


DirectInputTM 3.0
Application Programming Interface

September 11, 1996

Version 1.0

Microsoft does not make any representation or warranty regarding this specification or any product or item developed based on this
specification. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing,
Microsoft does not make any warranty of any kind that any item developed based on this specification, or any portion of it, will not
infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your
responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages
arising out of or in connection with the use of this specification, including liability for lost profit, business interruption, or any other
damages whatsoever. Some states do not allow the exclusion or limitation of liability for consequential or incidental damages; the
above limitation may not apply to you.
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, for any purpose without the express written permission of Microsoft Corporation.
Microsoft and the Win32 are registered trademarks, Windows and Windows NT are trademarks of Microsoft Corporation.
Other brands and names are the property of their respective owners.

Copyright 1994-1996, Microsoft Corporation. All Rights Reserved.

DirectInput The Windows DirectX SDK

Table Of Contents
INTRODUCTION..

PURPOSE OF THIS DOCUMENT..
DEFINITION OF TERMS...

CHAPTER 1: OVERVIEW..

THE DIRECTINPUT OBJECT..
THE DIRECTINPUTDEVICE OBJECT...
RETRIEVING DATA FROM A MOUSE DEVICE...
RETRIEVING DATA FROM A KEYBOARD DEVICE...
SPECIAL REMARKS ON KEYBOARD SCAN CODES..

CHAPTER 2: CONSTANTS, GLOBAL VARIABLES & STRUCTURES...

CHAPTER 3: DIRECTINPUT API & MACRO REFERENCE..

DIDFT_GETINSTANCE..
DIDFT_GETTYPE...
DirectInputCreate..
DISEQUENCE_COMPARE...
GET_DIDEVICE_SUBTYPE...
GET_DIDEVICE_TYPE...
MAKEDIPROP...

CHAPTER 4: CLASSFACTORY INTERFACE METHODS..

OVERVIEW..
ICLASSFACTORY INTERFACE...
MEMBERS...

AddRef..
CreateInstance..
LockServer..
QueryInterface..
Release..

CHAPTER 5: DIRECTINPUT INTERFACE REFERENCE...

OVERVIEW..
IDIRECTINPUT INTERFACE...
MEMBERS...

AddRef..
CreateDevice..
EnumDevices..
GetDeviceStatus...
Initialize..
QueryInterface..
Release..
RunControlPanel..

CHAPTER 6: DIRECTINPUTDEVICE INTERFACE REFERENCE...

OVERVIEW..
INTERFACE..
MEMBERS...

Acquire...
AddRef..

2/3/2023 2 Microsoft Confidential

DirectInput The Windows DirectX SDK

GetCapabilities...
GetDeviceData...
GetDeviceInfo...
GetDeviceState...
GetObjectInfo...
GetProperty..
EnumObjects...
Initialize..
QueryInterface..
Release..
RunControlPanel..
SetCooperativeLevel..
SetDataFormat...
SetEventNotification...
SetProperty...
Unacquire...

APPENDIX A: JAPANESE KEYBOARDS..

2/3/2023 3 Microsoft Confidential

DirectInput The Windows DirectX SDK

Introduction
The Windows DirectX SDK enables the creation of world class computer based games. DirectInput is a
component of the DirectX SDK that allows fast, convenient access to input device data.

DirectInput 1.0, which shipped with the Windows 95, enabled access to digital joystick devices. It
consisted of a few API, such as joyGetPosEx, a calibration applet (joy.cpl) and a driver model based on
VJOYD.VXD which enabled support for digital joystick devices.

Since the release of version 1.0, one of the most frequently received requests for enhancements to the
DirectX SDK has been to allow faster access to mouse and keyboard data than Windows currently
provides. This is the issue being addressed with this version of DirectInput. DirectInput 3.0 provides
faster access to mouse and keyboard data. Unlike DirectInput 1.0, the DirectInput 3.0 API for mouse and
keyboard uses COM objects and interfaces.

In a future version of DirectInput, COM support will be added for joystick devices. Force feedback
support will be added for joystick devices that support force feedback. Functionality will also be added
to support generic input devices (devices that are not directly supported by a specific DirectInput
interface).

Purpose of this Document
The purpose of this document is to describe the DirectInput Application Programming Interface and
COM interfaces for version 3.0. Only the API and COM interfaces necessary to support mouse and
keyboard input will be described. DirectInput 1.0 is not covered in this document.

Definition of Terms
API Application Programmers Interface. This differs from an interface in

that the function does not require a COM object to be instantiated first
and the function does not generally have state associated with it.

COM Component Object Model.
Device Within the context of DirectInput, a device is a physical piece of

hardware which the user can use to provide input to an application.
DirectInput This is a COM object that represents the entire DirectInput subsystem.
GUID Globally unique identifier. GUIDs are used by many parts of

DirectInput as a way of uniquely identifying things.
IDirectInput The COM interface exposed by the DirectInput object to enumerate

input devices and create device objects.
Interface The term used to describe the set of member functions accessible by

an application which has instantiated a COM object. Member
functions can be thought of as APIs that are specific to the object. An
interface is essentially a C++ class with no data, in which all functions
are virtual.

Object Within the context of a DirectInput device, an “object” is a source of
input on the device. For example, a mouse device may contain
objects corresponding to the x-axis, the y-axis, and each of the
buttons.

2/3/2023 4 Microsoft Confidential

DirectInput The Windows DirectX SDK

Chapter 1: Overview

The DirectInput Object
The DirectInput object represents the DirectInput subsystem. Applications can create a DirectInput
object by calling the DirectInputCreate API, which returns an IDirectInput interface.

Once a pointer to the IDirectInput interface has been obtained, DirectInput enabled input devices can be
enumerated. Input devices are enumerated through the IDirectInput::EnumDevices method.

The DirectInputDevice Object
The DirectInputDevice object represents an input device, be it a mouse or keyboard or some other type
of device. Applications can create a DirectInputDevice object by calling the
IDirectInput::CreateDevice method, which returns the IDirectInputDevice interface.

The first parameter to IDirectInput::CreateDevice is an instance GUID that identifies the instance of the
device for which the interface is to be created. DirectInput comes with two predefined instance GUIDs,
GUID_SysMouse and GUID_SysKeyboard which represent the user’s primary mouse and primary
keyboard, respectively.

Retrieving data from a mouse device
In order to retrieve data from a mouse device, call IDirectInputDevice::SetDataFormat with the
c_dfDIMouse data format. The data returned for a mouse device is based on the number of units the
mouse has moved, not screen coordinates. These mouse units are based on the actual values returned by
the mouse hardware (also known as mickeys). DirectInput does not modify (cook) the data in any way.
Only raw mouse data is returned.

The data returned from the mouse can be either relative or absolute data. Because a mouse is a relative
device, relative data is returned by default. The axis mode of the mouse device, which specifies whether
relative or absolute data should be returned, is a property of the device which can be changed via the
IDirectInputDevice::SetProperty method. To set the axis mode to absolute, call
IDirectInputDevice::SetProperty with the REFGUID parameter equal to DIPROP_AXISMODE. Set
the dwData field of the DIPROPDWORD structure to DIPROPAXISMODE_ABS.

When the axis mode for the mouse device is set to relative, the axis coordinate represents the number of
mouse units that the device was moved along that particular axis. A negative value indicates that the
mouse was moved to the left for the X axis, upward for the Y axis and back for the Z axis. A positive
value indicates that the mouse moved right for the X axis, downward for the Y axis and forward for the Z
axis.

Note that a mouse has no concept of absolute position; as a result, absolute coordinates are simply a
running total of all relative motions received by DirectInput. This means, in particular, that the
numerical value of the absolute coordinate is meaningless; specifically, it is unrelated to the screen
coordinates of the mouse pointer. Applications should treat absolute coordinates as relative to an
unknown origin. For example, an application can record the current absolute position immediately after
acquiring the device and save it as the “virtual origin”. This virtual origin can then be subtracted from
subsequent absolute coordinates retrieved from the device, via IDirectInputDevice::GetDeviceState or
IDirectInputDevice::GetDeviceData (up until the next IDirectInputDevice::Unacquire) to compute
the relative distance the mouse has moved from the point of acquisition. Absolute coordinates on purely
relative devices (such as a mouse) are meaningful only when compared to some previously saved
position.

2/3/2023 5 Microsoft Confidential

DirectInput The Windows DirectX SDK

To retrieve the current state of the mouse, call IDirectInputDevice::GetDeviceState with a pointer to a
DIMOUSESTATE structure. The mouse state includes the position of the mouse and the state of each
of the buttons.

To retrieve buffered data from the mouse, create an array of DIDEVICEOBJECTDATA structures and
pass the pointer and a variable containing the size of the array to IDirectInputDevice::GetDeviceData.
DirectInput will place the oldest mouse data into the array until there is no more data in the input queue
or the array is filled. On return from IDirectInputDevice::GetDeviceData, the size variable will contain
the number of array elements actually used. When collecting buffered data from the mouse, the data
provided in a single DIDEVICEOBJECTDATA structure is a change in state for a single object on the
mouse. For instance, a typical mouse will contain 4 objects or input sources: X axis, Y axis, Button 0
and Button 1. If the user presses Button 0 and moves the mouse diagonally, the array of
DIDEVICEOBJECTDATA structures passed to IDirectInputDevice::GetDeviceData will have three
elements filled in: an element for button 0 going down, an element for the change in the X axis, and an
element for the change in the Y axis. After the IDirectInputDevice::GetDeviceData call, the
application can determine which object an element in the array refers to by checking the dwOfs field of
the DIDEVICEOBJECTDATA structure against the following predefined constants:
DIMOFS_BUTTON0, DIMOFS_BUTTON1, DIMOFS_BUTTON2, DIMOFS_BUTTON3,
DIMOFS_X, DIMOFS_Y, and DIMOFS_Z. These constants refer to the offset of these values in the
DIMOUSESTATE structure. Using these constants, you can tell exactly which object on the mouse the
data in the DIDEVICEOBJECTDATA structure refers to. The actual data for that object is located in
the dwData field of the structure. For button objects, only the low byte of dwData is significant. The
high bit of this byte is set if the button went down and clear if the button went up.

The Scrawl sample application illustrates one way to collect buffered data and process the information
reported by IDirectInputDevice::GetDeviceData.

Time-stamped mouse data is only available if data is being retrieved through
IDirectInputDevice::GetDeviceData.

An application must set the cooperative level for the mouse device before acquiring the device and
retrieving data. To set the cooperative level, call IDirectInputDevice::SetCooperativeLevel with the
flags representing the desired cooperative levels. Under Windows 95, the following cooperative levels
are supported for mouse devices: DISCL_BACKGROUND | DISCL_NONEXCLUSIVE,
DISCL_FOREGROUND | DISCL_NONEXCLUSIVE, and DISCL_FOREGROUND |
DISCL_EXCLUSIVE. DirectInput 3.0 does not support the DISCL_BACKGROUND |
DISCL_EXCLUSIVE cooperative level for mouse devices. See the descriptions of these cooperative
constants for more information on what each cooperative level means.

In a future version of DirectX, DirectInput will be supported on Windows NT. However, Windows NT
will only support DISCL_FOREGROUND | DISCL_EXCLUSIVE for a mouse device. Depending on
the level of mouse driver support, even DirectInput on Windows 95 may be restricted to
DISCL_FOREGROUND | DISCL_EXCLUSIVE support. Therefore, if your application needs to run
on the widest number of platforms and mouse drivers, it should use this cooperative level. Furthermore,
the application should be tested with the prerelease version of DINPUT.DLL for Windows NT (provided
in the Extras directory on the DirectX 3.0 SDK); the Windows NT version of DirectInput (and the
Windows 95 version of DirectInput on a non-supported mouse driver) will report DIERR_INPUTLOST
more frequently than the Windows 95 version, and your application should be written to handle these
cases.

