
Chapter 2

MicrosoftÒ DirectXÔ 3
Software Development
Kit

DirectDraw

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names herein may be the trademarks of their respective
owners.

3

C H A P T E R 2

About DirectDraw..
DirectDraw Architecture..
DirectDraw Overview...

DirectDraw..
Other DirectDraw Features...
DirectDraw HAL...
DirectDraw HEL...
Types of DirectDraw Objects...
Width and Pitch...
Support for 3D Surfaces..
Direct3D Integration with DirectDraw...
Mode X Display Mode..
Pixel Formats..

DirectDraw Interface Overviews..
IDirectDraw2 Interface...
IDirectDrawClipper Interface...
IDirectDrawPalette Interface..
IDirectDrawSurface2 Interface...

DirectDraw Tutorials..
Tutorial 1: The Basics of DirectDraw..
Tutorial 2: Loading Bitmaps on the Back Buffer..
Tutorial 3: Blitting from an Off-Screen Surface..
Tutorial 4: Color Keys and Bitmap Animation..
Tutorial 5: Dynamically Modifying Palettes..
Other DirectDraw Samples...
Optimizations and Customizations...

DirectDraw Reference..
Functions...
Callback Functions..
IDirectDraw2...
IDirectDrawClipper..
IDirectDrawPalette..
IDirectDrawSurface2..
Structures...
Return Values..

DirectDraw

About DirectDraw
DirectDraw® is a DirectX™ SDK component that allows direct manipulation of
display memory, hardware blitters, hardware overlays, and flipping. DirectDraw
provides this functionality while maintaining compatibility with existing
Microsoft® Windows®-based applications and device drivers.

DirectDraw is a software interface that provides direct access to display devices
while maintaining compatibility with the Windows graphics device interface
(GDI). It is not a high-level application programming interface (API) for
graphics. DirectDraw provides a device-independent way for games and
Windows subsystem software, such as 3D graphics packages and digital video
codecs, to gain access to the features of specific display devices.

DirectDraw works with a wide variety of display hardware, ranging from simple
SVGA monitors to advanced hardware implementations that provide clipping,
stretching, and non-RGB color format support. The interface is designed so that
your applications can enumerate the capabilities of the underlying hardware and
then use any supported hardware-accelerated features. Features that are not
implemented in hardware are emulated by DirectX.

DirectDraw provides the following benefits that were previously available only to
applications that included code for specific display devices:

· Support for double-buffered and flipping graphics
· Access to, and control of, the display card's blitter
· Support for 3D z-buffers
· Support for hardware-assisted overlays with z-ordering
· Access to image-stretching hardware
· Simultaneous access to standard and enhanced display-device memory areas

DirectDraw's mission is to provide device-dependent access to display memory in
a device-independent way. Essentially, DirectDraw manages display memory.
Your application need only recognize some basic device dependencies that are
standard across hardware implementations, such as RGB and YUV color formats
and the pitch between raster lines. You need not worry about the specific calling
procedures required to utilize the blitter or manipulate palette registers. Using
DirectDraw, you can manipulate display memory with ease, taking full advantage
of the blitting and color decompression capabilities of different types of display
hardware without becoming dependent on a particular piece of hardware.

DirectDraw provides world-class game graphics on computers running Windows
95 and Windows NT® version 4.0 or later.

DirectDraw Architecture
DirectDraw provides display-memory and display-hardware management
services. It also provides the usual functionality associated with memory
management: Memory can be allocated, moved, transformed, and freed. This
memory represents visual images and is referred to as a surface. Through the
DirectDraw hardware-abstraction layer (HAL), applications are exposed to
unique display hardware functionality, including stretching, overlaying, texture
mapping, rotating, and mirroring.

DirectDraw Overview
This section contains general information about the DirectDraw component. The
following topics are discussed:

· DirectDraw
· Other DirectDraw Features
· DirectDraw HAL
· DirectDraw HEL
· Types of DirectDraw Objects
· Width and Pitch
· Support for 3D Surfaces
· Direct3D Integration with DirectDraw
· Mode X Display Mode
· Pixel Formats

DirectDraw
DirectDraw is implemented in both hardware and software. Applications using
DirectDraw retrieve two sets of capabilities, one for hardware capabilities and
one for software-emulation capabilities. Using these, an application can easily
determine what DirectDraw is emulating and what functionality is provided in
hardware. DirectDraw is the only client of the DirectDraw hardware-abstraction
layer (HAL). Applications must write to DirectDraw; there is no mechanism for
writing to the HAL more directly.

DirectDraw is implemented by the Ddraw dynamic-link library (DLL). This 32-
bit DLL implements all of the common functionality required by DirectDraw. It
performs all of the necessary thunking between Win32® and the 16-bit portions
of the HAL, as well as complete parameter validation. It provides management
for off-screen display memory, and performs all of the bookkeeping and semantic
logic required for DirectDraw. It is responsible for presenting the Component

Chapter 2 DirectDraw 7

Object Model (COM) interface to the application, hooking window handles to
provide clip lists, and all other device-independent functionality.

DirectDraw is a combination of four COM interfaces: IDirectDraw2,
IDirectDrawSurface2, IDirectDrawPalette, and IDirectDrawClipper. For
information about COM concepts, see The Component Object Model.

The first two objects a DirectDraw application uses are DirectDraw and
DirectDrawSurface. A DirectDraw object, created by using the
DirectDrawCreate function, represents the display adapter card. After retrieving
an IDirectDraw2 interface to the object, an application can call the
IDirectDraw2::CreateSurface method to create the primary DirectDrawSurface
object, which represents the display memory being viewed on the monitor. From
the primary surface, off-screen surfaces can be created in a linked-list fashion.

In the most common case, one back buffer is created to exchange images with the
primary surface. While the screen is busy displaying the lines of the image in the
primary surface, the back-buffer surface frame is composed. This composition is
performed by transferring to the back buffer a series of off-screen bitmaps stored
on other DirectDrawSurface objects in display memory. To display the recently
composed frame, the application calls the IDirectDrawSurface2::Flip method.
This method sets a register so that the exchange occurs when the screen performs
a vertical retrace. This operation is asynchronous, so the application can continue
processing after calling this method. (After this method has been called, the back
buffer is automatically write-blocked until the exchange occurs.) After the
exchange occurs, this process continues: The application composes the next
frame in the back buffer, calls IDirectDrawSurface2::Flip, and so on.

DirectDraw improves performance over the Windows version 3.1 GDI model,
which had no direct access to bitmaps in display memory. Blits, which always
occurred in system memory, were subequently transferred to display memory,
slowing performance. With DirectDraw, processing is done on the display
adapter card whenever possible. DirectDraw also improves performance over the
Windows 95 and Windows NT GDI model, which uses the CreateDIBSection
function to enable hardware processing.

A third DirectDraw object is DirectDrawPalette. Because the physical display
palette is usually maintained in display hardware, an object represents and
manipulates it. The IDirectDrawPalette interface implements palettes in
hardware. These bypass Windows palettes and are therefore available only when
a game has exclusive access to the display hardware. DirectDrawPalette objects
are also created from DirectDraw objects.

The final DirectDraw object is DirectDrawClipper. DirectDraw manages clipped
regions of display memory by using this object.

Other DirectDraw Features
In addition to the features discussed in DirectDraw, DirectDraw also supports
transparent blitting and overlays.

In transparent blitting, a bitmap is transferred to a surface and a certain color, or
range of colors, in the bitmap is defined as transparent. Transparent blits are
achieved by using color keying. Source color keying operates by defining which
color or color range on the bitmap is transparent and therefore not copied during
a transfer operation. Destination color keying operates by defining which color or
color range on the surface will be covered by pixels of that color or color range in
the source bitmap. For more information about color keying, see Color Keying.

Finally, DirectDraw supports overlays in hardware and by software emulation.
Overlays present an easier means of implementing sprites and managing multiple
layers of animation. Any DirectDrawSurface object can be created as an overlay
with all of the capabilities of any other surface, in addition to the extra
capabilities associated only with overlays. These capabilities require extra display
memory. If there are no overlays in display memory, the overlay surfaces can
exist in system memory.

Color keying works in the same way for overlays as for transparent blits. The z-
order of the overlay automatically handles the occlusion and transparency
manipulations between overlays.

DirectDraw HAL
The DirectDraw hardware-abstraction layer (HAL) is hardware-dependent and
contains only hardware-specific code. The HAL can be implemented in 16 bits,
32 bits, or, on Windows 95, a combination of the two. The HAL is always
implemented in 32 bits on Windows NT. The HAL can be an integral part of the
display driver or a separate DLL that communicates with the display driver
through a private interface defined by the driver's creator.

The DirectDraw HAL is implemented by the chip manufacturer, board producer,
or original equipment manufacturer (OEM). The HAL implements only the
device-dependent code and performs no emulation. If a function is not performed
by the hardware, the HAL does not report it as a hardware capability. The HAL
also does no parameter validation; parameters are validated by DirectDraw
before the HAL is invoked.

DirectDraw HEL
DirectDraw's hardware-emulation layer (HEL) presents its capabilities to
DirectDraw just as a HAL would. By examining these capabilities during
application initialization, you can adjust application parameters to provide
optimum performance on a variety of platforms. If a DirectDraw HAL is not

Chapter 2 DirectDraw 9

present or a requested feature is not provided by the hardware, DirectDraw will
emulate the missing functionality.

Types of DirectDraw Objects
The DirectDraw object represents the display device. Multiple DirectDraw
objects can be created for each logical display device. Each unique DirectDraw
object can create surface, palette, and clipper objects that are independent of all
other DirectDraw objects.

A DirectDrawSurface object represents a linear region of display memory that
can be directly accessed and manipulated. These display memory addresses may
point to visible frame buffer memory (primary surface) or to non-visible buffers
(off-screen or overlay surfaces). These non-visible buffers usually reside in
display memory, but they can be created in system memory if required by the
hardware design or if DirectDraw is performing software emulation.

A DirectDrawPalette object represents either a 16- or a 256-color indexed palette.
Palettes are provided for textures, off-screen surfaces, and overlay surfaces, none
of which are required to have the same palette as the primary surface.

The DirectDraw object creates DirectDrawSurface, DirectDrawPalette, and
DirectDrawClipper objects. DirectDrawPalette and DirectDrawClipper objects
must be attached to the DirectDrawSurface objects they affect. A
DirectDrawSurface object may refuse the request to attach a DirectDrawPalette
object to it. This is not unusual, because most hardware does not support multiple
palettes.

Width and Pitch
If your application writes to display memory, bitmaps stored in memory do not
necessarily occupy a contiguous block of memory. In this case, the width and
pitch of a line in a bitmap can be different. The width is the distance between two
addresses in memory that represent the beginning of a line and the end of the line
of a stored bitmap. This distance represents only the width of the bitmap in
memory; it does not include any extra memory required to reach the beginning of
the next line of the bitmap. The pitch is the distance between two addresses in
memory that represent the beginning of a line and the beginning of the next line
in a stored bitmap.

For rectangular memory, for example, the pitch of the display memory will
include the width of the bitmap plus part of a cache. The following figure shows
the difference between width and pitch in rectangular memory:

In this figure, the front buffer and back buffer are both 6404808, and the
cache is 3844808. To reach the address of the next line to write to the buffer,
you must add 640 and 384 to get 1024, which is the beginning of the next line.

Therefore, when rendering directly into surface memory, always use the pitch
returned by the IDirectDrawSurface2::Lock method (or the
IDirectDrawSurface2::GetDC method). Do not assume a pitch based solely on
the display mode. If your application works on some display adapters but looks
garbled on others, this may be the cause of your problem.

Support for 3D Surfaces
This section contains information about DirectDraw's 3D-surface capabilities.
The following topics are discussed:

· Texture Maps
· Mipmaps
· Z-Buffers

Texture Maps
Texture maps can be allocated in system memory by using the HEL. To allocate a
texture map surface, specify the DDSCAPS_TEXTURE flag in the ddsCaps
member of the DDSURFACEDESC structure passed to the
IDirectDraw2::CreateSurface method.

A wide range of texture pixel formats is supported by the HEL. For a list of these
formats, see Texture Map Formats.

Mipmaps
DirectDraw supports mipmapped texture surfaces. A mipmap is a sequence of
textures, each of which is the same image at a progressively lower resolution.
Each prefiltered image, or level, in the mipmap is a power of two smaller than the
previous level. A high-resolution level is used for objects that are close to the
viewer. Lower-resolution levels are used as the object moves farther away.

Chapter 2 DirectDraw 11

Mipmapping is a computationally low-cost way of improving the quality of
rendered textures.

In DirectDraw, mipmaps are represented as a chain of attached surfaces. The
highest resolution texture is at the head of the chain and has, as an attachment, the
next level of the mipmap. That level has, in turn, an attachment that is the next
level in the mipmap, and so on down to the lowest resolution level of the mipmap.

To create a surface representing a single level of a mipmap, specify the
DDSCAPS_MIPMAP flag in the DDSURFACEDESC structure passed to the
IDirectDraw2::CreateSurface method. Because all mipmaps are also textures,
the DDSCAPS_TEXTURE flag must also be specified. It is possible to create
each level manually and build the chain by using the
IDirectDrawSurface2::AddAttachedSurface method. However, you can use
the IDirectDraw2::CreateSurface method to build an entire mipmap chain in a
single operation.

The following example demonstrates building a chain of five mipmap levels of
sizes 256256, 128128, 6464, 3232, and 1616:

DDSURFACEDESC ddsd;
LPDIRECTDRAWSURFACE2 lpDDMipMap;
ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_MIPMAPCOUNT;
ddsd.dwMipMapCount = 5;
ddsd.ddsCaps.dwCaps = DDSCAPS_TEXTURE |
 DDSCAPS_MIPMAP | DDSCAPS_COMPLEX;
ddsd.dwWidth = 256UL;
ddsd.dwHeight = 256UL;

ddres = lpDD->CreateSurface(&ddsd, &lpDDMipMap);
if (FAILED(ddres))
.
.
.

You can omit the number of mipmap levels, in which case the
IDirectDraw2::CreateSurface method will create a chain of surfaces, each a
power of two smaller than the previous one, down to the smallest possible size. It
is also possible to omit the width and height, in which case
IDirectDraw2::CreateSurface will create the number of levels you specify,
with a minimum level size of 11.

A chain of mipmap surfaces is traversed by using the
IDirectDrawSurface2::GetAttachedSurface method and specifying the
DDSCAPS_MIPMAP and DDSCAPS_TEXTURE flags in the DDSCAPS
structure. The following example traverses a mipmap chain from highest to
lowest resolutions:

LPDIRECTDRAWSURFACE lpDDLevel, lpDDNextLevel;
DDSCAPS ddsCaps;

lpDDLevel = lpDDMipMap;
lpDDLevel->AddRef();
ddsCaps.dwCaps = DDSCAPS_TEXTURE | DDSCAPS_MIPMAP;
ddres = DD_OK;
while (ddres == DD_OK)
{
 // Process this level.
 .
 .
 .
 ddres = lpDDLevel->GetAttachedSurface(
 &ddsCaps, &lpDDNextLevel);
 lpDDLevel->Release();
 lpDDLevel = lpDDNextLevel;
}
if ((ddres != DD_OK) && (ddres != DDERR_NOTFOUND))
.
.
.

You can also build flipping chains of mipmaps. In this scenario, each mipmap
level has an associated chain of back buffer texture surfaces. Each back-buffer
texture surface is attached to one level of the mipmap. Only the front buffer in the
chain has the DDSCAPS_MIPMAP flag set; the others are simply texture maps
(created by using the DDSCAPS_TEXTURE flag). A mipmap level can have
two attached texture maps, one with DDSCAPS_MIPMAP set, which is the next
level in the mipmap chain, and one with the DDSCAPS_BACKBUFFER flag
set, which is the back buffer of the flipping chain. All the surfaces in each
flipping chain must be of the same size.

It is not possible to build such a surface arrangement with a single call to the
IDirectDraw2::CreateSurface method. To construct a flipping mipmap, either
build a complex mipmap chain and manually attach back buffers by using the
IDirectDrawSurface2::AddAttachedSurface method, or create a sequence of
flipping chains and build the mipmap by using
IDirectDrawSurface2::AddAttachedSurface.

Blit operations apply to only a single level in the mipmap chain. To blit an entire
chain of mipmaps, each level must be blitted separately.

The IDirectDrawSurface2::Flip method will flip all the levels of a mipmap
from the level supplied to the lowest level in the mipmap. A destination surface
can also be provided, in which case all levels in the mipmap will flip to the back
buffer in their flipping chain. This back buffer matches the supplied override. For

Note

Chapter 2 DirectDraw 13

example, if the third back buffer in the top-level flipping chain is supplied as the
override, all levels in the mipmap will flip to the third back buffer.

The number of levels in a mipmap chain is stored explicitly. When an application
obtains the surface description of a mipmap (by calling the
IDirectDrawSurface2::Lock or IDirectDrawSurface2::GetSurfaceDesc
method), the dwMipMapCount member of the DDSURFACEDESC structure
will contain the number of levels in the mipmap, including the top level. For
levels other than the top level in the mipmap, the dwMipMapCount member
specifies the number of levels from that mipmap to the smallest mipmap in the
chain.

Z-Buffers
The DirectDraw HEL can create z-buffers for use by Direct3D™ or other 3D-
rendering software. The HEL supports both 16- and 32-bit z-buffers. The
DirectDraw device driver for a 3D-accelerated display card can permit the
creation of z-buffers in display memory by exporting the DDSCAPS_ZBUFFER
flag. It should also specify the z-buffer depths it supports by using the
dwZBufferBitDepths member of the DDCAPS structure.

An application can clear z-buffers by using the IDirectDrawSurface2::Blt
method. The DDBLT_DEPTHFILL flag indicates that the blit clears z-buffers.
If this flag is specified, the DDBLTFX structure passed to the
IDirectDrawSurface2::Blt method should have its dwFillDepth member set to
the required z-depth. If the DirectDraw device driver for a 3D-accelerated
display card is designed to provide support for z-buffer clearing in hardware, it
should export the DDCAPS_BLTDEPTHFILL flag and should handle
DDBLT_DEPTHFILL blits. The destination surface of a depth-fill blit must be
a z-buffer.

The actual interpretation of a depth value is specific to the 3D renderer.

Direct3D Integration with DirectDraw
This section describes the relationship between DirectDraw and Direct3D. The
following topics are discussed:

· Direct3D Driver Interface
· Direct3D Device Interface
· Direct3D Texture Interface
· DirectDraw HEL and Direct3D

Note

Direct3D Driver Interface
DirectDraw presents programmers with a single, unified object. This object
encapsulates both the DirectDraw and Direct3D states. Both the DirectDraw
driver COM interfaces and the Direct3D driver COM interface allow you to
communicate with the same underlying object. When an application uses
Direct3D, no Direct3D object is created—rather, the application uses the standard
COM QueryInterface method to obtain a Direct3D interface to a DirectDraw
object.

The following example demonstrates how to create the DirectDraw object and
obtain a Direct3D interface for communicating with that object:

LPDIRECTDRAW lpDD;
LPDIRECT3D lpD3D;
ddres = DirectDrawCreate(NULL, &lpDD, NULL);
if (FAILED(ddres))
.
.
.
ddres = lpDD->QueryInterface(IID_IDirect3D,
 &lpD3D);
if (FAILED(ddres))
.
.
.

The code shown in the previous example creates a single object and obtains two
interfaces to that object. Therefore, the object's reference count is 2 after the
IDirectDraw2::QueryInterface method call. The important implication of this
is that the lifetime of the Direct3D driver state is the same as that of the
DirectDraw object. Releasing the Direct3D interface does not destroy the
Direct3D driver state. That state is not destroyed until all references to that object
—whether they are DirectDraw or Direct3D references—have been released.
Therefore, if you release a Direct3D interface while holding a reference to a
DirectDraw driver interface, and then query the Direct3D interface again, the
Direct3D state will be preserved.

Direct3D Device Interface
As with the Direct3D object, there is no distinct Direct3D device object. A
Direct3D device is simply an interface for communicating with a
DirectDrawSurface object used as a 3D-rendering target. The following example
creates a Direct3D device interface to a DirectDrawSurface object:

LPDIRECTDRAWSURFACE lpDDSurface;
LPDIRECT3DDEVICE lpD3DDevice;

ddres = lpDD->CreateSurface(&ddsd, &lpDDSurface,

Chapter 2 DirectDraw 15

 NULL);
if (FAILED(ddres))
 .
 .
 .
ddres = lpDDSurface->QueryInterface(lpGuid,
 &lpD3DDevice);
if (FAILED(ddres))
 .
 .
 .

The same rules for reference counts and state lifetimes for objects apply to
DirectDrawSurface objects and Direct3D devices. (For information about these
rules, see Direct3D Driver Interface.) Additionally, multiple, distinct Direct3D
device interfaces can be obtained for the same DirectDrawSurface object. It is
possible, therefore, that a single DirectDrawSurface object could be the target for
both a ramp-based device and an RGB-based device.

Direct3D Texture Interface
Direct3D textures are not distinct object types, but rather another interface of
DirectDrawSurface objects. The following example obtains a Direct3D texture
interface from a DirectDrawSurface object:

LPDIRECTDRAWSURFACE lpDDSurface;
LPDIRECT3DTEXTURE lpD3DTexture;

ddres = lpDD->CreateSurface(&ddsd, &lpDDSurface,
 NULL);
if (FAILED(ddres))
 .
 .
 .
ddres = lpDDSurface->QueryInterface(
 IID_IDirect3DTexture, &lpD3DTexture);
if (FAILED(ddres))
 .
 .
 .

The same rules for reference counts and state lifetimes for objects apply to
Direct3D textures. (For information about these rules, see Direct3D Driver
Interface.) It is possible to use a single DirectDrawSurface object as both a
rendering target and a texture.

DirectDraw HEL and Direct3D
The DirectDraw HEL supports the creation of texture, mipmap, and z-buffer
surfaces. Furthermore, because of the tight integration of DirectDraw and
Direct3D, a DirectDraw-enabled system always provides Direct3D support (in
software emulation, at least). Therefore, the DirectDraw HEL exports the
DDSCAPS_3DDEVICE flag to indicate that a surface can be used for 3D
rendering. DirectDraw drivers for hardware-accelerated 3D display cards export
this capability to indicate the presence of hardware-accelerated 3D.

Mode X Display Mode
Mode X is a hybrid display mode derived from the standard VGA Mode 13. This
mode allows the use of up to 256K bytes of display memory (rather than the 64K
bytes allowed by Mode 13) by using the VGA display adapter's EGA multiple
video plane system. On Windows 95, DirectDraw provides two Mode X modes
(3202008 and 3202408) for all display cards. Some cards also support
linear low-resolution modes. In linear low-resolution modes, the primary surface
can be locked and directly accessed. This is not possible in Mode X modes.

Mode X modes are not currently supported on Windows NT. Linear low-
resolution modes are also largely unsupported.

Pixel Formats
This section contains information about the pixel formats supported by the
hardware-emulation layer (HEL). The following topics are discussed:

· Texture Map Formats
· Off-Screen Surface Formats

Texture Map Formats
A wide range of texture pixel formats are supported by the HEL. The following
table shows these formats. The Masks column contains the red, green, blue, and
alpha masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks
DDPF_RGB | 1 R: 0x00000000
DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 1 R: 0x00000000
DDPF_PALETTEINDEXED1 | G: 0x00000000

Chapter 2 DirectDraw 17

DDPF_PALETTEINDEXEDTO8 B: 0x00000000
A: 0x00000000

DDPF_RGB | 2 R: 0x00000000
DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 2 R: 0x00000000
DDPF_PALETTEINDEXED2 | G: 0x00000000
DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000
DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 4 R: 0x00000000
DDPF_PALETTEINDEXED4 | G: 0x00000000
DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 8 R: 0x00000000
DDPF_PALETTEINDEXED8 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB 8 R: 0x000000E0
G: 0x0000001C
B: 0x00000003
A: 0x00000000

DDPF_RGB | 16 R: 0x00000F00
DDPF_ALPHAPIXELS G: 0x000000F0

B: 0x0000000F

A: 0x0000F000

DDPF_RGB 16 R: 0x0000F800
G: 0x000007E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB 16 R: 0x0000001F
G: 0x000007E0
B: 0x0000F800
A: 0x00000000

DDPF_RGB 16 R: 0x00007C00
G: 0x000003E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB | 16 R: 0x00007C00
DDPF_ALPHAPIXELS G: 0x000003E0

B: 0x0000001F
A: 0x00008000

DDPF_RGB 24 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

DDPF_RGB 24 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000
A: 0x00000000

DDPF_RGB 32 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

Chapter 2 DirectDraw 19

DDPF_RGB 32 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000
A: 0x00000000

DDPF_RGB | 32 R: 0x00FF0000
DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x000000FF
A: 0xFF000000

DDPF_RGB | 32 R: 0x000000FF
DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x00FF0000
A: 0xFF000000

The HEL can create these formats in system memory. The DirectDraw device
driver for a 3D-accelerated display card may create textures of other formats in
display memory. Such a driver exports the DDSCAPS_TEXTURE flag to
indicate that it can create textures.

Off-Screen Surface Formats
The following table shows the pixel formats for off-screen plain surfaces
supported by the DirectX 3 HEL. The Masks column contains the red, green,
blue, and alpha masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks
DDPF_RGB | 1 R: 0x00000000
DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 2 R: 0x00000000
DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 4 R: 0x00000000
DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB | 8 R: 0x00000000
DDPF_PALETTEINDEXED8 G: 0x00000000

B: 0x00000000
A: 0x00000000

DDPF_RGB 16 R: 0x0000F800
G: 0x000007E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB 16 R: 0x00007C00
G: 0x000003E0
B: 0x0000001F
A: 0x00000000

DDPF_RGB 24 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

DDPF_RGB 24 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000
A: 0x00000000

DDPF_RGB 32 R: 0x00FF0000
G: 0x0000FF00
B: 0x000000FF
A: 0x00000000

DDPF_RGB 32 R: 0x000000FF
G: 0x0000FF00
B: 0x00FF0000

Chapter 2 DirectDraw 21

A: 0x00000000

In addition to supporting a wider range of off-screen surface formats, the HEL
also supports surfaces intended for use by Direct3D, or other 3D renderers.

DirectDraw Interface Overviews
This section contains general information about the following DirectDraw COM
interfaces:

· IDirectDraw2 Interface
· IDirectDrawClipper Interface
· IDirectDrawPalette Interface
· IDirectDrawSurface2 Interface

IDirectDraw2 Interface
The following topics contain additional information related to the IDirectDraw2
interface:

· DirectDraw Objects
· What's New in IDirectDraw2?
· Multiple DirectDraw Objects per Process
· Support for High Resolutions and True-Color Bit Depths
· Primary Surface Resource Sharing Model
· Changing Modes and Exclusive Access
· Creating DirectDraw Objects by Using CoCreateInstance

DirectDraw Objects
DirectDraw objects represent the display hardware. An object is hardware-
accelerated if the display device for which it was instantiated has hardware
acceleration. A DirectDraw object can create three types of objects:
DirectDrawSurface, DirectDrawPalette, and DirectDrawClipper.

More than one DirectDraw object can be instantiated at a time. The simplest
example of this is using two monitors on a Windows 95 system. Although
Windows 95 does not support dual monitors on its own, it is possible to write a
DirectDraw HAL for each display device. The display device Windows 95 and
GDI recognizes is the one that will be used when the default DirectDraw object is
instantiated. The display device that Windows 95 and GDI do not recognize can
be addressed by another, independent DirectDraw object that must be created by

using the second display device's identifying globally unique identifier (GUID).
This GUID can be obtained by using the DirectDrawEnumerate function.

The DirectDraw object manages all of the objects it creates. It controls the default
palette (if the primary surface is in 8-bits-per-pixel mode), the default color key,
and the hardware display mode. It tracks what resources have been allocated and
what resources remain to be allocated.

What's New in IDirectDraw2?
The COM model that DirectX uses specifies that new functionality can be added
by providing new interfaces. The IDirectDraw2 interface supersedes the
IDirectDraw interface. This new interface can be obtained by using the
IDirectDraw::QueryInterface method, as shown in the following example:

// Create an IDirectDraw2 interface.
LPDIRECTDRAW lpDD;
LPDIRECTDRAW2 lpDD2;

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);
if(ddrval != DD_OK)
 return;

ddrval = lpDD->SetCooperativeLevel(hwnd,
 DDSCL_NORMAL);
if(ddrval != DD_OK)
 return;

ddrval = lpDD->QueryInterface(IID_IDirectDraw2,
 (LPVOID *)&lpDD2);
if(ddrval != DD_OK)
 return;

ddscaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddrval = lpDD2->GetAvailableVidMem(&ddscaps, &total,
 &free);
if(ddrval != DD_OK)
 return;

This example shows C++ syntax for creating an IDirectDraw interface, which
then uses the IDirectDraw::QueryInterface method to create an IDirectDraw2
interface. This interface contains the IDirectDraw2::GetAvailableVidMem
method. An attempt to use this method from an IDirectDraw interface will result
in an error during compiling.

The IDirectDraw2::GetAvailableVidMem method is the only method that was
added to the IDirectDraw interface when the IDirectDraw2 interface was
created. Two methods—IDirectDraw2::SetDisplayMode and

Chapter 2 DirectDraw 23

IDirectDraw2::EnumDisplayModes—were modified or extended when they
were included in IDirectDraw2, however.

The interaction between the IDirectDraw::SetCooperativeLevel and
IDirectDraw::SetDisplayMode methods is slightly different from the interaction
between the IDirectDraw2::SetCooperativeLevel and
IDirectDraw2::SetDisplayMode methods. If you use the IDirectDraw interface
and an application gains exclusive (full-screen) mode by calling
IDirectDraw::SetCooperativeLevel with the DDSCL_EXCLUSIVE flag,
changes the mode by using IDirectDraw::SetDisplayMode, and then releases
exclusive mode by calling IDirectDraw::SetCooperativeLevel with the
DDSCL_NORMAL flag, the original display mode will not be restored. The
new display mode will remain until the application calls the
IDirectDraw::RestoreDisplayMode method or the DirectDraw object is
deleted. However, if you are using the IDirectDraw2 interface and an
application follows the same steps, the original display mode will be restored
when exclusive mode is lost.

