
Chapter 4

MicrosoftÒ DirectXÔ 3
Software Development
Kit

DirectPlay

Information in this document is subject to change without notice. Companies, names, and
data used in examples are fictitious unless otherwise noted. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without the express written permission of Microsoft Corporation. Microsoft
may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of
this document does not give you the license to these patents, trademarks, copyrights, or
other intellectual property except as expressly provided in any written license agreement
from Microsoft.

Ó1996 Microsoft Corporation. All rights reserved.

Microsoft, ActiveMovie, Direct3D, DirectDraw, DirectInput, DirectPlay, DirectSound,
DirectX, MS-DOS, Win32, Windows, and Windows NT are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names herein may be the trademarks of their respective
owners.

3

C H A P T E R 4

About DirectPlay..
DirectPlay Architecture..

DirectPlay Component..
DirectPlayLobby Component...
Service Providers..

DirectPlay Overview..
Session Management...
Player Management..
Group Management...
Message Management...
Data Management...
Using System Messages..
Synchronization...
DirectPlay Address..
What's New in DirectPlay Version 3?..

DirectPlay Interface Overviews...
IDirectPlay Interface...
IDirectPlay2 Interface...
IDirectPlayLobby Interface..

DirectPlay Tutorials..
Tutorial 1: Connecting by Using the Lobby...
Tutorial 2: Connecting by Using a Dialog Box...

DirectPlay Reference..
Functions...
Callback Functions..
IDirectPlay2..
IDirectPlayLobby..
Structures...
System Messages...
Return Values..

DirectPlay

About DirectPlay
The Microsoft® DirectPlay® application programming interface (API) for the
Microsoft Windows® operating system is a software interface that simplifies
your application's access to communication services. DirectPlay has become a
technology family that not only provides a way for applications to communicate
with each other that is independent of the underlying transport, protocol, or online
service, but also provides this independence for matchmaking (lobby) servers.

Applications (especially games) can be more compelling if they can be played
against real players, and the personal computer has richer connectivity options
than any game platform in history. Instead of forcing you to deal with the
differences that each of these connectivity solutions represents, DirectPlay
provides well-defined, generalized communication capabilities. DirectPlay
shields you from the underlying complexities of diverse connectivity
implementations, freeing you to concentrate on producing a great application.

DirectPlay Architecture
DirectPlay uses a simple send/receive communication model to implement a
connectivity API tailored to the needs of multiplayer applications. The DirectPlay
architecture is composed of three components: DirectPlayLobby, DirectPlay, and
the DirectPlay service provider. The following figure shows the relationship
between these components, and their corresponding interfaces:

This section contains general information about these components:

· DirectPlay Component
· DirectPlayLobby Component
· Service Providers

Chapter 4 DirectPlay 5

DirectPlay Component
DirectPlay is provided by Microsoft and presents a common interface to the
application. The DirectPlay interface hides the complexities and unique tasks
required to establish an arbitrary communications link inside the DirectPlay
service provider implementation. An application using DirectPlay need only
concern itself with the performance of the communications medium, not with
whether a modem, network, or online service provided that medium.

DirectPlay will dynamically bind to any DirectPlay service provider installed on
the user's system. The application interacts with the DirectPlay object. The
DirectPlay object interacts with one of the available DirectPlay service providers,
and the selected service provider interacts with the transport or protocol.

The DirectPlay API is exposed to the application through a COM interface. For
DirectPlay version 3, there are two interfaces available: IDirectPlay2 and
IDirectPlay2A. IDirectPlay2 uses Unicode strings in all the DirectPlay
structures, whereas IDirectPlay2A uses ANSI strings. The IDirectPlay interface
still exists as the default interface for backward compatibility with applications
written for DirectPlay versions 1 and 2, and it uses only ANSI strings.

The application instantiates a single DirectPlay object and performs all
communications through that object, even if the application manages multiple
players. For performance, only the DirectPlay objects communicate directly with
each other; after a DirectPlay object receives a message, it will replicate that
message (if necessary) for all the players the local application created, and add
those messages to the message queue.

This version of DirectPlay supports the peer-to-peer gaming paradigm—that is,
any player can send a message directly to any other player in the session. A
session host arbitrates new computers that join the session and assigns ID
numbers when new players and groups are created. You can design a game in a
client/server model where all messages are sent to a server player on the host
computer, who then forwards them to the appropriate client players. Future
versions of DirectPlay will support application servers.

DirectPlayLobby Component
DirectPlayLobby is a standard way for custom matchmaking lobby solutions to
interact with DirectPlay applications. A custom lobby solution will usually
include some kind of lobby client software, which runs on the user's computer
and communicates with a lobby server. The lobby client implements the user
interface through which a user can locate other players to engage in a gaming
session. When a group of players has decided to start a session, the lobby client
starts the application on each of their computers and supplies them with the
information they need to select a service provider and connect to the session. A
DirectPlay application that can be started and connected through the

DirectPlayLobby API function is referred to as lobby-able. DirectPlayLobby also
has methods that allow an application to communicate with the lobby client while
the session is in progress, and to inform the lobby client when the application has
terminated.

The lobby client can determine which DirectPlay applications the user has by
using the IDirectPlayLobby::EnumLocalApplications method. It can also
determine which service providers are available by using the
DirectPlayEnumerate function. After a user decides to join a session and the
lobby client verifies the availability of the necessary application and service
provider, the lobby client can start the application and connect it to the session by
using the IDirectPlayLobby::RunApplication method. In this call, the lobby
client specifies the application to run, the DirectPlay service provider to use, the
information the service provider will need to connect to the session (by using the
IDirectPlayLobby::CreateAddress and IDirectPlayLobby::EnumAddress
methods), and the name the user is known by within the lobby environment.
DirectPlayLobby locates the application executable and starts it with the
appropriate command line switches. DirectPlayLobby also stores all the service
provider and connection information.

The lobby client and application can communicate by using the
IDirectPlayLobby::SendLobbyMessage and
IDirectPlayLobby::ReceiveLobbyMessage methods. The lobby client sets up
an event to occur when a message is received in the
IDirectPlayLobby::RunApplication method. The application sets up an event
by using the IDirectPlayLobby::SetLobbyMessageEvent method. By using this
method, the lobby can change its event, too.

For an application to be lobby-able, it must also create an IDirectPlayLobby
interface. The application can examine the connection parameters that the lobby
client provided by using the IDirectPlayLobby::GetConnectionSettings
method, and then modify them by using the
IDirectPlayLobby::SetConnectionSettings method. The application then calls
IDirectPlayLobby::Connect, which uses the connection settings and connects to
the session. During this time, the lobby client will receive system messages
indicating the progress of starting the application.

The application should then obtain the player name data (by using
IDirectPlayLobby::GetConnectionSettings) and assign it to the player being
created. The IDirectPlayLobby::Connect call (if successful) takes the place of
the following series of calls:

1 DirectPlayEnumerate (the lobby specifies the service provider)
2 DirectPlayCreate (IDirectPlayLobby::Connect will create a DirectPlay object)
3 IDirectPlay2::EnumSessions (the lobby also specifies the session information so

the user doesn't have to pick one)
4 IDirectPlay2::Open (the session will open automatically)

Chapter 4 DirectPlay 7

If IDirectPlayLobby::GetConnectionSettings returns the
DPERR_NOTLOBBIED error, the starting of the application was not initiated by
a lobby client, and the application should go through its normal DirectPlay
initialization.

Service Providers
The service provider furnishes medium-specific communication services as
requested by DirectPlay. Any organization, including online services, can supply
service providers for specialized hardware and communications media. Microsoft
includes the following service providers with DirectPlay: direct modem-to-
modem (TAPI), serial connection, Internet TCP/IP, and IPX.

DirectPlay Overview
This section contains general information about the DirectPlay component. The
following topics are discussed:

· Session Management
· Player Management
· Group Management
· Message Management
· Data Management
· Using System Messages
· Synchronization
· DirectPlay Address
· What's New in DirectPlay Version 3?

Session Management
A DirectPlay session is an instance of several applications on remote computers
communicating with each other. An application uses DirectPlay's session-
management functions to open or close a communication channel. An application
either creates a new session, or it enumerates existing sessions and finds one to
connect to. The application that creates the session is referred to as the host. The
host assigns player and group ID numbers and regulates new applications joining
the session.

The application can use the IDirectPlay2::EnumSessions method to locate all
the existing sessions in progress on the network. It can use the
IDirectPlay2::Open method to create new sessions or to connect to an existing
one. A session is described by its corresponding DPSESSIONDESC2 structure.

This structure contains application-specific values and session particulars, such as
the session's name, an optional password for the session, and the number of
players permitted in the session. After it opens a session, your application can call
the IDirectPlay2::GetCaps method to retrieve the speed of the communications
link and other properties of the network and service provider.

The application can use the IDirectPlay2::GetSessionDesc method to obtain the
session's current properties.

When an application must leave a session, it can use the IDirectPlay2::Close
method. If the session host leaves the session, and the session was started by
using the DPSESSION_MIGRATEHOST flag in the DPSESSIONDESC2
structure, one of the other players in the session becomes the host, and a
DPSYS_HOST system message is generated.

Player Management
Your application can use DirectPlay's player-management methods to manage the
players in a session. In addition to creating and destroying players, your
application can enumerate the players or retrieve a player's communication
capabilities.

The IDirectPlay2::CreatePlayer and IDirectPlay2::DestroyPlayer methods
create and delete players in a session. When the player is created, the application
can supply friendly and formal names for it, as well as some initial remote data.
(For more information, see Data Management.) DirectPlay assigns the player a
player ID, which the application and DirectPlay use to route message traffic. The
application and DirectPlay use the player ID to route message traffic. DirectPlay
does not use the friendly and formal names, but the application can use them to
identify players.

Your application can use the IDirectPlay2::EnumPlayers method to determine
which players are in a current session and what their friendly and formal names
are. Your application should typically call this method immediately after the
IDirectPlay2::Open method opens a session. Your application can use the
IDirectPlay2::EnumPlayers method to enumerate all the players in a session. If
your application needs information about the speeds of the players' connections to
the session, it can use the IDirectPlay2::GetPlayerCaps method.

Your application can change the name associated with a player by using the
IDirectPlay2::SetPlayerName method. This method sends a system message to
the other players informing them that a player's name has changed. These players
can determine the new name from the
DPMSG_SETPLAYERORGROUPNAME system message, or by using
IDirectPlay2::GetPlayerName.

Chapter 4 DirectPlay 9

Group Management
The group-management methods allow your application to create groups of
players in a session. The application can then send messages to the group, rather
than to one player at a time, by using a single call to the IDirectPlay2::Send
method. Some service providers can send messages to groups (multicasting) more
efficiently than sending them to individual players in a group, so, in addition to
simplifying player management, you can use groups to conserve communication-
channel bandwidth.

The IDirectPlay2::CreateGroup and IDirectPlay2::DestroyGroup methods
create and delete a group of players. When a group is created, the application can
assign it friendly and formal names, just as it does when it creates a player.
DirectPlay assigns the group a group ID. The group is initially empty, but the
application can use the IDirectPlay2::AddPlayerToGroup and
IDirectPlay2::DeletePlayerFromGroup methods to add and delete players. The
state of the DPSESSION_NEWPLAYERSDISABLED flag in the session
description does not affect the ability to create groups, or to add or delete players
from a group.

To determine what groups already exist, the application can use the
IDirectPlay2::EnumGroups method. To enumerate the players in a group, it can
use the IDirectPlay2::EnumGroupPlayers method.

An application can change the name of a group by using the
IDirectPlay2::SetGroupName method. This causes a system message to be sent
to the other players, who can determine the new name by using the
IDirectPlay2::GetGroupName method.

Message Management
The message-management functions help your application route messages among
players. With the exception of a small number of messages that the system has
defined, the messages can be defined in any way the application requires. Your
application can use the IDirectPlay2::Send method to send a message to a
player, a group, or all the players in the session by specifying a player ID, a group
ID, or DPID_ALLPLAYERS, respectively, as the destination. There is no limit to
the size of the message that DirectPlay can send. Your application can call
IDirectPlay2::GetCaps to find out the maximum number of bytes that can be
sent in a single packet. Larger messages are sent by using several packets.

If the global state of a player or group changes and that change must be
propagated to all the other players in the session, it might be more convenient to
use the data management functions rather than send a message with the new data
to the players. For more information, see Data Management.

To receive a message from the message queue, your application can use the
IDirectPlay2::Receive method. This method allows your application to specify
whether to receive the first message in the queue, only the messages to a
particular player ID, or only those from a particular player ID. Your application
can use the IDirectPlay2::GetMessageCount method to retrieve the number of
messages waiting for a given player.

DirectPlay generates system messages that notify players of changes in the
session. All system messages are from a virtual player defined by
DPID_SYSMSG. System messages start with a 32-bit value that identifies the
type of message. Constants that represent system messages begin with DPSYS_,
and they have a corresponding message structure that must be used to interpret
them. The application can control what system messages are generated by using
flags in the DPSESSIONDESC2 structure.

If an application uses a separate thread for retrieving messages, the application
can specify a synchronization event that will be set when a message is received.

Data Management
As of DirectX™ 3, DirectPlay has the ability to allow applications to associate
data with players and groups. Because DirectPlay already keeps track of players
and groups, applications no longer have to implement their own player and group
list manager to keep track of information. In addition, DirectPlay allows
applications to store two types of information: local and remote. Local data is
available only to the object that sets it. Remote data, on the other hand, is
propagated to each computer in the session. In effect, it becomes shared memory
between all remote computers. You should use remote data to store data that does
not change often and that all computers need to access. You should use local data
to keep track of data that no other computer needs access to.

Your application can set the data for a player by using the
IDirectPlay2::SetPlayerData method. The application can specify whether the
data is local or remote by passing the appropriate flags with the call. If the data is
remote, the application can also specify whether to use guaranteed or
nonguaranteed message passing to propagate the data. An application can retrieve
data for a player by using the IDirectPlay2::GetPlayerData method, again
specifying whether to retrieve the local or remote data. In a similar manner, you
can use the IDirectPlay2::SetGroupData and IDirectPlay2::GetGroupData
methods for group data.

Using System Messages
Messages returned by the IDirectPlay2::Receive method from player ID
DPID_SYSMSG are system messages. All system messages begin with a
doubleword value specified by dwType. You can cast the buffer returned by the
IDirectPlay2::Receive method to a generic message (DPMSG_GENERIC) and

Chapter 4 DirectPlay 11

switch on the dwType element, which will have a value equal to one of the
messages with the DPSYS_ prefix. After the application has determined which
system message it is, the buffer should be cast to the appropriate structure
(beginning with the DPMSG_ prefix) to read the data.

Your application should be prepared to handle the following system messages:

Value of dwType Message structure
DPSYS_ADDPLAYERTOGROUP DPMSG_ADDPLAYERTOGROUP
DPSYS_CREATEPLAYERORGROUP DPMSG_CREATEPLAYERORGROUP
DPSYS_DELETEPLAYERFROMGROUP DPMSG_DELETEPLAYERFROMGROUP
DPSYS_DESTROYPLAYERORGROUP DPMSG_DESTROYPLAYERORGROUP
DPSYS_HOST DPMSG_HOST
DPSYS_SESSIONLOST DPMSG_SESSIONLOST
DPSYS_SETPLAYERORGROUPDATA DPMSG_SETPLAYERORGROUPDATA
DPSYS_SETPLAYERORGROUPNAME DPMSG_SETPLAYERORGROUPNAME

Messages returned by the IDirectPlayLobby::ReceiveLobbyMessage method
that have a dwFlags parameter set to DPLAD_SYSTEM are system messages.
All system messages begin with a doubleword value specified by dwType. You
can cast the buffer returned by the IDirectPlayLobby::ReceiveLobbyMessage
method to a generic message (DPLMSG_GENERIC) and switch on the
dwType element, which will have a value equal to one of the messages with the
DPLSYS_ prefix.