Before any data can be retrieved from the mouse device through IDirectInputDevice::GetDeviceData or
IDirectInputDevice::GetDeviceState, the device must be acquired with a call to
IDirectInputDevice::Acquire. It is recommended that the application release the mouse device by
calling IDirectInputDevice::Unacquire when the application is paused or loses input focus. The device
should also be unacquired when an application menu or the system menu is selected or if the window is

2/3/2023 6 Microsoft Confidential

DirectInput The Windows DirectX SDK

being resized or moved. When the application is no longer paused or regains input focus, the application
should reacquire the mouse device by calling IDirectInputDevice::Acquire.

If an application is using the mouse in DISCL_FOREGROUND mode, it is recommended that
application check for the DIERR_INPUTLOST return value from IDirectInputDevice::GetDeviceData
or IDirectInputDevice::GetDeviceState. Because DirectInput automatically unacquires the mouse
when the application loses focus, the application should try to reacquire the mouse device if it receives a
DIERR_INPUTLOST return value. However, applications should not blindly attempt to reacquire
DirectInput devices on any other type of error. Otherwise, the application may get stuck in an infinite
loop repeatedly attempting to acquire a device that cannot be acquired.

If an application is accessing the mouse in DISCL_NONEXCLUSIVE mode, mouse data will be
received both via DirectInput and through the Windows mouse messages. If an application is accessing
the mouse in DISCL_EXCLUSIVE mode, mouse data will be available only via DirectInput; Windows
mouse messages will not contain useful data.

The Scrawl sample application provides an example of the appropriate way to acquire and unacquire the
mouse device.

Retrieving data from a keyboard device
In order to retrieve data from a keyboard device, call IDirectInputDevice::SetDataFormat with the
c_dfDIKeyboard data format. DirectInput has defined a constant for each key on the enhanced keyboard
as well as the additional keys found on international keyboards. In most cases, these constants are
actually the PC enhanced scan codes. These key constants begin with DIK_ and are defined in dinput.h.
Because NEC keyboards support different scan codes than the PC enhanced keyboards, DirectInput
translates NEC key scan codes into PC enhanced scan codes where possible. See the section titled
“Special remarks on keyboard scan codes” for more information.

To retrieve the current state of the keyboard, declare a structure of 256 bytes and pass the pointer to the
IDirectInputDevice::GetDeviceState method. The IDirectInputDevice::GetDeviceState method
behaves in the same way as the Windows GetKeyboardState function: The device state is stored in this
array of 256 bytes, with each byte corresponding to the state of a key. For example, if high bit of the
DIK_ENTER'th byte is set, then the Enter key is being held down. However, unlike
GetKeyboardState, DirectInput only uses the high bit of the byte. If the high bit is set, then the key is
down. Otherwise, the key is up.

To retrieve buffered data from the keyboard, create an array of DIDEVICEOBJECTDATA structures
and pass the pointer and a variable containing the size of the array to
IDirectInputDevice::GetDeviceData. DirectInput will place the oldest keyboard data into the array
until there is no more data in the input queue or the array is filled. On return from
IDirectInputDevice::GetDeviceData, the size variable will contain the number of array elements
actually used. When collecting buffered data from the keyboard, the data provided in a single
DIDEVICEOBJECTDATA structure is a change in state for a single object on the keyboard. Each key
or button on the keyboard represents an object. If the user presses the “A” key, releases it and then
presses the “R” key , the array of DIDEVICEOBJECTDATA structures passed to
IDirectInputDevice::GetDeviceData will have three elements filled in: an element for the “A” key
going down, an element for the “A” key going up, and an element for the “R” key going down. After the
IDirectInputDevice::GetDeviceData call, the application can determine which object (or key) an
element in the array refers to by checking the dwOfs field of the DIDEVICEOBJECTDATA structure
against the predefined DIK_* constants. Using these constants, you can tell exactly which object on the
keyboard the data in the DIDEVICEOBJECTDATA structure refers to. The actual data for that object
is located in the dwData field of the structure. For button objects such as keys on the keyboard, only the
low byte of dwData is significant. The high bit of this byte is set if the key went down and clear if the
key went up.

2/3/2023 7 Microsoft Confidential

DirectInput The Windows DirectX SDK

Time-stamped keyboard data is only available if data is being retrieved through
IDirectInputDevice::GetDeviceData.

An application must set the cooperative level for the keyboard device before acquiring the device and
retrieving data. To set the cooperative level, call IDirectInputDevice::SetCooperativeLevel with the
flags representing the desired cooperative levels. Under Windows 95, the following cooperative levels
are supported for keyboard devices: DISCL_BACKGROUND | DISCL_NONEXCLUSIVE,
DISCL_FOREGROUND | DISCL_NONEXCLUSIVE. DirectInput 3.0 does not support the
DISCL_BACKGROUND | DISCL_EXCLUSIVE or DISCL_FOREGROUND |
DISCL_EXCLUSIVE cooperative levels for keyboard devices. This means that keyboard data will
always be received via DirectInput and through the Windows messages. See the descriptions of these
cooperative constants for more information on what each cooperative level means.

In a future version of DirectX, DirectInput will be supported on Windows NT. However, Windows NT
will only support DISCL_FOREGROUND | DISCL_NONEXCLUSIVE for a keyboard device. If your
application needs to run on Windows NT, it should access the keyboard with this cooperative level.
Depending on the level of keyboard driver support, even DirectInput on Windows 95 may be restricted to
DISCL_FOREGROUND | DISCL_NONEXCLUSIVE support. Therefore, if your application needs to
run on the widest number of platforms and keyboard drivers, it should use this cooperative level.

Before any data can be retrieved from the keyboard device through IDirectInputDevice::GetDeviceData
or IDirectInputDevice::GetDeviceState, the device must be acquired with a call to
IDirectInputDevice::Acquire. It is recommended that the application release the keyboard device by
calling IDirectInputDevice::Unacquire when the application is paused or loses input focus. The device
should also be unacquired when an application menu or the system menu is selected or if the window is
being resized or moved. When the application is no longer paused or regains input focus, the application
should reacquire the keyboard device by calling IDirectInputDevice::Acquire.

If an application is using the keyboard in DISCL_FOREGROUND mode, it is recommended that
application check for DIERR_INPUTLOST return value from IDirectInputDevice::GetDeviceData or
IDirectInputDevice::GetDeviceState. Because DirectInput automatically unacquires the keyboard
when the application loses focus, the application should try to reacquire the keyboard device if it receives
a DIERR_INPUTLOST return value. However, applications should not blindly attempt to reacquire
DirectInput devices on any other type of error. Otherwise, the application may get stuck in an infinite
loop repeatedly attempting to acquire a device that cannot be acquired.

Special remarks on keyboard scan codes
There are several aspects of keyboards which applications should be aware of. Applications are
encouraged to allow users to reconfigure keyboard action keys to suit the physical keyboard layout.

For the purposes of this discussion, the baseline keyboard shall be the US PC Enhanced keyboard. When
a key is described as missing, it means that the key is present on the US PC Enhanced keyboard but not
on the keyboard under discussion. When a key is described as added, it means that the key is absent on
the US PC Enhanced keyboard but present on the keyboard under discussion.

Not all PC Enhanced keyboards support the new Windows keys (DIK_LWIN, DIK_RWIN, and
DIK_APPS). There is no way to determine whether the keys are physically available.

Note that there is no DIK_PAUSE key code. The PC Enhanced keyboard does not generate a separate
DIK_PAUSE scan code; rather, it synthesizes a "Pause" from the DIK_LCONTROL and
DIK_NUMLOCK scan codes.

Keyboards for laptops or other reduced-footprint computers frequently do not implement a full set of
keys. Instead, some keys (typically numeric keypad keys) are multiplexed with other keys, selected by
an auxiliary "mode" key which does not generate a separate scan code.

2/3/2023 8 Microsoft Confidential

DirectInput The Windows DirectX SDK

If the keyboard subtype indicates a PC XT or PC AT keyboard, then the following keys are not available:
DIK_F11, DIK_F12, and all the extended keys (DIK_* values greater than or equal to 0x80).
Furthermore, the PC XT keyboard lacks DIK_SYSRQ.

Japanese keyboards, particularly the NEC PC-98 keyboards, contain a substantially different set of keys
from US keyboards. Please see Appendix A for more information.

2/3/2023 9 Microsoft Confidential

DirectInput The Windows DirectX SDK

Chapter 2: Constants, Global Variables &
Structures

c_dfDIKeyboard global variable
A predefined DIDATAFORMAT structure which describes a keyboard device. This object is provided
in the DINPUT.LIB library file as a convenience.

A pointer to this structure may be passed to IDirectInputDevice::SetDataFormat to indicate that the
device will be accessed in the form of a keyboard.

c_dfDIMouse global variable
A predefined DIDATAFORMAT structure which describes a mouse device. This object is provided in
the DINPUT.LIB library file as a convenience.

A pointer to this structure may be passed to IDirectInputDevice::SetDataFormat to indicate that the
device will be accessed in the form of a mouse.

DIDATAFORMAT Structure
typedef struct {

DWORD dwSize;
DWORD dwObjSize;
DWORD dwFlags;
DWORD dwDataSize;
DWORD dwNumObjs;
LPDIOBJECTDATAFORMAT rgodf;

} DIDATAFORMAT;

The DIDATAFORMAT structure is used by the IDirectInputDevice::SetDataFormat method to set the
data format for a device. An application typically does not need to create a DIDATAFORMAT
structure; rather, it can use one of the predefined data formats, c_dfDIMouse or c_dfDIKeyboard.

Members
dwSize

The size of the DIDATAFORMAT structure.
dwObjSize

The size of the DIDATAOBJECTFORMAT structure.
dwFlags

Flags describing other attributes of the data format.
The following flags are defined:
DIDF_RELAXIS: Set the axes into relative mode. Setting this flag in the data format is equivalent to
manually setting the axis mode property via IDirectInputDevice::SetProperty. The flag may not be
combined with DIDF_ABSAXIS.
DIDF_ABSAXIS: Set the axes into absolute mode. Setting this flag in the data format is equivalent to
manually setting the axis mode property via IDirectInputDevice::SetProperty. The flag may not be
combined with DIDF_RELAXIS.

2/3/2023 10 Microsoft Confidential

DirectInput The Windows DirectX SDK

dwDataSize
The size of the device data that should be returned by the device. This value must be a multiple of
four and must exceed the dwOfs value for all objects specified in the object list.

dwNumObjs
The number of objects in the rgodf array.

rgodf
Pointer to an array of DIOBJECTDATAFORMAT structures, each of which describes how one
object's data should be reported in the device data. It is an error for the rgodf to indicate that two
difference pieces of information be placed in the same location. It is also an error for the rgodf to
indicate that the same piece of information be placed in two locations.

Examples
The following declarations set a data format which can be used for an application which is interested in
two axes (reported in absolute coordinates) and two buttons.
// Suppose an application wishes to use the following
// structure to read device data.

typedef struct MYDATA {
LONG lX; // X axis goes here
LONG lY; // Y axis goes here
BYTE bButtonA; // One button goes here
BYTE bButtonB; // Another button goes here
BYTE bPadding[2]; // Must be dword multiple in size

} MYDATA;

// Then it can use the following data format.