Because some methods might change with the release of a new interface, mixing
methods from an interface and its replacement (between IDirectDraw and
IDirectDraw2, for example) can cause unpredictable results. You should use
methods from only one version of an interface at a time.

Multiple DirectDraw Objects per Process
DirectDraw allows a process to call the DirectDrawCreate function as many
times as necessary. A unique and independent interface is returned after each
call. Each DirectDraw object can be used as desired; there are no dependencies
between the objects. Each object behaves exactly as if it had been created by a
unique process.

Because the DirectDraw objects are independent, the DirectDrawSurface,
DirectDrawPalette, and DirectDrawClipper objects created with a particular
DirectDraw object should not be used with other DirectDraw objects because
these objects are automatically released when the DirectDraw object is destroyed.
If they are used with another DirectDraw object, they may stop functioning if the
original object is destroyed.

The exception is DirectDrawClipper objects created by using the
DirectDrawCreateClipper function. These objects are independent of any
particular DirectDraw object and can be used with one or more DirectDraw
objects.

Support for High Resolutions and True-Color Bit
Depths
DirectDraw supports all of the screen resolutions and depths supported by the
display device driver. DirectDraw allows an application to change the mode to
any one supported by the computer's display driver, including all supported 24-
and 32-bpp modes.

DirectDraw also supports HEL blitting of 24- and 32-bpp surfaces. If the display
device driver supports blitting at these resolutions, the hardware blitter will be
used for display memory to display memory blits. Otherwise, the HEL will be
used to perform the blits.

Windows allows a user to specify the type of monitor that is being used.
DirectDraw checks a list of known display modes against the display restrictions
of the installed monitor. If DirectDraw determines that the requested mode is not
compatible with the monitor, the call to the IDirectDraw2::SetDisplayMode
method fails. Only modes that are supported on the installed monitor will be
enumerated when you call the IDirectDraw2::EnumDisplayModes method.

Primary Surface Resource Sharing Model
DirectDraw has a simple resource sharing model. Display memory is a scarce,
shared resource. If the display mode changes, all of the surfaces stored in display
memory are lost. (For more information, see Losing Surfaces.)

DirectDraw implicitly creates a GDI primary surface when it is instantiated for a
display device that DirectDraw is sharing with GDI. GDI is granted shared access
to the primary surface. DirectDraw keeps track of the surface memory that GDI
recognizes as the primary surface. The DirectDrawSurface object that owns
GDI's primary surface can always be obtained by using the
IDirectDraw2::GetGDISurface method.

GDI cannot cache fonts, brushes, and device-dependent bitmaps (DDBs) in the
display memory managed by DirectDraw. The HAL must reserve whatever
display memory the DIB engine driver needs before describing the available
memory to DirectDraw's heap manager or before the display device driver can
allocate and free memory for its cached data from DirectDraw's heap manager.

Changing Modes and Exclusive Access
An application can change display modes by using the
IDirectDraw2::SetDisplayMode method. Modes can be changed by more than
one application as long as they are all sharing a display card.

An application can change the pixel depth of the display mode only if it has
obtained exclusive access to the DirectDraw object. All DirectDrawSurface
objects lose surface memory and become inoperative when the mode is changed.

Chapter 2 DirectDraw 25

A surface's memory must be reallocated by using the
IDirectDrawSurface2::Restore method.

The DirectDraw exclusive (full-screen) mode does not bar other applications
from allocating DirectDrawSurface objects, nor does it exclude them from using
DirectDraw or GDI functionality. However, it does prevent applications other
than the one that obtained exclusive access from changing the display mode or
palette.

Creating DirectDraw Objects by Using
CoCreateInstance
You can create a DirectDraw object by using the CoCreateInstance function
and the IDirectDraw2::Initialize method rather than the DirectDrawCreate
function. The following steps describe how to create the DirectDraw object:

1 Initialize COM at the start of your application by calling CoInitialize and
specifying NULL.
if (FAILED(CoInitialize(NULL)))
 return FALSE;

2 Create the DirectDraw object by using CoCreateInstance and the
IDirectDraw2::Initialize method.
ddrval = CoCreateInstance(&CLSID_DirectDraw,
 NULL, CLSCTX_ALL, &IID_IDirectDraw2, &lpdd);
if(!FAILED(ddrval))
 ddrval = IDirectDraw2_Initialize(lpdd, NULL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDraw, is the
class identifier of the DirectDraw driver object class, the IID_IDirectDraw2
parameter identifies the particular DirectDraw interface to be created, and the
lpdd parameter points to the DirectDraw object that is retrieved. If the call is
successful, this functions returns an uninitialized object.

3 Before you use the DirectDraw object, you must call IDirectDraw2::Initialize.
This method takes the driver GUID parameter that the DirectDrawCreate
function typically uses (NULL in this case). After the DirectDraw object is
initialized, you can use and release it as if it had been created by using the
DirectDrawCreate function. If you do not call the IDirectDraw2::Initialize
method before using one of the methods associated with the DirectDraw object, a
DDERR_NOTINITIALIZED error will occur.

Before you close the application, shut down COM by using the CoUninitialize
function.

CoUnitialize();

IDirectDrawClipper Interface
The IDirectDrawClipper interface simplifies the task of creating and maintaining
a clip list. This interface is useful to applications running in a window, rather than
in exclusive (full-screen) mode. Applications running in a window can use clip
lists to limit screen updates to areas that have changed.

The following topics contain additional information related to the
IDirectDrawClipper interface:

· Clip Lists
· Sharing DirectDrawClipper Objects
· Driver-Independent DirectDrawClipper Objects
· Creating DirectDrawClipper Objects with CoCreateInstance

Clip Lists
DirectDraw manages clip lists by using the DirectDrawClipper object. A clip list
is a series of rectangles that describes the visible areas of the surface. A
DirectDrawClipper object can be attached to any surface. A window handle can
also be attached to a DirectDrawClipper object, in which case DirectDraw
updates the DirectDrawClipper clip list with the clip list from the window as it
changes.

Although the clip list is visible from the DirectDraw HAL, DirectDraw calls the
HAL only for blitting with rectangles that meet the clip list requirements. For
instance, if the upper-right rectangle of a surface was clipped and the application
directed DirectDraw to blit the surface onto the primary surface, DirectDraw
would have the HAL do two blits, the first being the upper-left corner of the
surface, and the second being the bottom half of the surface.

The HAL considers the clip list for overlays only if the overlay hardware can
support clipping and if destination color keying is not active. Most of today's
hardware does not support occluded overlays unless they are subject to
destination color keying. This can be reported to DirectDraw as a driver
capability, in which case the overlay will be turned off if it becomes occluded.
Under these conditions, the HAL does not consider clip lists either.

Sharing DirectDrawClipper Objects
DirectDrawClipper objects can be shared between multiple surfaces. For
example, the same DirectDrawClipper object can be set on both the front buffer
and the back buffer of a flipping chain. When an application attaches a
DirectDrawClipper object to a surface by using the
IDirectDrawSurface2::SetClipper method, the surface increments the reference
count of that object. When the reference count of the surface reaches 0, the
surface will decrement the reference count of the attached DirectDrawClipper

Chapter 2 DirectDraw 27

object. In addition, if a DirectDrawClipper object is detached from a surface by
calling IDirectDrawSurface2::SetClipper with a NULL clipper interface
pointer, the reference count of the surface's DirectDrawClipper object will be
decremented.

If IDirectDrawSurface2::SetClipper is called several times consecutively on the
same surface for the same DirectDrawClipper object, the reference count for the
object is incremented only once. Subsequent calls do not affect the object's reference
count.

Driver-Independent DirectDrawClipper Objects
You can create DirectDrawClipper objects that are not directly owned by any
particular DirectDraw object. These DirectDrawClipper objects can be shared
across multiple DirectDraw objects. Driver-independent DirectDrawClipper
objects are created by using the new DirectDrawCreateClipper DirectDraw
function. An application can call this function before any DirectDraw objects are
created.

Because DirectDraw objects do not own these DirectDrawClipper objects, they
are not automatically released when your application's objects are released. If the
application does not explicitly release these DirectDrawClipper objects,
DirectDraw will release them when the application closes.

You can still create DirectDrawClipper objects by using the
IDirectDraw2::CreateClipper method. These DirectDrawClipper objects are
automatically released when the DirectDraw object from which they were created
is released.

Creating DirectDrawClipper Objects with
CoCreateInstance
DirectDrawClipper objects have full class-factory support for COM compliance.
In addition to using the standard DirectDrawCreateClipper function and
IDirectDraw2::CreateClipper method, you can also create a
DirectDrawClipper object either by using the CoGetClassObject function to
obtain a class factory and then calling the CoCreateInstance function, or by
calling CoCreateInstance directly. The following example shows how to create
a DirectDrawClipper object by using CoCreateInstance and the
IDirectDrawClipper::Initialize method.

ddrval = CoCreateInstance(&CLSID_DirectDrawClipper,
 NULL, CLSCTX_ALL, &IID_IDirectDrawClipper, &lpClipper);
if (!FAILED(ddrval))
 ddrval = IDirectDrawClipper_Initialize(lpClipper,
 lpDD, 0UL);

Note

In this call to CoCreateInstance, the first parameter,
CLSID_DirectDrawClipper, is the class identifier of the DirectDrawClipper
object class, the IID_IDirectDrawClipper parameter identifies the currently
supported interface, and the lpClipper parameter points to the DirectDrawClipper
object that is retrieved.

An application must use the IDirectDrawClipper::Initialize method to initialize
DirectDrawClipper objects that were created by the class-factory mechanism
before it can use the object. The value 0UL is the dwFlags parameter, which in
this case has a value of 0 because no flags are currently supported. In the
example shown here, lpDD is the DirectDraw object that owns the
DirectDrawClipper object. However, you could supply a NULL value instead,
which would create an independent DirectDrawClipper object. (This is equivalent
to creating a DirectDrawClipper object by using the DirectDrawCreateClipper
function.)

Before you close the application, shut down COM by using the CoUninitialize
function.

CoUnitialize();

IDirectDrawPalette Interface
The following topics contain additional information related to the
IDirectDrawPalette interface:

· DirectDrawPalette Objects
· Setting Palettes on Non-Primary Surfaces
· Sharing Palettes
· Palette Types

DirectDrawPalette Objects
The DirectDrawPalette object is provided to enable direct manipulation of 16-
and 256-color palettes. (A DirectDrawPalette object is typically attached to a
DirectDrawSurface object.) A DirectDrawPalette object reserves entries 0
through 255 for 256-color palettes; it does not reserve any entries for 16-color
palettes. It allows direct manipulation of the color table as a table. A color table
is an array of color values (typically RGB triplets). This table can contain 16- or
24-bit RGB entries representing the colors associated with each of the indexes.
For 16-color palettes, the table can also contain indexes to another 256-color
palette.

An application can retrieve the entries in these tables by using the
IDirectDrawPalette::GetEntries method, and it can change these entries by

Chapter 2 DirectDraw 29

using the IDirectDrawPalette::SetEntries method. This method has a dwFlags
parameter that specifies when the changes to the palette should take effect.

You can choose between two methods for providing straightforward palette
animation using DirectDrawPalette objects. Using the first method, you change
the palette entries that correspond to the colors that need to be animated. You can
do this with a single call to the IDirectDrawPalette::SetEntries method. The
second method requires two DirectDrawPalette objects. The application performs
the animation by attaching one object after the other to the DirectDrawSurface
object. You can do this by using the IDirectDrawSurface2::SetPalette method.

Setting Palettes on Non-Primary Surfaces
Palettes can be attached to any palettized surface (primary, back buffer, off-
screen plain, or texture map). Only those palettes attached to primary surfaces
will have any effect on the system palette. It is important to note that DirectDraw
blits never perform color conversion; any palettes attached to the source or
destination surface of a blit are ignored. Furthermore, the
IDirectDrawSurface2::GetDC method also ignores any DirectDrawPalette
object selected into the surface.

Non-primary surface palettes are intended for use by applications or Direct3D (or
other 3D renderers).

Sharing Palettes
Palettes can be shared among multiple surfaces. The same palette can be set on
the front buffer and the back buffer of a flipping chain or shared among multiple
texture surfaces. When an application attaches a palette to a surface by using the
IDirectDrawSurface2::SetPalette method, the surface increments the reference
count of that palette. When the reference count of the surface reaches 0, the
surface will decrement the reference count of the attached palette. In addition, if
a palette is detached from a surface by using IDirectDrawSurface2::SetPalette
with a NULL palette interface pointer, the reference count of the surface's palette
will be decremented.

If IDirectDrawSurface2::SetPalette is called several times consecutively on the
same surface with the same palette, the reference count for the palette is incremented
only once. Subsequent calls do not affect the palette's reference count.

Palette Types
DirectDraw supports 1-bit (2 entry), 2-bit (4 entry), 4-bit (16 entry), and 8-bit
(256 entry) palettes. A palette can be attached only to a surface with a matching
pixel format. For example, a 2-entry palette created with the DDPCAPS_1BIT
flag can be attached only to a 1-bit surface created with the
DDPF_PALETTEINDEXED1 flag.

Note

It is also possible to create indexed palettes. An indexed palette is one whose
entries do not hold RGB colors, but rather integer indices into the array of
PALETTEENTRY structures of some target palette. An indexed palette's color
table is an array of 2, 4, 16, or 256 bytes, where each byte is an index into some
unspecified destination palette.

To create an indexed palette, specify the DDPCAPS_8BITENTRIES flag when
calling the IDirectDraw2::CreatePalette method. For example, to create a 4-bit
indexed palette, specify DDPCAPS_4BIT |DDPCAPS_8BITENTRIES. When
you create an indexed palette, pass a pointer to an array of bytes rather than a
pointer to an array of PALETTEENTRY structures. You must cast the pointer to
the array of bytes to an LPPALETTEENTRY type when you use the
IDirectDraw2::CreatePalette method.

Using DirectDraw Palettes in Windowed Mode
The IDirectDrawPalette interface methods write directly to the hardware when
the display is in exclusive (full-screen) mode. However, when the display is in
nonexclusive (windowed) mode, the IDirectDrawPalette interface methods call
the GDI's palette handling functions to work cooperatively with other windowed
applications. This affects how you use palettes in a windowed DirectDraw
application in the following ways:

· You must set the peFlags member of the PALETTEENTRY structure (passed to
the IDirectDraw2::CreatePalette and IDirectDrawPalette::SetEntries
methods) carefully.

· You should not attempt to alter the Windows static palette entries (indices 0
through 9 and 246 through 255).

The discussion in the following topics assumes that you have created a primary
surface and a typical Windows window and that the Windows desktop is in an 8-
bit palettized mode.

· Types of Palette Entries in Windowed Mode
· Calling IDirectDraw::CreatePalette in Windowed Mode
· Calling IDirectDrawPalette::SetEntries in Windowed Mode

Types of Palette Entries in Windowed Mode
In nonexclusive (windowed) mode, each type of palette entry must have a
different set of peFlags members in the corresponding PALETTEENTRY
structure in the array that you pass to the IDirectDraw2::CreatePalette or
IDirectDrawPalette::SetEntries methods. In exclusive (full-screen) mode, you
do not need to worry about the peFlags member; it is ignored. In nonexclusive
(windowed) mode, the entries in your palette are one of the following three types:

Chapter 2 DirectDraw 31

· Windows static entries. Typically, Windows reserves entries 0 through 9 and 246
through 255 for itself and will not allow any application to change the color
values for those entries. Although an application could build a 256-entry palette
that includes these colors by calling the GetSystemPaletteEntries Win32
function, it is more effective for an application to refer to these entries directly.
The application can do this by specifying which physical palette index a given
entry in the palette table should map to, store the PC_EXPLICIT flag in the
peFlags member of the PALETTEENTRY structure, and then set the peRed
member equal to the index in the physical palette to which the entry should map.
An application could also call the SetSystemPaletteUse Win32 function to force
Windows to reserve only entries 0 and 255. In this case, you should set only
entries 0 and 255 of your PALETTEENTRY structure to PC_EXPLICIT.

· Animated entries. These are entries your application can change to create palette
animation effects. If the application specifies the PC_RESERVED flag for an
animated entry, Windows will not allow any other application to map its logical
palette entry to that physical entry. This prevents other applications from cycling
their colors when your application sets a different color in that entry.

· Non-animated entries. These are entries your application will not change. Non-
animated entries are simply filled with the PC_NOCOLLAPSE flag, which tells
Windows not to substitute some other already-allocated physical palette entry.

In short, you should define the three types of entries in the PALETTEENTRY
structure as follows:

Entry type peFlags values peRed, peGreen, and
peBlue values

Windows static (indices 0-9
and 246-255 or 0 and 255)

PC_EXPLICIT peRed = index, peGreen =
0, and peBlue = 0

Animated entries PC_RESERVED |
PC_NOCOLLAPSE

Color values

Non-animated entries PC_NOCOLLAPSE Color values

Calling IDirectDraw2::CreatePalette in Windowed Mode
The following example illustrates how to create a DirectDraw palette in
nonexclusive (windowed) mode. It is vital that you set up every one of the 256
entries in the PALETTEENTRY structure that you submit to the
IDirectDraw2::CreatePalette method.

LPDIRECTDRAW lpDD; // Assumed to be initialized previously
PALETTEENTRY pPaletteEntry[256];
int index;
HRESULT ddrval;
LPDIRECTDRAWPALETTE lpDDPal;

// First set up the Windows static entries.
for (index = 0; index < 10 ; index++)

{
 // The first 10 static entries:
 pPaletteEntry[index].peFlags = PC_EXPLICIT;
 pPaletteEntry[index].peRed = index;
 pPaletteEntry[index].peGreen = 0;
 pPaletteEntry[index].peBlue = 0;

 // The last 10 static entries:
 pPaletteEntry[index+246].peFlags = PC_EXPLICIT;
 pPaletteEntry[index+246].peRed = index+246;
 pPaletteEntry[index+246].peGreen = 0;
 pPaletteEntry[index+246].peBlue = 0;
}

// Now set up private entries. In this example, the first 16
// available entries are animated.
for (index = 10; index < 26; index ++)
{
 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE|PC_RESERVED;
 pPaletteEntry[index].peRed = 255;
 pPaletteEntry[index].peGreen = 64;
 pPaletteEntry[index].peBlue = 32;
}

// Now set up the rest, the non-animated entries.
for (; index < 246; index ++) // Index is set up by previous for loop
{
 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE;
 pPaletteEntry[index].peRed = 25;
 pPaletteEntry[index].peGreen = 6;
 pPaletteEntry[index].peBlue = 63;
}

// All 256 entries are filled. Create the palette.
ddrval = lpDD->CreatePalette(DDPCAPS_8BIT, pPaletteEntry,
 &lpDDPal,NULL);

Calling IDirectDrawPalette::SetEntries in Windowed Mode
The rules that apply to the PALETTEENTRY structure used with the
IDirectDraw2::CreatePalette method also apply to the
IDirectDrawPalette::SetEntries method. Typically, you will maintain your own
array of PALETTEENTRY structures, so you will not need to rebuild it. When
necessary, you can modify the array, and then call
IDirectDrawPalette::SetEntries when it is time to update the palette.

In most circumstances, do not attempt to set any of the Windows static entries
when in nonexclusive (windowed) mode or you will get unpredictable results.
The only exception is when you reset the all 256 entries. For palette animation,
you typically change only a small subset of entries in your PALETTEENTRY

Chapter 2 DirectDraw 33

array. You submit only those entries to IDirectDrawPalette::SetEntries. If you
are resetting such a small subset, you must reset only those entries marked with
the PC_NOCOLLAPSE and PC_RESERVED flags. Attempting to animate other
entries can have unpredictable results.

The following example illustrates palette animation in nonexclusive mode:

LPDIRECTDRAW lpDD; // Assumed to be initialized previously
PALETTEENTRY pPaletteEntry[256]; // Assumed to be initialized previously
LPDIRECTDRAWPALETTE lpDDPal; // Assumed to be initialized previously
int index;
HRESULT ddrval;
PALETTEENTRY temp;

// Animate some entries. Cycle the first 16 available entries.
// They were already animated.
temp = pPaletteEntry[10];
for (index = 10; index < 25; index ++)
{
 pPaletteEntry[index] = pPaletteEntry[index+1];
}
pPaletteEntry[25] = temp;

// Set the values. Do not pass a pointer to the entire palette entry
// structure, but only to the changed entries.
ddrval = lpDDPal->SetEntries(
 0, // Flags must be zero
 10, // First entry
 16, // Number of entries
 & (pPaletteEntry[10])); // Where to get the data

IDirectDrawSurface2 Interface
The following topics contain additional information related to the
IDirectDrawSurface2 interface:

· DirectDrawSurface Objects
· What's New in IDirectDrawSurface2?
· Creating Surfaces
· Frame-Buffer Access
· Flipping Surfaces and GDI's Frame Rate
· Losing Surfaces
· Color and Format Conversion
· Color Keying
· Overlay Z-Order

· Multiple Palettes for Off-Screen Surfaces
· Blitting to and from System Memory Surfaces

DirectDrawSurface Objects
The DirectDrawSurface object represents a 2D piece of memory that contains
data. This data is in a form understood by the display hardware represented by the
DirectDraw object that created the DirectDrawSurface object. A
DirectDrawSurface object is created by using the
IDirectDraw2::CreateSurface method. The DirectDrawSurface object usually
resides in the display memory of the display card, although this is not required.
Unless specifically instructed otherwise during the creation of the
DirectDrawSurface object, the DirectDraw object will put the DirectDrawSurface
object wherever the best performance can be achieved given the requested
capabilities.

DirectDrawSurface objects can take advantage of specialized processors on
display cards, not only to perform certain tasks faster, but to perform some tasks
in parallel with the system CPU.

DirectDrawSurface objects recognize, and are integrated with, the rest of the
components of the Windows display system. DirectDrawSurface objects can
create handles to Windows GDI device contexts (HDCs) that allow GDI
functions to write to the surface memory represented by the DirectDrawSurface
object. GDI perceives these HDCs as memory device contexts, but the hardware
accelerators are usually enabled for them if they are in display memory.

What's New in IDirectDrawSurface2?
The COM model that DirectX uses specifies that new functionality can be added
by providing new interfaces. The IDirectDrawSurface2 interface supersedes the
IDirectDrawSurface interface. This new interface can be obtained by using the
IDirectDraw::QueryInterface method, as shown in the following example:

LPDIRECTDRAWSURFACE lpSurf;
LPDIRECTDRAWSURFACE2 lpSurf2;

// Create surfaces.
memset(&ddsd, 0, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |
 DDSCAPS_SYSTEMMEMORY;
ddsd.dwWidth = 10;
ddsd.dwHeight = 10;

ddrval = lpDD2->CreateSurface(&ddsd, &lpSurf,
 NULL);

Chapter 2 DirectDraw 35

if(ddrval != DD_OK)
 return;

ddrval = lpSurf->QueryInterface(
 IID_IDirectDrawSurface2, (LPVOID *)&lpSurf2);
if(ddrval != DD_OK)
 return;

ddrval = lpSurf2->PageLock(0);
if(ddrval != DD_OK)
 return;

ddrval = lpSurf2->PageUnlock(0);
if(ddrval != DD_OK)
 return;

The IDirectDrawSurface2 interface contains all of the methods provided in the
IDirectDrawSurface interface, as well as three new methods:
IDirectDrawSurface2::GetDDInterface, IDirectDrawSurface2::PageLock,
and IDirectDrawSurface2::PageUnlock.

Creating Surfaces
The DirectDrawSurface object represents a surface (pixel memory) that usually
resides in the display memory, but the surface can exist in system memory if
display memory is exhausted or if it is explicitly requested. If the hardware
cannot support the capabilities requested or if it previously allocated those
resources to another DirectDrawSurface object, a call to
IDirectDraw2::CreateSurface will fail.

The IDirectDraw2::CreateSurface method usually creates one
DirectDrawSurface object. If the DDSCAPS_FLIP flag in the dwCaps member
of the DDSCAPS structure is set, the IDirectDraw2::CreateSurface method
creates several DirectDrawSurface objects, referred to collectively as a complex
surface. The additional surfaces created are also referred to as implicit surfaces.
Implicit surfaces cannot be detached. For more information, see
IDirectDrawSurface2::DeleteAttachedSurface.

DirectDraw does not permit the creation of display memory surfaces wider than
the primary surface.

The following are examples of valid surface creation scenarios:

Scenario 1
The primary surface is the surface currently visible to the user. When you create
a primary surface, you are actually creating a DirectDrawSurface object to access
an already existing surface being used by GDI. Consequently, while all other
types of surfaces require values for the dwHeight and dwWidth member of the

DDSURFACEDESC structure, a primary surface must not have them specified,
even if you know they are the same dimensions as the existing surface.

The members of the DDSURFACEDESC structure (ddsd below) relevant to the
creation of the primary surface are then filled.

DDSURFACEDESC ddsd;
ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.
ddsd.dwFlags = DDSD_CAPS;

// Request a primary surface.
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

Scenario 2
Create a simple off-screen surface of the type that might be used to cache bitmaps
that will later be composed with the blitter. A height and width are required for
all surfaces except primary surfaces. The members of the DDSURFACEDESC
structure (ddsd below) relevant to the creation of a simple off-screen surface are
then filled.

DDSURFACEDESC ddsd;
ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

// Request a simple off-screen surface, sized
// 100 by 100 pixels.
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
dwHeight = 100;
dwWidth = 100;

DirectDraw creates this surface in display memory unless it will not fit, in which
case the surface is created in system memory. If the surface must be created in
one or the other, use the DDSCAPS_SYSTEMMEMORY or
DDSCAPS_VIDEOMEMORY flags in dwCaps member of the DDSCAPS
structure to specify system memory or display memory, respectively. An error is
returned if the surface cannot be created in the specified location.

DirectDraw also allows for the creation of complex surfaces. A complex surface
is a set of surfaces created with a single call to the
IDirectDraw2::CreateSurface method. If the DDSCAPS_COMPLEX flag is set
in the IDirectDraw2::CreateSurface call, one or more implicit surfaces will be
created by DirectDraw in addition to the surface explicitly specified. Complex
surfaces are managed as a single surface—a single call to the

Chapter 2 DirectDraw 37

IDirectDraw::Release method releases all surfaces in the structure, and a single
call to the IDirectDrawSurface2::Restore method restores them.

Scenario 3
One of the most useful complex surfaces you can specify is composed of a
primary surface and one or more back buffers that form a surface flipping
environment. The members of the DDSURFACEDESC structure (ddsd below)
relevant to complex surface creation are filled in to describe a flipping surface
that has one back buffer.

DDSURFACEDESC ddsd;
ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// Request a primary surface with a single
// back buffer
ddsd.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP |
DDSCAPS_PRIMARYSURFACE;
ddsd.dwBackBufferCount = 1;

The previous statements construct a double-buffered flipping environment—a
single call to the IDirectDrawSurface2::Flip method exchanges the surface
memory of the primary surface and the back buffer. If you specify 2 for the value
of the BackBufferCount member of the DDSURFACEDESC structure, two
back buffers are created, and each call to IDirectDrawSurface2::Flip rotates the
surfaces in a circular pattern, providing a triple-buffered flipping environment.

Frame-Buffer Access
DirectDrawSurface objects represent surface memory in the DirectDraw
architecture. A DirectDrawSurface object allows an application to gain direct
access to this surface memory by using the IDirectDrawSurface2::Lock
method. An application calls this method, providing a RECT structure that
specifies the rectangle on the surface it requires access to. If the application calls
IDirectDrawSurface2::Lock with a NULL RECT structure, it is assumed that
the application is requesting exclusive access to the entire piece of surface
memory. This method fills in a DDSURFACEDESC structure with the
information needed for the application to gain access to the surface memory. This
information includes the pitch (or stride) and the pixel format of the surface, if
different from the pixel format of the primary surface. When an application is
finished with the surface memory, the surface memory can be made available
again by using the IDirectDrawSurface2::Unlock method.

The following list describes some tips for avoiding the most common problems
with rendering directly into a DirectDrawSurface object:

· Never assume a constant display pitch. Always examine the pitch information
returned by the IDirectDrawSurface2::Lock method. This pitch can vary for a
number of reasons, including the location of the surface memory, the type of
display card, or even the version of the DirectDraw driver.

· Limit activity between the calls to the IDirectDrawSurface2::Lock and
IDirectDrawSurface2::Unlock methods. The IDirectDrawSurface2::Lock
method holds the WIN16 lock so that gaining access to surface memory can
occur safely, and the IDirectDrawSurface2::GetDC method implicitly calls
IDirectDrawSurface2::Lock. The WIN16 lock serializes access to GDI and
USER, shutting down Windows for the duration between the
IDirectDrawSurface2::Lock and IDirectDrawSurface2::Unlock operations, as
well as between the IDirectDrawSurface2::GetDC and
IDirectDrawSurface2::ReleaseDC operations.

· Copy aligned to display memory. Windows 95 uses a page fault handler,
Vflatd.386, to implement a virtual flat-frame buffer for display cards with bank-
switched memory. The handler allows these display devices to present a linear
frame buffer to DirectDraw. Copying unaligned to display memory can cause the
system to suspend operations if the copy spans memory banks.

Flipping Surfaces and GDI's Frame Rate
Any surface in DirectDraw can be constructed as a flipping surface. A flipping
surface is simply any piece of memory that can be swapped between a front
buffer and a back buffer. Constructing a DirectDraw surface as a flipping surface
has many advantages over the traditional, limited scope of page flipping.