Synchronization
DirectPlay does not attempt to provide a general approach for application
synchronization; to do so would necessarily impose limitations on the
application-communications paradigm. However, the system includes some
services that are designed to help you with these tasks. For example, you can
specify a notification event when your application creates a player, then use the
WaitForSingleObject Win32® function to find out whether a message is
pending for that player.

DirectPlay Address
The information in this section is included for DirectPlayLobby client developers,
and contains information that, in general, is not relevant for application
developers.

DirectPlay can encapsulate network address data. DirectPlay contains all the
information needed to connect to a DirectPlay session. The purpose of this
information is to be able to connect an application to a session without the service
provider having to display any dialog boxes prompting the user for information.

By providing the service provider with a complete DirectPlay Address, an
application can bypass the dialog boxes that the service provider would typically
display to obtain this information from the user.

The DirectPlay Address is in a format similar to the Resource Interchange File
Format (RIFF). It is composed of a series of chunks. Each chunk consists of the
following:

· A globally unique identifier (GUID) indicating what type of data this chunk
contains

· The size of the data
· The data field

DirectPlay has predefined the following chunk identifiers:

GUID Type of data
DPAID_ComPort A DPCOMPORTADDRESS structure that

specifies:
· COM port to use (1-4)
· Baud (100-256k)
· Number of stop bits (1-2)
· Parity (0-none, 1-odd, 2-even, 3-mark)
· Flow control (0-none, 1-xon/xoff, 2-RTS, 3-

DTR, 4-RTS/DTR)
DPAID_Inet ASCII string representing an IP address of the

form "xxx.xxx.xxx.xxx" or a server name, such
as "dplay.microsoft.com".

DPAID_Phone ASCII string representing the numeric digits of a
phone number.

DPAID_ServiceProvider A 16-byte GUID of the service provider for
which this address was created. This chunk can
be ignored because several different service
providers can use the same type of network
address.

A chunk identifier is a 16-byte GUID.

What's New in DirectPlay Version 3?
The DirectPlay version 3 API is fully compatible with applications written for
any previous version of DirectPlay. That is, you can recompile your application
by using DirectPlay on the DirectX 3 SDK without making any changes to the
code. DirectPlay supplied with the DirectX 3 SDK supports all the APIs and
behavior of earlier DirectPlay versions.

Chapter 4 DirectPlay 13

The names of the DirectPlay 3 DLLs are different from those in previous
DirectPlay versions, so applications compiled with DirectX 2 or earlier do not use
the new DirectPlay DLLs. To use the new DLLs, the application must be
recompiled and linked to the Dplayx.lib import library.

It is strongly recommended that you update your application to use the new
IDirectPlay2 or IDirectPlay2A interfaces, and add the code necessary to make
the application lobby-able. This means that an external lobby or matchmaking
program can start the application and supply it with all the information necessary
to connect to a session. The application need not ask the user to decide on a
service provider, select a session, or supply any other information (such as a
telephone number or network address).

In addition, several other new features have been added to the DirectPlay API,
including the following:

· Internet support.
· Direct serial connection.
· More stability and robustness.
· Support for Unicode to better support localization.
· Host migration. If the host of a session drops out of the session, host

responsibilities are passed on to another player. In DirectPlay version 2, if the
host (name server) left a session, no new players could be created.

· Ability of the application to communicate with the lobby program to update
games status for spectators, as well as receive information about initial
conditions.

· Ability to host more than one application session on a computer.
· Ability to determine when a remote computer loses its connection and to generate

appropriate messages.

There are also other features in DirectPlay 3 that you can use to reduce the
amount of communication-management code in your application, including the
following:

· Ability to associate application-specific data with a DirectPlay group ID or player
ID. This allows the application to leverage the player and group list-management
code that is already part of DirectPlay. Local data is data that the local
application uses directly, such as a bitmap that represents a player. Local data is
not propagated over the network. Remote data is associated with the player or
group. DirectPlay propagates any changes to remote data to all other applications
in the session. Remote data must be shared among all the applications in a
session, such as a player's position, orientation, and velocity. By using DirectPlay
functions to propagate this data, the application need not manage it by using a
series of methods that send and receive information.

· Ability for application to associate a name with a group. This is useful for team
play.

Some of the new features of DirectPlay 3 are not directly related to your
application, including the following:

· APIs that the lobby client software uses to start and connect a lobby-able
DirectPlay application. Also included are APIs that allow an application and the
lobby to exchange information during a session.

· Service Provider development kit that includes documentation and sample code
for creating your own service provider.

This section discusses the new DirectPlay 3 methods, the steps you must take to
migrate to the IDirectPlay2 interface, and how you can access DirectPlay's
updated functionality. The following topics are discussed:

· New DirectPlay 3 Methods
· Migrating to the IDirectPlay2 Interface

New DirectPlay 3 Methods
DirectPlay version 3 supports the following new methods:

· IDirectPlay2::SetGroupData and IDirectPlay2::GetGroupData
Associate application-specific data with a DirectPlay group ID either locally to
the application or in the remote data space.

· IDirectPlay2::SetGroupName and IDirectPlay2::GetGroupName
Associate a name with a group.

· IDirectPlay2::SetPlayerData and IDirectPlay2::GetPlayerData
Associate application-specific data with a DirectPlay player ID either locally to
the application or in the remote data space.

· IDirectPlay2::GetSessionDesc
Retrieves the session's properties while the session is in progress.

Migrating to the IDirectPlay2 Interface
To migrate your application to use the IDirectPlay2 interface, carry out the
following steps:

1 Find out if your application was launched from a lobby client. For more
information, see Step 2: Retrieving the Connection Settings in the DirectPlay
tutorials.

2 If your application is enumerating service providers, use the
DirectPlayEnumerate callback function to determine if a service provider is
available. If so, call the DirectPlayCreate function on the service provider. If the

Chapter 4 DirectPlay 15

DirectPlayEnumerate callback function returns an error, the service provider
cannot run on the system, and you should not add that service provider to the list
to show to the user. If the call succeeds, use the Release method to release the
DirectPlay object and add the service provider to the list.

3 Call the QueryInterface method on the IDirectPlay interface to obtain an
IDirectPlay2 (Unicode) or IDirectPlay2A (ANSI) interface. The only difference
between the two interfaces is how strings in the structures are read and written.
For the Unicode interface, Unicode strings are read and written to the member of
the structure that is of the LPWSTR type. For the ANSI interface, ANSI strings
are read and written to the member of the structure that is of the LPSTR type.

4 Make all the changes necessary to use the new structures in existing APIs. For
example, instead of the following:
lpDP->SetPlayerName(pidPlayer, lpszFriendlyName, lpszFormalName)

where lpDP is an IDirectPlay interface, use the following:
DPNAME PlayerName, *lpPlayerName;
PlayerName.dwSize = sizeof(DPNAME);
lpPlayerName = &PlayerName;

lpPayerName->lpszShortNameA = lpszFriendlyName;
lpPlayerName->lpszLongNameA = lpszFormalName;
lpDP2A->SetPlayerName(pidPlayer, lpPlayerName, 0)

where lpDP2A is an IDirectPlay2A interface. If the application is using Unicode
strings (and therefore instantiates an IDirectPlay2 interface), use the following:
lpPayerName->lpszShortName = lpwszFriendlyName;
lpPlayerName->lpszLongName = lpwszFormalName;
lpDP2->SetPlayerName(pidPlayer, lpPlayerName, 0)

where lpDP2 is an IDirectPlay2 interface.
5 Update the following system messages:

· DPSYS_ADDPLAYER has been replaced by
DPSYS_CREATEPLAYERORGROUP.

· DPSYS_DELETEPLAYER and DPSYS_DELETEGROUP have been
combined in a single DPSYS_DESTROYPLAYERORGROUP message.

· DPSYS_DELETEPLAYERFROMGRP has been changed to
DPSYS_DELETEPLAYERFROMGROUP.

6 Update your application to generate a DPSYS_SETPLAYERORGROUPNAME
message when a player or group name changes, and a
DPSYS_SETPLAYERORGROUPDATA message when the player or group data
changes.

7 Update the DPSESSIONDESC structure to DPSESSIONDESC2, and add the
new members to the DPCAPS structure.

8 Update the callback functions for IDirectPlay2::EnumSessions,
IDirectPlay2::EnumGroups, IDirectPlay2::EnumGroupPlayers, and
IDirectPlay2::EnumPlayers.

9 Update the manner in which the hEvent parameter is supplied to the
IDirectPlay2::CreatePlayer method. In previous versions of DirectPlay, this
parameter was lpEvent. DirectPlay does not return an event; instead, the
application must create it. This allows the application the flexibility of creating
one event for all the players.

10 Set the DPSESSION_KEEPALIVE flag in the DPSESSIONDESC2 structure if
the application needs DirectPlay to detect when players drop out of the game
abnormally.

11 Update your application to create sessions with the
DPSESSION_MIGRATEHOST flag. This enables another computer to become
the host if the current host drops out of the session. If your application has any
special code that only the host runs, then your application should set this flag
when it creates a session. It should also add support for the DPSYS_HOST
system message. For a list of system messages, see Using System Messages.

12 Become familiar with the new methods of the IDirectPlay2 interface and use
them in your application. Pay particular attention to the
IDirectPlay2::SetPlayerData and IDirectPlay2::GetPlayerData methods. You
might be able to substitute the code where you broadcast player state information
to all the other players by using the IDirectPlay2::Send and
IDirectPlay2::Receive methods.

DirectPlay Interface Overviews
DirectPlay is composed of objects and interfaces based on the component object
model (COM). COM is a foundation for an object-based system that focuses on
the reuse of interfaces, and it is the model at the heart of OLE programming. It is
also an interface specification from which any number of interfaces can be built.

In previous versions of DirectX, the DirectPlay object was made up of only one
interface, IDirectPlay. DirectPlay has now been expanded to include new
functionality that provides better access to more types of communications
solutions. New interfaces have been added to DirectPlay to include support for
Unicode and ANSI strings, and the building blocks for creating matchmaking
(lobby) services.

This section contains general information about the following DirectPlay COM
interfaces:

· IDirectPlay Interface
· IDirectPlay2 Interface
· IDirectPlayLobby Interface

Chapter 4 DirectPlay 17

IDirectPlay Interface
The IDirectPlay COM interface remains part of DirectPlay version 3. It contains
the methods required to run applications that were written for the DirectX SDK
versions 1 and 2. Although you could use this interface to create new
applications, it is recommended that you use the newer DirectPlay interfaces,
IDirectPlay2 and IDirectPlay2A, to take advantage of their increased
functionality.

IDirectPlay2 Interface
DirectPlay supports both Unicode and ANSI strings by defining string pointers in
a structure as the union of a Unicode string pointer (LPWSTR) and an ANSI
string pointer (LPSTR). The two string pointers have different names. Typically,
the ANSI string pointer ends with the letter "A". Depending on which
IDirectPlay interface is chosen (IDirectPlay2 for Unicode or IDirectPlay2A for
ANSI), the application should read and write the appropriate strings from the
structure and ignore the other one.

IDirectPlayLobby Interface
The following topics contain additional information related to the
IDirectPlayLobby interface:

· Unicode Versus ANSI DirectPlayLobby Interfaces
· Registering Lobby-able Applications

Unicode Versus ANSI DirectPlayLobby
Interfaces
DirectPlayLobby supports both Unicode and ANSI strings by defining string
pointers in a structure as the union of a Unicode string pointer (LPWSTR) and an
ANSI string pointer (LPSTR). The two string pointers have different names.
Typically, the ANSI string pointer ends with the letter "A". Depending on which
IDirectPlayLobby interface is chosen (IDirectPlayLobby for Unicode or
IDirectPlayLobbyA for ANSI), the application should read and write the
appropriate strings from the structure and ignore the other one.

Registering Lobby-able Applications
For an application to be enumerated and started by DirectPlayLobby, it must add
some information to the Windows registry when it is installed. The following
registry keys have been defined for this purpose. "Application Name" is the
human-readable name of the application that will be returned when
DirectPlayLobby enumerates it. You can use the DirectXRegisterApplication
function in DirectSetup to add these entries.

[HKEY_LOCAL_MACHINE\Software\Microsoft\DirectPlay\Applications\
Application Name]
"Guid" GUID of the application
"Filename" Filename of the executable
"CommandLine" Command-line switches for the application (if any)
"Path" Path of the application executable
"CurrentDirectory" Path of the directory to start application into

DirectPlay Tutorials
This section contains two tutorials that provide step-by-step instructions about
how to connect an application with or without a lobby. The LOBBY example
demonstrates how to connect an application by using a DirectPlay lobby. The
DIALOG example demonstrates how to connect an application by using a dialog
box that queries the user for connection information. You should write your
application so that it can start by using either method.

· Tutorial 1: Connecting by Using the Lobby (LOBBY)
· Tutorial 2: Connecting by Using a Dialog Box (DIALOG)

The sample files in these tutorials are written in C++. If you are using a C compiler,
you must make the appropriate changes to the files for them to successfully compile.
At the very least, you must add the vtable and this pointers to the interface methods.
For more information, see Accessing COM Objects by Using C.

Tutorial 1: Connecting by Using the Lobby
An application written to use the IDirectPlayLobby interface can be connected
without requiring the user to manually enter connection information in a dialog
box. To demonstrate how to create a lobbied application, the LOBBY sample
performs the following steps:

· Step 1: Creating a DirectPlayLobby Object
· Step 2: Retrieving the Connection Settings
· Step 3: Configuring the Session Description
· Step 4: Connecting to a Session
· Step 5: Creating a Player

Step 1: Creating a DirectPlayLobby Object
To use a DirectPlay lobby, you first create an instance of a DirectPlayLobby
object by calling the DirectPlayLobbyCreate function. This function contains
five parameters. The first, third, and fourth parameters are always set to NULL
and are included for future expansion. The second parameter contains the address

Note

Chapter 4 DirectPlay 19

of a pointer that identifies the location of the DirectPlayLobby object if it is
created. The fifth parameter is always set to 0, and is also included for future
expansion.

The following example shows one way to create a DirectPlayLobby object:

// Get an ANSI DirectPlay lobby interface.
hr = DirectPlayLobbyCreate(NULL, &lpDirectPlayLobbyA, NULL, NULL, 0);
if FAILED(hr)
 goto FAILURE;

Step 2: Retrieving the Connection Settings
After the DirectPlayLobby object has been created, use the
IDirectPlayLobby::GetConnectionSettings method to retrieve the connection
settings returned from the lobby. If this method returns DPERR_NOTLOBBIED,
the lobby did not start this application and the user will have to configure the
connection manually. If any other error occurs, your application should report an
error that indicates that lobbying the application failed.

The following example shows how to retrieve the connection settings:

// Retrieve the connection settings from the lobby.
// If this routine returns DPERR_NOTLOBBIED, then a lobby did not
// start this application and the user needs to configure the
// connection.

// Pass a NULL pointer to retrieve only the size of the
// connection setttings
hr = lpDirectPlayLobbyA->GetConnectionSettings(0, NULL, &dwSize);
if (DPERR_BUFFERTOOSMALL != hr)
 goto FAILURE;

// Allocate memory for the connection setttings.
lpConnectionSettings = (LPDPLCONNECTION) GlobalAllocPtr(GHND, dwSize);
 if (NULL == lpConnectionSettings)
 {
 hr = DPERR_OUTOFMEMORY;
 goto FAILURE;
 }

 // Retrieve the connection settings.
 hr = lpDirectPlayLobbyA->GetConnectionSettings(0,
 lpConnectionSettings, &dwSize);
 if FAILED(hr)
 goto FAILURE;

Step 3: Configuring the Session Description
You should examine the DPSESSIONDESC2 structure to ensure that all the
flags and properties that your application needs are set properly. If modifications
are necessary, store the modified connection settings by using the
IDirectPlayLobby::SetConnectionSettings method.