DIOBJECTDATAFORMAT rgodf[] = {
 { &GUID_XAxis, FIELD_OFFSET(MYDATA, lX), 0, DIDFT_AXIS |
DIDFT_ANYINSTANCE, },
 { &GUID_YAxis, FIELD_OFFSET(MYDATA, lY), 0, DIDFT_AXIS |
DIDFT_ANYINSTANCE, },
 { &GUID_Button, FIELD_OFFSET(MYDATA, bButtonA), 0, DIDFT_BUTTON |
DIDFT_ANYINSTANCE, },
 { &GUID_Button, FIELD_OFFSET(MYDATA, bButtonB), 0, DIDFT_BUTTON |
DIDFT_ANYINSTANCE, },
};
#define numObjects (sizeof(rgodf) / sizeof(rgodf[0]))

DIDATAFORMAT df = {
sizeof(DIDATAFORMAT), // this structure
sizeof(DIOBJECTDATAFORMAT), // size of object data format
DIDF_ABSAXIS, // absolute axis coordinates
sizeof(MYDATA), // device data size
numObjects, // number of objects
rgodf, // and here they are

};

DIDEVCAPS Structure
typedef struct {

DWORD dwSize;
DWORD dwDevType;
DWORD dwFlags;

2/3/2023 11 Microsoft Confidential

DirectInput The Windows DirectX SDK

DWORD dwAxes;
DWORD dwButtons;
DWORD dwPOVs;

} DIDEVCAPS;

The DIDEVCAPS structure is used by the IDirectInputDevice::GetCapabilities method to return the
capabilities of the device.
Members
dwSize

Specifies the size, in bytes, of the structure. This field must be initialized by the application before
calling IDirectInputDevice::GetCapabilities.

dwDevType
Device type specifier. See the section titled DirectInput device type description codes for a
description of this field.

dwFlags
Flags associated with the device. The following flags are defined:
DIDC_ATTACHED: The device is physically attached.
DIDC_POLLEDDEVICE: The device is polled rather than interrupt-driven. The application must
explicitly call GetDeviceState in order to obtain data; buffering and event notifications will not be
effective.

dwAxes
Specifies the number of axes available on the device.

dwButtons
Specifies the number of buttons available on the device.

dwPOVs
Specifies the number of point-of-view controllers available on the device. This is not used in version
3.0 of DirectInput.

DIDEVICEINSTANCE Structure
typedef struct {

DWORD dwSize;
GUID guidInstance;
GUID guidProduct;
DWORD dwDevType;
TCHAR tszInstanceName[MAX_PATH];
TCHAR tszProductName[MAX_PATH];

} DIDEVICEINSTANCE;

The DIDEVICEINSTANCE structure is used by the IDirectInput::EnumDevices and
IDirectInputDevice::GetDeviceInfo methods to return information about a particular device instance.
Members
dwSize

The size of the structure in bytes.
guidInstance

Unique identifier which identifies the instance of the device. An application may save the instance
GUID into a configuration file and use it at a later time. Instance GUIDs are specific to a particular
machine. An instance GUID obtained from one machine is unrelated to instance GUIDs on another
machine.

2/3/2023 12 Microsoft Confidential

DirectInput The Windows DirectX SDK

guidProduct
Unique identifier which identifies the product. This identifier is established by the manufacturer of the
device.

dwDevType
Device type specifier. See the section titled DirectInput device type description codes for a
description of this field.

tszProductName[MAX_PATH]
Friendly name for the product. For example, "Frobozz Industries SuperStick 5X"

tszInstanceName[MAX_PATH]
Friendly name for the instance. For example, "Joystick 1".

DIDEVICEOBJECTDATA Structure
typedef struct {

DWORD dwOfs;
DWORD dwData;
DWORD dwTimeStamp;
DWORD dwSequence;

} DIDEVICEOBJECTDATA;

The DIDEVICEOBJECTDATA structure is used by the IDirectInputDevice::GetDeviceData method
to return raw buffered device information.
Members
dwOfs

Offset into the current data format of the object whose data is being reported. In other words, the
location where the dwData would have been stored if the data had been obtained via
IDirectInputDevice::GetDeviceState.
For the predefined data formats, the dwOfs field will be as follows:
If the device is accessed as a mouse, it will be one of the DIMOFS_* values.
If the device is accessed as a keyboard, it will be one of the DIK_* values.
If a custom data format has been set, then it will be an offset relative to the custom data format.

dwData
The data obtained from the device. The format of this data depends on the type of the device, but in
all cases, the data is reported in raw form.
DIDFT_AXIS: If the device is in relative axis mode, then the relative axis motion is reported. If the
device is in absolute axis mode, then the absolute axis coordinate is reported.
DIDFT_BUTTON: Only the low byte of the dwData is significant. The high bit of the low byte is set
if the button went down; it is clear if the button went up.

dwTimeStamp
Tick count in milliseconds at which the event was generated. The current system tick count can be
obtained by calling the GetTickCount system function. Remember that this value wraps around
approximately every 50 days.

dwSequence
DirectInput sequence number for this event. All DirectInput events are assigned an increasing
sequence number. This allows events from different devices to be sorted chronologically. Since this
value can wrap around, care must be taken when comparing two sequence numbers. The
DISEQUENCE_COMPARE macro can be used to perform this comparison safely.

2/3/2023 13 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIDEVICEOBJECTINSTANCE Structure
typedef struct {

DWORD dwSize;
GUID guidType;
DWORD dwOfs;
DWORD dwType;
DWORD dwFlags;
TCHAR tszName[MAX_PATH];

} DIDEVICEOBJECTINSTANCE;

The DIDEVICEOBJECTINSTANCE structure is used by the IDirectInputDevice::EnumObjects
method to return information about a particular object (axis, button, etc.) on a device to the callback
function.
Members
dwSize

The size of the structure in bytes. The application may inspect this value to determine how many
fields of the structure are valid. For DirectInput 3.0, the value will be
sizeof(DIDEVICEOBJECTINSTANCE). Future versions of DirectInput may return a larger structure.

guidType
Identifier which indicates the type of the object. This field is optional. If present, it may be one of the
following values:
GUID_XAxis: This is the horizontal axis of a controller. For example, it may represent the horizontal
motion of a mouse.
GUID_YAxis: This is the vertical axis of a controller. For example, it may represent the vertical
motion of a mouse.
GUID_ZAxis: This is the forward/backwards axis of a controller. For example, it may represent
rotation of the Z-wheel on a mouse.
GUID_Button: This is a button on a mouse.
GUID_Key: This is a key on a keyboard.
Other object types may be defined in the future. (For example, GUID_Fire, GUID_Throttle,
GUID_SteeringWheel.)

dwOfs
Offset within the data format at which the data reported by this object is most efficiently obtained.
This field is significant only for applications which build custom data formats. Most applications will
not use this value.

dwType
Device type specifier which describes the object. It is a combination of DIDFT_* flags which
describe the object type (axis, button, etc.) and contains the object instance number in the high byte.
Use the DIDFT_GETINSTANCE macro to extract the object instance number.

dwFlags
No flags are currently defined.

tszName[MAX_PATH]
Name of the object. For example, "X-Axis" or "Right Shift".

DIMOFS_BUTTON0 constant

2/3/2023 14 Microsoft Confidential

DirectInput The Windows DirectX SDK

The offset of the mouse button 0 state relative to the beginning of the DIMOUSESTATE structure. This
value is returned as the dwOfs field in the DIDEVICEOBJECTDATA structure to indicate that the data
applies to mouse button 0.

DIMOFS_BUTTON1 constant
The offset of the mouse button 1 state relative to the beginning of the DIMOUSESTATE structure. This
value is returned as the dwOfs field in the DIDEVICEOBJECTDATA structure to indicate that the data
applies to mouse button 1.

DIMOFS_BUTTON2 constant
The offset of the mouse button 2 state relative to the beginning of the DIMOUSESTATE structure. This
value is returned as the dwOfs field in the DIDEVICEOBJECTDATA structure to indicate that the data
applies to mouse button 2.

DIMOFS_BUTTON3 constant
The offset of the mouse button 3 state relative to the beginning of the DIMOUSESTATE structure. This
value is returned as the dwOfs field in the DIDEVICEOBJECTDATA structure to indicate that the data
applies to mouse button 3.

DIMOFS_X constant
The offset of the mouse x-axis position relative to the beginning of the DIMOUSESTATE structure.
This value is returned as the dwOfs field in the DIDEVICEOBJECTDATA structure to indicate that the
data applies to the mouse x-axis position.

DIMOFS_Y constant
The offset of the mouse y-axis position relative to the beginning of the DIMOUSESTATE structure.
This value is returned as the dwOfs field in the DIDEVICEOBJECTDATA structure to indicate that the
data applies to the mouse y-axis position.

DIMOFS_Z constant
The offset of the mouse z-axis position relative to the beginning of the DIMOUSESTATE structure.
This value is returned as the dwOfs field in the DIDEVICEOBJECTDATA structure to indicate that the
data applies to the mouse z-axis position.

DIMOUSESTATE Structure
typedef struct {

LONG lX;
LONG lY;
LONG lZ;
BYTE rgbButtons[4];

} DIMOUSESTATE;

2/3/2023 15 Microsoft Confidential

DirectInput The Windows DirectX SDK

The DIMOUSESTATE structure is used by the IDirectInputDevice::GetDeviceState method to return
the status of a mouse device or a non-mouse device that is being accessed as if it were a mouse. You
must prepare the device for mouse-style access by calling IDirectInputDevice::SetDataFormat, passing
the c_dfDIMouse data format.

Note that the mouse is a relative-axis device, so the absolute axis positions for mouse axes are simply
accumulated relative motion. As a result, the value of the absolute axis position is not meaningful except
in comparison with other absolute axis positions.

Members
lX

Contains information about the mouse x-axis. If the device is in relative axis mode, then this field
contains the change in mouse x-axis position. If the device is in absolute axis mode, then this field
contains the absolute mouse x-axis position.

lY
Contains information about the mouse y-axis. If the device is in relative axis mode, then this field
contains the change in mouse y-axis position. If the device is in absolute axis mode, then this field
contains the absolute mouse y-axis position.

lZ
Contains information about the mouse z-axis. If the device is in relative axis mode, then this field
contains the change in mouse z-axis position. If the device is in absolute axis mode, then this field
contains the absolute mouse z-axis position.
If the mouse does not have a z-axis, then the value is zero.

rgbButtons[4]
Array of button states. The high-order bit is set if the corresponding button is down.

DIOBJECTDATAFORMAT Structure
typedef struct {

const GUID * pguid;
DWORD dwOfs;
DWORD dwType;
DWORD dwFlags;

} DIOBJECTDATAFORMAT;

The DIOBJECTDATAFORMAT structure is used by the IDirectInputDevice::SetDataFormat
method to set the data format for a single object within a device. A data format is made up of several
DIOBJECTDATAFORMAT structures, one for each object (axis, button, etc). An array of these
structures are contained in the DIDATAFORMAT structure that is passed to
IDirectInputDevice::SetDataFormat. An application typically does not need to create an array of
DIOBJECTDATAFORMAT structures; rather, it can use one of the predefined data formats,
c_dfDIMouse or c_dfDIKeyboard, which has predefined settings for DIOBJECTDATAFORMAT.

Members
pguid

The identifier for the axis, button, or other input source. When requesting a data format, leaving
this field NULL indicates that any type of object is permissible.

dwOfs
Offset within the data packet where the data for the input source will be stored. This value must
be a multiple of 4 for DWORD size data, such as axes. It can be byte aligned for buttons.

2/3/2023 16 Microsoft Confidential

DirectInput The Windows DirectX SDK

dwType
Device type specifier which describes the object. It is a combination of DIDFT_* flags which
describe the object type (axis, button, etc.) and contains the object instance number in the high
byte. When requesting a data format, the instance portion can be set to DIDFT_ANYINSTANCE
to indicate that any instance is permissible.

dwFlags
No flags are currently defined. This field must be zero.