When an application uses the IDirectDrawSurface2::Flip method to request a
flip operation, the surface memory areas associated with the DirectDrawSurface
objects being flipped are switched. Surfaces attached to the DirectDrawSurface
objects being flipped are not affected. For example, in a double-buffered
situation, an application that draws on the back buffer always uses the same
DirectDrawSurface object. The surface memory underneath the object is simply
switched with the front buffer when IDirectDrawSurface2::Flip is requested.

If the front buffer is visible, either because it is the primary surface or because it
is an overlay that is currently visible, subsequent calls to the
IDirectDrawSurface2::Lock or IDirectDrawSurface2::Blt methods that target
the back buffer fail with the DDERR_WASSTILLDRAWING return value until
the next vertical refresh occurs. This occurs because the front buffer's previous
surface memory, which is no longer attached to the back buffer, is still being
drawn to the physical display by the hardware. This situation disappears during
the next vertical refresh because the hardware that updates the physical display
re-reads the location of the display memory on every refresh.

This physical requirement makes calling the IDirectDrawSurface2::Flip method
on visible surfaces an asynchronous command. When building games, you
should, for example, perform all of the non-visual elements of the game after this

Chapter 2 DirectDraw 39

method is called. When the input, audio, game-play, and system-memory drawing
operations have been completed, you can begin the drawing tasks that require
gaining access to the visible back buffers.

When your application needs to run in a window and still requires a flipping
environment, it will attempt to create a flipping overlay surface. If the hardware
does not support overlays, you can create a primary surface that page flips. When
a surface is about to become the primary surface and GDI does not have
information about that surface, you can blit the contents of the primary surface
that GDI is writing to onto the buffer that is about to become visible. This takes
little, if any, processing time because the blits are performed asynchronously. It
can, however, consume considerable blitter bandwidth that is dependent on
screen resolution and the size of the window that is being page flipped. As long
as the frame rate does not dip below 20 frames per second, GDI will appear to be
operating correctly.

Before you instantiate a DirectDraw object, GDI is already using your display
memory to display itself. When you call DirectDraw to instantiate a primary
surface, the memory address of that surface will be the same as GDI is currently
using.

If you create a complex surface with a back buffer, GDI will first point to the
display memory for the primary surface. Because GDI was created before
DirectDraw, GDI cannot be informed of DirectDraw's actions. Therefore, GDI
will continue operating on this surface, even if you have flipped it and it is now
the non-visible back buffer.

Many applications begin by creating one large window that covers the entire
screen. As long as your application is active and has the focus, GDI will not
attempt to write into its copy of the buffer because nothing it controls needs
redrawing.

For other scenarios, remember that GDI has information about the original
surface only, and it has no information about whether it is currently the primary
surface or a back buffer. If you do not need the GDI screen, you can use the
technique described above. If you do need GDI, you can try the following
technique:

1 Create a primary surface with two back buffers.
2 Blit the initial primary surface (the GDI surface) to the middle back buffer.
3 Flip the surfaces (with the lpDDSurfaceTargetOverride parameter set to NULL)

to put GDI into last place and make your initial copy visible.

After you have done this, you can copy from the GDI buffer to the middle buffer,
draw what you want the user to see on that buffer, you can then keep GDI safely
on the bottom and oscillate between the other two buffers, by using the following
example:

pPrimary->Flip(pMiddle);

Losing Surfaces
The surface memory associated with a DirectDrawSurface object may be freed,
while the DirectDrawSurface objects representing these pieces of surface
memory are not necessarily released. When a DirectDrawSurface object loses its
surface memory, many of the methods return DDERR_SURFACELOST and
perform no other action.

Surfaces can be lost because the display card mode was changed or because an
application received exclusive access to the display card and freed all of the
surface memory currently allocated on the card. The
IDirectDrawSurface2::Restore method re-creates these lost surfaces and
reconnects them to their DirectDrawSurface objects.

For more information, see Changing Modes and Exclusive Access.

Color and Format Conversion
Non-RGB surface formats are described by four-character codes (FOURCC
codes). If an application calls the IDirectDrawSurface2::GetPixelFormat
method to request the pixel format, and the surface is a non-RGB surface, the
DDPF_FOURCC flag will be set and the dwFourCC member of the
DDPIXELFORMAT structure will be valid. If the FOURCC code represents a
YUV format, the DDPF_YUV flag will also be set and the dwYUVBitCount,
dwYBits, dwUBits, dwVBits, and dwYUVAlphaBits members will be valid
masks that can be used to extract information from the pixels.

If an RGB format is present, the DDPF_RGB flag will be set and the
dwRGBBitCount, dwRBits, dwGBits, dwBBits, and dwRGBAlphaBits
members will be valid masks that can be used to extract information from the
pixels. The DDPF_RGB flag can be set in conjunction with the DDPF_FOURCC
flag if a non-standard RGB format is being described.

During color and format conversion, two sets of FOURCC codes are exposed to
the application. One set of FOURCC codes represents what the blitting hardware
is capable of; the other represents what the overlay hardware is capable of.

Color Keying
Source and destination color keying for blits and overlays are supported by
DirectDraw. You can supply a color key or a color range for both of these types
of color keying.

Source color keying specifies a color or color range that, in the case of blitting, is
not copied, or, in the case of overlays, is not visible on the destination.
Destination color keying specifies a color or color range that, in the case of

Chapter 2 DirectDraw 41

blitting, is replaced or, in the case of overlays, is covered up on the destination.
The source color key specifies what can and cannot be read from the surface. The
destination color key specifies what can and cannot be written onto, or covered
up, on the destination surface. If a destination surface has a color key, only the
pixels that match the color key are be changed, or covered up, on the destination
surface.

Some hardware supports color ranges only for YUV pixel data. YUV data is
usually video, and the transparent background may not be a single color due to
quantitization errors during conversion. Content should be written to a single
transparent color whenever possible, regardless of pixel format.

Color keys are specified in the pixel format of a surface. If a surface is in a
palettized format, the color key is specified as an index or a range of indices. If
the surface's pixel format is specified by a FOURCC code that describes a YUV
format, the YUV color key is specified by the three low-order bytes in both the
dwColorSpaceLowValue and dwColorSpaceHighValue members of the
DDCOLORKEY structure. The lowest order byte contains the V data, the
second lowest order byte contains the U data, and the highest order byte contains
the Y data. The dwFlags parameter of the IDirectDrawSurface2::SetColorKey
method specifies whether the color key is to be used for overlay or blit
operations, and whether it is a source or a destination key. Some examples of
valid color keys follow:

8-bit palettized mode

// Palette entry 26 is the color key.
dwColorSpaceLowValue = 26;
dwColorSpaceHighValue = 26;

24-bit true-color mode

// Color 255,128,128 is the color key.
dwColorSpaceLowValue = RGBQUAD(255,128,128);
dwColorSpaceHighValue = RGBQUAD(255,128,128);

FourCC YUV mode

// Any YUV color where Y is between 100 and 110
// and U or V is between 50 and 55 is transparent.
dwColorSpaceLowValue = YUVQUAD(100,50,50);
dwColorSpaceHighValue = YUVQUAD(110,55,55);

Overlay Z-Order
Overlay z-order determines the order in which overlays clip each other, enabling
a hardware sprite system to be implemented under DirectDraw. Overlays are
assumed to be on top of all other screen components. Destination color keys are
affected only by the bits on the primary surface, not by overlays occluded by

other overlays. Source color keys work on an overlay whether or not a z-order
was specified for it. Overlays that do not have a specified z-order behave in
unpredictable ways when overlaying the same area on the primary surface.
Finally, overlays without a specified z-order are assumed to have a z-order of 0.
The possible z-order of overlays ranges from 0, which is just on top of the
primary surface, to 4 billion, which is as close to the viewer as possible. An
overlay with a z-order of 2 would obscure an overlay with a z-order of 1. No two
overlays can have the same z-order.

Multiple Palettes for Off-Screen Surfaces
DirectDraw allows you to create multiple palettes that can be attached to off-
screen surfaces. When this is done, the off-screen surfaces no longer share the
palette of the primary surface. If you create an off-screen surface with a pixel
format that is different from the primary surface's, it is assumed that the hardware
can use it. For example, if a palettized off-screen surface is created when the
primary surface is in 16-bit color mode, it is assumed that the blitter can convert
palettized surfaces to true color during the blit operation.

DirectDraw allows you to create standard 8-bit palettized surfaces, which can
display 256 colors, and two kinds of 4-bit palettized surfaces, each of which can
display 16 colors. The first type of 4-bit palettized surface is indexed into a true-
color color table; the second type is indexed into the indexed color table for the
primary surface. This second type of palette provides 50 percent compression and
a layer of indirection to the sprites stored using it.

If these surfaces are to be created, the blitter must be able replace the palette
during the blit operation. Therefore, when a blit operation occurs from one
palettized surface to another, the palette is ignored. Palette decoding is done only
to true-color surfaces, or when the 4-bit palette is an index to an index in the 8-bit
palette. In all other cases, the indexed palette is the palette of the destination.

Raster operations for palettized surfaces are ignored. Changing the attached
palette of a surface is a very quick operation. All three of these palettized
surfaces should be supported as textures on 3D-accelerated hardware.

For information about the pixel formats for off-screen plain surfaces, see Off-
Screen Surface Formats.

Blitting to and from System Memory Surfaces
Some display cards have DMA hardware that allows them to efficiently blit to
and from system-memory surfaces. Drivers report this capability through the
DDCAPS structure. This structure contains the following 12 new members:

dwSVBCaps dwVSBCaps dwSSBCaps
dwSVBCKeyCaps dwVSBCKeyCaps dwSSBCKeyCaps
dwSVBFXCaps dwVSBFXCaps dwSSBFXCaps

Chapter 2 DirectDraw 43

dwSVBRops dwVSBRops dwSSBRops

The SVB acronym indicates capability values that relate system-memory to
display-memory blits, VSB for capability values that relate display-memory to
system-memory blits, and SSB for capability values that relate to system-memory
to system-memory blits.

The dwSVBCaps member corresponds to the dwCaps member except that it
describes the blitting capabilities of the display driver for system-memory to
display-memory blits. Similarly, the dwSVBCKeyCaps member corresponds to
the dwCKeyCaps member, and the dwSVBFXCaps member corresponds to the
dwFXCaps member. The dwSVBRops member array describes the raster
operations the driver supports for this type of blit.

These members are valid only if the DDCAPS_CANBLTSYSMEM flag is set in
dwCaps, indicating that the driver is able to blit to or from system memory.

If the system memory surface being used by the hardware blitter is not locked,
DirectDraw automatically calls the IDirectDrawSurface2::PageLock method
on the surface to ensure that the memory has been locked.

DirectDraw Tutorials
This section contains a series of tutorials, each of which provides step-by-step
instructions for implementing a simple DirectDraw application. These tutorials
use many of the DirectDraw sample files that are provided with this SDK. The
sample files begin with a DDEX prefix. These samples demonstrate how to set up
DirectDraw, and how to use the DirectDraw methods to perform simple tasks.

· Tutorial 1: The Basics of DirectDraw (DDEX1)
· Tutorial 2: Loading Bitmaps on the Back Buffer (DDEX2)
· Tutorial 3: Blitting from an Off-Screen Surface (DDEX3)
· Tutorial 4: Color Keys and Bitmap Animation (DDEX4)
· Tutorial 5: Dynamically Modifying Palettes (DDEX5)

The samples in these tutorials use the older IDirectDraw and
IDirectDrawSurface interfaces. If you want to update these examples so they
use the DirectX 3 interfaces—IDirectDraw2 and IDirectDrawSurface2—add a
QueryInterface for both interfaces, as described in What's New in
IDirectDraw2? and What's New in IDirectDrawSurface2?. In addition, you must
change the appropriate parameters of any methods that have been updated for
IDirectDraw2 or IDirectDrawSurface2.

The DDEX samples files in these tutorials are written in C++. If you are using a C
compiler, you must make the appropriate changes to the files for them to
successfully compile. At the very least, you need to add the vtable and this pointers
to the interface methods. For more information, see Accessing COM Objects by
Using C.

Tutorial 1: The Basics of DirectDraw
To use DirectDraw, you first create an instance of the DirectDraw object, which
represents the display adapter on the computer. You then use the interface
methods to manipulate the object. In addition, you need to create one or more
instances of a DirectDrawSurface object to be able to display your game on a
graphics surface.

To demonstrate this, the DDEX1 sample included with this SDK performs the
following steps:

· Step 1: Creating a DirectDraw Object
· Step 2: Determining the Application's Behavior
· Step 3: Changing the Display Mode
· Step 4: Creating Flipping Surfaces
· Step 5: Rendering to the Surfaces
· Step 6: Writing to the Surface
· Step 7: Flipping the Surfaces
· Step 8: Deallocating the DirectDraw Objects

Step 1: Creating a DirectDraw Object
To create an instance of a DirectDraw object, your application should use the
DirectDrawCreate function as shown in the doInit function of the DDEX1
program. DirectDrawCreate contains three parameters. The first parameter
takes a globally unique identifier (GUID) that represents the display device. The
GUID, in most cases, is set to NULL, which means DirectDraw uses the default
display driver for the system. The second parameter contains the address of a
pointer that identifies the location of the DirectDraw object if it is created. The
third parameter is always set to NULL and is included for future expansion.

The following example shows how to create the DirectDraw object and how to
determine if the creation was successful or not:

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);
if(ddrval == DD_OK)
{
 // lpDD is a valid DirectDraw object.

Note

Chapter 2 DirectDraw 45

}
else
{
 // The DirectDraw object could not be created.
}

Step 2: Determining the Application's Behavior
Before you can change the resolution of your display, you must at a minimum
specify the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags in the
dwFlags parameter of the IDirectDraw::SetCooperativeLevel method. This
gives your application complete control over the display device, and no other
application will be able to share it. In addition, the DDSCL_FULLSCREEN flag
sets the application in exclusive (full-screen) mode. Your application covers the
entire desktop, and only your application can write to the screen. The desktop is
still available, however. (For an example of how to see the desktop in an
application running in exclusive mode, start DDEX1 and press ALT + TAB.)

The following example demonstrates the use of
IDirectDraw::SetCooperativeLevel:

HRESULT ddrval;
LPDIRECTDRAW lpDD; // Already created by DirectDrawCreate

ddrval = lpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE |
 DDSCL_FULLSCREEN);
if(ddrval == DD_OK)
{
 // Exclusive mode was successful.
}
else
{
 // Exclusive mode was not successful.
 // The application can still run, however.
}

If IDirectDraw::SetCooperativeLevel does not return DD_OK, you can still
run your application. The application will not be in exclusive mode, however, and
it might not be capable of the performance your application requires. In this case,
you might want to display a message that allows the user to decide whether or not
to continue.

One requirement for using IDirectDraw::SetCooperativeLevel is that you must
pass a handle to a window (HWND) to allow Windows to determine if your
application terminates abnormally. For example, if a general protection (GP) fault
occurs and GDI is flipped to the back buffer, the user will not be able to get the
Windows screen back. To prevent this from occurring, DirectDraw provides a
process running in the background that traps messages that are sent to that
window. DirectDraw uses these messages to determine when the application

terminates. This feature imposes some restrictions, however. First, you have to
specify the window handle that is retrieving messages for your application—that
is, if you create another window, you must ensure that you specify the window
that is active. Otherwise, you might experience problems, including unpredictable
behavior from GDI, or no response when you press ALT+TAB.

Step 3: Changing the Display Mode
After you have set the application's behavior, you can use the
IDirectDraw::SetDisplayMode method to change the resolution of the display.
The following example shows how to set the display mode to 6404808 bpp:

HRESULT ddrval;
LPDIRECTDRAW lpDD; // Already created

ddrval = lpDD->SetDisplayMode(640, 480, 8);
if(ddrval == DD_OK)
{
 // The display mode changed successfully.
}
else
{
 // The display mode cannot be changed.
 // The mode is either not supported or
 // another application has exclusive mode.
}

When you set the display mode, you should ensure that if the user's hardware
cannot support higher resolutions, your application reverts to a standard mode
that is supported by a majority of display adapters. For example, your application
could be designed to run on all systems that support 6404808 as a standard
backup resolution. (IDirectDraw::SetDisplayMode returns a
DDERR_INVALIDMODE error value if the display adapter could not be set to
the desired resolution. Therefore, you should use the
IDirectDraw::EnumDisplayModes method to determine the capabilities of the
user's display adapter before trying to set the display mode.)

Step 4: Creating Flipping Surfaces
After you have set the display mode, you must create the surfaces on which to
place your application. Because the DDEX1 example is using the
IDirectDraw::SetCooperativeLevel method to set the mode to exclusive (full-
screen) mode, you can create surfaces that flip between the surfaces. If you were
using IDirectDraw::SetCooperativeLevel to set the mode to
DDSCL_NORMAL, you could create only surfaces that blit between the
surfaces. Creating flipping surfaces requires the following steps:

· Defining the surface requirements

Chapter 2 DirectDraw 47

· Creating the surfaces

Defining the Surface Requirements
The first step in creating flipping surfaces is to define the surface requirements in
a DDSURFACEDESC structure. The following example shows the structure
definitions and flags needed to create a flipping surface.

// Create the primary surface with one back buffer.
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
 DDSCAPS_FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 1;

In this example, the dwSize member is set to the size of the DDSURFACEDESC
structure. This is to prevent any DirectDraw method call you use from returning
with an invalid member error. (The dwSize member was provided for future
expansion of the DDSURFACEDESC structure.)

The dwFlags member determines which members in the DDSURFACEDESC
structure will be filled with valid information. For the DDEX1 example, dwFlags
is set to specify that you want to use the DDSCAPS structure (DDSD_CAPS)
and that you want to create a back buffer (DDSD_BACKBUFFERCOUNT).

The dwCaps member in the example indicates the flags that will be used in the
DDSCAPS structure. In this case, it specifies a primary surface
(DDSCAPS_PRIMARYSURFACE), a flipping surface (DDSCAPS_FLIP), and a
complex surface (DDSCAPS_COMPLEX).

Finally, the example specifies one back buffer. The back buffer is where the
backgrounds and sprites will actually be written. The back buffer is then flipped
to the primary surface. In the DDEX1 example, the number of back buffers is set
to 1. You can, however, create as many back buffers as the amount of display
memory allows. For more information on creating more than one back buffer, see
Triple Buffering.

Surface memory can be either display memory or system memory. DirectDraw
uses system memory if the application runs out of display memory (for example,
if you specify more than one back buffer on a display adapter with only 1 MB of
RAM). You can also specify whether to use only system memory or only display
memory by setting the dwCaps member in the DDSCAPS structure to
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY. (If you
specify DDSCAPS_VIDEOMEMORY, but not enough memory is available to
create the surface, IDirectDraw::CreateSurface returns with a
DDERR_OUTOFVIDEOMEMORY error.)

Creating the Surfaces
After the DDSURFACEDESC structure is filled, you can use it and lpDD, the
pointer to the DirectDraw object that was created by the DirectDrawCreate
function, to call the IDirectDraw::CreateSurface method, as shown in the
following example:

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
if(ddrval == DD_OK)
{
 // lpDDSPrimary points to the new surface.
}
else
{
 // The surface was not created.s
 return FALSE;
}

The lpDDSPrimary parameter will point to the primary surface returned by
IDirectDraw::CreateSurface if the call succeeds.

After the pointer to the primary surface is available, you can use the
IDirectDrawSurface::GetAttachedSurface method to retrieve a pointer to the
back buffer, as shown in the following example:

ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
ddrval = lpDDSPrimary->GetAttachedSurface(&ddcaps, &lpDDSBack);
if(ddrval == DD_OK)
{
 // lpDDSBack points to the back buffer.
}
else
{
 return FALSE;
}

By supplying the address of the surface's primary surface and by setting the
capabilities value with the DDSCAPS_BACKBUFFER flag, the lpDDSBack
parameter will point to the back buffer if the
IDirectDrawSurface::GetAttachedSurface call succeeds.

Step 5: Rendering to the Surfaces
After the primary surface and a back buffer have been created, the DDEX1
example renders some text on the primary surface and back buffer surface by
using standard Windows GDI functions, as shown in the following example:

if (lpDDSPrimary->GetDC(&hdc) == DD_OK)
{
 SetBkColor(hdc, RGB(0, 0, 255));

Chapter 2 DirectDraw 49

 SetTextColor(hdc, RGB(255, 255, 0));
 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));
 lpDDSPrimary->ReleaseDC(hdc);
}

if (lpDDSBack->GetDC(&hdc) == DD_OK)
{
 SetBkColor(hdc, RGB(0, 0, 255));
 SetTextColor(hdc, RGB(255, 255, 0));
 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));
 lpDDSBack->ReleaseDC(hdc);
}

The example uses the IDirectDrawSurface::GetDC method to retrieve the
handle to the device context, and it internally locks the surface. If you are not
going to use Windows functions that require a handle to a device context, you
could use the IDirectDrawSurface::Lock and IDirectDrawSurface::Unlock
methods to lock and unlock the back buffer.

Locking the surface memory (whether the whole surface or part of a surface)
ensures that your application and the system blitter cannot obtain access to the
surface memory at the same time. This prevents errors from occurring while your
application is writing to surface memory. In addition, your application cannot
page flip until the surface memory is unlocked.

After the surface is locked, the example uses the standard SetBkColor Windows
GDI function to set the background color, SetTextColor to select the color of the
text to be placed on the background, and TextOut to print the text and
background color on the surfaces.

After the text has been written to the buffer, the example uses the
IDirectDrawSurface::ReleaseDC method to unlock the surface and release the
handle. Whenever your application finishes writing to the back buffer, you must
call either IDirectDrawSurface::ReleaseDC or IDirectDrawSurface::Unlock,
depending on your application. Your application cannot flip the surface until the
surface is unlocked.

Typically, you write to a back buffer, which you then flip to the primary surface
to be displayed. In the case of DDEX1, there is a significant delay before the first
flip, so DDEX1 writes to the primary buffer in the initialization function to
prevent a delay before displaying the surface. As you will see in a subsequent
step of this tutorial, the DDEX1 example writes only to the back buffer during
WM_TIMER. An initialization function or title page may be the only place where
you might want to write to the primary surface.

After the surface is unlocked by using IDirectDrawSurface::Unlock, the pointer to
the surface memory is invalid. You must use IDirectDrawSurface::Lock again to
obtain a valid pointer to the surface memory.

Step 6: Writing to the Surface
The first half of the WM_TIMER message in DDEX1 is devoted to writing to the
back buffer, as shown in the following example:

case WM_TIMER:
 // Flip surfaces.
 if(bActive)
 {
 if (lpDDSBack->GetDC(&hdc) == DD_OK)
 {
 SetBkColor(hdc, RGB(0, 0, 255));
 SetTextColor(hdc, RGB(255, 255, 0));
 if(phase)
 {
 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));
 phase = 0;
 }
 else
 {
 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));
 phase = 1;
 }
 lpDDSBack->ReleaseDC(hdc);
 }

The line of code that calls the IDirectDrawSurface2::GetDC method locks the
back buffer in preparation for writing. The SetBkColor and SetTextColor
functions set the colors of the background and text.

Next, the "phase" variable determines whether the primary buffer message or the
back buffer message should be written. If "phase" equals 1, the primary surface
message is written, and "phase" is set to 0. If "phase" equals 0, the back buffer
message is written, and "phase" is set to 1. Note, however, that in both cases the
messages are written to the back buffer.

After the message is written to the back buffer, the back buffer is unlocked by
using the IDirectDrawSurface::ReleaseDC method.

Step 7: Flipping the Surfaces
After the surface memory is unlocked, you can use the
IDirectDrawSurface::Flip method to flip the back buffer to the primary surface,
as shown in the following example:

Note

Chapter 2 DirectDraw 51

while(1)
{
 HRESULT ddrval;
 ddrval = lpDDSPrimary->Flip(NULL, 0);
 if(ddrval == DD_OK)
 {
 break;
 }
 if(ddrval == DDERR_SURFACELOST)
 {
 ddrval = lpDDSPrimary->Restore();
 if(ddrval != DD_OK)
 {
 break;
 }
 }
 if(ddrval != DDERR_WASSTILLDRAWING)
 {
 break;
 }
}

In the example, lpDDSPrimary designates the primary surface and its associated
back buffer. When IDirectDrawSurface::Flip is called, the front and back
surfaces are exchanged (only the pointers to the surfaces are changed; no data is
actually moved). If the flip is successful and returns DD_OK, the application
breaks from the while loop.

If the flip returns with a DDERR_SURFACELOST value, an attempt is made to
restore the surface by using the IDirectDrawSurface::Restore method. If the
restore is successful, the application loops back to the
IDirectDrawSurface::Flip call and tries again. If the restore is unsuccessful, the
application breaks from the while loop, and returns with an error.

When you call IDirectDrawSurface::Flip, the flip does not complete immediately.
Rather, a flip is scheduled for the next time a vertical blank occurs on the system. If,
for example, the previous flip has not occurred, IDirectDrawSurface::Flip returns
DDERR_WASSTILLDRAWING. In the example, the IDirectDrawSurface::Flip
call continues to loop until it returns DD_OK.

Step 8: Deallocating the DirectDraw Objects
When you press the F12 key, the DDEX1 application processes the
WM_DESTROY message before exiting the application. This message calls the
finiObjects function, which contains all of the IUnknown::Release calls, as
shown below:

static void finiObjects(void)

Note

{
 if(lpDD != NULL)
 {
 if(lpDDSPrimary != NULL)
 {
 lpDDSPrimary->Release();
 lpDDSPrimary = NULL;
 }
 lpDD->Release();
 lpDD = NULL;
 }
} // finiObjects

The application checks if the pointers to the DirectDraw object (lpDD) and the
DirectDrawSurface object (lpDDSPrimary) are not equal to NULL. Then
DDEX1 calls the IDirectDrawSurface::Release method to decrease the
reference count of the DirectDrawSurface object by 1. Because this brings the
reference count to 0, the DirectDrawSurface object is deallocated. The
DirectDrawSurface pointer is then destroyed by setting its value to NULL. Next,
the application calls IDirectDraw::Release to decrease the reference count of
the DirectDraw object to 0, deallocating the DirectDraw object. This pointer is
then also destroyed by setting its value to NULL.

Tutorial 2: Loading Bitmaps on the Back
Buffer
The sample discussed in this tutorial (DDEX2) expands on the DDEX1 sample
that was discussed in Tutorial 1. DDEX2 includes functionality to load a bitmap
file on the back buffer. This new functionality is demonstrated in the following
steps:

· Step 1: Creating the Palette
· Step 2: Setting the Palette
· Step 3: Loading a Bitmap on the Back Buffer
· Step 4: Flipping the Surfaces

As in DDEX1, doInit is the initialization function for the DDEX2 application.
Although the code for the DirectDraw initialization does not look quite the same
in DDEX2 as it did in DDEX1, it is essentially the same, except for the following
section:

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)
 goto error;

Chapter 2 DirectDraw 53

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)
 goto error;

// Load a bitmap into the back buffer.
ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)
 goto error;

Step 1: Creating the Palette
The DDEX2 sample first loads the palette into a structure by using the following
code:

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)
 goto error;

DDLoadPalette is part of the common DirectDraw functions found in the
Ddutil.cpp file located in the \Dxsdk\Sdk\Samples\Misc directory. Most of the
DirectDraw sample files in this SDK use this file. Essentially, it contains the
functions for loading bitmaps and palettes from either files or resources. To avoid
having to repeat code in the example files, these functions were placed in a file
that could be reused. Make sure you include Ddutil.cpp in the list of files to be
compiled with the rest of the DDEX samples.

For DDEX2, the DDLoadPalette function creates a DirectDrawPalette object
from the Back.bmp file. The DDLoadPalette function determines if a file or
resource for creating a palette exists. If one does not, it creates a default palette.
For DDEX2, it extracts the palette information from the bitmap file and stores it
in a structure pointed to by ape.

DDEX2 then creates the DirectDrawPalette object, as shown in the following
example:

pdd->CreatePalette(DDPCAPS_8BIT, ape, &ddpal, NULL);
return ddpal;

When the IDirectDraw::CreatePalette method returns, the ddpal parameter
points to the DirectDrawPalette object, which is then returned from the
DDLoadPalette call.

The ape parameter is a pointer to a structure that can contain either 2, 4, 16, or
256 entries, organized linearly. The number of entries depends on the dwFlags
parameter in the IDirectDraw::CreatePalette method. In this case, the dwFlags
parameter is set to DDPCAPS_8BIT, which indicates that there are 256 entries in

this structure. Each entry contains 4 bytes (a red channel, a green channel, a blue
channel, and a flags byte).

Step 2: Setting the Palette
After you create the palette, you pass the pointer to the DirectDrawPalette object
(ddpal) to the primary surface by calling the IDirectDrawSurface::SetPalette
method, as shown in the following example:

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)
 // SetPalette failed.

After you have called IDirectDrawSurface::SetPalette, the DirectDrawPalette
object is associated with the DirectDrawSurface object. Any time you need to
change the palette, you simply create a new palette and set the palette again.
(Although this is how this is done in this example, there are other ways of
changing the palette, as will be shown in later examples.)

Step 3: Loading a Bitmap on the Back Buffer
After the DirectDrawPalette object is associated with the DirectDrawSurface
object, DDEX2 loads the Back.bmp bitmap on the back buffer by using the
following code:

// Load a bitmap into the back buffer.
ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)
 // Load failed.

DDReLoadBitmap is another function found in Ddutil.cpp. It loads a bitmap
from a file or resource into an already existing DirectDraw surface. (You could
also use DDLoadBitmap to create a surface and load the bitmap into that
surface. For more information, see Tutorial 5: Dynamically Modifying Palettes.)
For DDEX2, it loads the Back.bmp file pointed to by szBackground onto the back
buffer pointed to by lpDDSBack. The DDReLoadBitmap function calls the
DDCopyBitmap function to copy the file onto the back buffer and stretch it to
the proper size.