The following example shows how to configure the session description and set
the connection settings:

// Before the game connects, it should configure the session
// description with any settings it needs.

// Set the flags and maximum players used by the game.
lpConnectionSettings->lpSessionDesc->dwFlags = DPSESSION_MIGRATEHOST |
 DPSESSION_KEEPALIVE;
lpConnectionSettings->lpSessionDesc->dwMaxPlayers = MAXPLAYERS;

// Store the updated connection settings.
hr = lpDirectPlayLobbyA->SetConnectionSettings(0, 0,
 lpConnectionSettings);
if FAILED(hr)
 goto FAILURE;

Step 4: Connecting to a Session
After the session description is properly configured, your application can use the
IDirectPlayLobby::Connect method to start and connect itself to a session. If
this method returns DP_OK, you can create one or more players. If it returns
DPERR_NOTLOBBIED, the user will have to manually select a communication
medium for your application. (You can identify the service providers installed on
the system by using the DirectPlayEnumerate function.) If any other error value
is returned, your application should report an error that indicates that lobbying the
application failed.

The following example shows how to connect to a session:

// Connect to the session. Returns an ANSI IDirectPlay2A interface.
hr = lpDirectPlayLobbyA->Connect(0, &lpDirectPlay2A, NULL);
if FAILED(hr)
 goto FAILURE;

Step 5: Creating a Player
If the application was successfully started by using the
IDirectPlayLobby::Connect method, it can now create one or more players. It
can use the IDirectPlay2::CreatePlayer method to create a player with the
name specified in the DPNAME structure (which was filled in by the
IDirectPlayLobby::GetConnectionSettings method).

Chapter 4 DirectPlay 21

The following example shows how to create a player:

// create a player with the name returned in the connection settings
hr = lpDirectPlay2A->CreatePlayer(&dpidPlayer,
 lpConnectionSettings->lpPlayerName,
 lpDPInfo->hPlayerEvent, NULL, 0, 0);
if FAILED(hr)
 goto FAILURE;

Now your application is connected and you are ready to play.

Tutorial 2: Connecting by Using a Dialog
Box
If a lobby did not start your application, you should include code that allows the
user to manually enter the connection information. To demonstrate how to
manually connect to the session and create one or more players, the DIALOG
sample performs the following steps:

· Step 1: Enumerating the Service Providers
· Step 2: Creating the DirectPlay Object
· Step 3: Joining a Session
· Step 4: Creating a Session
· Step 5: Creating a Player

Step 1: Enumerating the Service Providers
The first step in creating a manual connection is to request that the user select a
communication medium for the application. Your application can identify the
service providers installed on a personal computer by using the
DirectPlayEnumerate function.

The following example shows how to enumerate the service providers:

DirectPlayEnumerate(DirectPlayEnumerateCallback, hWnd);

The first parameter in the DirectPlayEnumerate function is a callback that
enumerates service providers registered with DirectPlay. The following example
shows one possible way of implementing this callback function:

BOOL FAR PASCAL DirectPlayEnumerateCallback(
 LPGUID lpSPGuid, LPTSTR lpszSPName, DWORD dwMajorVersion,
 DWORD dwMinorVersion, LPVOID lpContext)
{
HWND hWnd = lpContext;
LRESULT iIndex;
LPGUID lpGuid;

// Store the service provider name in a combo box.
iIndex = SendDlgItemMessage(hWnd, IDC_SPCOMBO, CB_ADDSTRING,
 0, (LPARAM) lpszSPName);
if (iIndex == CB_ERR)
 goto FAILURE;

// Make space for the application GUID.
lpGuid = (LPGUID) GlobalAllocPtr(GHND, sizeof(GUID));
if (lpGuid == NULL)
 goto FAILURE;

// Store the pointer to the GUID in a combo box.
*lpGuid = *lpSPGuid;
SendDlgItemMessage(hWnd, IDC_SPCOMBO, CB_SETITEMDATA,
 (WPARAM) iIndex, (LPARAM) lpGuid);

FAILURE:
 return (TRUE);
}

Step 2: Creating the DirectPlay Object
After the user has selected which service provider to use, your application can
create a DirectPlay object based on the selection by calling the DirectPlayCreate
function and specifying the appropriate service provider's globally unique
identifier (GUID). Calling this function causes DirectPlay to load the library for
the selected service provider and returns an IDirectPlay interface.

Although you could use the IDirectPlay interface to create new games, a better
approach would be to use the newer DirectPlay interfaces, IDirectPlay2 and
IDirectPlay2A, with all their increased functionality. Your application can obtain
these interfaces by calling the QueryInterface method on the IDirectPlay
interface returned by DirectPlayCreate.

The following example shows how the create the IDirectPlay interface, and then
use QueryInterface to create an IDirectPlay2A interface:

HRESULT CreateDirectPlayInterface(LPGUID lpguidServiceProvider,
 LPDIRECTPLAY2A *lplpDirectPlay2A)
{
LPDIRECTPLAY lpDirectPlay1 = NULL;
LPDIRECTPLAY2A lpDirectPlay2A = NULL;
HRESULT hr;

// Retrieve a DirectPlay 1.0 interface.
hr = DirectPlayCreate(lpguidServiceProvider, &lpDirectPlay1, NULL);
if FAILED(hr)
 goto FAILURE;

Chapter 4 DirectPlay 23

// Query for an ANSI DirectPlay2 interface.
hr = lpDirectPlay1->QueryInterface(IID_IDirectPlay2A,
 (LPVOID *) &lpDirectPlay2A);
if FAILED(hr)
 goto FAILURE;

// Return the created interface.
*lplpDirectPlay2A = lpDirectPlay2A;

FAILURE:
if (lpDirectPlay1)
 lpDirectPlay1->Release();

return (hr);
}

Step 3: Joining a Session
If the user wants to join an existing session, enumerate the available sessions by
using the IDirectPlay2::EnumSessions method, present the choices to the user,
and then connect to that session by using the IDirectPlay2::Open method,
specifying the DPOPEN_JOIN flag. The service provider might display a dialog
box requesting some information from the user before it can enumerate the
sessions.

The following example shows how to enumerate the available sessions:

// Search for this kind of session.
ZeroMemory(&sessionDesc, sizeof(DPSESSIONDESC2));
sessionDesc.dwSize = sizeof(DPSESSIONDESC2);
sessionDesc.guidApplication = DPCHAT_GUID;

hr = lpDirectPlay2A->EnumSessions(&sessionDesc, 0, EnumSessionsCallback,
 hWnd, DPENUMSESSIONS_AVAILABLE);
if FAILED(hr)
 goto FAILURE;

The third parameter in the IDirectPlay2A::EnumSessions method is a callback
that enumerates the available sessions. The following example shows one way to
implement this callback function:

BOOL FAR PASCAL EnumSessionsCallback(
 LPCDPSESSIONDESC2 lpSessionDesc, LPDWORD lpdwTimeOut,
 DWORD dwFlags, LPVOID lpContext)
{
HWND hWnd = lpContext;
LPGUID lpGuid;
LONG iIndex;

// Determine if the enumeration has timed out.

if (dwFlags & DPESC_TIMEDOUT)
 return (FALSE); // Do not try again

// Store the session name in the list.
iIndex = SendDlgItemMessage(hWnd, IDC_SESSIONLIST, LB_ADDSTRING,
 (WPARAM) 0, (LPARAM) lpSessionDesc->lpszSessionNameA);
if (iIndex == CB_ERR)
 goto FAILURE;

// Make space for the session instance GUID.
lpGuid = (LPGUID) GlobalAllocPtr(GHND, sizeof(GUID));
if (lpGuid == NULL)
 goto FAILURE;

// Store the pointer to the GUID in the list.
*lpGuid = lpSessionDesc->guidInstance;
SendDlgItemMessage(hWnd, IDC_SESSIONLIST, LB_SETITEMDATA,
 (WPARAM) iIndex, (LPARAM) lpGuid);

FAILURE:
 return (TRUE);
}

After the user has selected a session, your application can allow the user to join
an existing session. The following example shows how to join an existing session:

// Join an existing session.
ZeroMemory(&sessionDesc, sizeof(DPSESSIONDESC2));
sessionDesc.dwSize = sizeof(DPSESSIONDESC2);
sessionDesc.guidInstance = *lpguidSessionInstance;

hr = lpDirectPlay2A->Open(&sessionDesc, DPOPEN_JOIN);
if FAILED(hr)
 goto OPEN_FAILURE;

Step 4: Creating a Session
If the user wants to create a new session, your application can create it by using
the IDirectPlay2::Open method and specifying the DPOPEN_CREATE flag.
Again, the service provider might display a dialog box requesting information
from the user before it can create the session.

The following example shows how to create a new session:

// Host a new session.
ZeroMemory(&sessionDesc, sizeof(DPSESSIONDESC2));
sessionDesc.dwSize = sizeof(DPSESSIONDESC2);
sessionDesc.dwFlags = DPSESSION_MIGRATEHOST | DPSESSION_KEEPALIVE;
sessionDesc.guidApplication = DPCHAT_GUID;
sessionDesc.dwMaxPlayers = MAXPLAYERS;

Chapter 4 DirectPlay 25

sessionDesc.lpszSessionNameA = lpszSessionName;

hr = lpDirectPlay2A->Open(&sessionDesc, DPOPEN_CREATE);
if FAILED(hr)
 goto OPEN_FAILURE;

Step 5: Creating a Player
After a session has been created or joined, your application can create one or
more players by using the IDirectPlay2::CreatePlayer method. The following
example shows one way to create a player:

// Fill out the name structure.
ZeroMemory(&dpName, sizeof(DPNAME));
dpName.dwSize = sizeof(DPNAME);
dpName.lpszShortNameA = lpszPlayerName;
dpName.lpszLongNameA = NULL;

// Create a player with this name.
hr = lpDirectPlay2A->CreatePlayer(&dpidPlayer, &dpName,
 lpDPInfo->hPlayerEvent, NULL, 0, 0);
if FAILED(hr)
 goto CREATEPLAYER_FAILURE;

Your application can determine a player's communication capabilities by using
the IDirectPlay2::GetCaps and IDirectPlay2::GetPlayerCaps methods. Your
application can find other players by using the IDirectPlay2::EnumPlayers
method.

Now your application is connected and you are ready to play.

DirectPlay Reference
Functions

DirectPlayCreate
HRESULT WINAPI DirectPlayCreate(LPGUID lpGUID,
 LPDIRECTPLAY *lplpDP, IUnknown *pUnkOuter);

Creates an instance of a DirectPlay object.

· Returns DP_OK if successful, or one of the following error values otherwise:
CLASS_E_NOAGGREGATION
DPERR_EXCEPTION
DPERR_INVALIDPARAMS

DPERR_UNAVAILABLE

lpGUID
Address of the globally unique identifier (GUID) that represents the service
provider that should be created.

lplpDP
Address of a pointer to be initialized with a valid DirectPlay interface. The
application will need to use the QueryInterface method to obtain an
IDirectPlay2 (Unicode strings) or IDirectPlay2A (ANSI strings) interface.

pUnkOuter
Address of the containing IUnknown interface. This parameter is provided for
future compatibility with COM aggregation features. Presently, however, the
DirectPlayCreate function returns an error if this parameter is anything but
NULL.

This function attempts to initialize a DirectPlay object and sets a pointer to it if
successful. Your application should call the DirectPlayEnumerate function
immediately before initialization to determine what types of service providers are
available (the DirectPlayEnumerate function fills in the lpGUID parameter of
DirectPlayCreate).

This function returns a pointer to an IDirectPlay interface. The current interfaces
for DirectX 3 are IDirectPlay2 and IDirectPlay2A, which need to be obtained
through a call to the QueryInterface method on the IDirectPlay interface
returned by DirectPlayCreate.

See also DirectPlayEnumerate

DirectPlayEnumerate
HRESULT WINAPI DirectPlayEnumerate(
 LPDPENUMDPCALLBACK lpEnumDPCallback, LPVOID lpContext);

Enumerates the DirectPlay service providers installed on the system.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_EXCEPTION
DPERR_GENERIC
DPERR_INVALIDPARAMS

lpEnumDPCallback
Address of the EnumDPCallback function that will be called with a description
of each DirectPlay service provider interface installed in the system.

Chapter 4 DirectPlay 27

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

This function will enumerate service providers installed in the system even
though the system might not be capable of using those service providers. For
example, a TAPI service provider will be part of the enumeration even though the
system might not have a modem installed.

DirectPlayLobbyCreate
HRESULT WINAPI DirectPlayLobbyCreate(
 LPGUID lpguidSP, LPDIRECTPLAYLOBBY *lplpDPL,
 IUnknown *lpUnk, LPVOID lpData, DWORD dwDataSize);

Creates an instance of a DirectPlayLobby object. This function attempts to
initialize a DirectPlayLobby object and set a pointer to it.

· Returns DP_OK if successful, or one of the following error values otherwise:
CLASS_E_NOAGGREGATION
DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY

lpguidSP
Reserved for future use; must be set to NULL.

lplpDPL
Address of a pointer to be initialized with a valid IDirectPlayLobby interface.

lpUnk
Address of the containing IUnknown interface. This parameter is provided for
future compability with COM aggregation features. Presently, however,
DirectPlayLobbyCreate returns an error if this parameter is anything but NULL.

lpData
Extra data needed to create the DirectPlayLobby object. This parameter must be
set to NULL.

dwDataSize
This parameter must be set to zero.

Callback Functions

EnumAddressCallback
BOOL WINAPI EnumAddressCallback(REFGUID guidDataType,
 DWORD dwDataSize, LPCVOID lpData,
 LPVOID lpContext);

Application-defined callback function for the
IDirectPlayLobby::EnumAddress method.

· Returns TRUE to continue the enumeration or FALSE to stop it.

guidDataType
Globally unique identifier (GUID) indicating the type of this data chunk.

dwDataSize
Size, in bytes, of the data chunk.

lpData
Address of the constant data.

lpContext
Context passed to the callback function.

The service provider should examine the GUID in the guidDataType parameter
and process or store the value specified in lpData. Unrecognized values in
guidDataType can be ignored.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data. In this function, lpData is temporary.

EnumAddressTypeCallback
BOOL WINAPI EnumAddressTypeCallback(
 REFGUID guidDataType, LPVOID lpContext,
 DWORD dwFlags);

Application-defined callback function for the
IDirectPlayLobby::EnumAddressTypes method.

· Returns TRUE to continue the enumeration or FALSE to stop it.

guidDataType
Globally unique identifier (GUID) indicating the address type. Predefined address
types are DPAID_Phone, DPAID_Inet, and DPAID_ComPort. For more
information about these address types, see DirectPlay Address.

lpContext
Context passed to the callback function.

dwFlags
Reserved; do not use.

EnumDPCallback
BOOL WINAPI EnumDPCallback(LPGUID lpguidSP,
 LPSTR/LPWSTR lpSPName, DWORD dwMajorVersion,

Chapter 4 DirectPlay 29

 DWORD dwMinorVersion, LPVOID lpContext);

Application-defined callback function for the DirectPlayEnumerate function.
Depending on whether UNICODE is defined or not, the prototype for the
callback function will have lpSPName defined as either the LPWSTR type (for
Unicode) or the LPSTR type (for ANSI).

· Returns TRUE to continue the enumeration or FALSE to stop it.

lpguidSP
Address of the unique identifier of the DirectPlay service provider.

lpSPName
Address of a string containing the driver description. Depending on whether the
UNICODE symbol is defined or not, the parameter will be of the LPWSTR type
(Unicode) or the LPSTR type (ANSI).

dwMajorVersion and dwMinorVersion
Major and minor version numbers of the driver.

lpContext
Address of an application-defined context.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data. In this function, lpguidSP and lpSPName are
temporary.

EnumLocalApplicationsCallback
BOOL WINAPI EnumLocalApplicationsCallback(
 LPCDPLAPPINFO lpAppInfo, LPVOID lpContext, DWORD dwFlags);

Application-defined callback function for the
IDirectPlayLobby::EnumLocalApplications method.