Examples
The following object data format specifies that DirectInput should choose the first available axis and
report its value in the DWORD at offset 4 in the device data.
DIOBJECTDATAFORMAT dfAnyAxis = {

0, // Wildcard
4, // Offset
DIDFT_AXIS | DIDFT_ANYINSTANCE, // Any axis is okay
0, // Must be zero

};

The following object data format specifies that the X axis of the device should be stored in the DWORD
at offset 12 in the device data. If the device has more than one X axis, the first available one should be
selected.
DIOBJECTDATAFORMAT dfAnyXAxis = {

&GUID_XAxis, // Must be an X axis
12, // Offset
DIDFT_AXIS | DIDFT_ANYINSTANCE, // Any X axis is okay
0, // Must be zero

};

The following object data format specifies that DirectInput should choose the first available button and
report its value in the high bit of the BYTE at offset 16 in the device data.
DIOBJECTDATAFORMAT dfAnyButton = {

0, // Wildcard
16, // Offset
DIDFT_BUTTON | DIDFT_ANYINSTANCE, // Any button is okay
0, // Must be zero

};

The following object data format specifies that DirectInput should choose the first available "Fire" button
and report its value in the high bit of the BYTE at offset 17 in the device data.
If the device does not have a "Fire" button, the attempt to set this data format will fail.
DIOBJECTDATAFORMAT dfAnyButton = {

&GUID_FireButton, // Object type
17, // Offset
DIDFT_BUTTON | DIDFT_ANYINSTANCE, // Any button is okay
0, // Must be zero

};

The following object data format specifies that button zero of the device should be reported as the high
bit of the BYTE stored at offset 18 in the device data.
If the device does not have a button zero, the attempt to set this data format will fail.
DIOBJECTDATAFORMAT dfButton0 = {

0, // Wildcard
18, // Offset
DIDFT_BUTTON | DIDFT_MAKEINSTANCE(0), // Button zero
0, // Must be zero

};

2/3/2023 17 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIPROP_AXISMODE constant
The DIPROP_AXISMODE constant is a predefined property used to set or retrieve the axis data mode.
This setting applies to the entire device, rather than to any particular object, so the dwHow field must be
DIPH_DEVICE.

This property uses the DIPROPDWORD structure. The pdiph field of the DIPROPDWORD structure
must be a pointer to a DIPROPHEADER structure. The dwData field contains or receives the axis
mode.

The dwObj field of the DIPROPHEADER structure must be zero, indicating that the property setting
applies to the entire device and not to any particular object. The dwSize field must be set to the size of
the DIPROPDWORD structure.

The dwData field of the DIPROPDWORD structure may be one of the following values:

DIPROPAXISMODE_ABS: Report axis positions in absolute coordinates. Axis motion accumulates
over time.
DIPROPAXISMODE_REL: Report axis positions in relative coordinates. Axis motion is reported as
differences from the previous request for the axis position.

DIPROP_BUFFERSIZE constant
The DIPROP_BUFFERSIZE constant is a predefined property used to set or retrieve the device input
buffer size. The buffer size determines the amount of data that the buffer can hold between
GetDeviceData calls before data is lost. This setting applies to the entire device, rather than to any
particular object, so the dwHow field must be DIPH_DEVICE.

This property uses the DIPROPDWORD structure. The pdiph field of the DIPROPDWORD structure
must be a pointer to a DIPROPHEADER structure. The dwData field contains or receives the buffer
size.

The dwObj field of the DIPROPHEADER structure must be zero, indicating that the property setting
applies to the entire device and not to any particular object. The dwSize field must be set to the size of
the DIPROPDWORD structure.

The dwData field of the DIPROPDWORD structure may be set to zero to indicate that the application
will not be reading buffered data from the device. Or it may be a nonzero value to indicate the size of the
buffer to be used.

When setting the buffer size, if the buffer size in dwData is too large to be supported by the device, the
largest possible buffer size is set. To determine whether the requested buffer size was set, retrieve the
buffer size property and compare the result with the value you previously attempted to set.

DIPROP_GRANULARITY constant
The DIPROP_GRANULARITY constant is a predefined property which retrieves the granularity of an
object.

This property uses the DIPROPDWORD structure. The pdiph field of the DIPROPDWORD structure
must be a pointer to a DIPROPHEADER structure. The dwData field receives the granularity.

The dwObj field of the DIPROPHEADER structure must be the identifier for the object whose
granularity is to be retrieved. The dwSize field must be set to the size of the DIPROPDWORD
structure.

The value of the granularity is the smallest distance the object will report movement. Most axis objects
have a granularity of 1, meaning that all values are possible. Some axes may have a larger granularity.
For example, the Z-wheel axis on a mouse may have a granularity of 20, meaning that all reported

2/3/2023 18 Microsoft Confidential

DirectInput The Windows DirectX SDK

changes in position will be multiples of 20. In other words, when the user turns the Z-wheel slowly, the
device reports a position of zero, then 20, then 40, etc.

This is a read-only property

DIPROP_RANGE constant
The DIPROP_RANGE constant is a predefined property which retrieves the range of values reported by
an object.

This property uses the DIPROPRANGE structure. The pdiph field of the DIPROPRANGE structure
must be a pointer to a DIPROPHEADER structure.

The dwObj field of the DIPROPHEADER structure must be the identifier for the object whose range is
to be retrieved. The dwSize field must be set to the size of the DIPROPRANGE structure.

This is a read-only property.

DIPROPDWORD Structure
typedef struct {

DIPROPHEADER diph;
DWORD dwData;

} DIPROPDWORD;
Generic structure used to access DWORD properties.

Members
diph

Must be preinitialized as follows:
dwSize = sizeof(DIPROPDWORD).
dwHeaderSize = sizeof(DIPROPHEADER).
dwObj = object identifier.
dwHow = how the dwObj should be interpreted.

dwData
On SetProperty, this structure contains the value of the property to be set. On GetProperty, this
structure receives the value of the property.

DIPROPHEADER Structure
typedef struct {

DWORD dwSize;
DWORD dwHeaderSize;
DWORD dwObj;
DWORD dwHow;

} DIPROPHEADER;

DIPROPHEADER is a generic structure which is placed at the beginning of all property structures.

Members
dwSize

Must be set to the size of the enclosing structure.

2/3/2023 19 Microsoft Confidential

DirectInput The Windows DirectX SDK

dwHeaderSize
Must be the size of the DIPROPHEADER structure.

dwObj
Identifies the object for which the property is to be accessed.
If the dwHow field is DIPH_DEVICE, then the dwObj field must be zero.
If the dwHow field is DIPH_BYOFFSET, then the dwObj field is the offset into the current data
format of the object whose property is being accessed.
If the dwHow field is DIPH_BYID, then the dwObj field is the object type/instance identifier as
returned in the dwType field of the DIDEVICEOBJECTINSTANCE returned from a prior call to
IDirectInputDevice::EnumObjects.

dwHow
Specifies how the dwObj field should be interpreted.

DIPROPRANGE Structure
typedef struct {

DIPROPHEADER diph;
LONG lMin;
LONG lMax;

} DIPROPRANGE;

The DIPROPRANGE structure is used by the DIPROP_RANGE property to set or retrieve the range of
an object such as an axis. If the device has an unrestricted range, the reported range will have lMin =
DIPROPRANGE_NOMIN and lMax = DIPROPRANGE_NOMAX. Note that devices with unrestricted
range will wrap around.
Members
diph

Must be preinitialized as follows:
dwSize = sizeof(DIPROPRANGE).
dwHeaderSize = sizeof(DIPROPHEADER).
dwObj = object identifier.
dwHow = how the dwObj should be interpreted.

lMin
The lower limit of the range, inclusive.

lMax
The upper limit of the range, inclusive.

DISCL_BACKGROUND constant
Parameter to SetCooperativeLevel to indicate that background access is desired. If background access is
granted, then the device may be acquired at any time, even when the associated window is not the active
window.

Exactly one of DISCL_FOREGROUND or DISCL_BACKGROUND must be passed to
IDirectInputDevice::SetCooperativeLevel. It is an error to pass both or neither.
Note that the current version of DirectInput does not permit exclusive background access.

2/3/2023 20 Microsoft Confidential

DirectInput The Windows DirectX SDK

DISCL_EXCLUSIVE constant
Parameter to SetCooperativeLevel to indicate that exclusive access is desired. If exclusive access is
granted, then no other instance of the device may obtain exclusive access to the device while it is
acquired. Note, however, non-exclusive access to the device is always permitted, even if another
application has obtained exclusive access. (The word "exclusive" is a bit of a misnomer here, but it is
employed to parallel a similar concept in DirectDraw.)

It is strongly recommended that an application which acquires the mouse or keyboard device in exclusive
mode unacquire the devices upon receipt of WM_ENTERSIZEMOVE and
WM_ENTERMENULOOP messages; otherwise, the user will not be able to manipulate the menu or
move or resize the window.

Exactly one of DISCL_EXCLUSIVE or DISCL_NONEXCLUSIVE must be passed to
SetCooperativeLevel. It is an error to pass both or neither.
In the current version of DirectInput, exclusive access requires foreground access.

DISCL_FOREGROUND constant
Parameter to SetCooperativeLevel to indicate that foreground access is desired. If foreground access is
granted, then the device is automatically unacquired when the associated window loses foreground
activation.

Exactly one of DISCL_FOREGROUND or DISCL_BACKGROUND must be passed to
IDirectInputDevice::SetCooperativeLevel. It is an error to pass both or neither.

DISCL_NONEXCLUSIVE constant
Parameter to SetCooperativeLevel to indicate that non-exclusive access is desired. Access to the device
will not interfere with other applications which are accessing the same device.

Exactly one of DISCL_EXCLUSIVE or DISCL_NONEXCLUSIVE must be passed to
IDirectInputDevice::SetCooperativeLevel. It is an error to pass both or neither.

GUID_SysKeyboard global variable
A pre-defined DirectInput instance GUID that always refers to the default system keyboard. This value
may be passed to IDirectInput::CreateDevice to create an interface to the system keyboard.

GUID_SysMouse global variable
A pre-defined DirectInput instance GUID that always refers to the default system mouse. This value may
be passed to IDirectInput::CreateDevice to create an interface to the system mouse.

DirectInput Device Type Description Codes
DirectInput device description codes are used in the DIDEVICEINSTANCE structure. The least-
significant byte of the device type description code specifies the device type.

DIDEVTYPE_MOUSE: A mouse or mouse-like device (such as a trackball).
DIDEVTYPE_KEYBOARD: A keyboard or keyboard-like device.

The next-significant byte specifies the device subtype.

For mouse type devices, the following subtypes are defined:

2/3/2023 21 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIDEVTYPEMOUSE_UNKNOWN: The subtype could not be determined.
DIDEVTYPEMOUSE_TRADITIONAL: A traditional mouse.
DIDEVTYPEMOUSE_FINGERSTICK: A fingerstick.
DIDEVTYPEMOUSE_TOUCHPAD: The device is a touchpad.
DIDEVTYPEMOUSE_TRACKBALL: The device is a trackball.