The DDCopyBitmap function copies the bitmap into memory, and it uses the
GetObject function to retrieve the size of the bitmap. It then uses the following
code to retrieve the size of the back buffer onto which it will place the bitmap:

// Get the size of the surface.
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;
pdds->GetSurfaceDesc(&ddsd);

Chapter 2 DirectDraw 55

The ddsd value is a pointer to the DDSURFACEDESC structure. This structure
stores the current description of the DirectDraw surface. In this case, the
DDSURFACEDESC members describe the height and width of the surface,
which are indicated by DDSD_HEIGHT and DDSD_WIDTH. The call to the
IDirectDrawSurface::GetSurfaceDesc method then loads the structure with the
proper values. For DDEX2, the values will be 480 for the height and 640 for the
width.

The DDCopyBitmap function locks the surface and copies the bitmap to the
back buffer, stretching or compressing it as applicable by using the StretchBlt
function, as shown below:

if ((hr = pdds->GetDC(&hdc)) == DD_OK)
{
 StretchBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight, hdcImage, x, y,
 dx, dy, SRCCOPY);
 pdds->ReleaseDC(hdc);
}

Step 4: Flipping the Surfaces
Flipping surfaces in the DDEX2 sample is essentially the same process as that in
the DDEX1 tutorial (see Tutorial 1: The Basics of DirectDraw) except that if the
surface is lost (DDERR_SURFACELOST), the bitmap must be reloaded on the
back buffer by using the DDReLoadBitmap function after the surface is
restored.

Tutorial 3: Blitting from an Off-Screen
Surface
The sample in Tutorial 2 (DDEX2) takes a bitmap and puts it in the back buffer,
and then it flips between the back buffer and the primary buffer. This is not a
very realistic approach to displaying bitmaps. The sample in this tutorial
(DDEX3) expands on the capabilities of DDEX2 by including two off-screen
buffers in which the two bitmaps—one for the even screen and one for the odd
screen—are stored. It uses the IDirectDrawSurface::BltFast method to copy the
contents of an off-screen surface to the back buffer, and then it flips the buffers
and copies the next off-screen surface to the back buffer.

The new functionality demonstrated in DDEX3 is shown in the following steps:

· Step 1: Creating the Off-Screen Surfaces
· Step 2: Loading the Bitmaps to the Off-Screen Surfaces
· Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

Step 1: Creating the Off-Screen Surfaces
The following code is added to the doInit function in DDEX3 to create the two
off-screen buffers:

// Create an offscreen bitmap.
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddsd.dwHeight = 480;
ddsd.dwWidth = 640;
ddrval = lpDD->CreateSurface(&ddsd, &lpDDSOne, NULL);
if(ddrval != DD_OK)
{
 return initFail(hwnd);
}

// Create another offscreen bitmap.
ddrval = lpDD->CreateSurface(&ddsd, &lpDDSTwo, NULL);
if(ddrval != DD_OK)
{
 return initFail(hwnd);
}

The dwFlags member specifies that the application will use the DDSCAPS
structure, and it will set the height and width of the buffer. The surface will be an
off-screen plain buffer, as indicated by the DDSCAPS_OFFSCREEN flag set in
the DDSCAPS structure. The height and the width are set as 480 and 640,
respectively, in the DDSURFACEDESC structure. The surface is then created
by using the IDirectDraw::CreateSurface method.

Because both of the off-screen plain buffers are the same size, the only
requirement for creating the second buffer is to call
IDirectDraw::CreateSurface again with a different pointer name.

You can also specifically request that the off-screen buffer be placed in system
memory or display memory by setting either the
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY capability in
the DDSCAPS structure. By saving the bitmaps in display memory, you can
increase the speed of the transfers between the off-screen surfaces and the back
buffer. This will become more important when using bitmap animation. However,
if you specify DDSCAPS_VIDEOMEMORY for the off-screen buffer and not
enough display memory is available to hold the entire bitmap, a
DDERR_OUTOFVIDEOMEMORY error value will be returned when you
attempt to create the surface.

Chapter 2 DirectDraw 57

Step 2: Loading the Bitmaps to the Off-Screen
Surfaces
After the two off-screen surfaces are created, DDEX3 uses the InitSurfaces
function to load the bitmaps from the Frntback.bmp file onto the surfaces. The
InitSurfaces function uses the DDCopyBitmap function located in Ddutil.cpp to
load both of the bitmaps, as shown in the following example:

// Load the bitmap resource.
hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), szBitmap,
 IMAGE_BITMAP, 0, 0, LR_CREATEDIBSECTION);

if (hbm == NULL)
 return FALSE;

DDCopyBitmap(lpDDSOne, hbm, 0, 0, 640, 480);
DDCopyBitmap(lpDDSTwo, hbm, 0, 480, 640, 480);
DeleteObject(hbm);

return TRUE;

If you look at the Frntback.bmp file in Microsoft Paint or another drawing
application, you can see that the bitmap consists of two screens, one on top of the
other. The DDCopyBitmap function breaks the bitmap in two at the point where
the screens meet. In addition, it loads the first bitmap into the first off-screen
surface (lpDDSOne) and the second bitmap into the second off-screen surface
(lpDDSTwo).

Step 3: Blitting the Off-Screen Surfaces to the
Back Buffer
The WM_TIMER message contains the code for writing to and flipping surfaces.
In the case of DDEX3, it contains the following code to select the proper off-
screen surface and to blit it to the back buffer:

rcRect.left = 0;
rcRect.top = 0;
rcRect.right = 640;
rcRect.bottom = 480;
if(phase)
{
 pdds = lpDDSTwo;
 phase = 0;
}
else
{
 pdds = lpDDSOne;
 phase = 1;
}

while(1)
{
 ddrval = lpDDSBack->BltFast(0, 0, pdds, &rcRect, FALSE);
 if(ddrval == DD_OK)
 {
 break;
 }

The phase variable determines which off-screen surface will be blitted to the
back buffer. The IDirectDrawSurface::BltFast method is then called to blit the
selected off-screen surface onto the back buffer, starting at position (0, 0), the
upper-left corner. The rcRect parameter points to the RECT structure that
defines the upper-left and lower-right corners of the off-screen surface that will
be blitted from. The last parameter is set to FALSE (or 0), indicating that no
specific transfer flags are used.

Depending on the requirements of your application, you could use either the
IDirectDrawSurface::Blt method or the IDirectDrawSurface::BltFast method
to blit from the off-screen buffer. If you are performing a blit from an off-screen
plain buffer that is in display memory, you should use
IDirectDrawSurface::BltFast. Although you will not gain speed on systems that
use hardware blitters on their display adapters, the blit will take about 10 percent
less time on systems that use hardware emulation to perform the blit. Because of
this, you should use IDirectDrawSurface::BltFast for all display operations that
blit from display memory to display memory. If you are blitting from system
memory or require special hardware flags, however, you have to use
IDirectDrawSurface::Blt.

After the off-screen surface is loaded in the back buffer, the back buffer and the
primary surface are flipped in much the same way as shown in the previous
tutorials.

Tutorial 4: Color Keys and Bitmap
Animation
The sample in Tutorial 3 (DDEX3) shows a primitive method of placing bitmaps
into an off-screen buffer before they are blitted to the back buffer. The sample in
this tutorial (DDEX4) uses the techniques described in the previous tutorials to
load a background and a series of sprites into an off-screen surface. Then it uses
the IDirectDrawSurface::BltFast method to copy portions of the off-screen
surface to the back buffer, thereby generating a simple bitmap animation.

The bitmap file that DDEX4 uses, All.bmp, contains the background and 60
iterations of a rotating red donut with a black background. The DDEX4 sample
contains new functions that set the color key for the rotating donut sprites. Then,
the sample copies the appropriate sprite to the back buffer from the off-screen
surface.

Chapter 2 DirectDraw 59

The new functionality demonstrated in DDEX4 is shown in the following steps:

· Step 1: Setting the Color Key
· Step 2: Creating a Simple Animation

Step 1: Setting the Color Key
In addition to the other functions found in the doInit function of some of the
other DirectDraw samples, the DDEX4 sample contains the code to set the color
key for the sprites. Color keys are used for setting a color value that will be used
for transparency. When the system contains a hardware blitter, all the pixels of a
rectangle are blitted except the value that was set as the color key, thereby
creating nonrectangular sprites on a surface. The code for setting the color key in
DDEX4 is shown below:

// Set the color key for this bitmap (black).
DDSetColorKey(lpDDSOne, RGB(0,0,0));

return TRUE;

You can select the color key by setting the RGB values for the color you want in
the call to the DDSetColorKey function. The RGB value for black is (0, 0, 0).
The DDSetColorKey function calls the DDColorMatch function. (Both
functions are in Ddutil.cpp.) The DDColorMatch function stores the current
color value of the pixel at location (0, 0) on the bitmap located in the lpDDSOne
surface. Then it takes the RGB values you supplied and sets the pixel at location
(0, 0) to that color. Finally, it masks the value of the color with the number of bits
per pixel that are available. After that is done, the original color is put back in
location (0, 0), and the call returns to DDSetColorKey with the actual color key
value. After it is returned, the color key value is placed in the
dwColorSpaceLowValue member of the DDCOLORKEY structure. It is also
copied to the dwColorSpaceHighValue member. The call to
IDirectDrawSurface::SetColorKey then sets the color key.

You may have noticed the reference to CLR_INVALID in DDSetColorKey and
DDColorMatch. If you pass CLR_INVALID as the color key in the
DDSetColorKey call in DDEX4, the pixel in the upper-left corner (0, 0) of the
bitmap will be used as the color key. As the DDEX4 bitmap is delivered, that
does not mean much because the color of the pixel at (0, 0) is a shade of gray. If,
however, you would like to see how to use the pixel at (0, 0) as the color key for
the DDEX4 sample, open the All.bmp bitmap file in a drawing application and
then change the single pixel at (0, 0) to black. Be sure to save the change (it's
hard to see). Then change the DDEX4 line that calls DDSetColorKey to the
following:

DDSetColorKey(lpDDSOne, CLR_INVALID);

Recompile the DDEX4 sample, and ensure that the resource definition file is also
recompiled so that the new bitmap is included. (To do this, you can simply add
and then delete a space in the Ddex4.rc file.) The DDEX4 sample will then use
the pixel at (0, 0), which is now set to black, as the color key.

Step 2: Creating a Simple Animation
The DDEX4 sample uses the updateFrame function to create a simple animation
using the red donuts included in the All.bmp file. The animation consists of three
red donuts positioned in a triangle and rotating at various speeds. This sample
compares the Win32 GetTickCount function with the number of milliseconds
since the last call to GetTickCount to determine whether to redraw any of the
sprites. It subsequently uses the IDirectDrawSurface::BltFast method first to
blit the background from the off-screen surface (lpDDSOne) to the back buffer,
and then to blit the sprites to the back buffer using the color key that you set
earlier to determine which pixels are transparent. After the sprites are blitted to
the back buffer, DDEX4 calls the IDirectDrawSurface::Flip method to flip the
back buffer and the primary surface.

Note that when you use IDirectDrawSurface::BltFast to blit the background
from the off-screen surface, the dwTrans parameter that specifies the type of
transfer is set to DDBLTFAST_NOCOLORKEY. This indicates that a normal
blit will occur with no transparency bits. Later, when the red donuts are blitted to
the back buffer, the dwTrans parameter is set to
DDBLTFAST_SRCCOLORKEY. This indicates that a blit will occur with the
color key for transparency as it is defined, in this case, in the lpDDSOne buffer.

In this sample, the entire background is redrawn each time through the
updateFrame function. One way of optimizing this sample would be to redraw
only that portion of the background that changes while rotating the red donuts.
Because the location and size of the rectangles that make up the donut sprites
never change, you should be able to easily modify the DDEX4 sample with this
optimization.

Tutorial 5: Dynamically Modifying Palettes
The sample described in this tutorial (DDEX5) is a modification of the sample
described in Tutorial 4 (DDEX4) example. DDEX5 demonstrates how to
dynamically change the palette entries while an application is running. The new
functionality demonstrated in DDEX5 is shown in the following steps:

· Step 1: Loading the Palette Entries
· Step 2: Rotating the Palettes

Chapter 2 DirectDraw 61

Step 1: Loading the Palette Entries
The following code in DDEX5 loads the palette entries with the values in the
lower half of the All.bmp file (the part of the bitmap that contains the red donuts):

// First, set all colors as unused.
for(i=0; i<256; i++)
{
 torusColors[i] = 0;
}

// Lock the surface and scan the lower part (the torus area),
// and keep track of all the indexes found.
ddsd.dwSize = sizeof(ddsd);
while (lpDDSOne->Lock(NULL, &ddsd, 0, NULL) == DDERR_WASSTILLDRAWING)
 ;

// Search through the torus frames and mark used colors.
for(y=480; y<480+384; y++)
{
 for(x=0; x<640; x++)
 {
 torusColors[((BYTE *)ddsd.lpSurface)[y*ddsd.lPitch+x]] = 1;
 }
}

lpDDSOne->Unlock(NULL);

The torusColors array is used as an indicator of the color index of the palette
used in the lower half of the All.bmp file. Before it is used, all of the values in the
torusColors array are reset to 0. The off-screen buffer is then locked in
preparation for determining if a color index value is used.

The torusColors array is set to start at row 480 and column 0 of the bitmap. The
color index value in the array is determined by the byte of data at the location in
memory where the bitmap surface is located. This location is determined by the
lpSurface member of the DDSURFACEDESC structure, which is pointing to
the memory location corresponding to row 480 and column 0 of the bitmap
(y lPitch + x). The location of the specific color index value is then set to 1.
The y value (row) is multiplied by the lPitch value (found in the
DDSURFACEDESC structure) to get the actual location of the pixel in linear
memory.

The color index values that are set in torusColors will be used later to determine
which colors in the palette are rotated. Because there are no common colors
between the background and the red donuts, only those colors associated with the
red donuts are rotated. If you want to check whether this is true or not, just
remove the "*ddsd.lPitch" from the array and see what happens when you
recompile and run the program. (Without multiplying ylPitch, the red donuts

are never reached and only the colors found in the background are indexed and
later rotated.) For more information about width and pitch, see Width and Pitch.

Step 2: Rotating the Palettes
The updateFrame function in DDEX5 works in much the same way as it did in
Tutorial 4 (DDEX4). It first blits the background into the back buffer, and then it
blits the three donuts in the foreground. However, before it flips the surfaces,
updateFrame changes the palette of the primary surface from the palette index
that was created in the doInit function, as shown in the following code:

// Change the palette.
if(lpDDPal->GetEntries(0, 0, 256, pe) != DD_OK)
{
 return;
}

for(i=1; i<256; i++)
{
 if(!torusColors[i])
 {
 continue;
 }
 pe[i].peRed = (pe[i].peRed+2) % 256;
 pe[i].peGreen = (pe[i].peGreen+1) % 256;
 pe[i].peBlue = (pe[i].peBlue+3) % 256;
}

if(lpDDPal->SetEntries(0, 0, 256, pe) != DD_OK)
{
 return;
}

The IDirectDrawPalette::GetEntries method in the first line queries palette
values from a DirectDrawPalette object. Because the palette entry values pointed
to by pe should be valid, the method will return DD_OK and continue. The loop
that follows checks torusColors to determine if the color index was set to 1
during its initialization. If so, the red, green, and blue values in the palette entry
pointed to by pe are rotated.

After all of the marked palette entries are rotated, the
IDirectDrawPalette::SetEntries method is called to change the entries in the
DirectDrawPalette object. This change takes place immediately if you are
working with a palette set to the primary surface.

With this done, the surfaces are subsequently flipped DDEX5.

Chapter 2 DirectDraw 63

Other DirectDraw Samples
To learn more about how DirectDraw can be used in applications, you should
check out some of the other following samples included with the DirectX SDK:

· Stretch
Demonstrates how to create a nonexclusive (windowed) mode animation in a
window that is capable of clipped blitting and stretched-clipped blitting.

· Donut
Demonstrates testing multiple exclusive-mode applications interacting with
nonexclusive-mode applications.

· Wormhole
Demonstrates palette animation.

· Dxview
Demonstrates how to retrieve the capabilities of the display hardware.

Other samples you can examine for their DirectDraw code include Duel, Iklowns,
Foxbear, Palette, and Flip2d.

Optimizations and Customizations
All of the DirectDraw samples supplied with this SDK are relatively simple and
assume a lot of things about the system they are running on. This section
examines the following optimizations and customizations to the samples that will
allow your code to work better in real-world situations:

· Getting the Flip and Blit Status
· Blitting with Color Fill
· Determining the Capabilities of the Display Hardware
· Storing Bitmaps in Display Memory
· Triple Buffering

Getting the Flip and Blit Status
When the IDirectDrawSurface2::Flip method is called, the primary surface and
back buffer are exchanged. However, the exchange may not occur immediately.
For example, if a previous flip has not finished, or if it did not succeed, this
method returns DDERR_WASSTILLDRAWING. In the samples included with
this SDK, the IDirectDrawSurface2::Flip call continues to loop until it returns
DD_OK. Also, a IDirectDrawSurface2::Flip call does not complete
immediately. It schedules a flip for the next time a vertical blank occurs on the
system.

An application that waits until the DDERR_WASSTILLDRAWING value is not
returned is very inefficient. Instead, you could create a function in your
application that calls the IDirectDrawSurface2::GetFlipStatus method on the
back buffer to determine if the previous flip has finished.

If the previous flip has not finished and the call returns
DDERR_WASSTILLDRAWING, your application can use the time to perform
another task before it checks the status again. Otherwise, you can perform the
next flip. The following example demonstrates this concept:

while(lpDDSBack->GetFlipStatus(DDGFS_ISFLIPDONE) ==
 DDERR_WASSTILLDRAWING);

 // Waiting for the previous flip to finish. The application can
 // perform another task here.

ddrval = lpDDSPrimary->Flip(NULL, 0);

You can use the IDirectDrawSurface2::GetBltStatus method in much the same
way to determine whether a blit has finished. Because
IDirectDrawSurface2::GetFlipStatus and
IDirectDrawSurface2::GetBltStatus return immediately, you can use them
periodically in your application with little loss in speed.

Blitting with Color Fill
You can use the IDirectDrawSurface2::Blt method to perform a color fill of the
most common color you want to be displayed. For example, if the most common
color your application displays is blue, you can use IDirectDrawSurface2::Blt
with the DDBLT_COLORFILL flag to first fill the surface with the color blue.
Then you can write everything else on top of it. This allows you to fill in the most
common color very quickly, and you then only have to write a minimum number
of colors to the surface.

The following example demonstrates one way to perform a color fill:

DDBLTFX ddbltfx;

ddbltfx.dwSize = sizeof(ddbltfx);
ddbltfx.dwFillColor = 0;
ddrval = lpDDSPrimary->Blt(
 NULL, // Destination
 NULL, NULL, // Source rectangle
 DDBLT_COLORFILL, &ddbltfx);

switch(ddrval)
{
 case DDERR_WASSTILLDRAWING:
 .

Chapter 2 DirectDraw 65

 .
 .
 case DDERR_SURFACELOST:
 .
 .
 .
 case DD_OK:
 .
 .
 .
 default:
}

Determining the Capabilities of the Display
Hardware
DirectDraw uses hardware emulation to perform the DirectDraw functions not
supported by the user's hardware. To accelerate performance of your DirectDraw
applications, you should determine the capabilities of the user's display hardware
after you have created a DirectDraw object. DirectDraw will use any display
acceleration hardware available on the user's system. Note that your application
must supply DirectDraw with a list of the hardware emulation it needs in case the
display adapter on the user's system does not contain the display acceleration
hardware required by your application.

You can use the IDirectDraw2::GetCaps method to fill in the capabilities of the
display hardware. The DirectDraw device driver for the hardware fills in the
values of the dwCaps member of the DDCAPS structure. These values identify
the capabilities of the display acceleration hardware on the system. The
DDCAPS structure contains the address of the DDSCAPS structure that supplies
hardware emulation requirements for the application. Hardware emulation will be
used in case any or all of the DirectDraw hardware capabilities are not available
on the display adapter. You must supply the hardware emulation values your
application requires in the DDSCAPS structure.

Storing Bitmaps in Display Memory
Blitting from display memory to display memory is usually much more efficient
than blitting from system memory to display memory. As a result, you should
store as many of the sprites your application uses as possible in display memory.

Most display adapter hardware contains enough extra memory to store more than
only the primary surface and the back buffer. You can use the dwVidMemTotal
and dwVidMemFree members of the DDCAPS structure (if you used the
IDirectDraw2::GetCaps method to get the capabilities of the user's display
hardware) to determine the amount of available memory for storing bitmaps in
the display adapter's memory. If you want to see how this works, use the DirectX
Viewer application supplied with the DirectX SDK. Under DirectDraw Devices,

open the Primary Display Driver folder, and then open the General folder. The
amount of total display memory (minus the primary surface) and the amount of
free memory is displayed. Each time a surface is added to the DirectDraw object,
the amount of free memory decreases by the amount of memory used by the
added surface.

Triple Buffering
In some cases, it may be possible to speed up the process of displaying your
application by using triple buffering. Triple buffering uses one primary surface
and two back buffers. The following example shows how to initialize a triple-
buffering scheme:

// Create the primary surface with two back buffers.
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
 DDSCAPS_FLIP | DDSCAPS_COMPLEX;
ddsd.dwBackBufferCount = 2;
ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
if(ddrval == DD_OK)
{
 // Get a pointer to the first back buffer.
 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
 ddrval = lpDDSPrimary->GetAttachedSurface(&ddscaps,
 &lpDDSBackOne);
 if(ddrval != DD_OK)
 // Display an error message here.
 // Retrieve a pointer to the second back buffer.
 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
 ddrval = lpDDSPrimary->GetAttachedSurface(&ddscaps,
 &lpDDSBackTwo);

Triple buffering allows your application to continue blitting to a back buffer even
if a flip has not completed and the first back buffer's blit has already finished.
Performing a flip is not a synchronous event; one flip can take longer than
another. Therefore, if your application uses only one back buffer, it may spend
some time idling while waiting for the IDirectDrawSurface2::Flip method to
return with DD_OK.

DirectDraw Reference
Functions

DirectDrawCreate
HRESULT DirectDrawCreate(GUID FAR * lpGUID,

Chapter 2 DirectDraw 67

 LPDIRECTDRAW FAR * lplpDD, IUnknown FAR * pUnkOuter);

Creates an instance of a DirectDraw object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_DIRECTDRAWALREADYCREATED
DDERR_GENERIC
DDERR_INVALIDDIRECTDRAWGUID
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW
DDERR_OUTOFMEMORY

lpGUID
Address of the globally unique identifier (GUID) that represents the driver to be
created. NULL is always the active display driver.

lplpDD
Address of a pointer that will be initialized with a valid DirectDraw pointer if the
call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, DirectDrawCreate returns an error if this parameter is anything but
NULL.

This function attempts to initialize a DirectDraw object, and it then sets a pointer
to the object if the call is successful. Calling the IDirectDraw2::GetCaps
method immediately after initialization is advised to determine to what extent this
object is hardware accelerated.

DirectDrawCreateClipper
HRESULT DirectDrawCreateClipper(DWORD dwFlags,
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
 IUnknown FAR *pUnkOuter);

Creates an instance of a DirectDrawClipper object not associated with a
DirectDraw object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

dwFlags
This parameter is currently not used and must be set to 0.

lplpDDClipper
Address of a pointer that will be filled with the address of the new
DirectDrawClipper object.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, DirectDrawCreateClipper returns an error if this parameter is
anything but NULL.

This function can be called before any DirectDraw objects are created. Because
these DirectDrawClipper objects are not owned by any DirectDraw object, they
are not automatically released when an application's objects are released. If the
application does not explicitly release the DirectDrawClipper objects,
DirectDraw will release them when the application terminates.

To create a DirectDrawClipper object owned by a specific DirectDraw object,
use the IDirectDraw2::CreateClipper method.

See also IDirectDraw2::CreateClipper

DirectDrawEnumerate
HRESULT DirectDrawEnumerate(LPDDENUMCALLBACK lpCallback,
 LPVOID lpContext);

Enumerates the DirectDraw objects installed on the system. The NULL GUID
entry always identifies the primary display device shared with GDI.

· Returns DD_OK if successful, or DDERR_INVALIDPARAMS otherwise.

lpCallback
Address of a Callback function that will be called with a description of each
DirectDraw-enabled HAL installed in the system.

lpContext
Address of an application-defined context that will be passed to the enumeration
callback function each time it is called.

Callback Functions

Callback
BOOL WINAPI lpCallback(GUID FAR * lpGUID,
 LPSTR lpDriverDescription, LPSTR lpDriverName,
 LPVOID lpContext);

Application-defined callback function for the DirectDrawEnumerate function.

· Returns DDENUMRET_OK to continue the enumeration, or
DDENUMRET_CANCEL to stop it.

Chapter 2 DirectDraw 69

lpGUID
Address of the unique identifier of the DirectDraw object.

lpDriverDescription
Address of a string containing the driver description.

lpDriverName
Address of a string containing the driver name.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

EnumModesCallback
HRESULT WINAPI lpEnumModesCallback(LPDDSURFACEDESC lpDDSurfaceDesc,
 LPVOID lpContext);

Application-defined callback function for the
IDirectDraw2::EnumDisplayModes method.

· Returns DDENUMRET_OK to continue the enumeration, or
DDENUMRET_CANCEL to stop it.

lpDDSurfaceDesc
Address of the DDSURFACEDESC structure that provides the monitor
frequency and the mode that can be created. This data is read-only.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

EnumSurfacesCallback
HRESULT WINAPI lpEnumSurfacesCallback(
 LPDIRECTDRAWSURFACE2 lpDDSurface,
 LPDDSURFACEDESC lpDDSurfaceDesc, LPVOID lpContext);

Application-defined callback function for the
IDirectDrawSurface2::EnumAttachedSurfaces method.

· Returns DDENUMRET_OK to continue the enumeration, or
DDENUMRET_CANCEL to stop it.

lpDDSurface
Address of the surface attached to this surface.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that describes the attached surface.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

fnCallback
HRESULT WINAPI lpfnCallback(LPDIRECTDRAWSURFACE lpDDSurface,
 LPVOID lpContext);

Application-defined callback function for the
IDirectDrawSurface2::EnumOverlayZOrders method.

· Returns DDENUMRET_OK to continue the enumeration, or
DDENUMRET_CANCEL to stop it.

lpDDSurface
Address of the surface being overlaid on this surface.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

IDirectDraw2
Applications use the methods of the IDirectDraw2 interface to create
DirectDraw objects and work with system-level variables. This section is a
reference to the methods of this interface. For a conceptual overview, see
DirectDraw Objects.

The methods of the IDirectDraw2 interface can be organized into the following
groups:

Allocating memory Compact
Initialize

Creating objects CreateClipper
CreatePalette
CreateSurface

Device capabilities GetCaps

Display modes EnumDisplayModes
GetDisplayMode
GetMonitorFrequency
RestoreDisplayMode

Chapter 2 DirectDraw 71

SetDisplayMode

Display status GetScanLine
GetVerticalBlankStatus

Miscellaneous GetAvailableVidMem
GetFourCCCodes
WaitForVerticalBlank

Setting behavior SetCooperativeLevel

Surfaces DuplicateSurface
EnumSurfaces
FlipToGDISurface
GetGDISurface

The IDirectDraw2 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three
methods:

AddRef
QueryInterface
Release

IDirectDraw2::Compact
HRESULT Compact();

At present this method is only a stub; it has not yet been implemented.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_SURFACEBUSY

This method moves all of the pieces of surface memory on the display card to a
contiguous block to make the largest single amount of free memory available.
This call fails if any operations are in progress.

The application calling this method must have its cooperative level set to
exclusive.

IDirectDraw2::CreateClipper
HRESULT CreateClipper(DWORD dwFlags,
 LPDIRECTDRAWCLIPPER FAR * lplpDDClipper,
 IUnknown FAR * pUnkOuter);

Creates a DirectDrawClipper object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_OUTOFMEMORY

dwFlags
This parameter is currently not used and must be set to 0.

lplpDDClipper
Address of a pointer that will be filled with the address of the new
DirectDrawClipper object if this method returns successfully.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, IDirectDraw2::CreateClipper returns an error if this parameter is
anything but NULL.

The DirectDrawClipper object can be attached to a DirectDrawSurface and used
during IDirectDrawSurface2::Blt, IDirectDrawSurface2::BltBatch, and
IDirectDrawSurface2::UpdateOverlay operations.

To create a DirectDrawClipper object that is not owned by a specific DirectDraw
object, use the DirectDrawCreateClipper function.

See also IDirectDrawSurface2::GetClipper,
IDirectDrawSurface2::SetClipper

IDirectDraw2::CreatePalette
HRESULT CreatePalette(DWORD dwFlags,
 LPPALETTEENTRY lpColorTable,
 LPDIRECTDRAWPALETTE FAR * lplpDDPalette,
 IUnknown FAR * pUnkOuter);

Creates a DirectDrawPalette object for this DirectDraw object.

Chapter 2 DirectDraw 73

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOOPERATIVELEVELSET
DDERR_NOEXCLUSIVEMODE
DDERR_OUTOFCAPS
DDERR_OUTOFMEMORY
DDERR_UNSUPPORTED

dwFlags
One or more of the following flags:
DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.
DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.
DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.
DDPCAPS_8BITENTRIES

Indicates that the index refers to an 8-bit color index. This flag is valid
only when used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or
DDPCAPS_4BIT flag, and when the target surface is in 8 bpp. Each color
entry is 1 byte long and is an index to a destination surface's 8-bpp
palette.

DDPCAPS_8BIT
Indicates that the index is 8 bits. There are 256 entries in the color table.

DDPCAPS_ALLOW256
Indicates that this palette can have all 256 entries defined.

lpColorTable
Address of an array of 2, 4, 16, or 256 PALETTEENTRY structures that will
initialize this DirectDrawPalette object.

lplpDDPalette
Address of a pointer that will be filled with the address of the new
DirectDrawPalette object if this method returns successfully.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, IDirectDraw2::CreatePalette returns an error if this parameter is
anything but NULL.