· Returns TRUE to continue the enumeration or FALSE to stop it.

lpAppInfo
Address of a read-only DPLAPPINFO structure containing information about
the application being enumerated.

lpContext
Context passed from the IDirectPlayLobby::EnumLocalApplications call.

dwFlags
Reserved; do not use.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then

store the pointer to this new data. In this function, lpAppInfo is temporary. Also
note that the pointers inside the structure specified in the lpAppInfo parameter—
lpszAppNameA and lpszAppName—are also temporary.

EnumPlayersCallback2
BOOL WINAPI EnumPlayersCallback2(DPID dpId,
 DWORD dwPlayerType, LPCDPNAME lpName,
 DWORD dwFlags, LPVOID lpContext);

Application-defined callback function for the IDirectPlay2::EnumGroups,
IDirectPlay2::EnumGroupPlayers, and IDirectPlay2::EnumPlayers methods.

· Returns TRUE to continue the enumeration or FALSE to stop it.

dpId
ID of the player or group being enumerated.

dwPlayerType
Type of player, either DPPLAYERTYPE_GROUP or
DPPLAYERTYPE_PLAYER.

lpName
Address of a constant DPNAME structure containing the name of the player or
group.

dwFlags
Specifies the flags that were passed in the IDirectPlay2::EnumGroups,
IDirectPlay2::EnumGroupPlayers, or IDirectPlay2::EnumPlayers method.

lpContext
Address of an application-defined context.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data. In this function, lpName is temporary. Also
note that the pointers inside the structure specified in the lpName parameter—
lpszShortName / lpszShortNameA and lpszLongName / lpszLongNameA—
are also temporary.

EnumSessionsCallback2
BOOL EnumSessionsCallback2(LPDPSESSIONDESC2 lpThisSD,
 LPDWORD lpdwTimeOut, DWORD dwFlags
 LPVOID lpContext);

Application-defined callback function for the IDirectPlay2::EnumSessions
method.

Chapter 4 DirectPlay 31

· Returns TRUE to continue the enumeration or FALSE to stop it.

lpThisSD
Address of a DPSESSIONDESC2 structure describing the enumerated session.
This parameter will be set to NULL if the enumeration has timed out.

lpdwTimeOut
Address of a variable containing the current time-out value. This parameter can
be reset when the DPESC_TIMEDOUT flag is returned if you want to wait
longer for sessions to reply.

dwFlags
Typically, this flag is set to zero.
DPESC_TIMEDOUT

The enumeration has timed out. Reset lpdwTimeOut and return TRUE to
continue, or FALSE to stop the enumeration.

lpContext
Address of an application-defined context.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data. In this function, lpThisSD is temporary. Also
note that the pointers inside the structure specified in the lpThisSD parameter—
lpszSessionName / lpszSessionNameA and lpszPassword / lpszPasswordA—
are also temporary.

IDirectPlay2
Applications use the methods of the IDirectPlay2 interface to create DirectPlay
objects and work with system-level variables. (The IDirectPlay2A interface is
the same as the IDirectPlay2 interface, except that IDirectPlay2A uses ANSI
characters, and IDirectPlay2 uses Unicode.) This section is a reference to the
methods of this interface.

The methods of the IDirectPlay2 interface can be organized into the following
groups:

Data management GetGroupData
GetPlayerData
SetGroupData
SetPlayerData

Group management AddPlayerToGroup
CreateGroup

DeletePlayerFromGroup
DestroyGroup
EnumGroupPlayers
EnumGroups
GetGroupName
SetGroupName

Initialization Initialize

Message management GetMessageCount
Receive
Send

Player management CreatePlayer
DestroyPlayer
EnumPlayers
GetPlayerAddress
GetPlayerCaps
GetPlayerName
SetPlayerName

Session management Close
EnumSessions
GetCaps
GetSessionDesc
Open
SetSessionDesc

The IDirectPlay2 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three
methods:

AddRef
QueryInterface
Release

IDirectPlay2::AddPlayerToGroup
HRESULT AddPlayerToGroup(DPID idGroup, DPID idPlayer);

Chapter 4 DirectPlay 33

Adds an existing player to an existing group.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_CANTADDPLAYER
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idGroup
Group ID of the group to be augmented.

idPlayer
Player ID of the player to be added to the group.

Groups cannot be added to other groups, but players can be members of multiple
groups. DPSYS_ADDPLAYERTOGROUP system message will be generated
and sent to all the other players. For a list of system messages, see Using System
Messages.

See also IDirectPlay2::CreateGroup,
IDirectPlay2::DeletePlayerFromGroup, DPMSG_ADDPLAYERTOGROUP

IDirectPlay2::Close
HRESULT Close();

Closes a previously opened session.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_NOSESSIONS

All locally created players will be destroyed, with corresponding
DPSYS_DESTROYPLAYERORGROUP system messages sent to other session
participants. However, no groups will be destroyed (use
IDirectPlay2::DestroyGroup to destroy the group). For a list of system
messages, see Using System Messages.

See also IDirectPlay2::DestroyPlayer,
DPMSG_DESTROYPLAYERORGROUP, IDirectPlay2::Open

IDirectPlay2::CreateGroup
HRESULT CreateGroup(LPDPID lpidGroup,
 LPDPNAME lpGroupName, LPVOID lpData,

 DWORD dwDataSize, DWORD dwFlags);

Creates a logical group of players in the current session.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_CANTADDPLAYER
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY

lpidGroup
Address of a variable that will be filled with the DirectPlay group ID. This value
is defined by DirectPlay.

lpGroupName
Address of a DPNAME structure that holds the name of the group. NULL
indicates that the group has no initial name.

lpData
Address of a block of application-defined remote data to associate with the group
ID. NULL indicates that the group has no initial data. The data specified here is
assumed to be remote data that will be propagated to all the other applications in
the session as if IDirectPlay2::SetGroupData were called.

dwDataSize
Size, in bytes, of the data block that lpData points to.

dwFlags
Reserved; do not use.

Messages can be sent to a group, and DirectPlay will forward the message to
every player in the group. The group ID returned to the application should be
used to identify the group for message passing and data association. Player and
group IDs assigned by DirectPlay will always be unique within the session. This
method will generate a DPSYS_CREATEPLAYERORGROUP system message
that will be sent to all the other players. For a list of system messages, see Using
System Messages.

The application can associate an initial name with the group at creation by using
the IDirectPlay2::SetGroupName method. The names in lpGroupName are
provided for human use only; they are not used internally and need not be unique.
The application can also associate initial data with the group creation by using the
IDirectPlay2::SetGroupData method.

See also DPNAME, DPMSG_CREATEPLAYERORGROUP,
IDirectPlay2::DestroyGroup, IDirectPlay2::EnumGroups,
IDirectPlay2::EnumGroupPlayers, IDirectPlay2::Send,
IDirectPlay2::SetGroupData, IDirectPlay2::SetGroupName

Chapter 4 DirectPlay 35

IDirectPlay2::CreatePlayer
HRESULT CreatePlayer(LPDPID lpidPlayer,
 LPDPNAME lpPlayerName, HANDLE hEvent,
 LPVOID lpData, DWORD dwDataSize, DWORD dwFlags);

Creates a local player for the current session.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_CANTADDPLAYER
DPERR_CANTCREATEPLAYER
DPERR_GENERIC
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_NOCONNECTION

lpidPlayer
Address of a variable that will be filled with the DirectPlay player ID. This value
is defined by DirectPlay.

lpPlayerName
Address of a DPNAME structure that holds the name of the player. NULL
indicates that the player has no initial name information.

hEvent
An event object created by the application that will be triggered by DirectPlay
when a message addressed to this player is received.

lpData
Address of a block of application-defined data to associate with the player ID.
NULL indicates that the player has no initial data. The data specified in this
parameter is assumed to be remote data that will be propagated to all the other
applications in the session, as if IDirectPlay2::SetPlayerData were called.

dwDataSize
Size, in bytes, of the data block that lpData points to.

dwFlags
Reserved; do not use.

A single process can have multiple local players that communicate through a
DirectPlay object with any number of other local or remote players running on
multiple computers. Your application should use the player ID returned to the
application to identify the player for message passing and data association. Player
and group IDs assigned by DirectPlay will always be unique within the session.

The application can associate an initial name with the player at creation by using
the IDirectPlay2::SetPlayerName method. The names in lpPlayerName are
provided for human use only; they are not used internally and need not be unique.

The application can also associate initial data with the player at creation by using
the IDirectPlay2::SetPlayerData method.

Upon successful completion, this method sends a
DPSYS_CREATEPLAYERORGROUP system message to all the other players
in the session announcing that a new player has joined the session. For a list of
system messages, see Using System Messages.

If the application uses a separate thread to retrieve DirectPlay messages, it may
supply a synchronization event by using the hEvent parameter. This event will be
set when this player receives a message. Multiple players can use the same event
object specified in hEvent.

See also DPNAME, DPMSG_CREATEPLAYERORGROUP,
IDirectPlay2::DestroyPlayer, IDirectPlay2::EnumPlayers,
IDirectPlay2::Receive, IDirectPlay2::Send, IDirectPlay2::SetPlayerData,
IDirectPlay2::SetPlayerName

IDirectPlay2::DeletePlayerFromGroup
HRESULT DeletePlayerFromGroup(DPID idGroup,
 DPID idPlayer);

Removes a player from a group.

· Returns DP_OK if successful, or one of the following error messages otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idGroup
Group ID of the group to be adjusted.

idPlayer
Player ID of the player to be removed from the group.

A DPSYS_DELETEPLAYERFROMGROUP system message is generated to
inform the other players of this change. For a list of system messages, see Using
System Messages.

See also IDirectPlay2::AddPlayerToGroup,
DPMSG_DELETEPLAYERFROMGROUP

IDirectPlay2::DestroyGroup
HRESULT DestroyGroup(DPID idGroup);

Deletes a group from the session. The ID belonging to this group will not be
reused during the current session.

Chapter 4 DirectPlay 37

· Returns DP_OK if successful, or one of the following error messages otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER

idGroup
The ID of the group being removed from the game.

It is not necessary to empty a group before deleting it. The individual players
belonging to the group are not destroyed. This method will generate a
DPSYS_DELETEPLAYERFROMGROUP system message for each player in
the group, and then a DPSYS_DESTROYPLAYERORGROUP system message.
For a list of system messages, see Using System Messages.

See also IDirectPlay2::CreateGroup,
DPMSG_DESTROYPLAYERORGROUP

IDirectPlay2::DestroyPlayer
HRESULT DestroyPlayer(DPID idPlayer);

Deletes a player from the session, removes any pending messages destined for
that player from the message queue, and removes the player from any groups to
which it belonged. The player ID will not be reused during the current session.

· Returns DP_OK if successful, or one of the following error messages otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idPlayer
Player ID of the player that is being removed from the session.

This method will generate a DPSYS_DELETEPLAYERFROMGROUP system
message for each group that the player belongs to, and then a
DPSYS_DESTROYPLAYERORGROUP system message. For a list of system
messages, see Using System Messages.

See also IDirectPlay2::CreatePlayer,
DPMSG_DESTROYPLAYERORGROUP

IDirectPlay2::EnumGroupPlayers
HRESULT EnumGroupPlayers(DPID idGroup,
 LPGUID lpguidInstance,
 LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
 LPVOID lpContext, DWORD dwFlags);

Enumerates all the players of a group in the current session.

· Returns DP_OK if successful, or one of the following error messages otherwise:
DPERR_EXCEPTION
DPERR_INVALIDFLAGS
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idGroup
ID of the group whose players are to be enumerated.

lpguidInstance
DirectPlay session instance of interest. This parameter must be set to NULL
unless the DPENUMPLAYERS_SESSION flag is specified.

lpEnumPlayersCallback2
Address of the EnumPlayersCallback2 function to be called for every player in
the group.

lpContext
Address of an application-defined context that is passed to each enumeration
callback.

dwFlags
Flag to be passed in the dwFlags parameter to the callback function.
DPENUMPLAYERS_SESSION

Enumerates the players in the group in the session identified by
lpguidInstance.

By default, this method will enumerate using the local player list for the current
session. The DPENUMPLAYERS_SESSION flag can be used, along with a
session instance GUID, to request that a session's host provide its list for
enumeration. This method cannot be called from within an
IDirectPlay2::EnumSessions enumeration. Furthermore, use of the
DPENUMPLAYERS_SESSION flag with this method must occur after the
IDirectPlay2::EnumSessions method has been called, and before any calls to
the IDirectPlay2::Close or IDirectPlay2::Open methods.

See also IDirectPlay2::CreatePlayer, IDirectPlay2::DestroyPlayer,
IDirectPlay2::AddPlayerToGroup, IDirectPlay2::DeletePlayerFromGroup

IDirectPlay2::EnumGroups
HRESULT EnumGroups(LPGUID lpguidInstance,
 LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
 LPVOID lpContext, DWORD dwFlags);

Chapter 4 DirectPlay 39

Enumerates the groups available to a session.

· Returns DP_OK if successful, or one of the following error messages otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_UNSUPPORTED

lpguidInstance
DirectPlay session instance of interest. This parameter must be set to NULL
unless the DPENUMPLAYERS_SESSION flag is specified.

lpEnumPlayersCallback2
Address of the EnumPlayersCallback2 function to be called for every group in
the session.

lpContext
Address of an application-defined context that is passed to each enumeration
callback.

dwFlags
Flag to be passed in the dwFlags parameter to the callback function.
DPENUMPLAYERS_SESSION

Enumerates the groups in the session identified by lpguidInstance.

By default, this method will enumerate using the local player list for the current
session. The DPENUMPLAYERS_SESSION flag can be used, along with a
session instance GUID, to request that a session's host provide its list for
enumeration. This method cannot be called from within an
IDirectPlay2::EnumSessions enumeration. Furthermore, use of the
DPENUMPLAYERS_SESSION flag with this method must occur after the
IDirectPlay2::EnumSessions method has been called, and before any calls to
the IDirectPlay2::Close or IDirectPlay2::Open methods.

See also IDirectPlay2::CreateGroup, IDirectPlay2::DestroyGroup,
IDirectPlay2::EnumSessions

IDirectPlay2::EnumPlayers
HRESULT EnumPlayers(LPGUID lpguidInstance,
 LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
 LPVOID lpContext, DWORD dwFlags);

Enumerates the players in a session.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_EXCEPTION
DPERR_GENERIC

DPERR_INVALIDOBJECT
DPERR_UNSUPPORTED

lpguidInstance
DirectPlay session instance of interest. This parameter must be set to NULL
unless the DPENUMPLAYERS_SESSION flag is specified.

lpEnumPlayersCallback2
Address of the EnumPlayersCallback2 function that will be called for every
group in the session.

lpContext
Address of an application-defined context that is passed to each enumeration
callback.

dwFlags
Flags to be passed in the dwFlags parameter to the callback function.
DPENUMPLAYERS_GROUP

Includes groups in the enumeration of players.
DPENUMPLAYERS_LOCAL

Enumerates only those players that were created locally by this
DirectPlay object.

DPENUMPLAYERS_REMOTE
Enumerates only those players that were created by remote DirectPlay
objects.

DPENUMPLAYERS_SESSION
Enumerates the players for the session identified by lpguidInstance.

By default, this method will enumerate players in the current open session.
Groups can also be included in the enumeration by using the
DPENUMPLAYERS_GROUP flag. The DPENUMPLAYERS_SESSION flag
can be used, along with a session instance GUID, to request that a session's host
provide its list for enumeration. This method cannot be called from within an
IDirectPlay2::EnumSessions enumeration. Furthermore, use of the
DPENUMPLAYERS_SESSION flag with this method must occur after the
IDirectPlay2::EnumSessions method has been called, and before any calls to
the IDirectPlay2::Close or IDirectPlay2::Open methods.