For keyboard type devices, the following subtypes are defined:

DIDEVTYPEKEYBOARD_PCXT: IBM PC/XT 83-key keyboard.
DIDEVTYPEKEYBOARD_OLIVETTI: Olivetti 102-key keyboard.
DIDEVTYPEKEYBOARD_PCAT: IBM PC/AT 84-key keyboard.
DIDEVTYPEKEYBOARD_PCENH: IBM PC Enhanced 101/102-key or Microsoft Natural keyboard.
DIDEVTYPEKEYBOARD_NOKIA1050: Nokia 1050 keyboard.
DIDEVTYPEKEYBOARD_NOKIA9140: Nokia 9140 keyboard.
DIDEVTYPEKEYBOARD_NEC98: Japanese NEC PC98 keyboard.
DIDEVTYPEKEYBOARD_NEC98LAPTOP: Japanese NEC PC98 laptop keyboard.
DIDEVTYPEKEYBOARD_NEC98106: Japanese NEC PC98 106-key keyboard.
DIDEVTYPEKEYBOARD_JAPAN106: Japanese 106-key keyboard.
DIDEVTYPEKEYBOARD_JAPANAX: Japanese AX keyboard.
DIDEVTYPEKEYBOARD_J3100: Japanese J3100 keyboard.

DirectInput Data Format Types
DirectInput data format types describe the attributes of a single object in a device. An object in a device
can be an axis, button, or other input source.

DIDFT_ALL
This flag is valid only for IDirectInputDevice::EnumObjects. All objects are enumerated,
regardless of type. This flag may not be combined with any of the other flags.

DIDFT_RELAXIS
The object is a relative axis. A relative axis is one which reports its data as incremental changes from
the previously reported position. Relative axes typically support an unlimited range.
An axis need not report a continuous range of values. For example, an axis may report its position in
multiples of 20 indicating that the axis has a granularity of 20. The DIPROP_GRANULARITY
property of an axis will report the axis granularity.
Relative axis devices do not have absolute coordinates. Rather, the reported absolute coordinates are
simply the total of all relative coordinates reported by the device while it has been acquired. As a
result, the absolute coordinates retrieved from a relative axis object are meaningful only when
compared to other absolute coordinates. For example, an application may record the absolute values
when a button is pressed, and retrieve it when the button is released. By subtracting the two, the
application can compute the distance between the point the button was pressed and the point the
button was released.
Since it is not possible to set or retrieve the origin for absolute values on a relative axis, an application
should record the absolute position immediately after acquiring the device. This value then becomes
the virtual origin. All subsequent calls can be considered absolute positions based on this origin.

DIDFT_ABSAXIS
The object is an absolute axis. An absolute axis is one that reports data as absolute positions.
Absolute axes typically support a finite range.
An axis need not report a continuous range of values. For example, an axis may report its position in
multiples of 20 indicating that the axis has a granularity of 20. The DIPROP_GRANULARITY
property of an axis will report the axis granularity.

2/3/2023 22 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIDFT_AXIS
This flag is valid only for IDirectInputDevice::EnumObjects. All axes are enumerated, regardless
of whether they are absolute or relative.

DIDFT_PSHBUTTON
The object is a pushbutton. A pushbutton is reported as down when the user presses it and as up when
the user releases it.

DIDFT_TGLBUTTON
The object is a toggle button. A toggle button is reported as down when the user presses it and
remains reported as down until the user presses the button a second time.

DIDFT_BUTTON
The object is a either a pushbutton or toggle button.

2/3/2023 23 Microsoft Confidential

DirectInput The Windows DirectX SDK

Chapter 3: DirectInput API & Macro Reference

DIDFT_GETINSTANCE
This macro extracts the object instance number code from a data format type. See DirectInput Data
Format Types for more information.

BYTE DIDFT_GETINSTANCE(
DWORD dwType)

Parameters
dwType

DirectInput data format type.

DIDFT_GETTYPE
This macro extracts the object type code from a data format type. See DirectInput Data Format Types
for more information.

BYTE DIDFT_GETTYPE(
DWORD dwType)

Parameters
dwType

DirectInput data format type.

DirectInputCreate
This function is called to create a DirectInput object which supports the IDirectInput COM interface.
On success, the function returns a pointer to the new object in *lplpDirectInput.

Calling this function with punkOuter = NULL is equivalent to creating the object via
CoCreateInstance(&CLSID_DirectInput, punkOuter, CLSCTX_INPROC_SERVER,
&IID_IDirectInput, lplpDirectInput); then initializing it with Initialize.

Calling this function with punkOuter != NULL is equivalent to creating the object via
CoCreateInstance(&CLSID_DirectInput, punkOuter, CLSCTX_INPROC_SERVER, &IID_IUnknown,
lplpDirectInput). The aggregated object must be initialized manually.

There are separate ANSI and UNICODE versions of this service. The ANSI version creates an object
which supports the IDirectInputA interface, whereas the UNICODE version creates an object which
supports the IDirectInputW interface. As with other system services which are sensitive to character set
issues, macros in the header file map DirectInputCreate to the appropriate character set variation.

HRESULT DirectInputCreate(
HINSTANCE hinst,
DWORD dwVersion,
LPDIRECTINPUT * lplpDirectInput,
LPUNKNOWN punkOuter)

Parameters

2/3/2023 24 Microsoft Confidential

DirectInput The Windows DirectX SDK

hinst
Instance handle of the application or DLL that is creating the DirectInput object.

dwVersion
Version number of the dinput.h header file that was used. This value must be
DIRECTINPUT_VERSION.
DirectInput uses this value to determine what version of DirectInput the application or DLL
was designed for.

lplpDirectInput
Points to where to return the pointer to the IDirectInput interface, if successful.

punkOuter
Pointer to controlling unknown for OLE aggregation, or 0 if the interface is not aggregated.
Most callers will pass 0.
Note that if aggregation is requested, the object returned in *lplpDirectInput will be a
pointer to an IUnknown rather than an IDirectInput, as required by OLE aggregation.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: The lplpDirectInput parameter is not a
valid pointer.
DIERR_OUTOFMEMORY = E_OUTOFMEMORY: Out of memory.
DIERR_OLDDIRECTINPUTVERSION: The application requires a newer version of
DirectInput.
DIERR_BETADIRECTINPUTVERSION: The application was written for an
unsupported prerelease version of DirectInput.

DISEQUENCE_COMPARE
Macro which compares two DirectInput sequence numbers, compensating for wraparound.

BOOL DISEQUENCE_COMPARE(
DWORD dwSequence1,
cmp,
DWORD dwSequence2)

Parameters
dwSequence1

First sequence number to compare.
cmp

One of the following comparison operators: "==", "!=", "<", ">", "<=", ">=".
dwSequence2

Second sequence number to compare.

Return Values
Returns a nonzero value if the first sequence number is equal to, is not equal to,
chronologically precedes, chronologically follows, chronologically precedes or is equal to,
or chronologically follows or is equal to the second sequence number.

Example
The following example checks whether dwSequence1 precedes dwSequence2
chronologically:
if (DISEQUENCE_COMPARE(dwSequence1, <, dwSequence2)) {

2/3/2023 25 Microsoft Confidential

DirectInput The Windows DirectX SDK

...
}

The following example checks whether dwSequence1 chronologically follows or is equal to
dwSequence2:
if (DISEQUENCE_COMPARE(dwSequence1, >=, dwSequence2)) {

...
}

GET_DIDEVICE_SUBTYPE
This macro extracts the device subtype code from a device type description code. Note that the
interpretation of the subtype code depends on the device primary type. See DirectInput Device Type
Description Codes for more information.

BYTE GET_DIDEVICE_SUBTYPE(
DWORD dwDevType)

Parameters
dwDevType

DirectInput device type description code.

GET_DIDEVICE_TYPE
This macro extracts the device type code from a device type description code. See DirectInput Device
Type Description Codes for more information.

BYTE GET_DIDEVICE_TYPE(
DWORD dwDevType)

Parameters
dwDevType

DirectInput device type description code.

MAKEDIPROP
Helper macro which creates an integer property.

Integer properties are defined by Microsoft. Vendors which wish to implement custom properties should
use GUIDs.

2/3/2023 26 Microsoft Confidential

DirectInput The Windows DirectX SDK

Chapter 4: ClassFactory Interface Methods

Overview
The IClassFactory interface is required for OLE support. See the OLE documentation for more
information. Most applications which use DirectInput will not need to communicate directly with the
OLE class factory.

IClassFactory Interface
Member
AddRef(…)
CreateInstance(…)
LockServer(…)
QueryInterface(…)
Release(…)

Members

AddRef
Priority: 1
Increments the reference count for the interface. See the OLE documentation for IUnknown::AddRef.

HRESULT AddRef
(LPCLASSFACTORY lpClassFactory)

Return Values
Returns the object reference count.

CreateInstance
This function creates a new DirectInput object with the specified interface. See the OLE documentation
for IClassFactory::CreateInstance. Note that the newly-created object has not been initialized.

HRESULT CreateInstance
(LPCLASSFACTORY lpClassFactory,
LPUNKNOWN punkOuter,
REFIID riid,
LPVOID * ppvOut)

Parameters
punkOuter

Pointer to controlling unknown for OLE aggregation, or 0 if the interface is not aggregated.
Most callers will pass 0.

riid
Desired interface. This parameter must point to a valid interface identifier.

ppvOut
Points to where to return the pointer to the created interface, if successful.

2/3/2023 27 Microsoft Confidential

DirectInput The Windows DirectX SDK

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.

S_OK: The operation completed successfully.
E_INVALIDARG: The ppvOut parameter is not a valid pointer.
CLASS_E_NOAGGREGATION: Aggregation not supported.
E_OUTOFMEMORY: Out of memory.
E_NOINTERFACE: The specified interface is not supported.

LockServer
This function increments or decrements the DLL lock count. While the DLL lock count is nonzero, it
will not be removed from memory. See the OLE documentation for IClassFactory::LockServer.

HRESULT LockServer
(LPCLASSFACTORY lpClassFactory,
 BOOL fLock)

Parameters
fLock

If TRUE, increments the lock count. If FALSE, decrements the lock count.
Return Values

Returns a COM error code. The following error codes are not necessarily comprehensive.
S_OK: The operation completed successfully.
E_OUTOFMEMORY: Out of memory.

QueryInterface
Gives a client access to other interfaces on an object. See the OLE documentation for
IUnknown::QueryInterface.

HRESULT QueryInterface
(LPCLASSFACTORY lpClassFactory,
REFIID riid,
LPVOID * ppvObj)

Parameters
riid

The requested interface’s IID.
ppvObj

Receives a pointer to the obtained interface.
Return Values

Returns a COM error code.

Release
Decrements the reference count for the interface. If the reference count on the object falls to zero, the
object is freed from memory. See the OLE documentation for IUnknown::Release.

HRESULT Release
(LPCLASSFACTORY lpClassFactory)

Return Values

2/3/2023 28 Microsoft Confidential

DirectInput The Windows DirectX SDK

Returns the object reference count.

2/3/2023 29 Microsoft Confidential

DirectInput The Windows DirectX SDK

Chapter 5: DirectInput Interface Reference

Overview
The DirectInput object represents the DirectInput subsystem. It creates the DirectInputDevice object
which represents a single input device.

IDirectInput Interface
Member
AddRef(...)
CreateDevice(…)
EnumDevices(…)
GetDeviceStatus(…)
Initialize(…)
QueryInterface(...)
Release(...)
RunControlPanel(…)

Members

AddRef
This member is part of the IUnknown interface inherited by IDirectInput. It is used to increase the
reference count on the associate COM object. When the object is initially created, its reference count is
set to one. Each time AddRef is called the reference count is incremented, and each time Release is
called the reference count is decremented. The object deallocates itself when its reference count reaches
zero.

DWORD AddRef
(LPDIRECTINPUT lpDirectInput)

Parameters
lpDirectInput

Points to the DirectInput object that this member is being called for.
Return Value

A DWORD containing the new reference count.