IDirectDraw2::CreateSurface
HRESULT CreateSurface(LPDDSURFACEDESC lpDDSurfaceDesc,
 LPDIRECTDRAWSURFACE FAR * lplpDDSurface,
 IUnknown FAR * pUnkOuter);

Creates a DirectDrawSurface object for this DirectDraw object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPIXELFORMAT
DDERR_NOALPHAHW
DDERR_NOCOOPERATIVELEVELSET
DDERR_NODIRECTDRAWHW
DDERR_NOEMULATION
DDERR_NOEXCLUSIVEMODE
DDERR_NOFLIPHW
DDERR_NOMIPMAPHW
DDERR_NOZBUFFERHW
DDERR_OUTOFMEMORY
DDERR_OUTOFVIDEOMEMORY
DDERR_PRIMARYSURFACEALREADYEXISTS
DDERR_UNSUPPORTEDMODE

lpDDSurfaceDesc
Address of the DDSURFACEDESC structure that describes the requested
surface.

lplpDDSurface
Address of a pointer to be initialized with a valid DirectDrawSurface pointer if
the call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, IDirectDraw2::CreateSurface returns an error if this parameter is
anything but NULL.

IDirectDraw2::DuplicateSurface
HRESULT DuplicateSurface(LPDIRECTDRAWSURFACE lpDDSurface,
 LPLPDIRECTDRAWSURFACE FAR * lplpDupDDSurface);

Chapter 2 DirectDraw 75

Duplicates a DirectDrawSurface object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_CANTDUPLICATE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACELOST

lpDDSurface
Address of the DirectDrawSurface structure to be duplicated.

lplpDupDDSurface
Address of the DirectDrawSurface pointer that points to the newly created
duplicate DirectDrawSurface structure.

This method creates a new DirectDrawSurface object that points to the same
surface memory as an existing DirectDrawSurface object. This duplicate can be
used just like the original object. The surface memory is released after the last
object referencing it is released. A primary surface, 3D surface, or implicitly
created surface cannot be duplicated.

IDirectDraw2::EnumDisplayModes
HRESULT EnumDisplayModes(DWORD dwFlags,
 LPDDSURFACEDESC lpDDSurfaceDesc, LPVOID lpContext,
 LPDDENUMMODESCALLBACK lpEnumModesCallback);

Enumerates all of the display modes the hardware exposes through the
DirectDraw object that are compatible with a provided surface description. If
NULL is passed for the surface description, all exposed modes are enumerated.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

dwFlags
DDEDM_REFRESHRATES

Enumerates modes with different refresh rates.
IDirectDraw2::EnumDisplayModes guarantees that a particular mode
will be enumerated only once. This flag specifies whether the refresh rate
is taken into account when determining if a mode is unique.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be checked against
available modes. If the value of this parameter is NULL, all modes are
enumerated.

lpContext
Address of an application-defined structure that will be passed to each
enumeration member.

lpEnumModesCallback
Address of the EnumModesCallback function that the enumeration procedure
will call every time a match is found.

This method enumerates the dwRefreshRate member of the
DDSURFACEDESC structure; the IDirectDraw::EnumDisplayModes method
does not contain this capability. If you use the IDirectDraw2::SetDisplayMode
method to set the refresh rate of a new mode, you must use
IDirectDraw2::EnumDisplayModes to enumerate the dwRefreshRate
member.

See also IDirectDraw2::GetDisplayMode, IDirectDraw2::SetDisplayMode,
IDirectDraw2::RestoreDisplayMode

IDirectDraw2::EnumSurfaces
HRESULT EnumSurfaces(DWORD dwFlags, LPDDSURFACEDESC lpDDSD,
 LPVOID lpContext, LPDDENUMSURFACESCALLBACK lpEnumSurfacesCallback);

Enumerates all of the existing or possible surfaces that meet the search criterion
specified.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

dwFlags
One of the following flags:
DDENUMSURFACES_ALL

Enumerates all of the surfaces that meet the search criterion.
DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be created and meets the search
criterion.

DDENUMSURFACES_DOESEXIST
Enumerates the already existing surfaces that meet the search criterion.

DDENUMSURFACES_MATCH

Chapter 2 DirectDraw 77

Searches for any surface that matches the surface description.
DDENUMSURFACES_NOMATCH

Searches for any surface that does not match the surface description.

lpDDSD
Address of a DDSURFACEDESC structure that defines the surface of interest.

lpContext
Address of an application-defined structure that will be passed to each
enumeration member.

lpEnumSurfacesCallback
Address of the EnumSurfacesCallback function the enumeration procedure will
call every time a match is found.

If the DDENUMSURFACES_CANBECREATED flag is set, this method
attempts to temporarily create a surface that meets the criterion. Note that as a
surface is enumerated, its reference count is increased—if you are not going to
use the surface, use IDirectDraw::Release to release the surface after each
enumeration.

As part of the IDirectDraw interface, this method did not support any values
other than zero for the dwFlags parameter.

IDirectDraw2::FlipToGDISurface
HRESULT FlipToGDISurface();

Makes the surface that GDI writes to the primary surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND

This method can be called at the end of a page-flipping application to ensure that
the display memory that GDI is writing to is visible to the user.

See also IDirectDraw2::GetGDISurface

IDirectDraw2::GetAvailableVidMem
HRESULT GetAvailableVidMem(LPDDSCAPS lpDDSCaps,
 LPDWORD lpdwTotal, LPDWORD lpdwFree);

Retrieves the total amount of display memory available and the amount of display
memory currently free.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDCAPS
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW

lpDDSCaps
Address of a DDSCAPS structure that contains the hardware capabilities of the
surface.

lpdwTotal
Address of a variable that will be filled with the total amount of display memory
available.

lpdwFree
Address of a variable that will be filled with the amount of display memory
currently free.

If NULL is passed to either lpdwTotal or lpdwFree, the value for that parameter
is not returned.

The following C++ example demonstrates using
IDirectDraw2::GetAvailableVidMem to determine both the total and free
display memory available for texture-map surfaces:

LPDIRECTDRAW2 lpDD2;
DDSCAPS ddsCaps;
DWORD dwTotal;
DWORD dwFree;

ddres = lpDD->QueryInterface(IID_IDirectDraw2, &lpDD2);
if (FAILED(ddres))
.
.
.
ddsCaps.dwCaps = DDSCAPS_TEXTURE;
ddres = lpDD2->GetAvailableVidMem(&ddsCaps, &dwTotal, &dwFree);
if (FAILED(ddres))
.
.
.

This method provides only a snapshot of the current display-memory state. The
amount of free display memory is subject to change as surfaces are created and
released. Therefore, you should use the free memory value only as an
approximation. In addition, a particular display adapter card may make no
distinction between two different memory types. For example, the adapter might
use the same portion of display memory to store z-buffers and textures. So,

Chapter 2 DirectDraw 79

allocating one type of surface (for example, a z-buffer) can affect the amount of
display memory available for another type of surface (for example, textures).
Therefore, it is best to first allocate an application's fixed resources (such as front
and back buffers, and z-buffers) before determining how much memory is
available for dynamic use (such as texture mapping).

This method was not implemented in the IDirectDraw interface.

IDirectDraw2::GetCaps
HRESULT GetCaps(LPDDCAPS lpDDDriverCaps, LPDDCAPS lpDDHELCaps);

Fills in the capabilities of the device driver for the hardware and the hardware
emulation layer (HEL).

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDDDriverCaps
Address of a DDCAPS structure that will be filled with the capabilities of the
hardware, as reported by the device driver.

lpDDHELCaps
Address of a DDCAPS structure that will be filled with the capabilities of the
HEL.

See also DDCAPS

IDirectDraw2::GetDisplayMode
HRESULT GetDisplayMode(LPDDSURFACEDESC lpDDSurfaceDesc);

Retrieves the current display mode.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTEDMODE

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with a description
of the surface.

An application should not save the information returned by this method to restore
the display mode on clean-up. The application should use the
IDirectDraw2::RestoreDisplayMode method to restore the mode on clean-up,

thereby avoiding mode-setting conflicts that could arise in a multiprocess
environment.

See also IDirectDraw2::SetDisplayMode,
IDirectDraw2::RestoreDisplayMode, IDirectDraw2::EnumDisplayModes

IDirectDraw2::GetFourCCCodes
HRESULT GetFourCCCodes(LPDWORD lpNumCodes, LPDWORD lpCodes);

Retrieves the FourCC codes supported by the DirectDraw object. This method
can also retrieve the number of codes supported.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpNumCodes
Address of a variable that contains the number of entries the array pointed to by
lpCodes can hold. If the number of entries is too small to accommodate all the
codes, lpNumCodes is set to the required number and the array pointed to by
lpCodes is filled with all that fits.

lpCodes
Address of an array of variables that will be filled with FourCC codes supported
by this DirectDraw object. If NULL is passed, lpNumCodes is set to the number
of supported FourCC codes and the method will return.

IDirectDraw2::GetGDISurface
HRESULT GetGDISurface(LPDIRECTDRAWSURFACE FAR * lplpGDIDDSSurface);

Retrieves the DirectDrawSurface object that currently represents the surface
memory that GDI is treating as the primary surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND

lplpGDIDDSSurface
Address of a DirectDrawSurface pointer to the DirectDrawSurface object that
currently controls GDI's primary surface memory.

See also IDirectDraw2::FlipToGDISurface

Chapter 2 DirectDraw 81

IDirectDraw2::GetMonitorFrequency
HRESULT GetMonitorFrequency(LPDWORD lpdwFrequency);

Retrieves the frequency of the monitor being driven by the DirectDraw object.
The frequency value is returned in Hz multiplied by 100. For example, 60Hz is
returned as 6000.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED

lpdwFrequency
Address of the variable that will be filled with the monitor frequency.

IDirectDraw2::GetScanLine
HRESULT GetScanLine(LPDWORD lpdwScanLine);

Retrieves the scanline that is currently being drawn on the monitor.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_VERTICALBLANKINPROGRESS

lpdwScanLine
Address of the variable that will contain the scanline the display is currently on.

See also IDirectDraw2::GetVerticalBlankStatus,
IDirectDraw2::WaitForVerticalBlank

IDirectDraw2::GetVerticalBlankStatus
HRESULT GetVerticalBlankStatus(LPBOOL lpbIsInVB);

Retrieves the status of the vertical blank.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpbIsInVB
Address of the variable that will be filled with the status of the vertical blank.
This parameter is TRUE if a vertical blank is occurring, and FALSE otherwise.

To synchronize with the vertical blank, use the
IDirectDraw2::WaitForVerticalBlank method.

See also IDirectDraw2::GetScanLine, IDirectDraw2::WaitForVerticalBlank

IDirectDraw2::Initialize
HRESULT Initialize(GUID FAR * lpGUID);

Initializes the DirectDraw object that was created by using the
CoCreateInstance OLE function.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_ALREADYINITIALIZED
DDERR_DIRECTDRAWALREADYCREATED
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NODIRECTDRAWHW
DDERR_NODIRECTDRAWSUPPORT
DDERR_OUTOFMEMORY

lpGUID
Address of the globally unique identifier (GUID) used as the interface identifier.

This method is provided for compliance with the Component Object Model
(COM) protocol. If the DirectDrawCreate function was used to create the
DirectDraw object, this method returns DDERR_ALREADYINITIALIZED. If
IDirectDraw2::Initialize is not called when using CoCreateInstance to create
the DirectDraw object, any method that is called afterward returns
DDERR_NOTINITIALIZED.

For more information about using IDirectDraw2::Initialize with
CoCreateInstance, see Creating DirectDraw Objects by Using
CoCreateInstance.

See also IUnknown::AddRef, IUnknown::QueryInterface,
IUnknown::Release

IDirectDraw2::RestoreDisplayMode
HRESULT RestoreDisplayMode();

Chapter 2 DirectDraw 83

Resets the mode of the display device hardware for the primary surface to what it
was before the IDirectDraw2::SetDisplayMode method was called. Exclusive-
level access is required to use this method.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_LOCKEDSURFACES
DDERR_NOEXCLUSIVEMODE

See also IDirectDraw2::SetDisplayMode,
IDirectDraw2::EnumDisplayModes, IDirectDraw2::SetCooperativeLevel

IDirectDraw2::SetCooperativeLevel
HRESULT SetCooperativeLevel(HWND hWnd, DWORD dwFlags);

Determines the top-level behavior of the application.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_EXCLUSIVEMODEALREADYSET
DDERR_HWNDALREADYSET
DDERR_HWNDSUBCLASSED
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

hWnd
Window handle used for the application.

dwFlags
One or more of the following flags:
DDSCL_ALLOWMODEX

Allows the use of Mode X display modes.
DDSCL_ALLOWREBOOT

Allows CTRL+ALT+DEL to function while in exclusive (full-screen) mode.
DDSCL_EXCLUSIVE

Requests the exclusive level.
DDSCL_FULLSCREEN

Indicates that the exclusive-mode owner will be responsible for the entire
primary surface. GDI can be ignored.

DDSCL_NORMAL
Indicates that the application will function as a regular Windows
application.

DDSCL_NOWINDOWCHANGES
Indicates that DirectDraw is not allowed to minimize or restore the
application window on activation.

The DDSCL_EXCLUSIVE flag must be set to call functions that can have drastic
performance consequences for other applications. To call the
IDirectDraw2::Compact method, change the display mode, or modify the
behavior (for example, flipping) of the primary surface, an application must be
set to the exclusive level. If an application calls the
IDirectDraw2::SetCooperativeLevel method with the DDSCL_EXCLUSIVE
and DDSCL_FULLSCREEN flags set, DirectDraw will attempt to resize its
window to full screen. An application must set either the DDSCL_EXCLUSIVE
or DDSCL_NORMAL flag, and DDSCL_EXCLUSIVE requires
DDSCL_FULLSCREEN.

Mode X modes are available only if an application sets the
DDSCL_ALLOWMODEX, DDSCL_FULLSCREEN, and
DDSCL_EXCLUSIVE flags. DDSCL_ALLOWMODEX cannot be used with
DDSCL_NORMAL. If DDSCL_ALLOWMODEX is not specified, the
IDirectDraw2::EnumDisplayModes method will not enumerate the Mode X
modes, and the IDirectDraw2::SetDisplayMode method will fail when a Mode
X mode is requested. The set of supported display modes may change after using
IDirectDraw2::SetCooperativeLevel.

Windows does not support Mode X modes; therefore, when your application is in
a Mode X mode, you cannot use the IDirectDrawSurface2::Lock or
IDirectDrawSurface2::Blt methods to lock or blit the primary surface. You also
cannot use either the IDirectDrawSurface2::GetDC method on the primary
surface, or GDI with a screen DC. Mode X modes are indicated by the
DDSCAPS_MODEX flag in the DDSCAPS structure, which is part of the
DDSURFACEDESC structure returned by the IDirectDrawSurface2::GetCaps
and IDirectDraw2::EnumDisplayModes methods.

Because applications can use DirectDraw with multiple windows,
IDirectDraw2::SetCooperativeLevel does not require a window handle to be
specified if the application is requesting the DDSCL_NORMAL mode. By
passing a NULL to the window handle, all of the windows can be used
simultaneously in normal Windows mode.

Interaction between the IDirectDraw::SetDisplayMode and
IDirectDraw::SetCooperativeLevel methods differs from their IDirectDraw2

Chapter 2 DirectDraw 85

counterparts. That is, if an application uses the IDirectDraw versions of these
interfaces to set the cooperative level and display modes according to the
following steps, the original display mode must be restored by using the
IDirectDraw::RestoreDisplayMode method.

1 Call IDirectDraw::SetCooperativeLevel with the DDSCL_EXCLUSIVE flag to
gain exclusive mode.

2 Call IDirectDraw::SetDisplayMode to change the display mode.
3 Call IDirectDraw::SetCooperativeLevel with the DDSCL_NORMAL flag to

release exclusive mode.

However, if you use the IDirectDraw2 interface and follow the same steps, the
original display mode will be restored when exclusive mode is lost.

See also IDirectDraw2::SetDisplayMode, IDirectDraw2::Compact,
IDirectDraw2::EnumDisplayModes

IDirectDraw2::SetDisplayMode
HRESULT SetDisplayMode(DWORD dwWidth, DWORD dwHeight,
 DWORD dwBPP, DWORD dwRefreshRate, DWORD dwFlags);

Sets the mode of the display-device hardware.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDMODE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_LOCKEDSURFACES
DDERR_NOEXCLUSIVEMODE
DDERR_SURFACEBUSY
DDERR_UNSUPPORTED
DDERR_UNSUPPORTEDMODE
DDERR_WASSTILLDRAWING

dwWidth and dwHeight
Width and height of the new mode.

dwBPP
Bits per pixel (bpp) of the new mode.

dwRefreshRate
Refresh rate of the new mode. If this parameter is set to 0, the IDirectDraw
interface version of this method is used.

dwFlags
This parameter is currently not used and must be set to 0.

The IDirectDraw2::SetCooperativeLevel method must be used to set exclusive-
level access before the mode can be changed. If other applications have created a
DirectDrawSurface object on the primary surface and the mode is changed, those
applications' primary surface objects return DDERR_SURFACELOST until they
are restored.

As part of the IDirectDraw interface, this method did not include the
dwRefreshRate and dwFlags parameters.

Interaction between the IDirectDraw::SetDisplayMode and
IDirectDraw::SetCooperativeLevel methods differs from their IDirectDraw2
counterparts. That is, if an application uses the IDirectDraw versions of these
interfaces to set the cooperative level and display modes according to the
following steps, the original display mode must be restored by using the
IDirectDraw::RestoreDisplayMode method.

1 Call IDirectDraw::SetCooperativeLevel with the DDSCL_EXCLUSIVE flag to
gain exclusive mode.

2 Call IDirectDraw::SetDisplayMode to change the display mode.
3 Call IDirectDraw::SetCooperativeLevel with the DDSCL_NORMAL flag to

release exclusive mode.

However, if you use the IDirectDraw2 interface and follow the same steps, the
original display mode will be restored when exclusive mode is lost.

See also IDirectDraw2::RestoreDisplayMode,
IDirectDraw2::GetDisplayMode, IDirectDraw2::EnumDisplayModes,
IDirectDraw2::SetCooperativeLevel

IDirectDraw2::WaitForVerticalBlank
HRESULT WaitForVerticalBlank(DWORD dwFlags, HANDLE hEvent);

Helps the application synchronize itself with the vertical-blank interval.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

dwFlags
Determines how long to wait for the vertical blank.

Chapter 2 DirectDraw 87

DDWAITVB_BLOCKBEGIN
Returns when the vertical-blank interval begins.

DDWAITVB_BLOCKBEGINEVENT
Triggers an event when the vertical blank begins. This value is not
currently supported.

DDWAITVB_BLOCKEND
Returns when the vertical-blank interval ends and the display begins.

hEvent
Handle of the event to be triggered when the vertical blank begins.

See also IDirectDraw2::GetVerticalBlankStatus,
IDirectDraw2::GetScanLine

IDirectDrawClipper
Applications use the methods of the IDirectDrawClipper interface to manage
clip lists. This section is a reference to the methods of this interface. For a
conceptual overview, see IDirectDrawClipper Interface.

The methods of the IDirectDrawClipper interface can be organized into the
following groups:

Allocating memory Initialize

Clip lists GetClipList
IsClipListChanged
SetClipList
SetHWnd

Handles GetHWnd

The IDirectDrawClipper interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface
Release

IDirectDrawClipper::GetClipList
HRESULT GetClipList(LPRECT lpRect, LPRGNDATA lpClipList,

 LPDWORD lpdwSize);

Retrieves a copy of the clip list associated with a DirectDrawClipper object. A
subset of the clip list can be selected by passing a rectangle that clips the clip list.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCLIPLIST
DDERR_REGIONTOOSMALL

lpRect
Address of a rectangle that will be used to clip the clip list.

lpClipList
Address of an RGNDATA structure that will contain the resulting copy of the
clip list.

lpdwSize
Size of the resulting clip list.

The RGNDATA structure used with this method has the following syntax.

typedef struct _RGNDATA {
 RGNDATAHEADER rdh;
 char Buffer[1];
} RGNDATA;

The rdh member of the RGNDATA structure is an RGNDATAHEADER
structure that has the following syntax.

typedef struct _RGNDATAHEADER {
 DWORD dwSize;
 DWORD iType;
 DWORD nCount;
 DWORD nRgnSize;
 RECT rcBound;
} RGNDATAHEADER;

For more information about these structures, see the documentation in the Win32
Software Development Kit.

See also IDirectDrawClipper::SetClipList

Chapter 2 DirectDraw 89

IDirectDrawClipper::GetHWnd
HRESULT GetHWnd(HWND FAR * lphWnd);

Retrieves the window handle previously associated with this DirectDrawClipper
object by the IDirectDrawClipper::SetHWnd method.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lphWnd
Address of the window handle previously associated with this DirectDrawClipper
object by the IDirectDrawClipper::SetHWnd method.

See also IDirectDrawClipper::SetHWnd

IDirectDrawClipper::Initialize
HRESULT Initialize(LPDIRECTDRAW lpDD, DWORD dwFlags);

Initializes a DirectDrawClipper object that was created by using the
CoCreateInstance OLE function.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_ALREADYINITIALIZED
DDERR_INVALIDPARAMS

lpDD
Address of the DirectDraw structure that represents the DirectDraw object. If this
parameter is set to NULL, an independent DirectDrawClipper object is created
(the equivalent of using the DirectDrawCreateClipper function).

dwFlags
This parameter is currently not used and must be set to 0.

This method is provided for compliance with the Component Object Model
(COM) protocol. If DirectDrawCreateClipper or the
IDirectDraw2::CreateClipper method was used to create the
DirectDrawClipper object, this method returns
DDERR_ALREADYINITIALIZED.

For more information about using IDirectDrawClipper::Initialize with
CoCreateInstance, see Creating DirectDrawClipper Objects with
CoCreateInstance.

See also IUnknown::AddRef, IUnknown::QueryInterface,
IUnknown::Release, IDirectDraw2::CreateClipper

IDirectDrawClipper::IsClipListChanged
HRESULT IsClipListChanged(BOOL FAR * lpbChanged);

Monitors the status of the clip list if a window handle is associated with a
DirectDrawClipper object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpbChanged
Address of a variable that is set to TRUE if the clip list has changed.

IDirectDrawClipper::SetClipList
HRESULT SetClipList(LPRGNDATA lpClipList, DWORD dwFlags);

Sets or deletes the clip list used by the IDirectDrawSurface2::Blt,
IDirectDrawSurface2::BltBatch, and IDirectDrawSurface2::UpdateOverlay
methods on surfaces to which the parent DirectDrawClipper object is attached.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_CLIPPERISUSINGHWND
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

lpClipList
Either an address to a valid RGNDATA structure or NULL. If there is an
existing clip list associated with the DirectDrawClipper object and this value is
NULL, the clip list will be deleted.

dwFlags
This parameter is currently not used and must be set to 0.

The clip list cannot be set if a window handle is already associated with the
DirectDrawClipper object. Note that the IDirectDrawSurface2::BltFast method
cannot clip.

The RGNDATA structure used with this method has the following syntax.

typedef struct _RGNDATA {
 RGNDATAHEADER rdh;
 char Buffer[1];

Chapter 2 DirectDraw 91

} RGNDATA;

The rdh member of the RGNDATA structure is an RGNDATAHEADER
structure that has the following syntax.

typedef struct _RGNDATAHEADER {
 DWORD dwSize;
 DWORD iType;
 DWORD nCount;
 DWORD nRgnSize;
 RECT rcBound;
} RGNDATAHEADER;

For more information about these structures, see the documentation in the Win32
Software Development Kit.

See also IDirectDrawClipper::GetClipList, IDirectDrawSurface2::Blt,
IDirectDrawSurface2::BltFast, IDirectDrawSurface2::BltBatch,
IDirectDrawSurface2::UpdateOverlay

IDirectDrawClipper::SetHWnd
HRESULT SetHWnd(DWORD dwFlags, HWND hWnd);

Sets the window handle that will obtain the clipping information.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY

dwFlags
This parameter is currently not used and must be set to 0.

hWnd
Window handle that obtains the clipping information.

See also IDirectDrawClipper::GetHWnd

IDirectDrawPalette
Applications use the methods of the IDirectDrawPalette interface to create
DirectDrawPalette objects and work with system-level variables. This section is a
reference to the methods of this interface. For a conceptual overview, see
DirectDrawPalette Objects.

The methods of the IDirectDrawPalette interface can be organized into the
following groups:

Allocating memory Initialize

Palette capabilities GetCaps

Palette entries GetEntries
SetEntries

The IDirectDrawPalette interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface
Release

IDirectDrawPalette::GetCaps
HRESULT GetCaps(LPDWORD lpdwCaps);

Retrieves the capabilities of this palette object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpdwCaps
Flag from the dwPalCaps member of the DDCAPS structure that defines palette
capabilities:
DDPCAPS_4BIT
DDPCAPS_8BIT
DDPCAPS_8BITENTRIES
DDPCAPS_ALLOW256
DDPCAPS_PRIMARYSURFACE
DDPCAPS_PRIMARYSURFACELEFT
DDPCAPS_VSYNC

Chapter 2 DirectDraw 93

IDirectDrawPalette::GetEntries
HRESULT GetEntries(DWORD dwFlags, DWORD dwBase,
 DWORD dwNumEntries, LPPALETTEENTRY lpEntries);

Queries palette values from a DirectDrawPalette object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTPALETTIZED

dwFlags
This parameter is currently not used and must be set to 0.

dwBase
Start of the entries that should be retrieved sequentially.

dwNumEntries
Number of palette entries that can fit in the address specified in lpEntries. The
colors of each palette entry are returned in sequence, from the value of the
dwStartingEntry parameter through the value of the dwCount parameter minus 1.
(These parameters are set by IDirectDrawPalette::SetEntries.)

lpEntries
Address of the palette entries. The palette entries are 1 byte each if the
DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a color
description.

See also IDirectDrawPalette::SetEntries

IDirectDrawPalette::Initialize
HRESULT Initialize(LPDIRECTDRAW lpDD, DWORD dwFlags,
 LPPALETTEENTRY lpDDColorTable);

Initializes the DirectDrawPalette object.

· Returns DDERR_ALREADYINITIALIZED.

lpDD
Address of the DirectDraw structure that represents the DirectDraw object.

dwFlags and lpDDColorTable
These parameters are currently not used and must be set to 0.

This method is provided for compliance with the Component Object Model
(COM) protocol. Because the DirectDrawPalette object is initialized when it is
created, this method always returns DDERR_ALREADYINITIALIZED.

See also IUnknown::AddRef, IUnknown::QueryInterface,
IUnknown::Release

IDirectDrawPalette::SetEntries
HRESULT SetEntries(DWORD dwFlags, DWORD dwStartingEntry,
 DWORD dwCount, LPPALETTEENTRY lpEntries);

Changes entries in a DirectDrawPalette object immediately.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOPALETTEATTACHED
DDERR_NOTPALETTIZED
DDERR_UNSUPPORTED

dwFlags
This parameter is currently not used and must be set to 0.

dwStartingEntry
First entry to be set.

dwCount
Number of palette entries to be changed.

lpEntries
Address of the palette entries. The palette entries are 1 byte each if the
DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a color
description.

The palette must have been attached to a surface by using the
IDirectDrawSurface2::SetPalette method before
IDirectDrawPalette::SetEntries can be used.

See also IDirectDrawPalette::GetEntries, IDirectDrawSurface2::SetPalette

IDirectDrawSurface2
Applications use the methods of the IDirectDrawSurface2 interface to create
DirectDrawSurface objects and work with system-level variables. This section is
a reference to the methods of this interface. For a conceptual overview, see
DirectDrawSurface Objects.

The methods of the IDirectDrawSurface2 interface can be organized into the
following groups:

Allocating memory Initialize

Chapter 2 DirectDraw 95

IsLost
Restore

Attaching surfaces AddAttachedSurface
DeleteAttachedSurface
EnumAttachedSurfaces
GetAttachedSurface

Blitting Blt
BltBatch
BltFast

Color keys GetColorKey
SetColorKey

Device contexts GetDC
ReleaseDC

Flipping surfaces Flip

Locking surfaces Lock
PageLock
PageUnlock
Unlock

Miscellaneous GetDDInterface

Overlays AddOverlayDirtyRect
EnumOverlayZOrders
GetOverlayPosition
SetOverlayPosition
UpdateOverlay
UpdateOverlayDisplay
UpdateOverlayZOrder

Status GetBltStatus

GetFlipStatus

Surface capabilities GetCaps

Surface clipper GetClipper
SetClipper

Surface description GetPixelFormat
GetSurfaceDesc

Surface palettes GetPalette
SetPalette

The IDirectDrawSurface2 interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following
three methods:

AddRef
QueryInterface
Release

IDirectDrawSurface2::AddAttachedSurface
HRESULT AddAttachedSurface(
 LPDIRECTDRAWSURFACE2 lpDDSAttachedSurface);

Attaches a surface to another surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_CANNOTATTACHSURFACE
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACEALREADYATTACHED
DDERR_SURFACELOST
DDERR_WASSTILLDRAWING

lpDDSAttachedSurface
Address of the DirectDraw surface that is to be attached.

Chapter 2 DirectDraw 97

Possible attachments include z-buffers, alpha channels, and back buffers. Some
attachments automatically break other attachments. For example, the 3D z-buffer
can be attached only to one back buffer at a time. Attachment is not bidirectional,
and a surface cannot be attached to itself. Emulated surfaces (in system memory)
cannot be attached to non-emulated surfaces. Unless one surface is a texture map,
the two attached surfaces must be the same size. A flipping surface cannot be
attached to another flipping surface of the same type; however, attaching two
surfaces of different types is allowed. For example, a flipping z-buffer can be
attached to a regular flipping surface. If a non-flipping surface is attached to
another non-flipping surface of the same type, the two surfaces will become a
flipping chain. If a non-flipping surface is attached to a flipping surface, it
becomes part of the existing flipping chain. Additional surfaces can be added to
this chain, and each call of the IDirectDrawSurface2::Flip method will advance
one step through the surfaces.