See also IDirectPlay2::CreatePlayer, IDirectPlay2::DestroyPlayer,
IDirectPlay2::EnumSessions

IDirectPlay2::EnumSessions
HRESULT EnumSessions(LPDPSESSIONDESC2 lpsd,
 DWORD dwTimeout,
 LPDPENUMSESSIONSCALLBACK2 lpEnumSessionsCallback2,

Chapter 4 DirectPlay 41

 LPVOID lpContext, DWORD dwFlags);

Enumerates the sessions available to this DirectPlay object.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_EXCEPTION
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

lpsd
Address of a DPSESSIONDESC2 structure describing the sessions to be
enumerated. Only those sessions that meet the criteria set in this structure will be
enumerated. The guidApplication member of the DPSESSIONDESC2 structure
should be set to the globally unique identifier (GUID) of the application of
interest, or NULL for all applications. The guidInstance member may be set to a
specific GUID of a session instance if it is known; otherwise, it should be set to
NULL to obtain all sessions. If a password is required, then the lpszPassword
member should be set accordingly.

dwTimeout
Total amount of time, in milliseconds, that DirectPlay will wait for replies to the
enumeration message (not the time between each enumeration). It is
recommended that this parameter be set to zero so DirectPlay can compute the
default timeout appropriate for the service provider.

lpEnumSessionsCallback2
Address of the EnumSessionsCallback2 function to be called for each
DirectPlay session responding.

lpContext
Address of a user-defined context that is passed to each enumeration callback.

dwFlags
If this parameter is set to 0, only the available sessions will be enumerated
(DPENUMSESSIONS_AVAILABLE).
DPENUMSESSIONS_AVAILABLE

Enumerates all sessions this application can join.
DPENUMSESSIONS_ALL

Enumerates all active sessions, whether they are available to join or not.
Sessions in which the player limit has been reached, new players have
been disabled, or joining has been disabled will be enumerated. The
application can examine the dwFlags member of this structure to
determine if the session will allow new applications to join or not.

This method is typically called immediately after the DirectPlay object is created
by using the DirectPlayCreate function. It cannot be called while connected to a
session or after an application has created a session.
IDirectPlay2::EnumSessions works by requesting that the service provider

locate one or more hosts on the network and send them an enumeration request.
The replies that are received make up the sessions that are enumerated. The
amount of time DirectPlay spends waiting for these replies is controlled by the
dwTimeout parameter. When this time interval has expired, your callback will be
notified by using the DPESC_TIMEDOUT flag, and a NULL value will be
passed for the lpThisSD parameter. At this point, you can continue the
enumeration by setting dwTimeout to a new value and returning TRUE, or you
can cancel the enumeration by returning FALSE. It is recommended that
dwTimeout be set to 0. In that case, DirectPlay will compute a time-out that is
appropriate for the service provider.

Typically, only sessions that can be joined are enumerated. If the
DPENUMSESSIONS_ALL flag is specified, sessions will be enumerated even if
the creation of new players has been disabled. Note the application will still not
be able to join these sessions.

If the application was not started by a lobby, the service provider may display a
dialog to obtain information from the user to perform the enumeration. For
example, the Microsoft serial service provider will ask for COM port settings, the
modem service provider will ask for a phone number, and the Internet service
provider will ask for an IP address of the host.

Password-protected sessions will not be enumerated unless you supply a correct
password.

See also DPSESSIONDESC2, IDirectPlay2::Open

IDirectPlay2::GetCaps
HRESULT GetCaps(LPDPCAPS lpDPCaps,
 DWORD dwFlags);

Obtains the capabilities of this DirectPlay object.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

lpDPCaps
Address of a DPCAPS structure that will be filled with the capabilities of the
DirectPlay object. The dwSize member of the DPCAPS structure must be filled
in before using IDirectPlay2::GetCaps.

dwFlags
If this parameter is set to 0, the capabilities will be computed for nonguaranteed
messaging.
DPGETCAPS_GUARANTEED

Chapter 4 DirectPlay 43

Retrieves the capabilities for a guaranteed message delivery.

This method returns the capabilities of the current session, while the
IDirectPlay2::GetPlayerCaps method returns the capabilities of the requested
player.

See also DPCAPS, IDirectPlay2::GetPlayerCaps, IDirectPlay2::Send

IDirectPlay2::GetGroupData
HRESULT GetGroupData(DPID idGroup,
 LPVOID lpData, LPDWORD lpdwDataSize,
 DWORD dwFlags);

Retrieves an application-specific data block that was associated with a group ID
by using IDirectPlay2::SetGroupData.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER

idGroup
Group ID for which data is being requested.

lpData
Address of a buffer where the application-specific group data is to be written. Set
this parameter to NULL to request only the size of data. The lpdwDataSize
parameter will be set to the size required to hold the data.

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling the
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required.

dwFlags
If this parameter is set to 0, the remote data will be retrieved.
DPGET_REMOTE

Retrieves the current data from the remote shared data space.
DPGET_LOCAL

Retrieves the local data set by this application

DirectPlay can maintain two types of group data: local and remote. The
application must specify which type of data to retreive. Local data was set by this

DirectPlay object by using the DPSET_LOCAL flag. Remote data might have
been set by any application in the session by using the DPSET_REMOTE flag.

See also IDirectPlay2::SetGroupData

IDirectPlay2::GetGroupName
HRESULT GetGroupName(DPPID idGroup,
 LPVOID lpData, LPDWORD lpdwDataSize);

Returns the name associated with a group.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER

idGroup
ID of the group whose name is being requested.

lpData
Address of a buffer where the name data is to be written. Set this parameter to
NULL to request only the size of data. lpdwDataSize will be set to the size
required to hold the data.

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling the
method. After the method returns, this parameter will be set to the size, in bytes,
of the name data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size that is required.

After the function returns, the pointer lpData should be cast to the DPNAME
structure to read the group name data.

See also DPNAME, IDirectPlay2::SetGroupName

IDirectPlay2::GetMessageCount
HRESULT GetMessageCount(DPID idPlayer, LPDWORD lpdwCount);

Queries for the number of messages in the receive queue for a specific local
player.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

Chapter 4 DirectPlay 45

DPERR_INVALIDPLAYER

idPlayer
ID of the player whose message count is requested. The player must be local.

lpdwCount
Address of a variable that will be set to the message count when this method
returns.

See also IDirectPlay2::Receive

IDirectPlay2::GetPlayerAddress
HRESULT GetPlayerAddress(DPID idPlayer,
 LPVOID lpAddress, LPDWORD lpdwAddressSize);

Retrieves the DirectPlay Address for a player. The DirectPlay Address is a
network address for a player using a specific service provider.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER

idPlayer
Player ID that the address is being requested for.

lpAddress
Address of a buffer where the DirectPlay Address is to be written. Set this
parameter to NULL to request only the size of data. The lpdwAddressSize
parameter will be set to the size required to hold the data.

lpdwAddressSize
Address of a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size that is required.

IDirectPlay2::GetPlayerCaps
HRESULT GetPlayerCaps(DPID idPlayer,
 LPDPCAPS lpPlayerCaps, DWORD dwFlags);

Retrieves the current capabilities of a specified player.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER

idPlayer
Player ID for which the capabilities should be computed.

lpPlayerCaps
Address of a DPCAPS structure that will be filled with the capabilities. The
dwSize member of the DPCAPS structure must be filled in before using
IDirectPlay2::GetPlayerCaps.

dwFlags
If this parameter is set to 0, the capabilities will be computed for nonguaranteed
messaging.
DPGETCAPS_GUARANTEED

Retrieves the capabilities for a guaranteed message delivery.

This method returns the capabilities of the requested player, while the
IDirectPlay2::GetCaps method returns the capabilities of the current session.

See also DPCAPS, IDirectPlay2::GetCaps, IDirectPlay2::Send

IDirectPlay2::GetPlayerData
HRESULT GetPlayerData(DPID idPlayer,
 LPVOID lpData, LPDWORD lpdwDataSize,
 DWORD dwFlags);

Retrieves an application-specific data block that was associated with a player ID
by using IDirectPlay2::SetPlayerData.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_INVALIDFLAGS
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idPlayer
ID of the player for which data is being requested.

lpData
Address of a buffer where the application-specific player data is to be written. Set
this parameter to NULL to request only the size of data. The lpdwDataSize
parameter will be set to the size required to hold the data.

Chapter 4 DirectPlay 47

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required.

dwFlags
If this parameter is set to 0, the remote data will be retrieved.
DPGET_REMOTE

Retrieves the current data from the remote shared data space.
DPGET_LOCAL

Retrieves the local data set by this application.

DirectPlay can maintain two types of player data: local and remote. The
application must specify which type of data to retrieve. Local data was set by this
DirectPlay object by using the DPSET_LOCAL flag. Remote data might have
been set by any application in the session by using the DPSET_REMOTE flag.

See also IDirectPlay2::SetPlayerData

IDirectPlay2::GetPlayerName
HRESULT GetPlayerName(DPID idPlayer,
 LPVOID lpData, LPDWORD lpdwDataSize);

Retrieves the name associated with a player.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idPlayer
ID of the player whose name is requested.

lpData
Address of a buffer where the name data is to be written. Set this parameter to
NULL to request only the size of data. The lpdwDataSize parameter will be set to
the size required to hold the data.

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the name data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required.

After this method returns, the pointer lpData should be cast to the DPNAME
structure to read the group name data.

See also DPNAME, IDirectPlay2::SetPlayerName

IDirectPlay2::GetSessionDesc
HRESULT GetSessionDesc(LPVOID lpData,
 LPDWORD lpdwDataSize);

Retrieves the properties of the current open session.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_INVALIDOBJECT
DPERR_NOCONNECTION

lpData
Address of a buffer where the session description data is to be written. Set this
parameter to NULL to request only the size of data. The lpdwDataSize parameter
will be set to the size required to hold the data.

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required.

After this method returns, the pointer lpData should be cast to the
DPSESSIONDESC2 structure to read the session description data.

See also DPSESSIONDESC2, IDirectPlay2::EnumSessions,
IDirectPlay2::Open

IDirectPlay2::Initialize
HRESULT Initialize(LPGUID lpGUID);

This method is provided for compliance with the COM protocol.

· Returns DPERR_ALREADYINITIALIZED.

lpGUID
Address of the globally unique identifier (GUID) used as the interface identifier.

Because the DirectPlay object is initialized when it is created, this method always
returns the DPERR_ALREADYINITIALIZED return value.

Chapter 4 DirectPlay 49

See also IUnknown::AddRef, IUnknown::QueryInterface

IDirectPlay2::Open
HRESULT Open(LPDPSESSIONDESC2 lpsd,
 DWORD dwFlags);

Establishes a gaming session instance.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_ACTIVEPLAYERS
DPERR_ALREADYINITIALIZED
DPERR_GENERIC
DPERR_INVALIDFLAGS
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_UNAVAILABLE
DPERR_UNSUPPORTED
DPERR_USERCANCEL

lpsd
Address of the DPSESSIONDESC2 structure describing the session to be created
or joined.

dwFlags
One of the following flags:
DPOPEN_CREATE

Creates a new instance of a gaming session.
DPOPEN_JOIN

Joins an existing instance of a gaming session.

An application can either create a new session (which other remote applications
join) or join an existing session. Your application must call IDirectPlay2::Open
before any local players are created. Before an application can join an existing
session, it should use IDirectPlay2::EnumSessions to obtain a list of what
sessions can be joined and their session descriptions. Attempting to join a session
where new players are disabled, joining is disabled, or the player limit has been
reached will result in a DPERR_UNAVAILABLE error.

See also DPSESSIONDESC2, IDirectPlay2::Close,
IDirectPlay2::EnumSessions

IDirectPlay2::Receive
HRESULT Receive(LPDPID lpidFrom, LPDPID lpidTo,
 DWORD dwFlags, LPVOID lpData, LPDWORD lpdwDataSize);

Retrieves a message from the message queue.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_GENERIC
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER
DPERR_NOMESSAGES

lpidFrom
Address of a variable that will be set to the sender's player ID when this method
returns. If the DPRECEIVE_FROMPLAYER flag is specified, this variable must
be initialized with the player ID before calling this method.

lpidTo
Address of a variable that will be set to the receiver's player ID when this method
returns. If the DPRECEIVE_TOPLAYER flag is specified, this variable must be
initialized with the player ID before calling this method.

dwFlags
One or more of the following control flags can be set. Both
DPRECEIVE_TOPLAYER and DPRECEIVE_FROMPLAYER can be specified,
in which case this method returns whichever message is encountered first.
DPRECEIVE_ALL

Returns the first available message. This is the default.
DPRECEIVE_FROMPLAYER

Returns the first message from the player ID that the lpidFrom parameter
points to. System messages come from player ID DPID_SYSMSG.

DPRECEIVE_PEEK
Returns a message as specified by the other flags, but does not remove it
from the message queue.

DPRECEIVE_TOPLAYER
Returns the first message intended for the player ID that the lpidTo
parameter points to.

lpData
Address of a buffer where the message data is to be written. Set this parameter to
NULL to request only the size of data. The lpdwDataSize parameter will be set to
the size required to hold the data. If the message came from player ID

Chapter 4 DirectPlay 51

DPID_SYSMSG, the application should cast lpData to DPMSG_GENERIC and
check the dwType member to see what type of system message it is before
processing it.

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required. The message order in
the receive queue can change between calls to IDirectPlay2::Receive.
Therefore, it is possible to get a DPERR_BUFFERTOOSMALL error again even
after the application has allocated the memory requested from the previous call to
IDirectPlay2::Receive. It is best to keep reallocating memory until a
DPERR_BUFFERTOOSMALL error is not received.

Any message received from player ID DPID_SYSMSG is a system message
generated by the host. In those cases, the lpData of system messages should be
cast to DPMSG_GENERIC and the dwType member should be examined to see
what specific system message it is.

Messages that were sent to player ID DPID_SYSMSG as a way to broadcast
them to all players or to a group ID to send them to all the players in the group
still appear to come from the sending player ID. An application will receive only
messages directed to a local player. A player cannot receive a message in which
the values pointed to by lpidFrom and lpidTo are equal.

If DPSESSION_NOMESSAGEID is specified in the session description, the
lpidFrom and lpidTo parameters are meaningless.

All the service providers shipped with DirectPlay perform integrity checks on the
data to protect against corruption. Any message received will be verified, and if
data corruption is detected, it will either be thrown away (if it was sent
nonguaranteed) or it will be retransmitted (if it was sent guaranteed).

See also DPMSG_GENERIC, IDirectPlay2::Send

IDirectPlay2::Send
HRESULT Send(DPID idFrom, DPID idTo, DWORD dwFlags,
 LPVOID lpData, DWORD dwDataSize);

Sends messages to other players, to a group of players, or to all players in the
session.

· Returns DP_OK if successful, the number of messages waiting for transmission
in DirectPlay's internal queue, or one of the following error values:
DPERR_BUSY
DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER
DPERR_SENDTOOBIG

idFrom
ID of the sending player. The player ID must correspond to one of the local
players on this computer.

idTo
ID of the player to send the message to, the group ID of the group of players to
send the message to, or DPID_ALLPLAYERS to send the message to all players
in the session. If the DPSEND_OPENSTREAM or DPSEND_CLOSESTREAM
flags are used, then this parameter must be a player ID.

dwFlags
Indicates how the message should be sent. If this parameter is set to 0, the
message is sent nonguaranteed and at normal priority. DPSEND_OPENSTREAM
and DPSEND_CLOSESTREAM are used to let DirectPlay and the service
provider know that there will be a large number of guaranteed messages being
sent to the player specified in idTo. If some efficiency can be gained by not
opening and closing a guaranteed communication pipe (stream) for each message
to that player, then the service provider may leave the stream open until the
IDirectPlay2::Send method with a DPSEND_CLOSESTREAM flag for that
player ID is called. DPSEND_OPENSTREAM and DPSEND_CLOSESTREAM
are valid only for messages where idTo is a valid player ID. It is not required that
a service provider support DPSEND_OPENSTREAM and
DPSEND_CLOSESTREAM.
DPSEND_GUARANTEED

Sends the message by using a guaranteed method of delivery if it is
available.