CreateDevice
Creates and initializes an instance of a device which is specified by the GUID. Calling this function with
punkOuter = NULL is equivalent to creating the object via
CoCreateInstance(&CLSID_DirectInputDevice, NULL, CLSCTX_INPROC_SERVER, riid,
lplpDirectInputDevice); then initializing it with Initialize.

Calling this function with punkOuter != NULL is equivalent to creating the object via
CoCreateInstance(&CLSID_DirectInputDevice, punkOuter, CLSCTX_INPROC_SERVER,
&IID_IUnknown, lplpDirectInputDevice). The aggregated object must be initialized manually.

HRESULT CreateDevice

2/3/2023 30 Microsoft Confidential

DirectInput The Windows DirectX SDK

(LPDIRECTINPUT lpDirectInput,
REFGUID rguid,
LPDIRECTINPUTDEVICE *lplpDirectInputDevice,
LPUNKNOWN * pUnkOuter)

Parameters
lpDirectInput

Points to the DirectInput object that this member is being called for.
rguid

Reference to the GUID representing the desired input device. The GUID is retrieved
through the EnumDevices method, or it can be one of the predefined GUIDs.

lplpDirectInputDevice
Points to the IDirectInputDevice interface pointer if successful.

pUnkOuter
Pointer to controlling unknown for OLE aggregation, or 0 if the interface is not aggregated.
Most callers will pass 0.

Return Value
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: The ppvOut parameter is not a valid
pointer.
DIERR_OUTOFMEMORY = E_OUTOFMEMORY: Out of memory.
DIERR_NOINTERFACE = E_NOINTERFACE: The specified interface is not supported
by the object.
DIERR_DEVICENOTREG: The device instance does not correspond to a device that is
registered with DirectInput.

EnumDevices
This member is used to enumerate devices that are either currently attached or could be attached to the
computer. For example, a flight stick may be installed on the system but not currently plugged in to the
computer. A flag is set in the dwFlags parameter to indicate whether only attached or all installed
devices should be enumerated. If the flag (DIEDFL_ATTACHEDONLY) is not present, all installed
devices will be enumerated. A preferred device type can be passed as a filter so that only the devices of
that type are enumerated.

An application-defined callback function is passed to IDirectInput::EnumDevices in the lpCallback
parameter. This function is called for every device that is enumerated. In the callback, the device type
and friendly name, and the product GUID and friendly name, are given for each device. If a single input
device can function as more than one DirectInput device type, it will be returned for each device type it
supports. (For example, a keyboard with a built-in mouse will be enumerated as a keyboard and as a
mouse. The product GUID would be the same for each device, however.) For this release of DirectInput,
only mouse and keyboard devices will be enumerated.

HRESULT EnumDevices
(LPDIRECTINPUT lpDirectInput,
DWORD dwDevType,
LPDIENUMCALLBACK lpCallback,
LPVOID pvRef,
DWORD dwFlags)

Parameters
lpDirectInput

2/3/2023 31 Microsoft Confidential

DirectInput The Windows DirectX SDK

Points to the DirectInput object that this member is being called for.
dwDevType

Device type filter. If 0, then all device types are enumerated. Otherwise, it is a
DIDEVTYPE_* value, indicating the device type that should be enumerated. For this
release of DirectInput, only mouse devices and keyboards are enumerated.

lpCallback
Points to an application-defined callback function that will be called with a description
of each DirectInput device.

BOOL CALLBACK DIEnumDevicesProc(
LPDIDEVICEINSTANCE lpddi,
LPVOID pvRef)

lpddi
Pointer to the structure that describes this device instance.

pvRef
Points to application-defined data given to EnumDevices.

Return Value
DIENUM_CONTINUE Continue the enumeration
DIENUM_STOP Stop the enumeration

pvRef
Points to a caller-defined 32 bit context that will be passed to the enumeration callback each
time it is called.

dwFlags
Only one flag is currently defined.
DIEDFL_ATTACHEDONLY- Only enumerates devices that are currently attached.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.

DI_OK = S_OK: The operation completed successfully. Note that if the callback stops the
enumeration prematurely, the enumeration is considered to have succeeded.

DIERR_INVALIDPARAM = E_INVALIDARG: The fl parameter contains invalid flags, or the
callback procedure returned an invalid status code.

GetDeviceStatus
This member checks to see if the specified device is currently attached to DirectInput. Returns OK if
device is attached or error if not attached.

HRESULT GetDeviceStatus
(LPDIRECTINPUT lpDirectInput,
REFGUID rguidInstance)

Parameters
lpDirectInput

Points to the DirectInput object that this member is being called for.
rguidInstance

Identifies the instance of the device whose status is being checked.
Return Values

Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The device is attached.
DI_NOTATTACHED = S_FALSE: The device is not attached.
E_FAIL: DirectInput could not determine whether the device is attached.

2/3/2023 32 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIERR_INVALIDPARAM = E_INVALIDARG: The device does not exist.

Initialize
Initialize a DirectInput object. The DirectInputCreate method automatically initializes the DirectInput
object device after creating it. Applications normally do not need to call this function.

HRESULT Initialize(
LPDIRECTINPUT lpDirectInput,
HINSTANCE hinst,
DWORD dwVersion)

Parameters
hinst

Instance handle of the application or DLL that is creating the DirectInput object.
dwVersion

Version number of the dinput.h header file that was used. This value must be
DIRECTINPUT_VERSION.
DirectInput uses this value to determine what version of DirectInput the application or DLL
was designed for.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The device is attached.
DIERR_DIERR_OLDDIRECTINPUTVERSION: The application requires a newer
version of DirectInput.
DIERR_DIERR_BETADIRECTINPUTVERSION: The application was written for an
unsupported prerelease version of DirectInput.

QueryInterface
This member is part of the IUnknown interface inherited by IDirectInput. This is the member that
applications use to determine whether the object supports additional interfaces that they may be
interested in. An application can ask the object if it supports a particular COM interface and if it does
the application may begin using that interface immediately. If the requested interface is supported, a
pointer to it is returned to the application in the ppvObj parameter. If the application does not want to
use that interface or is finished with the interface it must call Release to free it. This member allows
DirectInput objects to be extended by Microsoft without breaking, or interfering with, each others
existing or future functionality. For additional information, see the OLE documentation for
IUnknown::QueryInterface.

HRESULT QueryInterface
(LPDIRECTINPUT lpDirectInput,
REFIID riid,
LPVOID FAR* ppvObj)

Parameters
lpDirectInput

Points to the DirectInput object that this member is being called for.
riid

Points to the interface id (IID) identifying the requested interface.
ppvObj

2/3/2023 33 Microsoft Confidential

DirectInput The Windows DirectX SDK

Points to a location that will be filled with the returned interface pointer if the query is
successful.

Return Values
DI_OK
DIERR_INVALIDPARAM
DIERR_NOINTERFACE

Release
This member is part of the IUnknown interface inherited by IDirectInput. It is used to decrease the
reference count on the associated COM object. When the object is initially created its reference count is
set to one. Each time AddRef is called the reference count is incremented, and each time Release is
called the reference count is decremented. The object deallocates itself when its reference count reaches
zero. For additional information, see the OLE documentation for IUnknown::QueryInterface.

DWORD Release
(LPDIRECTINPUT lpDirectInput)

Parameters
lpDirectInput

Points to the DirectInput object that this member is being called for.
Return Value

A DWORD containing the new reference count. Note that this value should be used only or
debugging purposes.

RunControlPanel
This member is used to run the Windows’ DirectInput control panel so that the user can install a new
input device or modify the setup. This member will not run third party control panels.

HRESULT RunControlPanel
(LPDIRECTINPUT lpDirectInput,
HWND hwndOwner,
DWORD dwFlags)

Parameters
lpDirectInput

Points to the DirectInput object that this member is being called for.
hwndOwner

Identifies the windows handle that will be used as the parent window for the subsequent UI.
NULL is a valid parameter, indicating that there is no parent window.

dwFlags
No flags currently defined. This parameter must be zero.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The device is attached.

2/3/2023 34 Microsoft Confidential

DirectInput The Windows DirectX SDK

Chapter 6: DirectInputDevice Interface Reference

Overview
The IDirectInputDevice interface is used to retrieve data from an instance of an input device. The device
can be either a mouse device or keyboard device in this release of DirectInput.

Interface
Member
Acquire(…)
AddRef(...)
EnumObjects(…)
GetCapabilities(…)
GetDeviceData(…)
GetDeviceInfo(…)
GetDeviceState(…)
GetObjectInfo(…)
GetProperty(…)
Initialize(…)
QueryInterface(…)
Release(...)
RunControlPanel(…)
SetCooperativeLevel(…)
SetDataFormat(…)
SetEventNotification(…)
SetProperty(…)
Unacquire(…)

Members

Acquire
Obtains access to the input device. A device must be acquired before GetDeviceState or GetDeviceData
can be called on the device. Device acquisition does not have a reference count. If a device is acquired
twice then unacquired once, the device is unacquired.

HRESULT Acquire
(LPDIRECTINPUTDEVICE lpDirectInputDevice)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
Return Values

Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
S_FALSE: The device has already been acquired. Note that this value is a success code.
DIERR_INPUTLOST: Access to the device was not granted.

2/3/2023 35 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIERR_INVALIDPARAM = E_INVALIDARG: The device does not have a selected
data format.

AddRef
This member is part of the IUnknown interface inherited by IDirectInputDevice. It is used to increase
the reference count on the associated COM object. When the object is initially created, its reference
count is set to one. Each time AddRef is called the reference count is incremented, and each time
Release is called the reference count is decremented. The object deallocates itself when its reference
count reaches zero. See the OLE documentation on IUnknown::AddRef for additional information.

DWORD AddRef
(LPDIRECTINPUTDEVICE lpDirectInputDevice)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
Return Value

A DWORD containing the new reference count.

GetCapabilities
Obtains information about the input device.

HRESULT GetCapabilities
(LPDIRECTINPUTDEVICE lpDirectInputDevice,
LPDIDEVCAPS lpDIDevCaps)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
lpDIDevCaps

Points to a DIDEVCAPS structure that is filled in by the function. The dwSize field must
be filled in by the application before calling this method. See the documentation of the
DIDEVCAPS structure for additional information.

Return Value
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: The lpDIDevCaps parameter is not a
valid pointer.

GetDeviceData
Obtains buffered data from the DirectInput device.
Before device data can be obtained, the cooperative level must be set via SetCooperativeLevel, the data
format must be set via SetDataFormat, and the device must be acquired via Acquire.

HRESULT GetDeviceData(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
DWORD cbObjectData,
LPDIDEVICEOBJECTDATA rgdod,
LPDWORD pdwInOut,
DWORD fl)

2/3/2023 36 Microsoft Confidential

DirectInput The Windows DirectX SDK

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
cbObjectData

The size of the DIDEVICEOBJECTDATA structure in bytes.
rgdod

Array of DIDEVICEOBJECTDATA structures to receive the buffered data. It must
consist of *pdwInOut elements.
If this parameter is NULL, then the buffered data is not stored anywhere, but all other side-
effects take place.

pdwInOut
On entry, contains the number of elements in the array pointed to by rgdod. On exit,
contains the number of elements actually obtained.

fl
Flags which control the manner in which data is obtained. It may be zero or more of the
following flags:

DIGDD_PEEK: Do not remove the items from the buffer. A subsequent GetDeviceData
will read the same data. Normally, data is removed from the buffer after it is read.

Return Values
DI_OK = S_OK: All data were retrieved successfully. Note that the application needs to
check the output value of *pdwInOut to determine whether and how much data was
retrieved: The value may be zero, indicating that the buffer was empty.