See also IDirectDrawSurface2::DeleteAttachedSurface,
IDirectDrawSurface2::EnumAttachedSurfaces, IDirectDrawSurface2::Flip

IDirectDrawSurface2::AddOverlayDirtyRect
HRESULT AddOverlayDirtyRect(LPRECT lpRect);

Builds the list of the rectangles that need to be updated the next time the
IDirectDrawSurface2::UpdateOverlayDisplay method is called.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_UNSUPPORTED

lpRect
Address of the RECT structure that needs to be updated.

This method is used for the software implementation. It is not needed if the
overlay support is provided by the hardware.

See also IDirectDrawSurface2::UpdateOverlayDisplay

IDirectDrawSurface2::Blt
HRESULT Blt(LPRECT lpDestRect, LPDIRECTDRAWSURFACE2 lpDDSrcSurface,
 LPRECT lpSrcRect, DWORD dwFlags, LPDDBLTFX lpDDBltFx);

Performs a bit block transfer.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOALPHAHW
DDERR_NOBLTHW
DDERR_NOCLIPLIST
DDERR_NODDROPSHW
DDERR_NOMIRRORHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW
DDERR_NOZBUFFERHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

lpDestRect
Address of a RECT structure that defines the upper-left and lower-right points of
the rectangle on the destination surface to be blitted to.

lpDDSrcSurface
Address of the DirectDraw surface that is the source for the blit operation.

lpSrcRect
Address of a RECT structure that defines the upper-left and lower-right points of
the rectangle on the source surface to be blitted from.

dwFlags
DDBLT_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel
surface attached to the destination surface as the alpha channel for this
blit.

DDBLT_ALPHADESTCONSTOVERRIDE
Uses the dwAlphaDestConst member of the DDBLTFX structure as the
alpha channel for the destination surface for this blit.

DDBLT_ALPHADESTNEG
Indicates that the destination surface becomes more transparent as the
alpha value increases (0 is opaque).

DDBLT_ALPHADESTSURFACEOVERRIDE

Chapter 2 DirectDraw 99

Uses the lpDDSAlphaDest member of the DDBLTFX structure as the
alpha channel for the destination for this blit.

DDBLT_ALPHAEDGEBLEND
Uses the dwAlphaEdgeBlend member of the DDBLTFX structure as the
alpha channel for the edges of the image that border the color key colors.

DDBLT_ALPHASRC
Uses either the alpha information in pixel format or the alpha channel
surface attached to the source surface as the alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE
Uses the dwAlphaSrcConst member of the DDBLTFX structure as the
alpha channel for the source for this blit.

DDBLT_ALPHASRCNEG
Indicates that the source surface becomes more transparent as the alpha
value increases (0 is opaque).

DDBLT_ALPHASRCSURFACEOVERRIDE
Uses the lpDDSAlphaSrc member of the DDBLTFX structure as the
alpha channel for the source for this blit.

DDBLT_ASYNC
Performs this blit asynchronously through the FIFO in the order received.
If no room is available in the FIFO hardware, the call fails.

DDBLT_COLORFILL
Uses the dwFillColor member of the DDBLTFX structure as the RGB
color that fills the destination rectangle on the destination surface.

DDBLT_DDFX
Uses the dwDDFX member of the DDBLTFX structure to specify the
effects to use for this blit.

DDBLT_DDROPS
Uses the dwDDROPS member of the DDBLTFX structure to specify the
raster operations (ROPS) that are not part of the Win32 API.

DDBLT_DEPTHFILL
Uses the dwFillDepth member of the DDBLTFX structure as the depth
value with which to fill the destination rectangle on the destination z-
buffer surface.

DDBLT_KEYDEST
Uses the color key associated with the destination surface.

DDBLT_KEYDESTOVERRIDE
Uses the dckDestColorkey member of the DDBLTFX structure as the
color key for the destination surface.

DDBLT_KEYSRC
Uses the color key associated with the source surface.

DDBLT_KEYSRCOVERRIDE
Uses the dckSrcColorkey member of the DDBLTFX structure as the
color key for the source surface.

DDBLT_ROP
Uses the dwROP member of the DDBLTFX structure for the ROP for
this blit. These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE
Uses the dwRotationAngle member of the DDBLTFX structure as the
rotation angle (specified in 1/100th of a degree) for the surface.

DDBLT_WAIT
Postpones the DDERR_WASSTILLDRAWING return value if the blitter
is busy, and returns as soon as the blit can be set up or another error
occurs.

DDBLT_ZBUFFER
Performs a z-buffered blit using the z-buffers attached to the source and
destination surfaces and the dwZBufferOpCode member of the
DDBLTFX structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE
Performs a z-buffered blit using the dwZDestConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERDESTOVERRIDE
Performs a z-buffered blit using the lpDDSZBufferDest and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERSRCCONSTOVERRIDE
Performs a z-buffered blit using the dwZSrcConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the source.

DDBLT_ZBUFFERSRCOVERRIDE
Performs a z-buffered blit using the lpDDSZBufferSrc and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the source.

lpDDBltFx
Address of the DDBLTFX structure.

This method is capable of synchronous or asynchronous blits, either display
memory to display memory, display memory to system memory, system memory
to display memory, or system memory to system memory. The blits can be
performed by using z-information, alpha information, source color keys, and
destination color keys. Arbitrary stretching or shrinking will be performed if the
source and destination rectangles are not the same size.

Chapter 2 DirectDraw 101

Typically, IDirectDrawSurface2::Blt returns immediately with an error if the
blitter is busy and the blit could not be set up. The DDBLT_WAIT flag can alter
this behavior so that the method will either wait until the blit can be set up or
another error occurs before it returns.

IDirectDrawSurface2::BltBatch
HRESULT BltBatch(LPDDBLTBATCH lpDDBltBatch,
 DWORD dwCount, DWORD dwFlags);

Performs a sequence of IDirectDrawSurface2::Blt operations from several
sources to a single destination. This method is currently only a stub; it has not yet
been implemented.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDCLIPLIST
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOALPHAHW
DDERR_NOBLTHW
DDERR_NOCLIPLIST
DDERR_NODDROPSHW
DDERR_NOMIRRORHW
DDERR_NORASTEROPHW
DDERR_NOROTATIONHW
DDERR_NOSTRETCHHW
DDERR_NOZBUFFERHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

lpDDBltBatch
Address of the first DDBLTBATCH structure that defines the parameters for the
blit operations.

dwCount
Number of blit operations to be performed.

dwFlags
This parameter is currently not used and must be set to 0.

IDirectDrawSurface2::BltFast
HRESULT BltFast(DWORD dwX, DWORD dwY,
 LPDIRECTDRAWSURFACE2 lpDDSrcSurface, LPRECT lpSrcRect,
 DWORD dwTrans);

Performs a source copy blit or transparent blit by using a source color key or
destination color key. This method always attempts an asynchronous blit if it is
supported by the hardware.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_EXCEPTION
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOBLTHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

dwX and dwY
The x- and y-coordinates to blit to on the destination surface.

lpDDSrcSurface
Address of the DirectDraw surface that is the source for the blit operation.

lpSrcRect
Address of a RECT structure that defines the upper-left and lower-right points of
the rectangle on the source surface to be blitted from.

dwTrans
Type of transfer.
DDBLTFAST_DESTCOLORKEY

Specifies a transparent blit that uses the destination's color key.
DDBLTFAST_NOCOLORKEY

Specifies a normal copy blit with no transparency.
DDBLTFAST_SRCCOLORKEY

Specifies a transparent blit that uses the source's color key.
DDBLTFAST_WAIT

Postpones the DDERR_WASSTILLDRAWING message if the blitter is
busy, and returns as soon as the blit can be set up or another error occurs.

Chapter 2 DirectDraw 103

This method works only on display memory surfaces and cannot clip when
blitting. The software implementation of IDirectDrawSurface2::BltFast is 10
percent faster than the IDirectDrawSurface2::Blt method. However, there is no
speed difference between the two if display hardware is being used.

Typically, IDirectDrawSurface2::BltFast returns immediately with an error if
the blitter is busy and the blit cannot be set up. You can use the
DDBLTFAST_WAIT flag, however, if you want this method to not return until
either the blit can be set up or another error occurs.

IDirectDrawSurface2::DeleteAttachedSurface
HRESULT DeleteAttachedSurface(DWORD dwFlags,
 LPDIRECTDRAWSURFACE2 lpDDSAttachedSurface);

Detaches two attached surfaces. The detached surface is not released.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_CANNOTDETACHSURFACE
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST
DDERR_SURFACENOTATTACHED

dwFlags
This parameter is currently not used and must be set to 0.

lpDDSAttachedSurface
Address of the DirectDraw surface to be detached. If this parameter is NULL, all
attached surfaces are detached.

Implicit attachments, those formed by DirectDraw rather than the
IDirectDrawSurface2::AddAttachedSurface method, cannot be detached.
Detaching surfaces from a flipping chain can alter other surfaces in the chain. If a
front buffer is detached from a flipping chain, the next surface in the chain
becomes the front buffer, and the following surface becomes the back buffer. If a
back buffer is detached from a chain, the following surface becomes a back
buffer. If a plain surface is detached from a chain, the chain simply becomes
shorter. If a flipping chain has only two surfaces and they are detached, the chain
is destroyed and both surfaces return to their previous designations.

See also IDirectDrawSurface2::Flip

IDirectDrawSurface2::EnumAttachedSurfaces
HRESULT EnumAttachedSurfaces(LPVOID lpContext,

 LPDDENUMSURFACESCALLBACK lpEnumSurfacesCallback);

Enumerates all the surfaces attached to a given surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

lpContext
Address of the application-defined structure that is passed to the enumeration
member every time it is called.

lpEnumSurfacesCallback
Address of the EnumSurfacesCallback function that will be called for each
surface that is attached to this surface.

IDirectDrawSurface2::EnumOverlayZOrders
HRESULT EnumOverlayZOrders(DWORD dwFlags, LPVOID lpContext,
 LPDDENUMSURFACESCALLBACK lpfnCallback);

Enumerates the overlay surfaces on the specified destination. The overlays can be
enumerated in front-to-back or back-to-front order.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

dwFlags
One of the following flags:
DDENUMOVERLAYZ_BACKTOFRONT

Enumerates overlays back to front.
DDENUMOVERLAYZ_FRONTTOBACK

Enumerates overlays front to back.

lpContext
Address of the user-defined context that will be passed to the callback function
for each overlay surface.

lpfnCallback
Address of the fnCallback function that will be called for each surface being
overlaid on this surface.

Chapter 2 DirectDraw 105

IDirectDrawSurface2::Flip
HRESULT Flip(
 LPDIRECTDRAWSURFACE2 lpDDSurfaceTargetOverride,
 DWORD dwFlags);

Makes the surface memory associated with the DDSCAPS_BACKBUFFER
surface become associated with the front-buffer surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOFLIPHW
DDERR_NOTFLIPPABLE
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

lpDDSurfaceTargetOverride
Address of the DirectDraw surface that will be flipped to. The default for this
parameter is NULL, in which case IDirectDrawSurface2::Flip cycles through
the buffers in the order they are attached to each other. This parameter is used
only as an override.

dwFlags
DDFLIP_WAIT

Typically, if the flip cannot be set up because the state of the display
hardware is not appropriate, the DDERR_WASSTILLDRAWING error
returns immediately and no flip occurs. Setting this flag causes
IDirectDrawSurface2::Flip to continue trying to flip if it receives the
DDERR_WASSTILLDRAWING error from the HAL.
IDirectDrawSurface2::Flip does not return until the flipping operation
has been successfully set up, or if another error, such as
DDERR_SURFACEBUSY, is returned.

This method can be called only by a surface that has the DDSCAPS_FLIP and
DDSCAPS_FRONTBUFFER values set. The display memory previously
associated with the front buffer is associated with the back buffer. If there is more
than one back buffer, a ring is formed and the surface memory buffers cycle one
step through it every time IDirectDrawSurface2::Flip is called.

The lpDDSurfaceTargetOverride parameter is used in rare cases when the back
buffer is not the buffer that should become the front buffer. Typically this
parameter is NULL.

The IDirectDrawSurface2::Flip method will always be synchronized with the
vertical blank.

See also IDirectDrawSurface2::GetFlipStatus

IDirectDrawSurface2::GetAttachedSurface
HRESULT GetAttachedSurface(LPDDSCAPS lpDDSCaps,
 LPDIRECTDRAWSURFACE2 FAR * lplpDDAttachedSurface);

Obtains the attached surface that has the specified capabilities.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTFOUND
DDERR_SURFACELOST

lpDDSCaps
Address of a DDSCAPS structure that contains the hardware capabilities of the
surface.

lplpDDAttachedSurface
Address of a pointer to a DirectDraw surface that will be attached to the current
DirectDraw surface specified by the lpDDSurface parameter in the
EnumSurfacesCallback callback function, and that has capabilities that match
those specified by the lpDDSCaps parameter.

Attachments are used to connect multiple DirectDrawSurface objects into
complex structures, like the ones needed to support 3D page flipping with z-
buffers. This method fails if more than one surface is attached that matches the
capabilities requested. In this case, the application must use the
IDirectDrawSurface2::EnumAttachedSurfaces method to obtain the attached
surfaces.

IDirectDrawSurface2::GetBltStatus
HRESULT GetBltStatus(DWORD dwFlags);

Obtains the blitter status.

· Returns DD_OK if a blitter is present, DDERR_WASSTILLDRAWING if the
blitter is busy, DDERR_NOBLTHW if there is no blitter, or one of the following
error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Chapter 2 DirectDraw 107

DDERR_NOBLTHW
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

dwFlags
One of the following flags:
DDGBS_CANBLT

Inquires whether a blit involving this surface can occur immediately, and
returns DD_OK if the blit can be completed.

DDGBS_ISBLTDONE
Inquires whether the blit is done, and returns DD_OK if the last blit on
this surface has completed.

IDirectDrawSurface2::GetCaps
HRESULT GetCaps(LPDDSCAPS lpDDSCaps);

Retrieves the capabilities of the surface. These capabilities are not necessarily
related to the capabilities of the display device.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDDSCaps
Address of a DDSCAPS structure that will be filled with the hardware
capabilities of the surface.

IDirectDrawSurface2::GetClipper
HRESULT GetClipper(LPDIRECTDRAWCLIPPER FAR * lplpDDClipper);

Retrieves the DirectDrawClipper object associated with this surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCLIPPERATTACHED

lplpDDClipper
Address of a pointer to the DirectDrawClipper object associated with the surface.

See also IDirectDrawSurface2::SetClipper

IDirectDrawSurface2::GetColorKey
HRESULT GetColorKey(DWORD dwFlags, LPDDCOLORKEY lpDDColorKey);

Retrieves the color key value for the DirectDrawSurface object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOCOLORKEY
DDERR_NOCOLORKEYHW
DDERR_SURFACELOST
DDERR_UNSUPPORTED

dwFlags
Determines which color key is requested.
DDCKEY_DESTBLT

Set if the structure specifies a color key or color space to be used as a
destination color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the structure specifies a color key or color space to be used as a
destination color key for overlay operations.

DDCKEY_SRCBLT
Set if the structure specifies a color key or color space to be used as a
source color key for blit operations.

DDCKEY_SRCOVERLAY
Set if the structure specifies a color key or color space to be used as a
source color key for overlay operations.

lpDDColorKey
Address of the DDCOLORKEY structure that will be filled with the current
values for the specified color key of the DirectDrawSurface object.

See also IDirectDrawSurface2::SetColorKey

IDirectDrawSurface2::GetDC
HRESULT GetDC(HDC FAR * lphDC);

Chapter 2 DirectDraw 109

Creates a GDI-compatible handle of a device context for the surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_DCALREADYCREATED
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

lphDC
Address for the returned handle of a device context.

This method uses an internal version of the IDirectDrawSurface2::Lock method
to lock the surface. The surface remains locked until the
IDirectDrawSurface2::ReleaseDC method is called.

See also IDirectDrawSurface2::Lock

IDirectDrawSurface2::GetDDInterface
HRESULT GetDDInterface(LPVOID FAR *lplpDD);

Retrieves an interface to the DirectDraw object that was used to create the
surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lplpDD
Address of a pointer that will be filled with a valid DirectDraw pointer if the call
succeeds.

This method was not implemented in the IDirectDraw interface.

IDirectDrawSurface2::GetFlipStatus
HRESULT GetFlipStatus(DWORD dwFlags);

Indicates whether the surface has finished its flipping process.

· Returns DD_OK if successful, DDERR_WASSTILLDRAWING if the surface
has not finished its flipping process, or one of the following error values
otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_UNSUPPORTED

dwFlags
One of the following flags:
DDGFS_CANFLIP

Inquires whether this surface can be flipped immediately and returns
DD_OK if the flip can be completed.

DDGFS_ISFLIPDONE
Inquires whether the flip has finished and returns DD_OK if the last flip
on this surface has completed.

See also IDirectDrawSurface2::Flip

IDirectDrawSurface2::GetOverlayPosition
HRESULT GetOverlayPosition(LPLONG lplX, LPLONG lplY);

Given a visible, active overlay surface (DDSCAPS_OVERLAY flag set), this
method returns the display coordinates of the surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDPOSITION
DDERR_NOOVERLAYDEST
DDERR_NOTAOVERLAYSURFACE
DDERR_OVERLAYNOTVISIBLE
DDERR_SURFACELOST

lplX and lplY
Addresses of the x- and y-display coordinates.

Chapter 2 DirectDraw 111

See also IDirectDrawSurface2::SetOverlayPosition,
IDirectDrawSurface2::UpdateOverlay

IDirectDrawSurface2::GetPalette
HRESULT GetPalette(LPDIRECTDRAWPALETTE FAR * lplpDDPalette);

Retrieves the DirectDrawPalette structure associated with this surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_NOPALETTEATTACHED
DDERR_SURFACELOST
DDERR_UNSUPPORTED

lplpDDPalette
Address of a pointer to a DirectDrawPalette structure associated with this surface.
This parameter will be set to NULL if no DirectDrawPalette structure is
associated with this surface. If the surface is the primary surface, or a back buffer
to the primary surface, and the primary surface is in 8-bpp mode, this parameter
will contain a pointer to the system palette.

See also IDirectDrawSurface2::SetPalette

IDirectDrawSurface2::GetPixelFormat
HRESULT GetPixelFormat(LPDDPIXELFORMAT lpDDPixelFormat);

Retrieves the color and pixel format of the surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE

lpDDPixelFormat
Address of the DDPIXELFORMAT structure that will be filled with a detailed
description of the current pixel and color space format of the surface.

IDirectDrawSurface2::GetSurfaceDesc
HRESULT GetSurfaceDesc(LPDDSURFACEDESC lpDDSurfaceDesc);

Retrieves a DDSURFACEDESC structure that describes the surface in its
current condition.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with the current
description of this surface.

See also DDSURFACEDESC

IDirectDrawSurface2::Initialize
HRESULT Initialize(LPDIRECTDRAW lpDD,
 LPDDSURFACEDESC lpDDSurfaceDesc);

Initializes a DirectDrawSurface object.

· Returns DDERR_ALREADYINITIALIZED.

lpDD
Address of the DirectDraw structure that represents the DirectDraw object.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with the relevant
details about the surface.

This method is provided for compliance with the Component Object Model
(COM) protocol. Because the DirectDrawSurface object is initialized when it is
created, this method always returns DDERR_ALREADYINITIALIZED.

See also IUnknown::AddRef, IUnknown::QueryInterface,
IUnknown::Release

IDirectDrawSurface2::IsLost
HRESULT IsLost();

Determines if the surface memory associated with a DirectDrawSurface object
has been freed.

· Returns DD_OK if the memory has not been freed, or one of the following error
values otherwise:

Chapter 2 DirectDraw 113

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

You can use this method to reallocate surface memory. When a
DirectDrawSurface object loses its surface memory, most methods return
DDERR_SURFACELOST and perform no other action.

Surfaces can lose their memory when the mode of the display card is changed, or
when an application receives exclusive access to the display card and frees all of
the surface memory currently allocated on the display card.

See also IDirectDrawSurface2::Restore

IDirectDrawSurface2::Lock
HRESULT Lock(LPRECT lpDestRect, LPDDSURFACEDESC lpDDSurfaceDesc,
 DWORD dwFlags, HANDLE hEvent);

Obtains a pointer to the surface memory.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY
DDERR_SURFACEBUSY
DDERR_SURFACELOST
DDERR_WASSTILLDRAWING

lpDestRect
Address of a RECT structure that identifies the region of surface that is being
locked.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with the relevant
details about the surface.

dwFlags
DDLOCK_EVENT

Triggers the event when IDirectDrawSurface2::Lock can return the
surface memory pointer requested. This flag is set if an event handle is
being passed to IDirectDrawSurface2::Lock. If multiple locks of this
type are placed on a surface, events are triggered in FIFO order.

DDLOCK_READONLY

Indicates that the surface being locked will only be read from.
DDLOCK_SURFACEMEMORYPTR

Indicates that a valid memory pointer to the top of the specified rectangle
should be returned. If no rectangle is specified, a pointer to the top of the
surface is returned. This is the default.

DDLOCK_WAIT
Typically, if a lock cannot be obtained because a blit operation is in
progress, a DDERR_WASSTILLDRAWING error will be returned
immediately. If this flag is set, however, IDirectDrawSurface2::Lock
retries until a lock is obtained or another error, such as
DDERR_SURFACEBUSY, occurs.

DDLOCK_WRITEONLY
Indicates that the surface being locked will only be written to.

hEvent
Handle of a system event that is triggered when the surface is ready to be locked.

After the pointer is obtained, your application can access the surface memory
until the corresponding IDirectDrawSurface2::Unlock method is called. After
this method is called, the pointer to the surface memory is no longer valid.

Your application cannot blit from a region of a surface that is locked. If a blit is
attempted on a locked surface, the blit returns either a DDERR_SURFACEBUSY
or DDERR_LOCKEDSURFACES error value.

Typically, IDirectDrawSurface2::Lock returns immediately with an error when
a lock cannot be obtained because a blit is in progress. You can use the
DDLOCK_WAIT flag if you want the method to continue trying to obtain a lock.

To prevent display memory from being lost during access to a surface,
DirectDraw holds the Win16 lock between IDirectDrawSurface2::Lock and
IDirectDrawSurface2::Unlock operations. The Win16 lock is the critical
section that serializes access to GDI and USER. Although this technique allows
direct access to display memory and prevents other applications from changing
the mode during this access, it stops Windows from running, so
IDirectDrawSurface2::Lock/IDirectDrawSurface2::Unlock and
IDirectDrawSurface2::GetDC/IDirectDrawSurface2::ReleaseDC periods
should be kept short. Unfortunately, because Windows is stopped, GUI
debuggers cannot be used between
IDirectDrawSurface2::Lock/IDirectDrawSurface2::Unlock or
IDirectDrawSurface2::GetDC/IDirectDrawSurface2::ReleaseDC operations.

See also IDirectDrawSurface2::Unlock, IDirectDrawSurface2::GetDC,
IDirectDrawSurface2::ReleaseDC

Chapter 2 DirectDraw 115

IDirectDrawSurface2::PageLock
HRESULT PageLock(DWORD dwFlags);

Prevents a system-memory surface from being paged out while a blit operation
using direct memory access (DMA) transfers to or from system memory is in
progress.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_CANTPAGELOCK
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST

dwFlags
This parameter is currently not used and must be set to 0.

The performance of the operating system could be negatively affected if too
much memory is locked.

A lock count is maintained for each surface and is incremented each time
IDirectDrawSurface2::PageLock is called for that surface. The count is
decremented when IDirectDrawSurface2::PageUnlock is called. When the
count reaches 0, the memory is unlocked and can then be paged by the operating
system.

This method works only on system-memory surfaces; it will not page lock a
display-memory surface or an emulated primary surface. If an application calls
this method on a display memory surface, the method will do nothing except
return DD_OK.

This method was not implemented in the IDirectDraw interface.

See also IDirectDrawSurface2::PageUnlock

IDirectDrawSurface2::PageUnlock
HRESULT PageUnlock(DWORD dwFlags);

Unlocks a system-memory surface, allowing it to be paged out.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_CANTPAGEUNLOCK
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTPAGELOCKED

DDERR_SURFACELOST

dwFlags
This parameter is currently not used and must be set to 0.

A lock count is maintained for each surface and is incremented each time
IDirectDrawSurface2::PageLock is called for that surface. The count is
decremented when IDirectDrawSurface2::PageUnlock is called. When the
count reaches 0, the memory is unlocked and can then be paged by the operating
system.

This method works only on system-memory surfaces; it will not page unlock a
display-memory surface or an emulated primary surface. If an application calls
this method on a display-memory surface, this method will do nothing except
return DD_OK.

This method was not implemented in the IDirectDraw interface.

See also IDirectDrawSurface2::PageLock

IDirectDrawSurface2::ReleaseDC
HRESULT ReleaseDC(HDC hDC);

Releases the handle of a device context previously obtained by using the
IDirectDrawSurface2::GetDC method.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST
DDERR_UNSUPPORTED

hDC
Handle of a device context previously obtained by
IDirectDrawSurface2::GetDC.

This method also unlocks the surface previously locked when the
IDirectDrawSurface2::GetDC method was called.

See also IDirectDrawSurface2::GetDC

IDirectDrawSurface2::Restore
HRESULT Restore();

Chapter 2 DirectDraw 117

Restores a surface that has been lost. This occurs when the surface memory
associated with the DirectDrawSurface object has been freed.

· Returns DD_OK is successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_IMPLICITLYCREATED
DDERR_INCOMPATIBLEPRIMARY
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOEXCLUSIVEMODE
DDERR_OUTOFMEMORY
DDERR_UNSUPPORTED
DDERR_WRONGMODE

Surfaces can be lost because the mode of the display card was changed or
because an application received exclusive access to the display card and freed all
of the surface memory currently allocated on the card. When a
DirectDrawSurface object loses its surface memory, many methods will return
DDERR_SURFACELOST and perform no other function. The
IDirectDrawSurface2::Restore method will reallocate surface memory and
reattach it to the DirectDrawSurface object.

A single call to this method will restore a DirectDrawSurface object's associated
implicit surfaces (back buffers, and so on). An attempt to restore an implicitly
created surface will result in an error. IDirectDrawSurface2::Restore will not
work across explicit attachments created by using the
IDirectDrawSurface2::AddAttachedSurface method — each of these surfaces
must be restored individually.

See also IDirectDrawSurface2::IsLost,
IDirectDrawSurface2::AddAttachedSurface

IDirectDrawSurface2::SetClipper
HRESULT SetClipper(LPDIRECTDRAWCLIPPER lpDDClipper);

Attaches a DirectDrawClipper object to a DirectDrawSurface object.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE

DDERR_NOCLIPPERATTACHED

lpDDClipper
Address of the DirectDrawClipper structure representing the DirectDrawClipper
object that will be attached to the DirectDrawSurface object. If this parameter is
NULL, the current DirectDrawClipper object will be detached.

This method is primarily used by surfaces that are being overlaid on or blitted to
the primary surface. However, it can be used on any surface. After a
DirectDrawClipper object has been attached and a clip list is associated with it,
the DirectDrawClipper object will be used for the IDirectDrawSurface2::Blt,
IDirectDrawSurface2::BltBatch, and IDirectDrawSurface2::UpdateOverlay
operations involving the parent DirectDrawSurface object. This method can also
detach a DirectDrawSurface object's current DirectDrawClipper object.

If this method is called several times consecutively on the same surface for the
same DirectDrawClipper object, the reference count for the object is incremented
only once. Subsequent calls do not affect the object's reference count.

See also IDirectDrawSurface2::GetClipper

IDirectDrawSurface2::SetColorKey
HRESULT SetColorKey(DWORD dwFlags, LPDDCOLORKEY lpDDColorKey);

Sets the color key value for the DirectDrawSurface object if the hardware
supports color keys on a per surface basis.

· Returns DD_OK is successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_NOOVERLAYHW
DDERR_NOTAOVERLAYSURFACE
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_WASSTILLDRAWING

dwFlags
Determines which color key is requested.
DDCKEY_COLORSPACE

Set if the structure contains a color space. Not set if the structure contains

Chapter 2 DirectDraw 119

a single color key.
DDCKEY_DESTBLT

Set if the structure specifies a color key or color space to be used as a
destination color key for blit operations.

DDCKEY_DESTOVERLAY
Set if the structure specifies a color key or color space to be used as a
destination color key for overlay operations.

DDCKEY_SRCBLT
Set if the structure specifies a color key or color space to be used as a
source color key for blit operations.

DDCKEY_SRCOVERLAY
Set if the structure specifies a color key or color space to be used as a
source color key for overlay operations.

lpDDColorKey
Address of the DDCOLORKEY structure that contains the new color key values
for the DirectDrawSurface object.

See also IDirectDrawSurface2::GetColorKey

IDirectDrawSurface2::SetOverlayPosition
HRESULT SetOverlayPosition(LONG lX, LONG lY);

Changes the display coordinates of an overlay surface.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_SURFACELOST
DDERR_UNSUPPORTED

lX and lY
New x- and y-display coordinates.

See also IDirectDrawSurface2::GetOverlayPosition,
IDirectDrawSurface2::UpdateOverlay

IDirectDrawSurface2::SetPalette
HRESULT SetPalette(LPDIRECTDRAWPALETTE lpDDPalette);

Attaches the specified DirectDrawPalette object to a surface. The surface uses
this palette for all subsequent operations. The palette change takes place
immediately, without regard to refresh timing.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_NOEXCLUSIVEMODE
DDERR_NOPALETTEATTACHED
DDERR_NOPALETTEHW
DDERR_NOT8BITCOLOR
DDERR_SURFACELOST
DDERR_UNSUPPORTED

lpDDPalette
Address of the DirectDrawPalette structure that this surface should use for future
operations.