DPSEND_HIGHPRIORITY
Sends the message high-priority. This will force the message to the front
of the send queue for immediate transmission. The message will also go
to the top of the receiving application's receive buffer.

DPSEND_OPENSTREAM
Indicates an optimization hint to the service provider that there will be a
lot of guaranteed messages being sent to this player.

DPSEND_CLOSESTREAM
Indicates that there will no longer be a lot of guaranteed messages being
sent to this player.

lpData
Address of the data being sent. Set this parameter to NULL if there is no actual
message to send. An application can do this if the DPSEND_OPENSTREAM or
DPSEND_CLOSESTREAM flag is specified.

Chapter 4 DirectPlay 53

dwDataSize
Length of the data being sent.

To send a message to another player, specify the target player's ID. To send a
message to a group of players, send the message to the ID assigned to the group.
To send messages to the entire session, specify the DPID_ALLPLAYERS player
ID. You cannot use the IDirectPlay2::Send method inside an
IDirectDrawSurface2::Lock / IDirectDrawSurface2::Unlock or
IDirectDrawSurface2::GetDC / IDirectDrawSurface2::ReleaseDC method
pair.

A player cannot send a message to itself. If a player sends a message to a group
that it is part of or to DPID_ALLPLAYERS, it will not receive a copy of that
message.

If DPSESSION_NOMESSAGEID was specified in the session description, it is
possible for a player to receive a message that it sent to a group. Because there is
no DirectPlay message ID header on the message (indicating who sent the
message), it cannot filter out messages from itself when the service provider
implements group sends, and the application will need to be able to evaluate this
based on the content of the message.

When DPSESSION_NOMESSAGEID is used, the message is sent to one of the
local players on the target computer.

Messages can be sent guaranteed or nonguaranteed. By default, messages are sent
nonguaranteed, which means that DirectPlay does not verify that the message
reached the intended recipient. Sending a guaranteed message takes a minimum
of two to three times longer than a nonguaranteed message. You should try to
minimize the number of times your application sends guaranteed messages, and
your application should be able to tolerate lost messages.

All the service providers shipped with DirectPlay perform integrity checks on the
data to protect against corruption. Any message received will be verified, and if
data corruption is detected, it will either be thrown away (if it was sent
nonguaranteed) or it will be retransmitted (if it was sent guaranteed).

In this version of DirectPlay, DPSEND_GUARANTEED will guarantee delivery
only if the service provider supports it. An application can find out if delivery will be
guaranteed by calling the IDirectPlay2::GetCaps method and checking for the
DPCAPS_GUARANTEEDSUPPORTED flag. If this flag is not set, then the
DPSEND_GUARANTEED flag will be ignored and the message will be sent
nonguaranteed. The next version of DirectPlay will implement guaranteed delivery
on nonguaranteed service providers so the guaranteed supported CAPS flag will
always be present. If the application implements its own method of guaranteeing
message delivery, it must be sure not to use the DPSEND_GUARANTEED flag.
When testing the performance of your application, it is important to know if the
service provider supports guaranteed messaging or not. If it does not, then every
place you specified DPSEND_GUARANTEED will run slower with the next version
of DirectPlay.

See also IDirectPlay2::Receive

IDirectPlay2::SetGroupData
HRESULT SetGroupData(DPID idGroup,
 LPVOID lpData, DWORD dwDataSize,
 DWORD dwFlags);

Associates an application-specific data block with a group ID.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER

idGroup
Group ID for which data is being set.

lpData
Address of the data to be set. Set to NULL to clear any existing group data.

dwDataSize
Size of the data buffer.

dwFlags
If this parameter is set to 0, the remote group data will be set and propagated
using nonguaranteed messaging.
DPSET_REMOTE

This data is for use by all the applications, and will be propagated to all
the other applications in the session.

DPSET_LOCAL

Note

Chapter 4 DirectPlay 55

This data is for local use only and will not be propagated.
DPSET_GUARANTEED

Propagates the data by using guaranteed messaging (if available). This
flag can only be used with DPSET_REMOTE.

DirectPlay can maintain two types of group data: local and remote. Local data is
available only to the application on the local computer. Remote data is
propagated to all the other applications in the session. A
DPSYS_SETPLAYERORGROUPDATA system message will be sent to all the
other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description. It is safe to
store pointers to resources in the local data; the local data block is available (in
the DPMSG_DESTROYPLAYERORGROUP system message) when the
group is being destroyed, so the application can free those resources. For a list of
system messages, see Using System Messages.

See also DPMSG_SETPLAYERORGROUPDATA,
IDirectPlay2::GetGroupData, IDirectPlay2::Send

IDirectPlay2::SetGroupName
HRESULT SetGroupName(DPID idGroup,
 LPDPNAME lpGroupName, DWORD dwFlags);

Sets the name of a group after it has been created. A
DPSYS_SETPLAYERORGROUPNAME system message will be sent to all the
other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description. For a list
of system messages, see Using System Messages.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_INVALIDPLAYER

idGroup
ID of the group for which the name is being set.

lpGroupName
Address of a DPNAME structure containing the name information for the group.
Set this parameter to NULL if the group has no name information.

dwFlags
If this parameter is set to 0, the name will be propagated to all the remote
systems by using nonguaranteed message passing.
DPSET_GUARANTEED

Propagates the data using guaranteed messaging (if available).

See also DPNAME, DPMSG_SETPLAYERORGROUPNAME,
IDirectPlay2::GetGroupName, IDirectPlay2::Send

IDirectPlay2::SetPlayerData
HRESULT SetPlayerData(DPID idPlayer, LPVOID lpData,
 DWORD dwDataSize, DWORD dwFlags);

Associates an application-specific data block with a player ID.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDFLAGS
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idPlayer
ID of the player for which data is being set.

lpData
Address of the data to be set. Set this parameter to NULL to clear out any
existing player data.

dwDataSize
Size of the data buffer

dwFlags
If this parameter is set to 0, the remote player data will be set and propagated by
using nonguaranteed messaging.
DPSET_REMOTE

This data is for use by all the applications, and will be propagated to all
the other applications in the session.

DPSET_LOCAL
This data is for local use only and will not be propagated.

DPSET_GUARANTEED
Propagates the data by using guaranteed messaging (if available). This
flag can only be used with DPSET_REMOTE.

DirectPlay can maintain two types of player data: local and remote. Local data is
available only to the application on the local computer. Remote data is
propagated to all the other applications in the session. A
DPSYS_SETPLAYERORGROUPDATA system message will be sent to all the
other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description. It is safe to
store pointers to resources in the local data; the local data block is available (in

Chapter 4 DirectPlay 57

the DPMSG_DESTROYPLAYERORGROUP system message) when the
player is being destroyed, so the application can free those resources. For a list of
system messages, see Using System Messages.

See also DPMSG_SETPLAYERORGROUPDATA,
IDirectPlay2::GetPlayerData, IDirectPlay2::Send

IDirectPlay2::SetPlayerName
HRESULT SetPlayerName(DPID idPlayer,
 LPDPNAME lpPlayerName, DWORD dwFlags);

Sets the name of the player after it has been changed. A
DPSYS_SETPLAYERORGROUPNAME system message will be sent to all the
other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description. For a list
of system messages, see Using System Messages.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_INVALIDOBJECT
DPERR_INVALIDPLAYER

idPlayer
ID of the player for which data is being sent.

lpPlayerName
Address of a DPNAME structure containing the name information for the player.
Set this parameter to NULL if the player has no name information.

dwFlags
If this parameter is set to 0, the name will be propagated to all the remote
systems using nonguaranteed message passing.
DPSET_GUARANTEED

Propagates the data by using guaranteed messaging (if available).

See also DPNAME, DPMSG_SETPLAYERORGROUPNAME,
IDirectPlay2::GetPlayerName, IDirectPlay2::Send

IDirectPlay2::SetSessionDesc
HRESULT SetSessionDesc(LPDPSESSIONDESC2 lpSessDesc,
 DWORD dwFlags);

This method is currently not supported.

Changes the properties of the current session. This method works only when
called on the computer that is the host of the session.

· Returns DPERR_UNSUPPORTED.

lpSessDesc
Address of the session description structure containing the new settings.

dwFlags
No flags are currently used by this method.

See also DPSESSIONDESC2, IDirectPlay2::GetSessionDesc

IDirectPlayLobby
Applications use the methods of the IDirectPlayLobby interface to manage
applications and their associated data. This section is a reference to the methods
of this interface. For a conceptual overview, see IDirectPlayLobby Interface.

Address management CreateAddress
EnumAddress
EnumAddressTypes

Application management Connect
EnumLocalApplications
RunApplication

Data management GetConnectionSettings
ReceiveLobbyMessage
SendLobbyMessage
SetConnectionSettings
SetLobbyMessageEvent

IDirectPlayLobby::Connect
HRESULT WINAPI Connect(DWORD dwFlags,
 LPDIRECTPLAY2 FAR *lplpDP, IUnknown FAR *pUnk);

Connects an application to a session by using the connection data supplied by the
lobby client in the IDirectPlayLobby::RunApplication method, or by calling
the IDirectPlayLobby::SetConnectionSettings method.

· Returns DP_OK if successful, or one of the following error values otherwise:
CLASS_E_NOAGGREGATION
DPERR_INVALIDFLAGS
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT

Chapter 4 DirectPlay 59

DPERR_INVALIDPARAMS
DPERR_NOTLOBBIED
DPERR_OUTOFMEMORY

dwFlags
Reserved; must be zero.

lplpDP
Address of a pointer to be initialized with a valid inteface—either IDirectPlay2
(if called on IDirectPlayLobby) or IDirectPlay2A (if called on
IDirectPlayLobbyA).

pUnk
Address of the containing IUnknown interface. This parameter is provided for
future compability with COM aggregation features. Presently, however,
IDirectPlayLobby::Connect returns an error if this parameter is anything but
NULL.

Executing this method successfully creates a DirectPlay object with the correct
service provider, and opens the correct session without asking the user to fill in
any dialog boxes. If this method fails with the DPERR_NOTLOBBIED error
value, then the application should perform the normal steps of calling
DirectPlayEnumerate, DirectPlayCreate, IDirectPlay2::EnumSessions and
IDirectPlay2::Open. If it fails on any other error value, then there is a problem
connecting to the session.

Before calling this method, the application can examine the connection settings
that will be used to start the application by using the
IDirectPlayLobby::GetConnectionSettings method. The application then can
modify these settings and set them by using the
IDirectPlayLobby::SetConnectionSettings method. The application should pay
particular attention to the DPSESSIONDESC2 structure to ensure that the proper
session properties are set, especially dwFlags, dwMaxPlayers, and the dwUser
members.

See also DirectPlayCreate

IDirectPlayLobby::CreateAddress
HRESULT CreateAddress(REFGUID guidSP,
 REFGUID guidDataType, LPCVOID lpData,
 DWORD dwDataSize, LPVOID lpAddress,
 LPDWORD lpdwAddressSize);

Creates a DirectPlay Address, given a service provider-specific network address.
The resulting address contains the globally unique identifier (GUID) of the

service provider and data that the service provider can interpret as a network
address.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_INVALIDPARAMS

guidSP
Address of the GUID of the service provider. (In C++, it is a reference to the
GUID.)

guidDataType
Address of a GUID identifying the specific network address type being used. For
information about predefined network address types, see DirectPlay Address. (In
C++, it is a reference to the GUID.)

lpData
Address of a buffer containing the specific network address.

dwDataSize
Size, in bytes, of the network address in lpData.

lpAddress
Address of a buffer in which the constructed DirectPlay Address is to be written.

lpdwAddressSize
Address of a variable containing the size of the DirectPlay Address buffer. Before
calling this method, the service provider must initialize lpdwAddressSize to the
size of the buffer. After the method has returned, this parameter will contain the
number of bytes written to lpAddress. If the buffer was too small
(DPERR_BUFFERTOOSMALL), this parameter will be set to the size required
to store the DirectPlay Address.

See also IDirectPlayLobby::EnumAddress

IDirectPlayLobby::EnumAddress
HRESULT EnumAddress(LPDPENUMADDRESS lpEnumAddressCallback,
 LPCVOID lpAddress, DWORD dwAddressSize,
 LPVOID lpContext);

Parses out chunks from the DirectPlay Address buffer.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_EXCEPTION
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

Chapter 4 DirectPlay 61

lpEnumAddressCallback
Address of a EnumAddressCallback function that will be called for each
information chunk in the DirectPlay Address.

lpAddress
Address of the start of the DirectPlay Address buffer.

dwAddressSize
Size of the DirectPlay Address.

lpContext
Context that will be passed to the callback function.

See also DirectPlay Address, IDirectPlayLobby::CreateAddress

IDirectPlayLobby::EnumAddressTypes
HRESULT EnumAddressTypes(
 LDDPLENUMADDRESSTYPESCALLBACK lpEnumAddressTypeCallback,
 REFGUID guidSP, LPVOID lpContext,
 DWORD dwFlags);

Enumerates all the address types that a given service provider needs to build the
DirectPlay Address.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_EXCEPTION
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

lpEnumAddressTypeCallback
Address of the EnumAddressTypeCallback function that will be called for each
address type for a service provider. If the service provider takes no address type,
the callback will not be called.

guidSP
Address of the GUID of the service provider whose address types are to be
enumerated. (In C++, it is a reference to the GUID.)

lpContext
Context that will be passed to the callback function.

dwFlags
Reserved; must be zero.

See also DirectPlay Address, IDirectPlayLobby::CreateAddress

IDirectPlayLobby::EnumLocalApplications
HRESULT EnumLocalApplications(
 LPDPENUMLOCALAPPLICATIONS lpEnumLocalAppCallback,

 LPVOID lpContext, DWORD dwFlags);

Enumerates what applications are registered with DirectPlay.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_GENERIC
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY

lpEnumLocalAppCallback
Address of the EnumLocalApplicationsCallback function that will be called for
each enumerated application.

lpContext
Context passed to the callback function.

dwFlags
Reserved; must be zero.

See also DPLAPPINFO

IDirectPlayLobby::GetConnectionSettings
HRESULT GetConnectionSettings(DWORD dwAppID,
 LPVOID lpData, LPDWORD lpdwDataSize);

Retrieves the DPLCONNECTION structure that contains all the information
needed to start and connect an application. The data returned is the same data that
was passed to the IDirectPlayLobby::RunApplication method by the lobby
client, or set by calling the IDirectPlayLobby::SetConnectionSettings method.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_BUFFERTOOSMALL
DPERR_GENERIC
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_NOTLOBBIED
DPERR_OUTOFMEMORY

dwAppID
Identifies which application's connection settings to retrieve when called from a
lobby client (that communicates with several applications). When called from an

Chapter 4 DirectPlay 63

application (that only communicates with one lobby client), this parameter must
be zero. This ID number is obtained from IDirectPlayLobby::RunApplication.

lpData
Address of a buffer in which the connection settings are to be written. Set this
parameter to NULL to request only the size of data. The lpdwDataSize parameter
will be set to the minimum size required to hold the data.

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the data. If the buffer was too small (DPERR_BUFFERTOOSMALL), then
this parameter will be set to the minimum buffer size required.

The lpData member should be cast to the LPDPLCONNECTION structure
when the function returns to read the data from it.