DI_BUFFEROVERFLOW = S_FALSE: Some data were retrieved successfully, but some
data were lost because the device's buffer size was not large enough. The application should
retrieve buffered data more frequently or increase the device buffer size. This status code is
returned only on the first IDirectInputDevice::GetDeviceData call after the buffer has
overflowed. Note that this is a success status code.

DIERR_NOTACQUIRED: The device is not acquired.

DIERR_INPUTLOST: Access to the device has been interrupted. The application should
reacquire the device.

DIERR_INVALIDPARAM = E_INVALIDARG: One or more parameters was invalid.

Example
The following sample reads up to ten buffered data elements, removing them from the
device buffer as they are read.
DIDEVICEOBJECTDATA rgdod[10];
DWORD dwItems = 10;
hres = IDirectInputDevice_GetDeviceData(

pdid,
sizeof(DIDEVICEOBJECTDATA),
rgdod,
&dwItems,
0);

if (SUCCEEDED(hres)) {
// Buffer successfully flushed.
// dwItems = number of elements flushed
if (hres == DI_BUFFEROVERFLOW) {

2/3/2023 37 Microsoft Confidential

DirectInput The Windows DirectX SDK

// Buffer had overflowed.
}

}

If you pass NULL for the rgdod and request an infinite number of items, this has the effect
of flushing the buffer and returning the number of items that were flushed.
dwItems = INFINITE;
hres = IDirectInputDevice_GetDeviceData(

pdid,
sizeof(DIDEVICEOBJECTDATA),
NULL,
&dwItems,
0);

if (SUCCEEDED(hres)) {
// Buffer successfully flushed.
// dwItems = number of elements flushed
if (hres == DI_BUFFEROVERFLOW) {

// Buffer had overflowed.
}

}

If you pass NULL for the rgdod, request an infinite number of items, and ask that the data
not be removed from the device buffer, this has the effect of querying for the number of
elements in the device buffer.
dwItems = INFINITE;
hres = IDirectInputDevice_GetDeviceData(

pdid,
sizeof(DIDEVICEOBJECTDATA),
NULL,
&dwItems,
DIGDD_PEEK);

if (SUCCEEDED(hres)) {
// dwItems = number of elements in buffer
if (hres == DI_BUFFEROVERFLOW) {

// Buffer overflow occurred; not all data
// were successfully captured.

}
}

If you pass NULL for the rgdod and request zero items, this has the effect of querying
whether buffer overflow has occurred.
dwItems = 0;
hres = IDirectInputDevice_GetDeviceData(

pdid,
sizeof(DIDEVICEOBJECTDATA),
NULL,
&dwItems,
0);

if (hres == DI_BUFFEROVERFLOW) {
// Buffer overflow occurred

}

GetDeviceInfo
Obtains information about the device's identity.

2/3/2023 38 Microsoft Confidential

DirectInput The Windows DirectX SDK

HRESULT GetDeviceInfo(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
LPDIDEVICEINSTANCE pdidi)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
pdidi

Receives information about the device's identity. The caller must initialize the dwSize field
of the DIDEVICEINSTANCE structure before calling this method.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: One or more parameters was invalid.

GetDeviceState
Obtains instantaneous data from the DirectInput device.
Before device data can be obtained, the cooperative level must be set via SetCooperativeLevel, the data
format must be set via SetDataFormat, and the device must be acquired via Acquire.

HRESULT GetDeviceState(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
DWORD cbData,
LPVOID lpvData)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
cbData

The size of the buffer pointed to by lpvData, in bytes.
lpvData

Points to a structure that receives the current state of the device. The format of the data is
established by a prior call to SetDataFormat.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.

E_PENDING: The device does not have data yet. Some devices (such as USB joysticks)
require a delay between the time the device is turned on and the time the device begins
sending data. During this warm-up time, GetDeviceState will return E_PENDING. When
data becomes available, the event notification handle will be signaled.

DIERR_NOTACQUIRED: The device is not acquired.

DIERR_INPUTLOST: Access to the device has been interrupted. The application should
reacquire the device.

2/3/2023 39 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIERR_INVALIDPARAM = E_INVALIDARG: The lpvData parameter is not a valid
pointer or the cbData parameter does not match the data size set by a previous call to
SetDataFormat.

GetObjectInfo
Obtains information about an object.

HRESULT GetObjectInfo(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
LPDIDEVICEOBJECTINSTANCE pdidoi,
DWORD dwObj,
DWORD dwHow)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
pdidoi

Receives information about the object. The caller must initialize the dwSize field of the
DIDEVICEOBJECTINSTANCE structure before calling this method.

dwObj
Identifies the object for which the property is to be accessed. See the documentation of the
DIPROPHEADER structure for additional information.

dwHow
Identifies how dwObj is to be interpreted. See the documentation of the DIPROPHEADER
structure for additional information.

Return Values
Returns a COM error code. The following error codes are intended to be illustrative and not
necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: One or more parameters was invalid.
DIERR_OBJECTNOTFOUND: The specified object does not exist.

GetProperty
This member retrieves information about the input device. Some properties can be set with a call to the
IDirectInputDevice::SetProperty method; others are read-only. See the
IDirectInputDevice::SetProperty method for a list of settable properties.

HRESULT GetProperty
(LPDIRECTINPUTDEVICE lpDirectInputDevice,
REFGUID rguidProp,
LPDIPROPHEADER pdiph)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
rguidProp

The identity of the property being retrieved. This can be one of the predefined DIPROP_*
values, or it may be a pointer (reference, if using C++) to a GUID that identifies the
property.
The following properties are predefined for an input device:

2/3/2023 40 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIPROP_AXISMODE
DIPROP_BUFFERSIZE
DIPROP_GRANULARITY
DIPROP_RANGE
See the individual property descriptions in the Structures and Constants chapter for more
information about each of these properties.

pdiph
Points to the DIPROPHEADER portion of a structure which depends on the property.

Return Value
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: The pdiph parameter is not a valid
pointer, or the dwHow field is invalid, or the dwObj field is not zero when dwHow is set to
DIPH_DEVICE.
DIERR_OBJECTNOTFOUND: The specified object does not exist.
DIERR_UNSUPPORTED = E_NOTIMPL: The property is not supported by the device
or object.

Example
The following "C" code fragment illustrates how to obtain the value of the
DIPROP_BUFFERSIZE property.
DIPROPDWORD dipdw;
HRESULT hres;
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwObj = 0; // device property
dipdw.diph.dwHow = DIPH_DEVICE;
hres = IDirectInputDevice_GetProperty(pdid, DIPROP_BUFFERSIZE,
&dipdw.diph);
if (SUCCEEDED(hres)) {

// dipdw.dwData contains the value of the property
}

EnumObjects
Enumerate the input sources (axes, buttons, etc.) available on the input device.

HRESULT EnumObjects(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
LPDIENUMDEVICEOBJECTSCALLBACK lpCallback,
LPVOID pvRef,
DWORD fl)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
lpCallback

Points to an application-defined callback function that receives DirectInputDevice objects.

BOOL CALLBACK DIEnumDeviceObjectsProc(
LPCDIDEVICEOBJECTINSTANCE lpddoi,
LPVOID pvRef)

2/3/2023 41 Microsoft Confidential

DirectInput The Windows DirectX SDK

Parameters
lpddoi

A DIDEVICEOBJECTINSTANCE structure which describes the object being
enumerated.

pvRef
Specifies the application-defined value given in the
IDirectInputDevice::EnumObjects function.

Return Values
DIENUM_CONTINUE Continue the enumeration
DIENUM_STOP Stop the enumeration

pvRef
Reference data (context) for callback.

fl
Flags specifying the type(s) of objects to be enumerated. It may be a combination of the
data format types. See DirectInput Data Format Types.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully. Note that if the callback stops the
enumeration prematurely, the enumeration is considered to have succeeded.
DIERR_INVALIDPARAM = E_INVALIDARG: The fl parameter contains invalid flags,
or the callback procedure returned an invalid status code.

Initialize
Initialize a DirectInputDevice object.

Note that if this method fails, the underlying object should be considered to be an an indeterminate state
and needs to be reinitialized before it can be subsequently used.

The IDirectInput::CreateDevice method automatically initializes the device after creating it.
Applications normally do not need to call this function.

HRESULT Initialize(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
HINSTANCE hinst,
DWORD dwVersion,
REFGUID rguid)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
hinst

Instance handle of the application or DLL that is creating the DirectInputDevice object.
DirectInput uses this value to determine whether the application or DLL has been certified.

dwVersion
Version number of the dinput.h header file that was used. This value must be
DIRECTINPUT_VERSION.
DirectInput uses this value to determine what version of DirectInput the application or DLL
was designed for.

2/3/2023 42 Microsoft Confidential

DirectInput The Windows DirectX SDK

rguid
Identifies the instance of the device for which the interface should be associated. The
IDirectInput::EnumDevices method can be used to determine which instance GUIDs are
supported by the system.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The device is attached.
DIERR_DIERR_OLDDIRECTINPUTVERSION: The application requires a newer
version of DirectInput.
DIERR_DIERR_BETADIRECTINPUTVERSION: The application was written for an
unsupported prerelease version of DirectInput.
S_FALSE: The device had already been initialized with the instance GUID passed in rguid.
DIERR_ACQUIRED: The device cannot be initialized while it is acquired.

QueryInterface
This member is part of the IUnknown interface inherited by IDirectInputDevice. This is the member
that applications use to determine whether the object supports additional interfaces that they may be
interested in. An application can ask the object if it supports a particular COM interface and if it does
the application may begin using that interface immediately. If the requested interface is supported, a
pointer to it is returned to the application in the ppvObj parameter. If the application does not want to
use that interface or is finished with the interface, it must call Release to free it. This member allows
DirectInput objects to be extended by Microsoft without breaking, or interfering with, each others
existing or future functionality. For more information, see the OLE documentation for
IUnknown::QueryInterface.

HRESULT QueryInterface
(LPDIRECTINPUTDEVICE lpDirectInputDevice,
REFIID riid,
LPVOID FAR* ppvObj)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
riid

Points to the interface ID (IID) identifying the requested interface.
ppvObj

Points to a location that will be filled with the returned interface pointer if the query is
successful.

Return Values
DI_OK
DIERR_INVALIDPARAM
DIERR_NOINTERFACE

Release
This member is part of the IUnknown interface inherited by IDirectInputDevice. It is used to decrease
the reference count on the associated COM object. When the object is initially created its reference
count is set to one. Each time AddRef is called the reference count is incremented, and each time
Release is called the reference count is decremented. The object deallocates itself when its reference
count reaches zero. For more information, see the OLE documentation for IUnknown::QueryInterface.

2/3/2023 43 Microsoft Confidential

DirectInput The Windows DirectX SDK

DWORD Release
(LPDIRECTINPUTDEVICE lpDirectInputDevice)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
Return Value

A DWORD containing the new reference count. Note that the return value should be used
only for debugging purposes.

RunControlPanel
This member runs the control panel associated with this device. If the device does not have a control
panel associated with it, the default device control panel is launched.

HRESULT RunControlPanel
(LPDIRECTINPUTDEVICE lpDirectInputDevice,
HWND hwndOwner,
DWORD dwFlags)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
hwndOwner

Identifies the window handle that will be used as the parent window for subsequent UI.
NULL is a valid parameter, indicating that there is no parent window.

dwFlags
No flags currently defined. This parameter must be zero.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.

SetCooperativeLevel
Establish the cooperativity level for the instance of the device. The cooperativity level determines how
the instance of the device interacts with other instances of the device and the rest of the system.

Note that if the system mouse is acquired in exclusive mode, then the mouse cursor will be removed from
the screen until the device is unacquired.