If this method is called several times consecutively on the same surface for the
same palette, the reference count for the palette is incremented only once.
Subsequent calls do not affect the palette's reference count.

See also IDirectDrawSurface2::GetPalette, IDirectDraw2::CreatePalette

IDirectDrawSurface2::Unlock
HRESULT Unlock(LPVOID lpSurfaceData);

Notifies DirectDraw that the direct surface manipulations are complete.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_NOTLOCKED
DDERR_SURFACELOST

Chapter 2 DirectDraw 121

lpSurfaceData
Address of a pointer returned by the IDirectDrawSurface2::Lock method.
Because it is possible to call IDirectDrawSurface2::Lock multiple times for the
same surface with different destination rectangles, this pointer links the calls to
the IDirectDrawSurface2::Lock and IDirectDrawSurface2::Unlock methods.

See also IDirectDrawSurface2::Lock

IDirectDrawSurface2::UpdateOverlay
HRESULT UpdateOverlay(LPRECT lpSrcRect,
 LPDIRECTDRAWSURFACE2 lpDDDestSurface,
 LPRECT lpDestRect, DWORD dwFlags,
 LPDDOVERLAYFX lpDDOverlayFx);

Repositions or modifies the visual attributes of an overlay surface. These surfaces
must have the DDSCAPS_OVERLAY value set.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_GENERIC
DDERR_HEIGHTALIGN
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDRECT
DDERR_INVALIDSURFACETYPE
DDERR_NOSTRETCHHW
DDERR_NOTAOVERLAYSURFACE
DDERR_SURFACELOST
DDERR_UNSUPPORTED
DDERR_XALIGN

lpSrcRect
Address of a RECT structure that defines the x, y, width, and height of the region
on the source surface being used as the overlay.

lpDDDestSurface
Address of the DirectDraw surface that is being overlaid.

lpDestRect
Address of a RECT structure that defines the x, y, width, and height of the region
on the destination surface that the overlay should be moved to.

dwFlags
DDOVER_ADDDIRTYRECT

Adds a dirty rectangle to an emulated overlaid surface.

DDOVER_ALPHADEST
Uses either the alpha information in pixel format or the alpha channel
surface attached to the destination surface as the alpha channel for this
overlay.

DDOVER_ALPHADESTCONSTOVERRIDE
Uses the dwAlphaDestConst member of the DDOVERLAYFX
structure as the destination alpha channel for this overlay.

DDOVER_ALPHADESTNEG
Indicates that the destination surface becomes more transparent as the
alpha value increases (0 is opaque).

DDOVER_ALPHADESTSURFACEOVERRIDE
Uses the lpDDSAlphaDest member of the DDOVERLAYFX structure
as the alpha channel destination for this overlay.

DDOVER_ALPHAEDGEBLEND
Uses the dwAlphaEdgeBlend member of the DDOVERLAYFX
structure as the alpha channel for the edges of the image that border the
color key colors.

DDOVER_ALPHASRC
Uses either the alpha information in pixel format or the alpha channel
surface attached to the source surface as the source alpha channel for this
overlay.

DDOVER_ALPHASRCCONSTOVERRIDE
Uses the dwAlphaSrcConst member of the DDOVERLAYFX structure
as the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG
Indicates that the source surface becomes more transparent as the alpha
value increases (0 is opaque).

DDOVER_ALPHASRCSURFACEOVERRIDE
Uses the lpDDSAlphaSrc member of the DDOVERLAYFX structure as
the alpha channel source for this overlay.

DDOVER_DDFX
Uses the overlay FX flags to define special overlay effects.

DDOVER_HIDE
Turns this overlay off.

DDOVER_KEYDEST
Uses the color key associated with the destination surface.

DDOVER_KEYDESTOVERRIDE
Uses the dckDestColorkey member of the DDOVERLAYFX structure
as the color key for the destination surface.

DDOVER_KEYSRC

Chapter 2 DirectDraw 123

Uses the color key associated with the source surface.
DDOVER_KEYSRCOVERRIDE

Uses the dckSrcColorkey member of the DDOVERLAYFX structure as
the color key for the source surface.

DDOVER_SHOW
Turns this overlay on.

DDOVER_ZORDER
Uses the dwZOrderFlags member of the DDOVERLAYFX structure as
the z-order for the display of this overlay. The lpDDSRelative member is
used if the dwZOrderFlags member is set to either
DDOVERZ_INSERTINBACKOF or
DDOVERZ_INSERTINFRONTOF.

lpDDOverlayFx
See the DDOVERLAYFX structure.

IDirectDrawSurface2::UpdateOverlayDisplay
HRESULT UpdateOverlayDisplay(DWORD dwFlags);

Repaints the rectangles in the dirty rectangle list of all active overlays. This clears
the dirty rectangle list. This method is for software emulation only—it does
nothing if the hardware supports overlays.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_INVALIDSURFACETYPE
DDERR_UNSUPPORTED

dwFlags
Type of update to perform. One of the following flags:
DDOVER_REFRESHDIRTYRECTS

Updates the overlay display using the list of dirty rectangles previously
constructed for this destination. This clears the dirty rectangle list.

DDOVER_REFRESHALL
Ignores the dirty rectangle list and updates the overlay display
completely. This clears the dirty rectangle list.

See also IDirectDrawSurface2::AddOverlayDirtyRect

IDirectDrawSurface2::UpdateOverlayZOrder
HRESULT UpdateOverlayZOrder(DWORD dwFlags,
 LPDIRECTDRAWSURFACE2 lpDDSReference);

Sets the z-order of an overlay.

· Returns DD_OK if successful, or one of the following error values otherwise:
DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_NOTAOVERLAYSURFACE

dwFlags
One of the following flags:
DDOVERZ_INSERTINBACKOF

Inserts this overlay in the overlay chain behind the reference overlay.
DDOVERZ_INSERTINFRONTOF

Inserts this overlay in the overlay chain in front of the reference overlay.
DDOVERZ_MOVEBACKWARD

Moves this overlay one position backward in the overlay chain.
DDOVERZ_MOVEFORWARD

Moves this overlay one position forward in the overlay chain.
DDOVERZ_SENDTOBACK

Moves this overlay to the back of the overlay chain.
DDOVERZ_SENDTOFRONT

Moves this overlay to the front of the overlay chain.

lpDDSReference
Address of the DirectDraw surface to be used as a relative position in the overlay
chain. This parameter is needed only for DDOVERZ_INSERTINBACKOF and
DDOVERZ_INSERTINFRONTOF.

See also IDirectDrawSurface2::EnumOverlayZOrders

Structures

DDBLTBATCH
typedef struct _DDBLTBATCH{
 LPRECT lprDest;
 LPDIRECTDRAWSURFACE lpDDSSrc;
 LPRECT lprSrc;
 DWORD dwFlags;

Chapter 2 DirectDraw 125

 LPDDBLTFX lpDDBltFx;
} DDBLTBATCH,FAR *LPDDBLTBATCH;

Passes blit operations to the IDirectDrawSurface2::BltBatch method.

lprDest
Address of a RECT structure that defines the destination for the blit.

lpDDSSrc
Address of a DirectDrawSurface object that will be the source of the blit.

lprSrc
Address of a RECT structure that defines the source rectangle of the blit.

dwFlags
Optional control flags.
DDBLT_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel
surface attached to the destination surface as the alpha channel for this
blit.

DDBLT_ALPHADESTCONSTOVERRIDE
Uses the dwAlphaDestConst member of the DDBLTFX structure as the
alpha channel for the destination surface for this blit.

DDBLT_ALPHADESTNEG
Indicates that the destination surface becomes more transparent as the
alpha value increases (0 is opaque).

DDBLT_ALPHADESTSURFACEOVERRIDE
Uses the lpDDSAlphaDest member of the DDBLTFX structure as the
alpha channel for the destination surface for this blit.

DDBLT_ALPHAEDGEBLEND
Uses the dwAlphaEdgeBlend member of the DDBLTFX structure as the
alpha channel for the edges of the image that border the color key colors.

DDBLT_ALPHASRC
Uses either the alpha information in pixel format or the alpha channel
surface attached to the source surface as the alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE
Uses the dwAlphaSrcConst member of the DDBLTFX structure as the
source alpha channel for this blit.

DDBLT_ALPHASRCNEG
Indicates that the source surface becomes more transparent as the alpha
value increases (0 is opaque).

DDBLT_ALPHASRCSURFACEOVERRIDE
Uses the lpDDSAlphaSrc member of the DDBLTFX structure as the
alpha channel source for this blit.

DDBLT_ASYNC
Processes this blit asynchronously through the FIFO hardware in the
order received. If there is no room in the FIFO hardware, the call fails.

DDBLT_COLORFILL
Uses the dwFillColor member of the DDBLTFX structure as the RGB
color that fills the destination rectangle on the destination surface.

DDBLT_DDFX
Uses the dwDDFX member of the DDBLTFX structure to specify the
effects to be used for this blit.

DDBLT_DDROPS
Uses the dwDDROPS member of the DDBLTFX structure to specify the
raster operations (ROPs) that are not part of the Win32 API.

DDBLT_KEYDEST
Uses the color key associated with the destination surface.

DDBLT_KEYDESTOVERRIDE
Uses the dckDestColorkey member of the DDBLTFX structure as the
color key for the destination surface.

DDBLT_KEYSRC
Uses the color key associated with the source surface.

DDBLT_KEYSRCOVERRIDE
Uses the dckSrcColorkey member of the DDBLTFX structure as the
color key for the source surface.

DDBLT_ROP
Uses the dwROP member of the DDBLTFX structure for the ROP for
this blit. The ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE
Uses the dwRotationAngle member of the DDBLTFX structure as the
rotation angle (specified in 1/100th of a degree) for the surface.

DDBLT_ZBUFFER
Performs a z-buffered blit using the z-buffers attached to the source and
destination surfaces and the dwZBufferOpCode member of the
DDBLTFX structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE
Performs a z-buffered blit using the dwZDestConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERDESTOVERRIDE
Performs a z-buffered blit using the lpDDSZBufferDest and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the destination.

Chapter 2 DirectDraw 127

DDBLT_ZBUFFERSRCCONSTOVERRIDE
Performs a z-buffered blit using the dwZSrcConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the source.

DDBLT_ZBUFFERSRCOVERRIDE
A z-buffered blit using the lpDDSZBufferSrc and dwZBufferOpCode
members of the DDBLTFX structure as the z-buffer and z-buffer opcode,
respectively, for the source.

lpDDBltFx
Address of a DDBLTFX structure specifying additional blit effects.

DDBLTFX
typedef struct _DDBLTFX{
 DWORD dwSize;
 DWORD dwDDFX;
 DWORD dwROP;
 DWORD dwDDROP;
 DWORD dwRotationAngle;
 DWORD dwZBufferOpCode;
 DWORD dwZBufferLow;
 DWORD dwZBufferHigh;
 DWORD dwZBufferBaseDest;
 DWORD dwZDestConstBitDepth;
union
{
 DWORD dwZDestConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferDest;
};
 DWORD dwZSrcConstBitDepth;
union
{
 DWORD dwZSrcConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferSrc;

};
 DWORD dwAlphaEdgeBlendBitDepth;
 DWORD dwAlphaEdgeBlend;
 DWORD dwReserved;
 DWORD dwAlphaDestConstBitDepth;
union
{
 DWORD dwAlphaDestConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaDest;
};
 DWORD dwAlphaSrcConstBitDepth;
union
{

 DWORD dwAlphaSrcConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;
};
union
{
 DWORD dwFillColor;
 DWORD dwFillDepth;
 LPDIRECTDRAWSURFACE lpDDSPattern;
};
DDCOLORKEY ddckDestColorkey;
DDCOLORKEY ddckSrcColorkey;
} DDBLTFX,FAR* LPDDBLTFX;

Passes raster operations, effects, and override information to the
IDirectDrawSurface2::Blt method. This structure is also part of the
DDBLTBATCH structure used with the IDirectDrawSurface2::BltBatch
method.

dwSize
Size of the structure. This member must be initialized before the structure is
used.

dwDDFX
Type of FX operations.
DDBLTFX_ARITHSTRETCHY

Uses arithmetic stretching along the y-axis for this blit.
DDBLTFX_MIRRORLEFTRIGHT

Turns the surface on its y-axis. This blit mirrors the surface from left to
right.

DDBLTFX_MIRRORUPDOWN
Turns the surface on its x-axis. This blit mirrors the surface from top to
bottom.

DDBLTFX_NOTEARING
Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180
Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270
Rotates the surface 270 degrees clockwise during this blit.

DDBLTFX_ROTATE90
Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST
Adds the dwZBufferBaseDest member to each of the source z-values
before comparing them with the destination z-values during this z-blit.

DDBLTFX_ZBUFFERRANGE

Chapter 2 DirectDraw 129

Uses the dwZBufferLow and dwZBufferHigh members as range values
to specify limits to the bits copied from a source surface during this z-blit.

dwROP
Win32 raster operations.

dwDDROP
DirectDraw raster operations.

dwRotationAngle
Rotation angle for the blit.

dwZBufferOpCode
Z-buffer compares.

dwZBufferLow
Low limit of a z-buffer.

dwZBufferHigh
High limit of a z-buffer.

dwZBufferBaseDest
Destination base value of a z-buffer.

dwZDestConstBitDepth
Bit depth of the destination z-constant.

dwZDestConst
Constant used as the z-buffer destination.

lpDDSZBufferDest
Surface used as the z-buffer destination.

dwZSrcConstBitDepth
Bit depth of the source z-constant.

dwZSrcConst
Constant used as the z-buffer source.

lpDDSZBufferSrc
Surface used as the z-buffer source.

dwAlphaEdgeBlendBitDepth
Bit depth of the constant for an alpha edge blend.

dwAlphaEdgeBlend
Alpha constant used for edge blending.

dwReserved
Reserved for future use.

dwAlphaDestConstBitDepth
Bit depth of the destination alpha constant.

dwAlphaDestConst
Constant used as the alpha channel destination.

lpDDSAlphaDest
Surface used as the alpha channel destination.

dwAlphaSrcConstBitDepth
Bit depth of the source alpha constant.

dwAlphaSrcConst
Constant used as the alpha channel source.

lpDDSAlphaSrc
Surface used as the alpha channel source.

dwFillColor
Color used to fill a surface when DDBLT_COLORFILL is specified. This value
can be either an RGB triple or a palette index, depending on the surface type.

dwFillDepth
Depth value for the z-buffer.

lpDDSPattern
Surface to use as a pattern. The pattern can be used in certain blit operations that
combine a source and a destination.

ddckDestColorkey
Destination color key override.

ddckSrcColorkey
Source color key override.

DDCAPS
typedef struct _DDCAPS{
 DWORD dwSize;
 DWORD dwCaps;
 DWORD dwCaps2;
 DWORD dwCKeyCaps;
 DWORD dwFXCaps;
 DWORD dwFXAlphaCaps;
 DWORD dwPalCaps;
 DWORD dwSVCaps;
 DWORD dwAlphaBltConstBitDepths;
 DWORD dwAlphaBltPixelBitDepths;
 DWORD dwAlphaBltSurfaceBitDepths;
 DWORD dwAlphaOverlayConstBitDepths;
 DWORD dwAlphaOverlayPixelBitDepths;
 DWORD dwAlphaOverlaySurfaceBitDepths;
 DWORD dwZBufferBitDepths;

 DWORD dwVidMemTotal;
 DWORD dwVidMemFree;
 DWORD dwMaxVisibleOverlays;
 DWORD dwCurrVisibleOverlays;
 DWORD dwNumFourCCCodes;
 DWORD dwAlignBoundarySrc;
 DWORD dwAlignSizeSrc;
 DWORD dwAlignBoundaryDest;

Chapter 2 DirectDraw 131

 DWORD dwAlignSizeDest;
 DWORD dwAlignStrideAlign;
 DWORD dwRops[DD_ROP_SPACE];
 DDSCAPS ddsCaps;
 DWORD dwMinOverlayStretch;
 DWORD dwMaxOverlayStretch;
 DWORD dwMinLiveVideoStretch;

 DWORD dwMaxLiveVideoStretch;
 DWORD dwMinHwCodecStretch;
 DWORD dwMaxHwCodecStretch;
 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwReserved3;
 DWORD dwSVBCaps;
 DWORD dwSVBCKeyCaps;
 DWORD dwSVBFXCaps;
 DWORD dwSVBRops[DD_ROP_SPACE];
 DWORD dwVSBCaps;
 DWORD dwVSBCKeyCaps;
 DWORD dwVSBFXCaps;
 DWORD dwVSBRops[DD_ROP_SPACE];
 DWORD dwSSBCaps;
 DWORD dwSSBCKeyCaps;

 DWORD dwSSBCFXCaps;
 DWORD dwSSBRops[DD_ROP_SPACE];
 DWORD dwReserved4;
 DWORD dwReserved5;
 DWORD dwReserved6;

} DDCAPS,FAR* LPDDCAPS;

Represents the capabilities of the hardware exposed through the DirectDraw
object. This structure contains a DDSCAPS structure used in this context to
describe what kinds of DirectDrawSurface objects can be created. It may not be
possible to simultaneously create all of the surfaces described by these
capabilities. This structure is used with the IDirectDraw2::GetCaps and
IDirectDrawPalette::GetCaps methods.

dwSize
Size of the structure. This member must be initialized before the structure is
used.

dwCaps
Driver-specific capabilities.
DDCAPS_3D

Indicates that the display hardware has 3D acceleration.
DDCAPS_ALIGNBOUNDARYDEST

Indicates that DirectDraw will support only those source rectangles with
the x-axis aligned to the dwAlignBoundaryDest boundaries of the
surface.

DDCAPS_ALIGNBOUNDARYSRC
Indicates that DirectDraw will support only those source rectangles with
the x-axis aligned to the dwAlignBoundarySrc boundaries of the
surface.

DDCAPS_ALIGNSIZEDEST
Indicates that DirectDraw will support only those source rectangles
whose x-axis sizes, in bytes, are dwAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC
Indicates that DirectDraw will support only those source rectangles
whose x-axis sizes, in bytes, are dwAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE
Indicates that DirectDraw will create display memory surfaces that have a
stride alignment equal to the dwAlignStrideAlign value.

DDCAPS_ALPHA
Indicates that the display hardware supports an alpha channel during blit
operations.

DDCAPS_BANKSWITCHED
Indicates that the display hardware is bank-switched and is potentially
very slow at random access to display memory.

DDCAPS_BLT
Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL
Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL
Indicates that display hardware is capable of depth filling z-buffers with a
blitter.

DDCAPS_BLTFOURCC
Indicates that display hardware is capable of color-space conversions
during blit operations.

DDCAPS_BLTQUEUE
Indicates that display hardware is capable of asynchronous blit
operations.

DDCAPS_BLTSTRETCH
Indicates that display hardware is capable of stretching during blit
operations.

DDCAPS_CANBLTSYSMEM

Chapter 2 DirectDraw 133

Indicates that display hardware is capable of blitting to or from system
memory.

DDCAPS_CANCLIP
Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED
Indicates that display hardware is capable of clipping while stretch
blitting.

DDCAPS_COLORKEY
Supports some form of color key in either overlay or blit operations. More
specific color key capability information can be found in the
dwCKeyCaps member.

DDCAPS_COLORKEYHWASSIST
Indicates that the color key is hardware assisted.

DDCAPS_GDI
Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE
Indicates that there is no hardware support.

DDCAPS_OVERLAY
Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP
Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC
Indicates that overlay hardware is capable of color-space conversions
during overlay operations.

DDCAPS_OVERLAYSTRETCH
Indicates that overlay hardware is capable of stretching.

DDCAPS_PALETTE
Indicates that DirectDraw is capable of creating and supporting
DirectDrawPalette objects for more surfaces than only the primary
surface.

DDCAPS_PALETTEVSYNC
Indicates that DirectDraw is capable of updating a palette synchronized
with the vertical refresh.

DDCAPS_READSCANLINE
Indicates that display hardware is capable of returning the current
scanline.

DDCAPS_STEREOVIEW
Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI

Indicates that display hardware is capable of generating a vertical-blank
interrupt.

DDCAPS_ZBLTS
Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS
Supports the use of the IDirectDrawSurface2::UpdateOverlayZOrder
method as a z-value for overlays to control their layering.

dwCaps2
More driver-specific capabilities.
DDCAPS2_CERTIFIED

Indicates that display hardware is certified.
DDCAPS2_NO2DDURING3DSCENE

Indicates that 2D operations such as IDirectDrawSurface2::Blt and
IDirectDrawSurface2::Lock cannot be performed on any surfaces that
Direct3D is using between calls to the IDirect3DDevice::BeginScene
and IDirect3DDevice::EndScene methods.

dwCKeyCaps
Color-key capabilities.
DDCKEYCAPS_DESTBLT

Supports transparent blitting with a color key that identifies the
replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE
Supports transparent blitting with a color space that identifies the
replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV
Supports transparent blitting with a color space that identifies the
replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV
Supports transparent blitting with a color key that identifies the
replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY
Supports overlaying with color keying of the replaceable bits of the
destination surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE
Supports a color space as the color key for the destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV
Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE

Chapter 2 DirectDraw 135

Supports only one active destination color key value for visible overlay
surfaces.

DDCKEYCAPS_DESTOVERLAYYUV
Supports overlaying using color keying of the replaceable bits of the
destination surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY
Indicates there are no bandwidth trade-offs for using the color key with an
overlay.

DDCKEYCAPS_SRCBLT
Supports transparent blitting using the color key for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE
Supports transparent blitting using a color space for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV
Supports transparent blitting using a color space for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV
Supports transparent blitting using the color key for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY
Supports overlaying using the color key for the source with this overlay
surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE
Supports overlaying using a color space as the source color key for the
overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV
Supports overlaying using a color space as the source color key for the
overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE
Supports only one active source color key value for visible overlay
surfaces.

DDCKEYCAPS_SRCOVERLAYYUV
Supports overlaying using the color key for the source with this overlay
surface for YUV colors.

dwFXCaps
Driver-specific stretching and effects capabilities.
DDFXCAPS_BLTARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during a blit operation. Occurs along the y-

axis (vertically).
DDFXCAPS_BLTARITHSTRETCHYN

Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during a blit operation. Occurs along the y-
axis (vertically), and works only for integer stretching (1, 2, and so
on).

DDFXCAPS_BLTMIRRORLEFTRIGHT
Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN
Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION
Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90
Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally).
This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-
axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This
flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN
Supports integer shrinking (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally).
This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-
axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY
Supports arbitrary stretching of a surface along the y-axis (vertically).
This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_OVERLAYARITHSTRETCHY

Chapter 2 DirectDraw 137

Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during an overlay operation. Occurs along the
y-axis (vertically).

DDFXCAPS_OVERLAYARITHSTRETCHYN
Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during an overlay operation. Occurs along the
y-axis (vertically), and works only for integer stretching (1, 2, and so
on).

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT
Supports mirroring of overlays around the vertical axis.

DDFXCAPS_OVERLAYMIRRORUPDOWN
Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX
Supports arbitrary shrinking of a surface along the x-axis (horizontally).
This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag
indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSHRINKXN
Supports integer shrinking (1, 2, and so on) of a surface along the x-
axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKY
Supports arbitrary shrinking of a surface along the y-axis (vertically). This
flag is valid only for DDSCAPS_OVERLAY surfaces. This flag indicates
only the capabilities of a surface; it does not indicate that shrinking is
available.

DDFXCAPS_OVERLAYSHRINKYN
Supports integer shrinking (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX
Supports arbitrary stretching of a surface along the x-axis (horizontally).
This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag
indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYSTRETCHXN
Supports integer stretching (1, 2, and so on) of a surface along the x-
axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically).
This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag
indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYSTRETCHYN
Supports integer stretching (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that stretching is available.

dwFXAlphaCaps
Driver-specific alpha capabilities.
DDFXALPHACAPS_BLTALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface.
Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS
Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value
becomes more opaque as the alpha value increases. Regardless of the
depth of the alpha information, 0 is always the fully transparent value.
Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value
becomes more transparent as the alpha value increases. Regardless of the
depth of the alpha information, 0 is always the fully opaque value. This
flag can be used only if DDCAPS_ALPHA is set. Used for blit
operations.

DDFXALPHACAPS_BLTALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can
be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always
the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha
value increases. The depth of the alpha channel data can be 1, 2, 4, or 8.
Regardless of the depth of the alpha information, 0 is always the fully
opaque value. This flag can be set only if
DDFXCAPS_ALPHASURFACES has been set. Used for blit operations.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND
Supports alpha blending around the edge of a source color-keyed surface.
Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS
Supports alpha information in pixel format. The bit depth of alpha

Chapter 2 DirectDraw 139

information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more opaque as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully transparent value. Used for
overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG
Supports alpha information in pixel format. The bit depth of alpha
information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more transparent as the alpha value increases. Regardless of the depth of
the alpha information, 0 is always the fully opaque value. This flag can be
used only if DDFXCAPS_ALPHAPIXELS has been set. Used for
overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES
Supports alpha-only surfaces. The bit depth of an alpha-only surface can
be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always
the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG
Indicates that the alpha channel becomes more transparent as the alpha
value increases. The depth of the alpha channel data can be 1, 2, 4, or 8.
Regardless of the depth of the alpha information, 0 is always the fully
opaque value. This flag can be used only if
DDFXCAPS_ALPHASURFACES has been set. Used for overlays.

dwPalCaps
Palette capabilities.
DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.
DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.
DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.
DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.
DDPCAPS_8BITENTRIES

Specifies an index to an 8-bit color index. This field is valid only when
used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT
capability and when the target surface is in 8 bits per pixel (bpp). Each
color entry is 1 byte long and is an index to an 8-bpp palette on the
destination surface.

DDPCAPS_ALLOW256
Indicates that this palette can have all 256 entries defined.

DDPCAPS_PRIMARYSURFACE

Indicates that the palette is attached to the primary surface. Changing the
palette has an immediate effect on the display unless the
DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT
Indicates that the palette is attached to the primary surface on the left.
Changing the palette has an immediate effect on the display unless the
DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_VSYNC
Indicates that the palette can be modified synchronously with the
monitor's refresh rate.

dwSVCaps
Stereo vision capabilities.
DDSVCAPS_ENIGMA

Indicates that the stereo view is accomplished using Enigma encoding.
DDSVCAPS_FLICKER

Indicates that the stereo view is accomplished using high-frequency
flickering.

DDSVCAPS_REDBLUE
Indicates that the stereo view is accomplished when the viewer looks at
the image through red and blue filters placed over the left and right eyes.
All images must adapt their color spaces for this process.

DDSVCAPS_SPLIT
Indicates that the stereo view is accomplished with split-screen
technology.

dwAlphaBltConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaBltPixelBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaBltSurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaOverlayConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaOverlayPixelBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaOverlaySurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

Chapter 2 DirectDraw 141

dwZBufferBitDepths
DDBD_8, DDBD_16, DDBD_24, or DDBD_32. (Indicates 8-, 16-, 24-, or 32-bits
per pixel.)

dwVidMemTotal
Total amount of display memory.

dwVidMemFree
Amount of free display memory.

dwMaxVisibleOverlays
Maximum number of visible overlays.

dwCurrVisibleOverlays
Current number of visible overlays.

dwNumFourCCCodes
Number of FourCC codes.

dwAlignBoundarySrc
Source rectangle alignment.

dwAlignSizeSrc
Source rectangle byte size.

dwAlignBoundaryDest
Destination rectangle alignment.

dwAlignSizeDest
Destination rectangle byte size.

dwAlignStrideAlign
Stride alignment.

dwRops[DD_ROP_SPACE]
Raster operations supported.

ddsCaps
DDSCAPS structure with general capabilities.

dwMinOverlayStretch and dwMaxOverlayStretch
Minimum and maximum overlay stretch factors multiplied by 1000. For
example, 1.3 = 1300.

dwMinLiveVideoStretch and dwMaxLiveVideoStretch
Minimum and maximum live video stretch factors multiplied by 1000. For
example, 1.3 = 1300.

dwMinHwCodecStretch and dwMaxHwCodecStretch
Minimum and maximum hardware codec stretch factors multiplied by 1000. For
example, 1.3 = 1300.

dwReserved1, dwReserved2, and dwReserved3
Reserved for future use.

dwSVBCaps
Driver-specific capabilities for system-memory-to-display-memory blits.

dwSVBCKeyCaps
Driver color-key capabilities for system-memory-to-display-memory blits.

dwSVBFXCaps
Driver FX capabilities for system-memory-to-display-memory blits.

dwSVBRops[DD_ROP_SPACE]
Raster operations supported for system-memory-to-display-memory blits.

dwVSBCaps
Driver-specific capabilities for display-memory-to-system-memory blits.

dwVSBCKeyCaps
Driver color-key capabilities for display-memory-to-system-memory blits.

dwVSBFXCaps
Driver FX capabilities for display-memory-to-system-memory blits.

dwVSBRops[DD_ROP_SPACE]
Supports raster operations for display-memory-to-system-memory blits.

dwSSBCaps
Driver-specific capabilities for system-memory-to-system-memory blits.

dwSSBCKeyCaps
Driver color-key capabilities for system-memory-to-system-memory blits.

dwSSBCFXCaps
Driver FX capabilities for system-memory-to-system-memory blits.

dwSSBRops[DD_ROP_SPACE]
Raster operations supported for system-memory-to-system-memory blits.

dwReserved4, dwReserved5, and dwReserved6
Reserved for future use.

DDCOLORKEY
typedef struct _DDCOLORKEY{
 DWORD dwColorSpaceLowValue;
 DWORD dwColorSpaceHighValue;
} DDCOLORKEY,FAR* LPDDCOLORKEY;

Describes a source color key, destination color key, or color space. A color key is
specified if the low and high range values are the same. This structure is used
with the IDirectDrawSurface2::GetColorKey and
IDirectDrawSurface2::SetColorKey methods.

dwColorSpaceLowValue
Low value, inclusive, of the color range that is to be used as the color key.

dwColorSpaceHighValue
High value, inclusive, of the color range that is to be used as the color key.