See also DPLCONNECTION, IDirectPlayLobby::RunApplication,
IDirectPlayLobby::SetConnectionSettings

IDirectPlayLobby::ReceiveLobbyMessage
HRESULT ReceiveLobbyMessage(DWORD dwFlags,
 DWORD dwAppID, LPDWORD lpdwMessageFlags,
 LPVOID lpData, LPDWORD lpdwDataSize);

Retrieves the message sent between a lobby client application and a DirectPlay
application. Messages are queued, so there is no danger of losing data if it is not
read in time.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_APPNOTSTARTED
DPERR_BUFFERTOOSMALL
DPERR_GENERIC
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_NOMESSAGES
DPERR_OUTOFMEMORY

dwFlags
Reserved; must be zero.

dwAppID
Identifies which application's message to retrieve when called from a lobby client
(that communicates with several applications). When called from an application
(that communicates only with one lobby client), this parameter must be set to

zero. This ID number is obtained by using the
IDirectPlayLobby::RunApplication method.

lpdwMessageFlags
Flags indicating what type of message is being returned.
DPLAD_SYSTEM

Indicates that this is a system message informing the application of an
event. To determine what type of event occurred, cast the lpData pointer
to the DPLMSG_GENERIC system message and switch on the dwType
member to see exactly what type of system message it is.

lpData
Address of a buffer in which the message is to be written. Set this parameter to
NULL to request only the size of message. The lpdwDataSize parameter will be
set to the minimum size required to hold the message.

lpdwDataSize
Address of a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the message. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the minimum buffer size required.

See also IDirectPlayLobby::RunApplication,
IDirectPlayLobby::SendLobbyMessage

IDirectPlayLobby::RunApplication
HRESULT RunApplication(DWORD dwFlags,
 LPDWORD lpdwAppID, LPDPLCONNECTION lpConn,
 HANDLE hReceiveEvent);

Starts an application and passes to it all the information necessary to connect it to
a session. This method is used by a lobby client.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_CANTCREATEPROCESS
DPERR_GENERIC
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY
DPERR_UNKNOWNAPPLICATION

dwFlags
Reserved; must be zero.

Chapter 4 DirectPlay 65

lpdwAppId
Address of a variable that will be filled with an ID identifying the application
that was started. The lobby client must save this application ID for use on with
any calls to the IDirectPlayLobby::SendLobbyMessage and
IDirectPlayLobby::ReceiveLobbyMessage methods.

lpConn
Address of a DPLCONNECTION structure that contains all the information
necessary to specify which application to start and how to get it connected to a
session instance without displaying any user dialog boxes.

hReceiveEvent
Specifies a synchronization event that will be set when a lobby message is
received. This event can be changed later by using the
IDirectPlayLobby::SetLobbyMessageEvent method.

This method will return after the application process has been created. The lobby
client will receive a system message indicating the status of the application. If the
lobby client is starting an application that will be hosting a session, it should wait
until it receives a DPLSYS_SESSIONCREATED system message before starting
the other applications that will be joining the session. If the application was
unable to create or join a session, a DPLSYS_DPLAYCONNECTFAILED
message will be generated. The lobby client will also receive a
DPLSYS_CONNECTIONSETTINGSREAD system message when the
application has read the connection settings and a DPLSYS_APPTERMINATED
system message when the application terminates.

It is important that the lobby client not release its IDirectPlayLobby interface
before it receives a DPLSYS_CONNECTIONSETTINGSREAD system
message. The lobby client can either check
IDirectPlayLobby::ReceiveLobbyMessage in a loop until it is received, or
supply a synchronization event.

See also IDirectPlayLobby::ReceiveLobbyMessage,
IDirectPlayLobby::GetConnectionSettings,
IDirectPlayLobby::SetLobbyMessageEvent

IDirectPlayLobby::SendLobbyMessage
HRESULT SendLobbyMessage(DWORD dwFlags,
 DWORD dwAppID, LPVOID lpData,
 DWORD dwDataSize);

Sends a message between the application and the lobby client.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_APPNOTSTARTED
DPERR_BUFFERTOOLARGE

DPERR_GENERIC
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY
DPERR_TIMEOUT

dwFlags
Reserved; must be zero.

dwAppID
Identifies which application to send a message to when called from a lobby client
(that communicates with several applications). When called from an application
(that communicates with only one lobby client), this parameter must be zero.
This ID is obtained by using the IDirectPlayLobby::RunApplication method.

lpData
Address of the buffer containing the message to send.

dwDataSize
Size, in bytes, of the buffer.

See also IDirectPlayLobby::RunApplication,
IDirectPlayLobby::ReceiveLobbyMessage

IDirectPlayLobby::SetConnectionSettings
HRESULT SetConnectionSettings(DWORD dwFlags,
 DWORD dwAppID, LPDPLCONNECTION lpConn);

Modifies the DPLCONNECTION structure, which contains all the information
needed to start and connect an application.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_GENERIC
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY

dwFlags
Reserved; must be zero.

dwAppID
When called from a lobby client (that communicates with several applications),
this parameter identifies which application's connection settings to retrieve.

Chapter 4 DirectPlay 67

When called from an application (that communicates with only one lobby client),
this parameter must be zero. This ID is obtained by using the
IDirectPlayLobby::RunApplication method.

lpConn
Address of a DPLCONNECTION structure that contains all the information
necessary to specify which application to start and how to get it connected to a
session instance without displaying any user dialog boxes.

See also IDirectPlayLobby::GetConnectionSettings

IDirectPlayLobby::SetLobbyMessageEvent
HRESULT SetLobbyMessageEvent(DWORD dwFlags,
 DWORD dwAppID, HANDLE hReceiveEvent);

Registers an event that will be set when a lobby message is received. The
application must call this method if it needs to synchronize with messages. The
lobby client can call this method to change the events specified in the call to the
IDirectPlayLobby::RunApplication method.

· Returns DP_OK if successful, or one of the following error values otherwise:
DPERR_GENERIC
DPERR_INVALIDINTERFACE
DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS
DPERR_OUTOFMEMORY

dwFlags
Reserved; must be zero.

dwAppID
Identifies which application the event is associated with when called from a
lobby client (that communicates with several applications). When called from an
application (that communicates with only one lobby client), this parameter must
be zero. This ID number is obtained from IDirectPlayLobby::RunApplication.

hReceiveEvent
Event handle to be set when a message is received.

See also IDirectPlayLobby::ReceiveLobbyMessage,
IDirectPlayLobby::SendLobbyMessage

Structures

DPCAPS
typedef struct {

 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwMaxBufferSize;
 DWORD dwMaxQueueSize;
 DWORD dwMaxPlayers;
 DWORD dwHundredBaud;
 DWORD dwLatency;
 DWORD dwMaxLocalPlayers;
 DWORD dwHeaderLength;
 DWORD dwTimeout;
} DPCAPS, FAR *LPDPCAPS;

Contains the capabilities of a DirectPlay object after a call to the
IDirectPlay2::GetCaps or IDirectPlay2::GetPlayerCaps methods. Any of
these capabilities can differ depending on whether guaranteed or nonguaranteed
capabilities are requested. This structure is read-only.

dwSize
Size, in bytes, of this structure. Your application must set this member before it
uses this structure; otherwise, an error will result.

dwFlags
Indicates the properties of the DirectPlay object.
DPCAPS_GROUPOPTIMIZED

Indicates that the service provider bound to this DirectPlay object can
optimize group (multicast) messaging.

DPCAPS_GUARANTEEDOPTIMIZED
Indicates that the service provider bound to this DirectPlay object
supports guaranteed message delivery.

DPCAPS_GUARANTEEDSUPPORTED
Indicates that the DirectPlay object supports guaranteed message
delivery, either because the service provider supports it or because
DirectPlay implements it on a nonguaranteed service provider.

DPCAPS_ISHOST
Indicates that the DirectPlay object created by the calling application is
the session host.

DPCAPS_KEEPALIVEOPTIMIZED
The service provider can detect when the connection to the session has
been lost.

dwMaxBufferSize
Maximum number of bytes that can be sent in a single packet by this service
provider. Larger messages will be sent by using more than one packet.

dwMaxQueueSize
This member is no longer used.

Chapter 4 DirectPlay 69

dwMaxPlayers
Maximum number of local and remote players supported in a session by this
DirectPlay object.

dwHundredBaud
Bandwidth specified in multiples of 100 bits per second. For example, a value of
24 specifies 2400 baud.

dwLatency
Estimate of latency by the service provider, in milliseconds. If this value is 0,
DirectPlay cannot provide an estimate. Accuracy for some service providers rests
on application-to-application testing, taking into consideration the average
message size. Latency can differ depending on whether the application uses
guaranteed or nonguaranteed message delivery.

dwMaxLocalPlayers
Maximum number of local players supported in a session.

dwHeaderLength
Size, in bytes, of the header that will be added to player messages by this
DirectPlay object. Note that the header size depends on which service provider is
in use.

dwTimeout
Service provider's suggested timeout value. By default, DirectPlay will use this
timeout value when waiting for replies to messages.

See also IDirectPlay2::Send

DPCOMPORTADDRESS
typedef struct DPCOMPORTADDRESS{
 DWORD dwComPort;
 DWORD dwBaudRate;
 DWORD dwStopBits;
 DWORD dwParity;
 DWORD dwFlowControl;
} DPCOMPORTADDRESS;

typedef DPCOMPORTADDRESS FAR* LPDPCOMPORTADDRESS;

Contains information about the configuration of the COM port.

dwComPort
Indicates the number of the COM port to use. The value for this member can be
1, 2, 3, or 4.

dwBaudRate
Indicates the baud of the COM port. The value for this member can be one of the
following:
CBR_110 CBR_300 CBR_600

CBR_1200 CBR_2400 CBR_4800
CBR_9600 CBR_14400 CBR_19200
CBR_38400 CBR_56000 CBR_57600
CBR_115200 CBR_128000 CBR_256000

dwStopBits
Indicates the number of stop bits. The value for this member can be
ONESTOPBIT, ONE5STOPBITS, or TWOSTOPBITS.

dwParity
Indicates the parity used on the COM port. The value for this member can be
NOPARITY, ODDPARITY, EVENPARITY, or MARKPARITY.

dwFlowControl
Indicates the method of flow control used on the COM port. The following values
can be used for this member:
DPCPA_DTRFLOW Indicates hardware flow control with DTR.
DPCPA_NOFLOW Indicates no flow control.
DPCPA_RTSDTRFLOW Indicates hardware flow control with RTS

and DTR.
DPCPA_RTSFLOW Indicates hardware flow control with RTS.
DPCPA_XONXOFFFLOW Indicates software flow control (xon/xoff).

The constants that define baud, stop bits, and parity are defined in Winbase.h.

DPLAPPINFO
typedef struct DPLAPPINFO {
DWORD dwSize;
GUID guidApplication;
union
{
 LPSTR lpszAppNameA;
 LPWSTR lpszAppName;
};
} DPLAPPINFO, * LPDPLAPPINFO;

Contains information about the application from the registry and is passed to the
IDirectPlayLobby::EnumLocalApplications callback function.

dwSize
Size, in bytes, of this structure. Your application must set this member before it
uses this structure; otherwise, an error will result.

guidApplication
Globally unique identifier (GUID) of the application.

Chapter 4 DirectPlay 71

lpszAppNameA, lpszAppName
Name of the application in ANSI or Unicode, depending on what interface is in
use.

DPLCONNECTION
typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 LPDPSESSIONDESC2 lpSessionDesc;
 LPDPNAME lpPlayerName;
 GUID guidSP;
 LPVOID lpAddress;
 DWORD dwAddressSize;
} DPLCONNECTION, *LPDPLCONNECTION;

Contains the information needed to connect an application to a session.

dwSize
Indicates the size, in bytes, of this structure. Your application must set this
member before it uses this structure; otherwise, an error will result.

dwFlags
Indicates how the connection should be made.
DPLCONNECTION_CREATESESSION

Create a new session as described in the session description.
DPLCONNECTION_JOINSESSION

Join the existing session as described in the session description.

lpSessionDesc
Address of a DPSESSIONDESC2 structure describing the session to be created
or the session to join.

lpPlayerName
Address of a DPNAME structure with the name that the player should be created
with. This will be the name of the person registered in the lobby. The application
can ignore this name.

guidSP
Globally unique identifier (GUID) of the service provider to use to connect to the
session.

lpAddress
Address of a DirectPlay Address that contains the information that the service
provider needs to connect to a session.

dwAddressSize
Size, in bytes, of the address data.

DPNAME
typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 union {
 LPWSTR lpszShortName;
 LPSTR lpszShortNameA;
 };
 union {
 LPWSTR lpszLongName;
 LPSTR lpszLongNameA;
 };
} DPNAME,FAR *LPDPNAME;

Contains name information for a DirectPlay entity, such as a player or group.

dwSize
Size, in bytes, of this structure. Your application must set this member before it
uses this structure; otherwise, an error will result.

dwFlags
Structure-specific flags. Currently set to zero.

lpszShortName and lpszLongName
Addresses of Unicode strings containing the short (friendly) and long (formal)
names of a player or group. Use these members only if the IDirectPlay2 interface
is in use.

lpszShortNameA and lpszLongNameA
Addresses of ANSI strings containing the short (friendly) and long (formal)
names of a player or group. Use these members only if the IDirectPlay2A
interface is in use.

See also IDirectPlay2::CreateGroup, IDirectPlay2::CreatePlayer,
IDirectPlay2::GetGroupName, IDirectPlay2::GetPlayerName,
IDirectPlay2::SetGroupName, IDirectPlay2::SetPlayerName

DPSESSIONDESC2
typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidInstance;
 GUID guidApplication;
 DWORD dwMaxPlayers;
 DWORD dwCurrentPlayers;
 union {
 LPWSTR lpszSessionName;
 LPSTR lpszSessionNameA;
 };

Chapter 4 DirectPlay 73

 union {
 LPWSTR lpszPassword;
 LPSTR lpszPasswordA;
 };
 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwUser1;
 DWORD dwUser2;
 DWORD dwUser3;
 DWORD dwUser4;
} DPSESSIONDESC2, FAR *LPDPSESSIONDESC2;

Contains a description of an IDirectPlay2 session's capabilities. (The
DPSESSIONDESC structure is no longer used in the IDirectPlay2 interface.)

dwSize
Size of this structure, in bytes. Your application must set this member before it
uses this structure; otherwise, an error will result.

dwFlags
A combination of the following flags.
DPSESSION_JOINDISABLED

No new applications can join this session. Any call to the
IDirectPlay2::Open method with the DPOPEN_JOIN flag and the
globally unique identifier (GUID) of this session instance will cause an
error. If this flag is not specified, new remote applications can join the
session until the session player limit is reached.

DPSESSION_KEEPALIVE
Automatically detect when remote players drop out of the game
abnormally. Those players will be deleted from the session. If a
temporary network outage caused the loss of the players, they will be
informed when they return that they were dropped from the session. For
more information, see the description for the DPSYS_SESSIONLOST
system message in Using System Messages . If this flag is not specified,
DirectPlay will not support this feature.

DPSESSION_MIGRATEHOST
If the current host exits, the host will attempt to migrate to another
computer so that new players can continue to join. If this flag is not
specified, the host will not migrate and new players cannot be created.

DPSESSION_NEWPLAYERSDISABLED
Indicates that new players cannot be created in the session. Any call to
the IDirectPlay2::CreatePlayer method by an application in the session
will result in an error. Also, new applications cannot join the session. If
this flag is not specified, players can be created until the session player
limit is reached.

DPSESSION_NODATAMESSAGES

Do not send system messages when remote player or group data changes,
by using the IDirectPlay2::SetPlayerData,
IDirectPlay2::SetGroupData, IDirectPlay2::SetPlayerName, or
IDirectPlay2::SetGroupName method. If this flag is not specified,
messages will be generated indicating that the data changed.

