTEDATA
	D3DFINDDEVICERESULT
	D3DFINDDEVICESEARCH
	D3DHVERTEX
	D3DINSTRUCTION
	D3DLIGHT
	D3DLIGHTDATA
	D3DLIGHTINGCAPS
	D3DLIGHTINGELEMENT
	D3DLINE
	D3DLINEPATTERN
	D3DLVERTEX
	D3DMATERIAL
	D3DMATRIX
	D3DMATRIXLOAD
	D3DMATRIXMULTIPLY
	D3DPICKRECORD
	D3DPOINT
	D3DPRIMCAPS
	D3DPROCESSVERTICES
	D3DRECT
	D3DSPAN
	D3DSTATE
	D3DSTATS
	D3DSTATUS
	D3DTEXTURELOAD
	D3DTLVERTEX
	D3DTRANSFORMCAPS
	D3DTRANSFORMDATA
	D3DTRIANGLE
	D3DVECTOR
	D3DVERTEX
	D3DVIEWPORT

	Enumerated Types
	D3DBLEND
	D3DCMPFUNC
	D3DCOLORMODEL
	D3DCULL
	D3DFILLMODE
	D3DFOGMODE
	D3DLIGHTSTATETYPE
	D3DLIGHTTYPE
	D3DOPCODE
	D3DRENDERSTATETYPE
	D3DSHADEMODE
	D3DTEXTUREADDRESS
	D3DTEXTUREBLEND
	D3DTEXTUREFILTER
	D3DTRANSFORMSTATETYPE

	Other Types
	D3DCOLOR
	D3DVALUE

	Return Values