Chapter 2 DirectDraw 143

DDOVERLAYFX
typedef struct _DDOVERLAYFX{
 DWORD dwSize;
 DWORD dwAlphaEdgeBlendBitDepth;
 DWORD dwAlphaEdgeBlend;
 DWORD dwReserved;
 DWORD dwAlphaDestConstBitDepth;
union
{
 DWORD dwAlphaDestConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaDest;
};
 DWORD dwAlphaSrcConstBitDepth;
union
{
 DWORD dwAlphaSrcConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;
};
 DDCOLORKEY dckDestColorkey;
 DDCOLORKEY dckSrcColorkey;

 DWORD dwDDFX;
 DWORD dwFlags;
} DDOVERLAYFX,FAR *LPDDOVERLAYFX;

Passes override information to the IDirectDrawSurface2::UpdateOverlay
method.

dwSize
Size of the structure. This members must be initialized before the structure is
used.

dwAlphaEdgeBlendBitDepth
Bit depth used to specify the constant for an alpha edge blend.

dwAlphaEdgeBlend
Constant to use as the alpha for an edge blend.

dwReserved
Reserved for future use.

dwAlphaDestConstBitDepth
Bit depth used to specify the alpha constant for a destination.

dwAlphaDestConst
Constant to use as the alpha channel for a destination.

lpDDSAlphaDest
Address of a surface to use as the alpha channel for a destination.

dwAlphaSrcConstBitDepth
Bit depth used to specify the alpha constant for a source.

dwAlphaSrcConst
Constant to use as the alpha channel for a source.

lpDDSAlphaSrc
Address of a surface to use as the alpha channel for a source.

dckDestColorkey
Destination color key override.

dckSrcColorkey
Source color key override.

dwDDFX
Overlay FX flags.
DDOVERFX_ARITHSTRETCHY

If stretching, use arithmetic stretching along the y-axis for this overlay.
DDOVERFX_MIRRORLEFTRIGHT

Mirror the overlay around the vertical axis.
DDOVERFX_MIRRORUPDOWN

Mirror the overlay around the horizontal axis.

dwFlags
This member is currently not used and must be set to 0.

DDPIXELFORMAT
typedef struct _DDPIXELFORMAT{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwFourCC;
union
{
 DWORD dwRGBBitCount;
 DWORD dwYUVBitCount;
 DWORD dwZBufferBitDepth;
 DWORD dwAlphaBitDepth;
};
union
{
 DWORD dwRBitMask;
 DWORD dwYBitMask;
};
union
{
 DWORD dwGBitMask;
 DWORD dwUBitMask;
};
union
{

Chapter 2 DirectDraw 145

 DWORD dwBBitMask;
 DWORD dwVBitMask;
};
union
{
 DWORD dwRGBAlphaBitMask;

 DWORD dwYUVAlphaBitMask;
};
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

Describes the pixel format of a DirectDrawSurface object for the
IDirectDrawSurface2::GetPixelFormat method.

dwSize
Size of the structure. This member must be initialized before the structure is
used.

dwFlags
Optional control flags.
DDPF_ALPHA

The pixel format describes an alpha-only surface.
DDPF_ALPHAPIXELS

The surface has alpha channel information in the pixel format.
DDPF_COMPRESSED

The surface will accept pixel data in the specified format and compress it
during the write operation.

DDPF_FOURCC
The FourCC code is valid.

DDPF_PALETTEINDEXED1
DDPF_PALETTEINDEXED2
DDPF_PALETTEINDEXED4
DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.
DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.
DDPF_RGB

The RGB data in the pixel format structure is valid.
DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write
operation to YUV data. The format of the data to be written will be
contained in the pixel format structure. The DDPF_RGB flag will be set.

DDPF_YUV

The YUV data in the pixel format structure is valid.
DDPF_ZBUFFER

The pixel format describes a z-buffer-only surface.

dwFourCC
FourCC code.

dwRGBBitCount
RGB bits per pixel (4, 8, 16, 24, or 32).

dwYUVBitCount
YUV bits per pixel (DDBD_4, DDBD_8, DDBD_16, DDBD_24, or DDBD_32).

dwZBufferBitDepth
Z-buffer bit depth (8, 16, 24, or 32).

dwAlphaBitDepth
Alpha channel bit depth (DDBD_1, DDBD_2, DDBD_4, or DDBD_8).

dwRBitMask
Mask for red bits.

dwYBitMask
Mask for Y bits.

dwGBitMask
Mask for green bits.

dwUBitMask
Mask for U bits.

dwBBitMask
Mask for blue bits.

dwVBitMask
Mask for V bits.

dwRGBAlphaBitMask
Mask for alpha channel.

dwYUVAlphaBitMask
Mask for alpha channel.

DDSCAPS
typedef struct _DDSCAPS{
 DWORD dwCaps;
} DDSCAPS,FAR* LPDDSCAPS;

Defines the capabilities of a DirectDrawSurface object. This structure is part of
the DDCAPS structure that is used to describe the capabilities of the DirectDraw
object.

dwCaps
Capabilities of the surface. One or more of the following flags:

Chapter 2 DirectDraw 147

DDSCAPS_3D
Supported for backward compatibility. Applications should use the
DDSCAPS_3DDEVICE flag, instead.

DDSCAPS_3DDEVICE
Indicates that this surface can be used for 3D rendering. Applications can
use this flag to ensure that a device that can only render to a certain heap
has off-screen surfaces allocated from the correct heap. If this flag is set
for a heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD
Indicates that memory for the surface is not allocated until the surface is
loaded by using the IDirect3DTexture::Load method.

DDSCAPS_ALPHA
Indicates that this surface contains alpha information. The pixel format
must be queried to determine whether this surface contains only alpha
information or alpha information interlaced with pixel color data (such as
RGBA or YUVA).

DDSCAPS_BACKBUFFER
Indicates that this surface is the back buffer of a surface flipping structure.
Typically, this capability is set by the IDirectDraw2::CreateSurface
method when the DDSCAPS_FLIP flag is used. Only the surface that
immediately precedes the DDSCAPS_FRONTBUFFER surface has this
capability set. The other surfaces are identified as back buffers by the
presence of the DDSCAPS_FLIP flag, their attachment order, and the
absence of the DDSCAPS_FRONTBUFFER and
DDSCAPS_BACKBUFFER capabilities. If this capability is sent to the
IDirectDraw2::CreateSurface method, a standalone back buffer is being
created. After this method is called, this surface could be attached to a
front buffer, another back buffer, or both to form a flipping surface
structure. For more information, see
IDirectDrawSurface2::AddAttachedSurface. DirectDraw supports an
arbitrary number of surfaces in a flipping structure.

DDSCAPS_COMPLEX
Indicates that a complex surface is being described. A complex surface
results in the creation of more than one surface. The additional surfaces
are attached to the root surface. The complex structure can be destroyed
only by destroying the root.

DDSCAPS_FLIP
Indicates that this surface is a part of a surface flipping structure. When
this capability is passed to the IDirectDraw2::CreateSurface method, a
front buffer and one or more back buffers are created. DirectDraw sets the
DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the
DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-buffer
surface. The dwBackBufferCount member of the DDSURFACEDESC
structure must be set to at least 1 in order for the method call to succeed.
The DDSCAPS_COMPLEX capability must always be set when creating

multiple surfaces by using the IDirectDraw2::CreateSurface method.
DDSCAPS_FRONTBUFFER

Indicates that this surface is the front buffer of a surface flipping
structure. This flag is typically set by the IDirectDraw2::CreateSurface
method when the DDSCAPS_FLIP capability is set. If this capability is
sent to the IDirectDraw2::CreateSurface method, a standalone front
buffer is created. This surface will not have the DDSCAPS_FLIP
capability. It can be attached to other back buffers to form a flipping
structure by using IDirectDrawSurface2::AddAttachedSurface.

DDSCAPS_HWCODEC
Indicates that this surface should be able to have a stream decompressed
to it by the hardware.

DDSCAPS_LIVEVIDEO
Indicates that this surface should be able to receive live video.

DDSCAPS_MIPMAP
Indicates that this surface is one level of a mipmap. This surface will be
attached to other DDSCAPS_MIPMAP surfaces to form the mipmap.
This can be done explicitly by creating a number of surfaces and
attaching them by using the
IDirectDrawSurface2::AddAttachedSurface method, or implicitly by
the IDirectDraw2::CreateSurface method. If this capability is set,
DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX
Indicates that this surface is a 320200 or 320240 Mode X surface.

DDSCAPS_OFFSCREENPLAIN
Indicates that this surface is any off-screen surface that is not an overlay,
texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to
identify plain surfaces.

DDSCAPS_OVERLAY
Indicates that this surface is an overlay. It may or may not be directly
visible depending on whether it is currently being overlaid onto the
primary surface. DDSCAPS_VISIBLE can be used to determine if it is
being overlaid at the moment.

DDSCAPS_OWNDC
Indicates that this surface will have a device context (DC) association for
a long period.

DDSCAPS_PALETTE
Indicates that this device driver allows unique DirectDrawPalette objects
to be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE
Indicates the surface is the primary surface. It represents what is visible to
the user at the moment.

Chapter 2 DirectDraw 149

DDSCAPS_PRIMARYSURFACELEFT
Indicates that this surface is the primary surface for the left eye. It
represents what is visible to the user's left eye at the moment. When this
surface is created, the surface with the DDSCAPS_PRIMARYSURFACE
capability represents what is seen by the user's right eye.

DDSCAPS_SYSTEMMEMORY
Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE
Indicates that this surface can be used as a 3D texture. It does not indicate
whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY
Indicates that this surface exists in display memory.

DDSCAPS_VISIBLE
Indicates that changes made to this surface are immediately visible. It is
always set for the primary surface, as well as for overlays while they are
being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY
Indicates that only write access is permitted to the surface. Read access
from the surface may generate a general protection (GP) fault, but the
read results from this surface will not be meaningful.

DDSCAPS_ZBUFFER
Indicates that this surface is the z-buffer. The z-buffer contains
information that cannot be displayed. Instead, it contains bit-depth
information that is used to determine which pixels are visible and which
are obscured.

DDSURFACEDESC
typedef struct _DDSURFACEDESC{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwHeight;
 DWORD dwWidth;
 LONG lPitch;
 DWORD dwBackBufferCount;
 union
 {
 DWORD dwMipMapCount;
 DWORD dwZBufferBitDepth;
 DWORD dwRefreshRate;
 };

 DWORD dwAlphaBitDepth;
 DWORD dwReserved;

 LPVOID lpSurface;
 DDCOLORKEY ddckCKDestOverlay;
 DDCOLORKEY ddckCKDestBlt;

 DDCOLORKEY ddckCKSrcOverlay;
 DDCOLORKEY ddckCKSrcBlt;
 DDPIXELFORMAT ddpfPixelFormat;
 DDSCAPS ddsCaps;
} DDSURFACEDESC, FAR* LPDDSURFACEDESC;

Contains a description of the surface to be created. This structure is passed to the
IDirectDraw2::CreateSurface method. The relevant members differ for each
potential type of surface.

dwSize
Size of the structure. This member must be initialized before the structure is
used.

dwFlags
Optional control flags. One or more of the following flags:
DDSD_ALL

Indicates that all input members are valid.
DDSD_ALPHABITDEPTH

Indicates that the dwAlphaBitDepth member is valid.
DDSD_BACKBUFFERCOUNT

Indicates that the dwBackBufferCount member is valid.
DDSD_CAPS

Indicates that the ddsCaps member is valid.
DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.
DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.
DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.
DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.
DDSD_HEIGHT

Indicates that the dwHeight member is valid.
DDSD_MIPMAPCOUNT

Indicates that the dwMipMapCount member is valid.
DDSD_PITCH

Indicates that the lPitch member is valid.

Chapter 2 DirectDraw 151

DDSD_PIXELFORMAT
Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE
Indicates that the dwRefreshRate member is valid.

DDSD_WIDTH
Indicates that the dwWidth member is valid.

DDSD_ZBUFFERBITDEPTH
Indicates that the dwZBufferBitDepth member is valid.

dwHeight
Height of surface.

dwWidth
Width of input surface.

lPitch
Distance to start of next line (return value only).

dwBackBufferCount
Number of back buffers.

dwMipMapCount
Number of mipmap levels.

dwZBufferBitDepth
Depth of z-buffer.

dwRefreshRate
Refresh rate (used when the display mode is described).

dwAlphaBitDepth
Depth of alpha buffer.

dwReserved
Reserved.

lpSurface
Address of the associated surface memory.

ddckCKDestOverlay
Color key for destination overlay use.

ddckCKDestBlt
Color key for destination blit use.

ddckCKSrcOverlay
Color key for source overlay use.

ddckCKSrcBlt
Color key for source blit use.

ddpfPixelFormat
Pixel format description of the surface.

ddsCaps
DirectDraw surface capabilities.

Return Values
Errors are represented by negative values and cannot be combined. This table
lists the values that can be returned by all methods of the IDirectDraw2,
IDirectDrawSurface2, IDirectDrawPalette, and IDirectDrawClipper interfaces.
For a list of the error codes that each method can return, see the method
description.

DD_OK
The request completed successfully.

DDERR_ALREADYINITIALIZED
The object has already been initialized.

DDERR_BLTFASTCANTCLIP
A DirectDrawClipper object is attached to a source surface that has passed
into a call to the IDirectDrawSurface2::BltFast method.

DDERR_CANNOTATTACHSURFACE
A surface cannot be attached to another requested surface.

DDERR_CANNOTDETACHSURFACE
A surface cannot be detached from another requested surface.

DDERR_CANTCREATEDC
Windows cannot create any more device contexts (DCs).

DDERR_CANTDUPLICATE
Primary and 3D surfaces, or surfaces that are implicitly created, cannot be
duplicated.

DDERR_CANTLOCKSURFACE
Access to this surface is refused because an attempt was made to lock the
primary surface without DCI support.

DDERR_CANTPAGELOCK
An attempt to page lock a surface failed. Page lock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CANTPAGEUNLOCK
An attempt to page unlock a surface failed. Page unlock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CLIPPERISUSINGHWND
An attempt was made to set a clip list for a DirectDrawClipper object that is
already monitoring a window handle.

DDERR_COLORKEYNOTSET
No source color key is specified for this operation.

Chapter 2 DirectDraw 153

DDERR_CURRENTLYNOTAVAIL
No support is currently available.

DDERR_DCALREADYCREATED
A device context (DC) has already been returned for this surface. Only one
DC can be retrieved for each surface.

DDERR_DIRECTDRAWALREADYCREATED
A DirectDraw object representing this driver has already been created for this
process.

DDERR_EXCEPTION
An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET
An attempt was made to set the cooperative level when it was already set to
exclusive.

DDERR_GENERIC
There is an undefined error condition.

DDERR_HEIGHTALIGN
The height of the provided rectangle is not a multiple of the required
alignment.

DDERR_HWNDALREADYSET
The DirectDraw cooperative level window handle has already been set. It
cannot be reset while the process has surfaces or palettes created.

DDERR_HWNDSUBCLASSED
DirectDraw is prevented from restoring state because the DirectDraw
cooperative level window handle has been subclassed.

DDERR_IMPLICITLYCREATED
The surface cannot be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY
The primary surface creation request does not match with the existing
primary surface.

DDERR_INVALIDCAPS
One or more of the capability bits passed to the callback function are
incorrect.

DDERR_INVALIDCLIPLIST
DirectDraw does not support the provided clip list.

DDERR_INVALIDDIRECTDRAWGUID
The globally unique identifier (GUID) passed to the DirectDrawCreate
function is not a valid DirectDraw driver identifier.

DDERR_INVALIDMODE
DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT
DirectDraw received a pointer that was an invalid DirectDraw object.

DDERR_INVALIDPARAMS
One or more of the parameters passed to the method are incorrect.

DDERR_INVALIDPIXELFORMAT
The pixel format was invalid as specified.

DDERR_INVALIDPOSITION
The position of the overlay on the destination is no longer legal.

DDERR_INVALIDRECT
The provided rectangle was invalid.

DDERR_INVALIDSURFACETYPE
The requested operation could not be performed because the surface was of
the wrong type.

DDERR_LOCKEDSURFACES
One or more surfaces are locked, causing the failure of the requested
operation.

DDERR_NO3D
No 3D hardware or emulation is present.

DDERR_NOALPHAHW
No alpha acceleration hardware is present or available, causing the failure of
the requested operation.

DDERR_NOBLTHW
No blitter hardware is present.

DDERR_NOCLIPLIST
No clip list is available.

DDERR_NOCLIPPERATTACHED
No DirectDrawClipper object is attached to the surface object.

DDERR_NOCOLORCONVHW
The operation cannot be carried out because no color-conversion hardware is
present or available.

DDERR_NOCOLORKEY
The surface does not currently have a color key.

DDERR_NOCOLORKEYHW
The operation cannot be carried out because there is no hardware support for
the destination color key.

DDERR_NOCOOPERATIVELEVELSET
A create function is called without the IDirectDraw2::SetCooperativeLevel
method being called.

Chapter 2 DirectDraw 155

DDERR_NODC
No DC has ever been created for this surface.

DDERR_NODDROPSHW
No DirectDraw raster operation (ROP) hardware is available.

DDERR_NODIRECTDRAWHW
Hardware-only DirectDraw object creation is not possible; the driver does not
support any hardware.

DDERR_NODIRECTDRAWSUPPORT
DirectDraw support is not possible with the current display driver.

DDERR_NOEMULATION
Software emulation is not available.

DDERR_NOEXCLUSIVEMODE
The operation requires the application to have exclusive mode, but the
application does not have exclusive mode.

DDERR_NOFLIPHW
Flipping visible surfaces is not supported.

DDERR_NOGDI
No GDI is present.

DDERR_NOHWND
Clipper notification requires a window handle, or no window handle has been
previously set as the cooperative level window handle.

DDERR_NOMIPMAPHW
The operation cannot be carried out because no mipmap texture mapping
hardware is present or available.

DDERR_NOMIRRORHW
The operation cannot be carried out because no mirroring hardware is present
or available.

DDERR_NOOVERLAYDEST
The IDirectDrawSurface2::GetOverlayPosition method is called on an
overlay that the IDirectDrawSurface2::UpdateOverlay method has not
been called on to establish a destination.

DDERR_NOOVERLAYHW
The operation cannot be carried out because no overlay hardware is present
or available.

DDERR_NOPALETTEATTACHED
No palette object is attached to this surface.

DDERR_NOPALETTEHW
There is no hardware support for 16- or 256-color palettes.

DDERR_NORASTEROPHW

The operation cannot be carried out because no appropriate raster operation
hardware is present or available.

DDERR_NOROTATIONHW
The operation cannot be carried out because no rotation hardware is present
or available.

DDERR_NOSTRETCHHW
The operation cannot be carried out because there is no hardware support for
stretching.

DDERR_NOT4BITCOLOR
The DirectDrawSurface object is not using a 4-bit color palette and the
requested operation requires a 4-bit color palette.

DDERR_NOT4BITCOLORINDEX
The DirectDrawSurface object is not using a 4-bit color index palette and the
requested operation requires a 4-bit color index palette.

DDERR_NOT8BITCOLOR
The DirectDrawSurface object is not using an 8-bit color palette and the
requested operation requires an 8-bit color palette.

DDERR_NOTAOVERLAYSURFACE
An overlay component is called for a non-overlay surface.

DDERR_NOTEXTUREHW
The operation cannot be carried out because no texture-mapping hardware is
present or available.

DDERR_NOTFLIPPABLE
An attempt has been made to flip a surface that cannot be flipped.

DDERR_NOTFOUND
The requested item was not found.

DDERR_NOTINITIALIZED
An attempt was made to call an interface method of a DirectDraw object
created by CoCreateInstance before the object was initialized.

DDERR_NOTLOCKED
An attempt is made to unlock a surface that was not locked.

DDERR_NOTPAGELOCKED
An attempt is made to page unlock a surface with no outstanding page locks.

DDERR_NOTPALETTIZED
The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW
The operation cannot be carried out because there is no hardware support for
vertical blank synchronized operations.

DDERR_NOZBUFFERHW

Chapter 2 DirectDraw 157

The operation to create a z-buffer in display memory or to perform a blit
using a z-buffer cannot be carried out because there is no hardware support
for z-buffers.

DDERR_NOZOVERLAYHW
The overlay surfaces cannot be z-layered based on the z-order because the
hardware does not support z-ordering of overlays.

DDERR_OUTOFCAPS
The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY
DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY
DirectDraw does not have enough display memory to perform the operation.

DDERR_OVERLAYCANTCLIP
The hardware does not support clipped overlays.

DDERR_OVERLAYCOLORKEYONLYONEACTIVE
An attempt was made to have more than one color key active on an overlay.

DDERR_OVERLAYNOTVISIBLE
The IDirectDrawSurface2::GetOverlayPosition method is called on a
hidden overlay.

DDERR_PALETTEBUSY
Access to this palette is refused because the palette is locked by another
thread.

DDERR_PRIMARYSURFACEALREADYEXISTS
This process has already created a primary surface.

DDERR_REGIONTOOSMALL
The region passed to the IDirectDrawClipper::GetClipList method is too
small.

DDERR_SURFACEALREADYATTACHED
An attempt was made to attach a surface to another surface to which it is
already attached.

DDERR_SURFACEALREADYDEPENDENT
An attempt was made to make a surface a dependency of another surface to
which it is already dependent.

DDERR_SURFACEBUSY
Access to the surface is refused because the surface is locked by another
thread.

DDERR_SURFACEISOBSCURED
Access to the surface is refused because the surface is obscured.

DDERR_SURFACELOST

Access to the surface is refused because the surface memory is gone. The
DirectDrawSurface object representing this surface should have the
IDirectDrawSurface2::Restore method called on it.

DDERR_SURFACENOTATTACHED
The requested surface is not attached.

DDERR_TOOBIGHEIGHT
The height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE
The size requested by DirectDraw is too large. However, the individual
height and width are OK.

DDERR_TOOBIGWIDTH
The width requested by DirectDraw is too large.

DDERR_UNSUPPORTED
The operation is not supported.

DDERR_UNSUPPORTEDFORMAT
The FourCC format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMASK
The bitmask in the pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMODE
The display is currently in an unsupported mode.

DDERR_VERTICALBLANKINPROGRESS
A vertical blank is in progress.

DDERR_WASSTILLDRAWING
The previous blit operation that is transferring information to or from this
surface is incomplete.

DDERR_WRONGMODE
This surface cannot be restored because it was created in a different mode.

DDERR_XALIGN
The provided rectangle was not horizontally aligned on a required boundary.

	About DirectDraw
	DirectDraw Architecture
	DirectDraw Overview
	DirectDraw
	Other DirectDraw Features
	DirectDraw HAL
	DirectDraw HEL
	Types of DirectDraw Objects
	Width and Pitch
	Support for 3D Surfaces
	Texture Maps
	Mipmaps
	Z-Buffers

	Direct3D Integration with DirectDraw
	Direct3D Driver Interface
	Direct3D Device Interface
	Direct3D Texture Interface
	DirectDraw HEL and Direct3D

	Mode X Display Mode
	Pixel Formats
	Texture Map Formats
	Off-Screen Surface Formats

	DirectDraw Interface Overviews
	IDirectDraw2 Interface
	DirectDraw Objects
	What's New in IDirectDraw2?
	Multiple DirectDraw Objects per Process
	Support for High Resolutions and True-Color Bit Depths
	Primary Surface Resource Sharing Model
	Changing Modes and Exclusive Access
	Creating DirectDraw Objects by Using CoCreateInstance

	IDirectDrawClipper Interface
	Clip Lists
	Sharing DirectDrawClipper Objects
	Driver-Independent DirectDrawClipper Objects
	Creating DirectDrawClipper Objects with CoCreateInstance

	IDirectDrawPalette Interface
	DirectDrawPalette Objects
	Setting Palettes on Non-Primary Surfaces
	Sharing Palettes
	Palette Types
	Using DirectDraw Palettes in Windowed Mode
	Types of Palette Entries in Windowed Mode
	Calling IDirectDraw2::CreatePalette in Windowed Mode
	Calling IDirectDrawPalette::SetEntries in Windowed Mode

	IDirectDrawSurface2 Interface
	DirectDrawSurface Objects
	What's New in IDirectDrawSurface2?
	Creating Surfaces
	Scenario 1
	Scenario 2
	Scenario 3

	Frame-Buffer Access
	Flipping Surfaces and GDI's Frame Rate
	Losing Surfaces
	Color and Format Conversion
	Color Keying
	Overlay Z-Order
	Multiple Palettes for Off-Screen Surfaces
	Blitting to and from System Memory Surfaces

	DirectDraw Tutorials
	Tutorial 1: The Basics of DirectDraw
	Step 1: Creating a DirectDraw Object
	Step 2: Determining the Application's Behavior
	Step 3: Changing the Display Mode
	Step 4: Creating Flipping Surfaces
	Defining the Surface Requirements
	Creating the Surfaces

	Step 5: Rendering to the Surfaces
	Step 6: Writing to the Surface
	Step 7: Flipping the Surfaces
	Step 8: Deallocating the DirectDraw Objects

	Tutorial 2: Loading Bitmaps on the Back Buffer
	Step 1: Creating the Palette
	Step 2: Setting the Palette
	Step 3: Loading a Bitmap on the Back Buffer
	Step 4: Flipping the Surfaces

	Tutorial 3: Blitting from an Off-Screen Surface
	Step 1: Creating the Off-Screen Surfaces
	Step 2: Loading the Bitmaps to the Off-Screen Surfaces
	Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

	Tutorial 4: Color Keys and Bitmap Animation
	Step 1: Setting the Color Key
	Step 2: Creating a Simple Animation

	Tutorial 5: Dynamically Modifying Palettes
	Step 1: Loading the Palette Entries
	Step 2: Rotating the Palettes

	Other DirectDraw Samples
	Optimizations and Customizations
	Getting the Flip and Blit Status
	Blitting with Color Fill
	Determining the Capabilities of the Display Hardware
	Storing Bitmaps in Display Memory
	Triple Buffering

	DirectDraw Reference
	Functions
	DirectDrawCreate
	DirectDrawCreateClipper
	DirectDrawEnumerate

	Callback Functions
	Callback
	EnumModesCallback
	EnumSurfacesCallback
	fnCallback

	IDirectDraw2
	IDirectDraw2::Compact
	IDirectDraw2::CreateClipper
	IDirectDraw2::CreatePalette
	IDirectDraw2::CreateSurface
	IDirectDraw2::DuplicateSurface
	IDirectDraw2::EnumDisplayModes
	IDirectDraw2::EnumSurfaces
	IDirectDraw2::FlipToGDISurface
	IDirectDraw2::GetAvailableVidMem
	IDirectDraw2::GetCaps
	IDirectDraw2::GetDisplayMode
	IDirectDraw2::GetFourCCCodes
	IDirectDraw2::GetGDISurface
	IDirectDraw2::GetMonitorFrequency
	IDirectDraw2::GetScanLine
	IDirectDraw2::GetVerticalBlankStatus
	IDirectDraw2::Initialize
	IDirectDraw2::RestoreDisplayMode
	IDirectDraw2::SetCooperativeLevel
	IDirectDraw2::SetDisplayMode
	IDirectDraw2::WaitForVerticalBlank

	IDirectDrawClipper
	IDirectDrawClipper::GetClipList
	IDirectDrawClipper::GetHWnd
	IDirectDrawClipper::Initialize
	IDirectDrawClipper::IsClipListChanged
	IDirectDrawClipper::SetClipList
	IDirectDrawClipper::SetHWnd

	IDirectDrawPalette
	IDirectDrawPalette::GetCaps
	IDirectDrawPalette::GetEntries
	IDirectDrawPalette::Initialize
	IDirectDrawPalette::SetEntries

	IDirectDrawSurface2
	IDirectDrawSurface2::AddAttachedSurface
	IDirectDrawSurface2::AddOverlayDirtyRect
	IDirectDrawSurface2::Blt
	IDirectDrawSurface2::BltBatch
	IDirectDrawSurface2::BltFast
	IDirectDrawSurface2::DeleteAttachedSurface
	IDirectDrawSurface2::EnumAttachedSurfaces
	IDirectDrawSurface2::EnumOverlayZOrders
	IDirectDrawSurface2::Flip
	IDirectDrawSurface2::GetAttachedSurface
	IDirectDrawSurface2::GetBltStatus
	IDirectDrawSurface2::GetCaps
	IDirectDrawSurface2::GetClipper
	IDirectDrawSurface2::GetColorKey
	IDirectDrawSurface2::GetDC
	IDirectDrawSurface2::GetDDInterface
	IDirectDrawSurface2::GetFlipStatus
	IDirectDrawSurface2::GetOverlayPosition
	IDirectDrawSurface2::GetPalette
	IDirectDrawSurface2::GetPixelFormat
	IDirectDrawSurface2::GetSurfaceDesc
	IDirectDrawSurface2::Initialize
	IDirectDrawSurface2::IsLost
	IDirectDrawSurface2::Lock
	IDirectDrawSurface2::PageLock
	IDirectDrawSurface2::PageUnlock
	IDirectDrawSurface2::ReleaseDC
	IDirectDrawSurface2::Restore
	IDirectDrawSurface2::SetClipper
	IDirectDrawSurface2::SetColorKey
	IDirectDrawSurface2::SetOverlayPosition
	IDirectDrawSurface2::SetPalette
	IDirectDrawSurface2::Unlock
	IDirectDrawSurface2::UpdateOverlay
	IDirectDrawSurface2::UpdateOverlayDisplay
	IDirectDrawSurface2::UpdateOverlayZOrder

	Structures
	DDBLTBATCH
	DDBLTFX
	DDCAPS
	DDCOLORKEY
	DDOVERLAYFX
	DDPIXELFORMAT
	DDSCAPS
	DDSURFACEDESC

	Return Values