DPSESSION_NOMESSAGEID
Do not attach data to messages indicating who the message is from and
who it is to. Saves message overhead if this information is not relevant.
(For more information, see the IDirectPlay2::Receive method.) If this
flag is not specified, the message ID will be added.

guidInstance
GUID of the session instance.

guidApplication
GUID for the application running in the session instance. It uniquely identifies
the application so that DirectPlay connects only to other computers running the
same application. This member can be set to GUID_NULL to enumerate sessions
for any application.

dwMaxPlayers
Maximum number of players allowed in this session.

dwCurrentPlayers
Number of players currently in the session.

lpszSessionName and lpszPassword
Addresses of Unicode strings containing the name and password of the session.
Use these members only if the IDirectPlay2 interface is in use.

lpszSessionNameA and lpszPasswordA
Addresses of ANSI strings containing the session's name and password. Use these
members only if the IDirectPlay2A interface is in use.

dwReserved1 and dwReserved2
Reserved for future use.

dwUser1, dwUser2, dwUser3, and dwUser4
Application-specific data for the session.

See also IDirectPlay2::EnumSessions, IDirectPlay2::GetSessionDesc

System Messages

DPLMSG_GENERIC
typedef struct {
 DWORD dwType;
} DPL_GENERIC, *LPDPLMSG_GENERIC;

Chapter 4 DirectPlay 75

Generic structure of system messages passed between the lobby client and an
application.

dwType
Identifies what type of system message has been received.
DPLSYS_APPTERMINATED

Indicates the application started by IDirectPlayLobby::RunApplication
has terminated.

DPLSYS_CONNECTIONSETTINGSREAD
Indicates the application started by the
IDirectPlayLobby::RunApplication method has read the connection
settings.

DPLSYS_DPLAYCONNECTFAILED
Indicates the application started by IDirectPlayLobby::RunApplication
failed to connect to a session.

DPLSYS_DPLAYCONNECTSUCCEEDED
Indicates the application started by IDirectPlayLobby::RunApplication
has created a session and is ready for other applications to join or
successfully join a session.

DPMSG_ADDPLAYERTOGROUP
typedef struct{
 DWORD dwType;
 DPID dpIdGroup;
 DPID dpIdPlayer;
} DPMSG_ADDPLAYERTOGROUP, *LPDPMSG_ADDPLAYERTOGROUP;

Contains information for the DPSYS_ADDPLAYERTOGROUP and
DPSYS_DELETEPLAYERFROMGROUP system messages. The system sends
these messages when players are added to and deleted from a group.

dwType
Identifies the message. This member can either be
DPSYS_ADDPLAYERTOGROUP or
DPSYS_DELETEPLAYERFROMGROUP.

dpIdGroup
ID of the group to which the player was added or deleted.

dpIdPlayer
ID of the player that was added to or deleted from the specified group.

See also IDirectPlay2::AddPlayerToGroup,
IDirectPlay2::DeletePlayerFromGroup

DPMSG_CREATEPLAYERORGROUP
typedef struct{
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 DWORD dwCurrentPlayers;
 LPVOID lpData;
 DWORD dwDataSize;
 DPNAME dpnName;
} DPMSG_CREATEPLAYERORGROUP, *LPDPMSG_CREATEPLAYERORGROUP;

Contains information for the DPSYS_CREATEPLAYERORGROUP system
message. The system sends this message when players and groups are created in
a session.

dwType
Identifies the message. This member must be set to
DPSYS_CREATEPLAYERORGROUP.

dwPlayerType
Indicates whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or a group (DPPLAYERTYPE_GROUP).

dpId
Indicates whether the ID of a player or group has been created.

dwCurrentPlayers
Current number of players and groups in the session including the one that has
just been added.

lpData
Address of any application-specific remote data associated with this player or
group. If this member is NULL, there is no remote data.

dwDataSize
Size of the data contained in the buffer referenced by lpData.

dpnName
Structure containing the name of the player or group.

See also IDirectPlay2::CreateGroup, IDirectPlay2::CreatePlayer

DPMSG_DELETEPLAYERFROMGROUP
typedef DPMSG_ADDPLAYERTOGROUP DMSG_DELETEPLAYERFROMGROUP;
typedef DPMSG_DELETEPLAYERFROMGROUP *LPDPMSG_DELETEPLAYERFROMGROUP;

Contains information for the DPSYS_DELETEPLAYERFROMGROUP system
message. For a description of the structure members, see the
DPMSG_ADDPLAYERTOGROUP structure.

Chapter 4 DirectPlay 77

DPMSG_DESTROYPLAYERORGROUP
typedef struct{
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 LPVOID lpLocalData;
 DWORD dwLocalDataSize;
 LPVOID lpRemoteData;
 DWORD dwRemoteDataSize;
} DPMSG_DESTROYPLAYERORGROUP, *LPDPMSG_DESTROYPLAYERORGROUP;

Contains information for the DPSYS_DESTROYPLAYERORGROUP system
message. The system sends this message when players and groups are deleted
from a session.

dwType
Identifies the message. This member is DPSYS_DESTROYPLAYERORGROUP.

dwPlayerType
Identifies whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or group (DPPLAYERTYPE_GROUP).

dpId
ID of a player or group that has been destroyed.

lpLocalData
Address of the local data associated with this player/group.

dwLocalDataSize
Size, in bytes, of the local data.

lpRemoteData
Address of the remote data associated with this player/group.

dwRemoteDataSize
Size, in bytes, of the remote data.

See also IDirectPlay2::DestroyGroup, IDirectPlay2::DestroyPlayer

DPMSG_GENERIC
typedef struct{
 DWORD dwType;
} DPMSG_GENERIC, *LPDPMSG_GENERIC;

This structure is provided for message processing.

dwType
Identifies the system message type.

When a system message is received (that is, the value pointed to by the lpidFrom
parameter equals DPID_SYSMSG), first cast the unknown message data to the

DPMSG_GENERIC type, and then perform further processing based on the
value of dwType. After the message type has been determined, the message can
cast to one of the known types of system messages for further processing.

DPMSG_HOST
typedef DPMSG_GENERIC DPMSG_HOST;
typedef DPMSG_HOST *LPDPMSG_HOST;

When the current session host exits the session, this message is sent to all the
players on the computer that inherits the host duties.

DPMSG_SESSIONLOST
typdef DPMSG_GENERIC DPMSG_SESSIONLOST;
typedef DPMSG_SESSIONLOST *LPDPMSG_SESSIONLOST;

This message is generated by DirectPlay when the connection to all the other
players in the session is lost. After the session is lost, messages cannot be sent to
remote players, but all data at the time the session was lost is still available. Your
applications should try to recover gracefully and exit if this message is received.

DPMSG_SETPLAYERORGROUPDATA
typedef struct {
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 LPVOID lpData;
 DWORD dwDataSize;
} DPMSG_SETPLAYERORGROUPDATA, *LPDPMSG_SETPLAYERORGROUPDATA;

Contains information for the DPSYS_SETPLAYERORGROUPDATA system
message.

dwType
Identifies the message. This member is always
DPSYS_SETPLAYERORGROUPDATA.

dwPlayerType
Identifies whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or a group (DPPLAYERTYPE_GROUP).

dpId
ID of the player or group whose data changed.

lpData
Address of an application-specific block of data.

Chapter 4 DirectPlay 79

dwDataSize
Size of the data contained in the buffer referenced by lpData.

The system sends this message when an application changes remote player or
group data. It is not necessary for the application to save the data from this
message; it can be retrieved at any time by using the
IDirectPlay2::GetGroupData or IDirectPlay2::GetPlayerData method with
the DPGET_REMOTE flag. This message will not be generated if the
DPSESSION_NODATAMESSAGES flag is specified in the session
description.

See also IDirectPlay2::GetGroupData, IDirectPlay2::GetPlayerData,
IDirectPlay2::SetGroupData, IDirectPlay2::SetPlayerData

DPMSG_SETPLAYERORGROUPNAME
typedef struct {
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 DPNAME dpnName;
} DPMSG_SETPLAYERORGROUPNAME, *LPDPMSG_SETPLAYERORGROUPNAME;

Contains information for the DPSYS_SETPLAYERORGROUPNAME system
message.

dwType
Identifies the message. This member is always
DPSYS_SETPLAYERORGROUPNAME.

dwPlayerType
Identifies whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or a group (DPPLAYERTYPE_GROUP).

dpId
ID of the player or group whose name changed.

dpnName
Structure containing the new name information for the player or group.

The system sends this message when the name of a player or group has changed.
It is not necessary for the application to save the data from this message; it can be
retrieved at any time by using the IDirectPlay2::GetGroupName or
IDirectPlay2::GetPlayerName method. This message will not be generated if
the DPSESSION_NODATAMESSAGES flag is specified in the session
description.

See also IDirectPlay2::GetGroupName, IDirectPlay2::GetPlayerName,
IDirectPlay2::SetGroupName, IDirectPlay2::SetPlayerName

Return Values
Errors are represented by negative values and cannot be combined. This table
lists the values that can be returned by all IDirectPlay2 and IDirectPlayLobby
methods. For a list of the error values each method can return, see the individual
method descriptions.

CLASS_E_NOAGGREGATION
A non-NULL value was passed for the pUnkOuter parameter in
DirectPlayCreate, DirectPlayLobbyCreate, or
IDirectPlayLobby::Connect.

DP_OK
The request completed successfully.

DPERR_ACCESSDENIED
The session is full or an incorrect password was supplied.

DPERR_ACTIVEPLAYERS
The requested operation cannot be performed because there are existing
active players.

DPERR_ALREADYINITIALIZED
This object is already initialized.

DPERR_APPNOTSTARTED
The application has not been started yet.

DPERR_BUFFERTOOLARGE
The data buffer is too large to store.

DPERR_BUFFERTOOSMALL
The supplied buffer is not large enough to contain the requested data.

DPERR_BUSY
The DirectPlay message queue is full.

DPERR_CANTADDPLAYER
The player cannot be added to the session.

DPERR_CANTCREATEGROUP
A new group cannot be created.

DPERR_CANTCREATEPLAYER
A new player cannot be created.

DPERR_CANTCREATEPROCESS
Cannot start the application.

DPERR_CANTCREATESESSION
A new session cannot be created.

DPERR_CAPSNOTAVAILABLEYET

Chapter 4 DirectPlay 81

The capabilities of the DirectPlay object have not been determined yet. This
error will occur if the DirectPlay object is implemented on a connectivity
solution that requires polling to determine available bandwidth and latency.

DPERR_EXCEPTION
An exception occurred when processing the request.

DPERR_GENERIC
An undefined error condition occurred.

DPERR_INVALIDFLAGS
The flags passed to this function are invalid.

DPERR_INVALIDINTERFACE
The interface parameter is invalid.

DPERR_INVALIDOBJECT
The DirectPlay object pointer is invalid.

DPERR_INVALIDPARAMS
One or more of the parameters passed to the function are invalid.

DPERR_INVALIDPLAYER
The player ID is not recognized as a valid player ID for this game session.

DPERR_NOCAPS
The communication link that DirectPlay is attempting to use is not capable of
this function.

DPERR_NOCONNECTION
No communication link was established.

DPERR_NOINTERFACE
The interface is not supported.

DPERR_NOMESSAGES
There are no messages to be received.

DPERR_NONAMESERVERFOUND
No name server (host) could be found or created. A host must exist to create
a player.

DPERR_NOPLAYERS
There are no active players in the session.

DPERR_NOSESSIONS
There are no existing sessions for this game.

DPERR_NOTLOBBIED
Returned by the IDirectPlayLobby::Connect method if the application was
not started by using the IDirectPlayLobby::RunApplication method.

DPERR_OUTOFMEMORY
There is insufficient memory to perform the requested operation.

DPERR_PLAYERLOST
A player has lost the connection to the session.

DPERR_SENDTOOBIG
The message buffer passed to the IDirectPlay2::Send method is larger than
allowed.

DPERR_SESSIONLOST
The connection to the session has been lost.

DPERR_TIMEOUT
The operation could not be completed in the specified time.

DPERR_UNAVAILABLE
The requested function is not available at this time.

DPERR_UNKNOWNAPPLICATION
An unknown application was specified.

DPERR_UNSUPPORTED
The function is not available in this implementation.

DPERR_USERCANCEL
The user canceled the connection process during a call to the
IDirectPlay2::Open method.

	About DirectPlay
	DirectPlay Architecture
	DirectPlay Component
	DirectPlayLobby Component
	Service Providers

	DirectPlay Overview
	Session Management
	Player Management
	Group Management
	Message Management
	Data Management
	Using System Messages
	Synchronization
	DirectPlay Address
	What's New in DirectPlay Version 3?
	New DirectPlay 3 Methods
	Migrating to the IDirectPlay2 Interface

	DirectPlay Interface Overviews
	IDirectPlay Interface
	IDirectPlay2 Interface
	IDirectPlayLobby Interface
	Unicode Versus ANSI DirectPlayLobby Interfaces
	Registering Lobby-able Applications

	DirectPlay Tutorials
	Tutorial 1: Connecting by Using the Lobby
	Step 1: Creating a DirectPlayLobby Object
	Step 2: Retrieving the Connection Settings
	Step 3: Configuring the Session Description
	Step 4: Connecting to a Session
	Step 5: Creating a Player

	Tutorial 2: Connecting by Using a Dialog Box
	Step 1: Enumerating the Service Providers
	Step 2: Creating the DirectPlay Object
	Step 3: Joining a Session
	Step 4: Creating a Session
	Step 5: Creating a Player

	DirectPlay Reference
	Functions
	DirectPlayCreate
	DirectPlayEnumerate
	DirectPlayLobbyCreate

	Callback Functions
	EnumAddressCallback
	EnumAddressTypeCallback
	EnumDPCallback
	EnumLocalApplicationsCallback
	EnumPlayersCallback2
	EnumSessionsCallback2

	IDirectPlay2
	IDirectPlay2::AddPlayerToGroup
	IDirectPlay2::Close
	IDirectPlay2::CreateGroup
	IDirectPlay2::CreatePlayer
	IDirectPlay2::DeletePlayerFromGroup
	IDirectPlay2::DestroyGroup
	IDirectPlay2::DestroyPlayer
	IDirectPlay2::EnumGroupPlayers
	IDirectPlay2::EnumGroups
	IDirectPlay2::EnumPlayers
	IDirectPlay2::EnumSessions
	IDirectPlay2::GetCaps
	IDirectPlay2::GetGroupData
	IDirectPlay2::GetGroupName
	IDirectPlay2::GetMessageCount
	IDirectPlay2::GetPlayerAddress
	IDirectPlay2::GetPlayerCaps
	IDirectPlay2::GetPlayerData
	IDirectPlay2::GetPlayerName
	IDirectPlay2::GetSessionDesc
	IDirectPlay2::Initialize
	IDirectPlay2::Open
	IDirectPlay2::Receive
	IDirectPlay2::Send
	IDirectPlay2::SetGroupData
	IDirectPlay2::SetGroupName
	IDirectPlay2::SetPlayerData
	IDirectPlay2::SetPlayerName
	IDirectPlay2::SetSessionDesc

	IDirectPlayLobby
	IDirectPlayLobby::Connect
	IDirectPlayLobby::CreateAddress
	IDirectPlayLobby::EnumAddress
	IDirectPlayLobby::EnumAddressTypes
	IDirectPlayLobby::EnumLocalApplications
	IDirectPlayLobby::GetConnectionSettings
	IDirectPlayLobby::ReceiveLobbyMessage
	IDirectPlayLobby::RunApplication
	IDirectPlayLobby::SendLobbyMessage
	IDirectPlayLobby::SetConnectionSettings
	IDirectPlayLobby::SetLobbyMessageEvent

	Structures
	DPCAPS
	DPCOMPORTADDRESS
	DPLAPPINFO
	DPLCONNECTION
	DPNAME
	DPSESSIONDESC2

	System Messages
	DPLMSG_GENERIC
	DPMSG_ADDPLAYERTOGROUP
	DPMSG_CREATEPLAYERORGROUP
	DPMSG_DELETEPLAYERFROMGROUP
	DPMSG_DESTROYPLAYERORGROUP
	DPMSG_GENERIC
	DPMSG_HOST
	DPMSG_SESSIONLOST
	DPMSG_SETPLAYERORGROUPDATA
	DPMSG_SETPLAYERORGROUPNAME

	Return Values