You must call this method before acquiring the device via Acquire.

HRESULT SetCooperativeLevel(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
HWND hwnd,
DWORD dwFlags)

Parameters
hwnd

2/3/2023 44 Microsoft Confidential

DirectInput The Windows DirectX SDK

The window associated with the device. This parameter must be non-NULL if the
DISCL_FOREGROUND flag is passed. The window must be a top-level window.
It is an error to destroy the window while it is still active in a DirectInput device.

dwFlags
Flags which describe the cooperativity level associated with the device.
The DISCL_* flags are documented separately.

Return Values
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: The hwnd parameter is not a valid
window handle, or invalid flags or combinations of flags were passed.

SetDataFormat
Set the data format for the DirectInput device. The data format must be set before the device can be
acquired. It is necessary to set the data format only once. The data format may not be changed while the
device is acquired. If the attempt to set the data format fails, all data format information is lost, and a
valid data format must be set before the device may be acquired. Applications will typically use one of
the predefined data formats: c_dfDIMouse or c_dfDIKeyboard.

HRESULT SetDataFormat(
LPDIRECTINPUTDEVICE lpDirectInputDevice,
LPCDIDATAFORMAT lpdf)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
lpdf

Points to a structure that describes the format of the data the DirectInputDevice should
return.

Return Values
Returns a COM error code. The following error codes are intended to be illustrative and not
necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DIERR_INVALIDPARAM = E_INVALIDARG: The lpdf parameter is not a valid
pointer.
DIERR_ACQUIRED: Cannot change the data format while the device is acquired.

SetEventNotification
This member specifies an event that is to be set when the device state changes. It is also used to turn off
event notification.

It is an error to call CloseHandle on the event while it has been selected into an IDirectInputDevice
object. You must call IDirectInputDevice::SetEventNotification with the hEvent parameter set to
NULL before closing the event handle.

The event notification handle cannot be changed while the device is acquired.

If the function is successful, then the application can use the event handle in the same manner as any
other Win32 event handle. Examples of usage are shown below. For additional information on using
Win32 wait functions, see the Win32 SDK and related documentation.

2/3/2023 45 Microsoft Confidential

DirectInput The Windows DirectX SDK

HRESULT SetEventNotification
(LPDIRECTINPUTDEVICE lpDirectInputDevice,
HANDLE hEvent)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
hEvent

Handle to the event that is to be set when the device state changes. It must be an event
handle. DirectInput will SetEvent the handle when the state of the device changes.

The application should create the handle as a manual-reset event via the CreateEvent
function. If the event is created as an automatic-reset event, then the operating system will
automatically reset the event once a wait has been satisfied. If the event is created as a
manual-reset event, then it is the application's responsibility to call ResetEvent to reset it.
DirectInput will not call ResetEvent for event notification handles. Most applications will
create the event as an automatic-reset event.

If the hEvent is NULL, then notification is disabled.
Return Value

Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.

DIERR_ACQUIRED: The IDirectInputDevice object has been acquired. You must call
IDirectInputDevice::Unacquire to unacquire the device before you can change the
notification state.

DIERR_HANDLEEXISTS: The IDirectInputDevice object already has an event
notification handle associated with it. DirectInput supports only one event notification
handle per IDirectInputDevice object.

E_INVALIDARG:Not an event handle.

Example
To check if the handle is currently set without blocking:
dwResult = WaitForSingleObject(hEvent, 0);
if (dwResult == WAIT_OBJECT_0) {

// Event is set. If the event was created as
// automatic-reset, then it has also been reset.

}

The following example illustrates blocking indefinitely until the event is set. Note that this
behavior is strongly discouraged because the thread will not respond to the system until the
wait is satisfied. (In particular, the thread will not respond to Windows messages.)
dwResult = WaitForSingleObject(hEvent, INFINITE);
if (dwResult == WAIT_OBJECT_0) {

// Event has been set. If the event was created
// as automatic-reset, then it has also been
// reset.

}

2/3/2023 46 Microsoft Confidential

DirectInput The Windows DirectX SDK

The following example illustrates a typical message loop for a message-based application
that uses two events.
HANDLE ah[2] = { hEvent1, hEvent2 };

while (TRUE) {

dwResult = MsgWaitForMultipleObjects(2, ah, FALSE,
INFINITE, QS_ALLINPUT);

switch (dwResult) {
case WAIT_OBJECT_0:

// Event 1 has been set. If the event was
// created as automatic-reset, then it has also
// been reset.
ProcessInputEvent1();
break;

case WAIT_OBJECT_0 + 1:
// Event 2 has been set. If the event was
// created as automatic-reset, then it has also
// been reset.
ProcessInputEvent2();
break;

case WAIT_OBJECT_0 + 2:
// A Windows message has arrived. Process
// messages until there aren't any more.
while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){

if (msg.message == WM_QUIT) {
goto exitapp;

}
TranslateMessage(&msg);
DispatchMessage(&msg);

}
break;

default:
// Unexpected error.
Panic();
break;

}
}

The following example illustrates a typical application loop for a non-message-based
application that uses two events.
HANDLE ah[2] = { hEvent1, hEvent2 };
DWORD dwWait = 0;

while (TRUE) {

dwResult = MsgWaitForMultipleObjects(2, ah, FALSE,
 dwWait, QS_ALLINPUT);

dwWait = 0;

switch (dwResult) {
case WAIT_OBJECT_0:

2/3/2023 47 Microsoft Confidential

DirectInput The Windows DirectX SDK

// Event 1 has been set. If the event was
// created as automatic-reset, then it has also
// been reset.
ProcessInputEvent1();
break;

case WAIT_OBJECT_0 + 1:
// Event 2 has been set. If the event was
// created as automatic-reset, then it has also
// been reset.
ProcessInputEvent2();
break;

case WAIT_OBJECT_0 + 2:
// A Windows message has arrived. Process
// messages until there aren't any more.
while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){

if (msg.message == WM_QUIT) {
goto exitapp;

}
TranslateMessage(&msg);
DispatchMessage(&msg);

}
break;

default:
// No input or messages waiting.
// Do a frame of the game.
// If the game is idle, then tell the next wait
// to wait indefinitely for input or a message.
if (!DoGame()) {

dwWait = INFINITE;
}
break;

}
}

SetProperty
This member is used to set properties that define the device behavior. These properties which can be set
include input buffer size and axis mode. The current value of these properties can be retrieved with a call
to the IDirectInputDevice::GetProperty method.

HRESULT SetProperty
(LPDIRECTINPUTDEVICE lpDirectInputDevice,
REFGUID rguid,
LPCDIPROPHEADER pdiph)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
rguidProp

The identity of the property being set. This can be one of the predefined DIPROP_*
values, or it may be a pointer (reference, if C++) to a GUID that identifies the property.
The following properties are predefined and settable for a device:

2/3/2023 48 Microsoft Confidential

DirectInput The Windows DirectX SDK

DIPROP_AXISMODE
DIPROP_BUFFERSIZE
See the individual property descriptions in the Structures and Constants chapter for more
information about each of these properties.

pdiph
Points to the DIPROPHEADER portion of a structure which depends on the property.

Return Value
Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
DI_PROPNOEFFECT = S_FALSE: The operation completed successfully but had no
effect. For example, changing the axis mode on a device with no axes will return this value.
DIERR_INVALIDPARAM = E_INVALIDARG: The pdiph parameter is not a valid
pointer, or the dwHow field is invalid, or the dwObj field is not zero when dwHow is set to
DIPH_DEVICE.
DIERR_OBJECTNOTFOUND: The specified object does not exist.
DIERR_UNSUPPORTED = E_NOTIMPL: The property is not supported by the device
or object.

Unacquire
Release access to the device.

HRESULT Unacquire
(LPDIRECTINPUTDEVICE lpDirectInputDevice)

Parameters
lpDirectInputDevice

Points to the DirectInput device object that this member is being called for.
Return Values

Returns a COM error code. The following error codes are not necessarily comprehensive.
DI_OK = S_OK: The operation completed successfully.
S_FALSE: The object is not currently acquired. This may have been caused by a prior loss
of input. Note that this is a success code.

2/3/2023 49 Microsoft Confidential

DirectInput The Windows DirectX SDK

Appendix A: Japanese Keyboards

There are substantial differences between Japanese and US keyboards. The chart below lists the
additional keys that are available on each type of Japanese keyboard. It also lists the keys that are
available on US keyboards but are missing on the various Japanese keyboards.

Also note that on some NEC PC-98 keyboards, the DIK_CAPSLOCK and DIK_KANA keys are toggle
buttons and not push buttons. They generate a down event when first pressed, then generate an up event
when pressed a second time.

Keyboard Additional Keys Missing Keys
DOS/V 106 Keyboard,
NEC PC-98 106 Keyboard

DIK_AT
DIK_CIRCUMFLEX
DIK_COLON
DIK_CONVERT
DIK_KANA
DIK_KANJI
DIK_NOCONVERT
DIK_YEN

DIK_APOSTROPHE
DIK_EQUALS
DIK_GRAVE

NEC PC-98 Standard Keyboard
NEC PC-98 Laptop Keyboard

DIK_AT
DIK_CIRCUMFLEX
DIK_COLON
DIK_F13, F14, F15
DIK_KANA
DIK_KANJI
DIK_NOCONVERT
DIK_NUMPADCOMMA
DIK_NUMPADEQUALS
DIK_STOP
DIK_UNDERLINE
DIK_YEN

DIK_APOSTROPHE
DIK_BACKSLASH
DIK_EQUALS
DIK_GRAVE
DIK_NUMLOCK
DIK_NUMPADENTER
DIK_RCONTROL
DIK_RMENU
DIK_RSHIFT
DIK_SCROLL

AX Keyboard DIK_AX
DIK_CONVERT
DIK_KANJI
DIK_NOCONVERT
DIK_YEN

DIK_RCONTROL
DIK_RMENU

J-3100 Keyboard DIK_KANA
DIK_KANJI
DIK_NOLABEL
DIK_YEN

DIK_RCONTROL
DIK_RMENU

2/3/2023 50 Microsoft Confidential

	Table Of Contents
	Introduction
	Purpose of this Document
	Definition of Terms

	Chapter 1: Overview
	The DirectInput Object
	The DirectInputDevice Object
	Retrieving data from a mouse device
	Retrieving data from a keyboard device
	Special remarks on keyboard scan codes

	Chapter 2: Constants, Global Variables & Structures
	Chapter 3: DirectInput API & Macro Reference
	DIDFT_GETINSTANCE
	DIDFT_GETTYPE
	DirectInputCreate
	DISEQUENCE_COMPARE
	GET_DIDEVICE_SUBTYPE
	GET_DIDEVICE_TYPE
	MAKEDIPROP

	Chapter 4: ClassFactory Interface Methods
	Overview
	IClassFactory Interface
	Members
	AddRef
	CreateInstance
	LockServer
	QueryInterface
	Release

	Chapter 5: DirectInput Interface Reference
	Overview
	IDirectInput Interface
	Members
	AddRef
	CreateDevice
	EnumDevices
	GetDeviceStatus
	Initialize
	QueryInterface
	Release
	RunControlPanel

	Chapter 6: DirectInputDevice Interface Reference
	Overview
	Interface
	Members
	Acquire
	AddRef
	GetCapabilities
	GetDeviceData
	GetDeviceInfo
	GetDeviceState
	GetObjectInfo
	GetProperty
	EnumObjects
	Initialize
	QueryInterface
	Release
	RunControlPanel
	SetCooperativeLevel
	SetDataFormat
	SetEventNotification
	SetProperty
	Unacquire

	Appendix A: Japanese Keyboards

